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PERSISTENT CURRENTS IN A KONDO RING
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The influence of a magnetic impurity or ultrasmall quantum dot on the persistent current of
a mesoscopic ring is investigated. The system consists of electrons in a one-dimensional ring
threaded by an Aharonov-Bohm flux ®, coupled via an antiferromagnetic exchange interaction
to alocalized electron. The problem is mapped onto a Kondo model for the even-parity channel
plus free electrons in the odd-parity channel. The twisted boundary conditions couple states
of opposite parity unless ® = f®,/2, where ®¢ = hc/e is the flux quantum and f is an integer.
For these special values of @, the model is solved by the Bethe ansatz, and it is shown that
the charge stiffness is insensitive to the presence of the magnetic impurity /quantum dot.

1 Introduction

Mesoscopic Kondo physics is a subject of considerable current interest, both experimentally'»?3

and theoretically!* It has recently become possible to measure Kondo scattering from a single
magnetic impurity? And in an experimental tour de force, electron transport through a quantum
dot in the Kondo regime has also been observed? With Kondo physics in quantum dots now
accessible in the laboratory, the full mesoscopic richness of this paradigm of many-body physics
can be investigated. One of the cornerstones of mesoscopia is the Aharonov-Bohm (AB) effect,
which has already been observed in microstructured rings coupled to a quantum dot? It is
natural to ask how the AB effect in a ring coupled to a quantum dot would be modified by the
many-body correlations present in the Kondo regime.

The equilibrium response of a multiply-connected system to an AB flux ® piercing it is the
persistent current®7#9 The persistent current of a ring coupled via tunneling to a quantum
dot was investigated via perturbation theory and numerical diagonalization by Biittiker and
Stafford? In this article, we study a variant of the problem where electrons in a one-dimensional
(1D) ring threaded by an AB flux are coupled via antiferromagnetic exchange to a localized
electron, representing a magnetic impurity or quantum dot. A detailed analysis shows that this
model can be mapped onto the integrable Kondo model for special values of ®, corresponding
to periodic and antiperiodic boundary conditions. The model is solved via Bethe ansatz for
these special values of @, and it is shown that the charge stiffness is insensitive to the Kondo
scattering, showing that spin-charge separation holds even on the mesoscopic scale in this model.

2 Exactly solvable model

The system we are contemplating is described in the continuum limit by the 1D Hamiltonian,
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where A > 0 is an antiferromagnetic Kondo coupling, m is the electron mass, L the ring’s
circumference, S is the impurity spin (located at z = 0), and v, is an electron field with spin
index o =t,]. The effect of the magnetic flux ® has been gauged away® and encapsulated in
twisted boundary conditions:

Ya(L) = €%44(0), (2)
where ¢ = 27® /Py, with &g = he/e the elementary flux quantum.



We are interested in an exact solution of the problem described by (1) and (2), with a
particular eye on how the Kondo interaction in (1) may affect the persistent current induced by
the flux ®. Since the essential physics of the system is confined to a small region around the
left and right Fermi points, we can linearize the quadratic dispersion in (1) around +kr and
introduce left (/) and right (r) moving chiral fields:

‘Lboz('r) ~ e_ikFI%bl,a (I) + eiszwr,a(m)- (3)

The Hamiltonian then becomes:

H = fI(J—I—I‘Iimp7 (4)
with .
Hy = ;—i za:/o dx (%/)Ia(x)i(?zlbl,a(m) — /Iﬂ(x)i@zzbr’a(m)) , (5)
and )
Himp = X3 (91,(0) + 910(0)) Fas (¥1,5(0) + r5(0) ) - S. (6)
o,8

To make progress, it is convenient to pass to a basis of definite parity fields ( Weyl basis):
, 1
Yeven,a () = _2 (¢T7a('r) + lbl,a(—l“)) ) (7)
an even—parity, right-moving electron field, and
1
¢odd,a(x) — E (¢r,a(_$) - ¢l,a($)) y (8)
an odd—parity, left-moving field. One should note that the assignment of chirality (left/right) to

parity (odd/even) is not intrinsic, but a property of the particular transformations (7) and (8).
This is analogous to a gauge-fixing condition. In this basis, the Hamiltonian takes the form:

H = H(())dd T Hgven + Hien‘;(;)n7 (9)
where
reven _ _UF Z/Ldﬂ (2)i0xy (z) (10)
0 - 27 ~ Y0 ml’)even,a T )10z Peven,a\T
and
odd _ VF bt 10,7
HO = % Z/O dmwodd,a(x)laf‘wo‘id’a(x) (11)

describe independent relativistic electrons, and the impurity contribution is now also diagonal:

Hier;;n = A Z llf/)(‘erven,oz(O)Eaﬁwevenﬁ(o) ' S (12)
7/3

We recognize HY*" = HGV" + an‘;‘;n as the chiral Hamiltonian of the spin-S Kondo model.
While the even and odd parity channels are decoupled in the Hamiltonian, there is a price
to be paid: the twisted boundary conditions (2) couple states of opposite parity:

7ubeven,oz (L) Cos ¢ 1sin (b 7ubeven,oz (O)
= , (13)
d’odd,a (L) —isin ¢ Cos 96 d’odd,a (0)

where in (3) we have taken kr = (27 /L)n, with n an integer. For the special values ¢ = fm
(i.e., ® = fd®y/2), where f is an integer, the matrix in Eq. (13) reduces to a multiple of the unit



matrix, and the even and odd parity states decouple from each other entirely. One can then
solve H§¥*" by the Bethe ansatz!? Thus, our original problem in (1) and (2) has collapsed to an
exactly solvable problem for f € Z, consisting of a left-moving odd-parity branch of independent
relativistic electrons, together with a (decoupled) right-moving even-parity branch defined by
the 1D Kondo model. For generic values of ¢, it is not possible to choose a basis which renders
the Hamiltonian and the boundary conditions simultaneously diagonal, strongly suggesting that
the model is not integrable in general. This is in apparent contradiction to recent claims in the
literature'® about the integrability of the related Anderson ring threaded by an Aharonov-Bohm
flux of arbitrary strength.

From Eq. (12), the impurity is seen to couple only to the spin current of the electrons,
suggesting, via the dynamic spin-charge separation in 1D, that the (charge) persistent current
is insensitive to the presence of the impurity. Although this indeed turns out to be the case—
as we shall confirm via a Bethe ansatz analysis—some caveats are appropriate at this point:
First, the persistent current is a boundary effect and, as such, could be influenced by non-
dynamical selection rtules for combining charge and spin!!'"'? Secondly, and possibly reflecting
this, a magnetic impurity does affect the charge current of a chiral ring of free electrons (with
all electrons moving in the same direction)!* In any event, it is instructive to study the exact
mechanism by which the charge persistent current in the present problem avoids any influence
from the impurity.

To carry out this analysis, we first need to consider how to properly define a persistent
current for relativistic electrons, i.e. for electrons with a linear dispersion.

3 Persistent Current for Relativistic Electrons

In the usual treatment of independent 1D electrons® the persistent current is obtained by sum-
ming the partial currents I,, = —(e/h)0F,,/0¢ over all occupied levels n. This approach clearly
fails for the relativistic electrons in (10) and (11), since the corresponding linear dispersions

27,
E, = th%M, ny = 0,1,2, ... 05 (14)
and 5
E = th¥l+q{ m=1,2, .. np (15)

imply that 0F, /0¢ = const. for all levels n. (Here we consider a system of spinless electrons
in which the total number of electrons 2nr + 1 is odd.) To recover the known results for the
persistent current, we must thus use an alternative approach. Let us introduce fluz-dependent
particle numbers

Nou(®) = oMk ()] = b (O] (16)

where k,;; 7 are flux-dependent Fermi momenta, connected to the highest occupied level on
the respective branch. k. r and k;r are cutoff dependent, and need not be equal, since only
the right-movers couple to the impurity in Eq. (9). However, provided the cutoffs are chosen
independent of ¢, N,,/Z(qb) are insensitive to the cutoff, and describe the physical response of the
system to an AB flux. The persistent current is then

evE

16) = = “EIN.(9) = Ni(@)]. (17)

It should be pointed out that the charge velocity vg is in general subject to renormalization due
to interactions.

With the choice of representative levels in (14) and (15) (note in particular that the zero
mode of the original problem (1) is assigned to one branch only) it is easy to verify that (16)



and (17) exactly reproduce the known result for the persistent current of an odd number of
spinless 1D electrons® OQur construction, introduced here ad hoc, can be put on a firm basis
by a proper analysis of the cutoff procedure for 1D relativistic electrons in the presence of an
Aharonov-Bohm flux!® In short, a flux-dependent particle number as in (16) is the trade-off
that guarantees that physical observables remain independent of the choice of cutoff (bounding
the spectrum from below).

Given (16) and (17), the problem is now reduced to calculating how the Fermi momenta
k,.;r depend on the flux and the coupling of the electrons to the magnetic impurity. For this,
we turn to a finite-size Bethe ansatz analysis.

4 Finite—size Bethe ansatz

To obtain the Fermi momenta k,;; r(¢) for a finite ring, we apply the techniques of the Bethe
ansatz for finite systems, developed previously for the 1D Hubbard model!® As pointed out
above, our model is only integrable for ¢ = fm, with f an integer. For f € Z, the nested Bethe
ansatz equations which diagonalize H are

Lk p 2 J 1
m__ﬂ-nl—I_fﬂ-—i—Nodd; 85 (8)
Meven
Lky, =2mn, + fr+ > [O(2A, —2) — 7], (19)
y=1
Meven
Neven©(2A, — 2) + O(2A,) =271, + Y O(A, — As), (20)
5=1

where k,,, are the pseudomomenta characterizing the Nyqq odd-parity left movers which decouple
from the impurity, Myqq of which have spin down, and k,,, are pseudomomenta characterizing
the Neyen even-parity right movers, Meyen of which have spin down, and {A, v =1, -+, Meyen}
are a set of auxiliary variables known as spin-rapidities. The scattering phase shifts are given
by ©(z) = — tan=!(z/c), with ¢ = 2X/(1 — 3)A/4). Eq. (18) simply gives the quantum numbers
of free, chiral electrons, written in the Bethe basis. The Bethe ansatz equation (19) describes
the charge degrees of freedom in the even channel (holons), while Eq. (20) describes the spin
degrees of freedom in the even channel (spinons). Eqgs. (19) and (20) differ from the Bethe ansatz
equations derived previously for the Kondo model'° only by the addition of the AB flux ¢ = fr.

The persistent current is an odd function of ¢ by symmetry® and is analytic, except at values
of ¢ corresponding to level crossings. We are interested in the persistent current for small values
of the AB flux. Choosing the total numbers of both up- and down-spin electrons to be odd
excludes a level crossing at ¢ = 0. The leading mesoscopic behavior of the persistent current is
then

1(¢9) = =Dep/L+ O(6°/ L), (21)

where D, is the charge stiffness. Eq. (21) holds on general grounds independent of whether the
model is integrable or not.

The choice of quantum numbers {n;, Js, n,, I,} specifies the quantum state of the system.
Generically, there are one or more level crossings!” between f = 0 and f = 1. To determine the
charge stiffness, however, we only need to consider the state which evolves adiabatically from the
ground state at f = 0 as ¢ is increased. This state is given by Meyen/odd = (Nevenfodat+/ —1)/2,
(With Neyen/odd 0dd for simplicity), with integer-spaced quantum numbers {n;, J5, n,, I, } in the
symmetric ranges —(Noda — 1)/2 < n; < (Noda — 1)/2, —(Moga — 1)/2 < Js < (Moaa — 1)/2,
—(Neven — 1)/2 < np < (Neven — 1)/2, and —(Meyen — 1)/2 < I, < (Meyen — 1)/2. The quantum



numbers of the even-parity sector are the same as those of the Kondo model with periodic
boundary conditions!®

Given a set of spin rapidities A, satisfying Eq. (20), we may calculate the sum in Eq. (19), and
thus the momenta k,,, are determined. One sees immediately that the total scattering phase shift
of the dressed magnetic impurity is independent of f, so that N, = —N; = f/2. In addition, the
charge velocity vy is unrenormalized by interactions in this modell® The charge stiffness may be
evaluated from Eqgs. (17) and (21) as a finite difference D, = —LI(f = 1)/7 = evp/7+ O(L7?),

and is unaffected by the Kondo scattering. The persistent current for small ® is thus

evp 29
I=——— 22
w2, (22)
which is identical to the result for free electrons. Eq. (22) indicates that spin-charge separation

holds even at the mesoscopic scale in this model.
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