Clare MSS-4
Subminiature Single-In-Line
"All-Position" Wetted Reed Relays

Features

- All-position mounting wetted reed contacts.
- Long life wetted reed contacts:
- Epoxy-molded for automatic wave soldering and board cleaning.
- Single-in-line-package.
- 1 Form A (SPST) contact arrangement.
- Nominal input power as low as 180 mW.
- Operate times less than 2 milliseconds.
- Bounce-free operation.
- Switching speed of 100 Hz.
- High density board mounting.
- Stable contact resistance (± 5 milliohms from original value) throughout life.
- Up to 30 VA switching, 350 V.
- High isolation between all points (1000 Vac rms)
- Diode option
- Automatic insertion capability.

GENERAL INSTRUMENT

Specifications

Engineering Data Contact Form	1 Form A (SPST)					
Contact Rating:						
Maximum Switching Power	30 VA					
Maximum Switching Voltage	350 Vdc or 350 V peak ac					
Maximum Switching Current	0,75 Adc or 0.75 A peak ac					
Maximum Carrying Current	2,0 Adc or 2,0 A peak ac					
Contact Resistance, Initial	100 m Ω max. (stable within ± 5 m Ω					
Contact resistance, mass	Thorm A (SPST) G: Ching Power Ching Voltage Ching Current Ching Curren					
Contact Material						
Contact Waterial	(mercury-wetted)					
	Form 1 Form A (SPST)					
	(mercury-wetted)					
Life Expectancy (without contact	protection):					
10 Vdc, 10 mA	$\gamma()() \times 10^{\circ}$ operations min .					
48 Vdc, 100 mA	50 × 10 ⁶ operations min.					
	100 Hz					
un to 10 hz 50 % duty cycle with						
diode suppression)						
Operate Time	1,2 ms typical, 1,75 ms max.					
Release Time, Diode Suppressed						
BounceTime	None					
Dielectric Standoff:						
Between All Mutually Insulated	1000 Vac rms min.					
Points						
Insulation Resistance:						
Across Open Contacts	100 Mohms min.					
Between Contact and Coil	10.000 Monms min.					
Capacitance:						
Across Open Contacts	1,3 pr typical, 2,0 pr max.					
Open Contact to Coil	3,0 pF typical, 4,0 pF max.					
Closed Contact to Coil	5,5 pr typical, 6,0 pr max.					
Enviromental:						
Temperature	40004- 140590					
Total Internal Relay (storage)	-40°C to + 105°C					
Operating	-38.8° $-10 \pm 73^{\circ}$ -38.8° $-$					
Shock Resistance, Non-operating	309, 11 ± 11115, 1/2 51116 wave					
Vibration Resistance, Non-operatir	All-position mounting					
Mounting Position						
Unit Weight (approximate)	2,3 g					
All above exercistics at 25°C						

All characteristics at 25°C.

Every effort is made to ensure the accuracy of the information contained in this brochure. General Instrument Clare Division reserves the right to make changes which would result in improved performance, reliability or manufacturing.

Clare MSS-2, MSS-7

Molded Dual-In-Line Series "All-Position" Wetted Reed Relays

Features

- All-position mounting wetted reed contacts.
- Long life wetted reed contacts.
- Epoxy-molded, dual-in-line for automatic board processing.
- 1 Form A (SPST) contact arrangement.
- Nominal input power as low as 180mW.
- Operate times less than 2 milliseconds.
- Bounce-free operation.
- Switching speed of 100 Hz.
- High density board mounting.
- Stable contact resistance (±5 milliohms from original value) throughout life.
- Up to 30 VA switching, 350 V.
- High isolation between all points. (1000 Vac rms)
- Diode option.
- 4 pin version for 1500 Vac rms isolation input to output available.
- Automatic insertion capability.

Clare MSS-2, MSS-7 Miniature "All-Position" Wetted Reed Relays

Introduction

The Clare MSS-2 dual-in-line wetted reed relay provides the designer with the superior switching characteristics of the MYAD switch in an epoxy-molded, dual-in-line package. The contact configuration within this package is a 1 Form A. There are three standard input voltages available: 5, 12, and 24 volts. Input power as low as 150mW addresses the need for minimum power supply requirements.

Options available in the MSS-2 package include an internal diode across the coil and a 4 pin DIP version (MSS-7) for high isolation (1500 Vac rms) input to output. Isolation across open contacts is 1000 Vac rms.

The MSS-2 and MSS-7 packages adapt to either automatic insertion equipment techniques for direct PCB mounting on 0.30 x 0,10 inch (7.62 x 2,54 mm) grid patterns or mounting in standard 14 pin DIP sockets. Both parts are delivered in plastic shipping tubes for ease of handling.

Design Characteristics

The Clare MYAD switch introduces a major breakthrough in wetted reed switching technology. It features all-position mounting of wetted reed contacts in a miniature, Form A (SPST) contact configuration.

The MYAD switch is rated at 200 million operations at low level loads (10 Vdc, 10 mA). For higher level loads, the MYAD is rated up to 30 VA.

The unique, patented MYAD design offers the best of both wetted and dry reed technologies. The MYAD switch incorporates the capillary action and the effects of the historic mercury pool reservoir techniques. A hydrogen protective

gas, typical of quality wetted reed devices, yields a true mercury-to-mercury contact interface. A symmetric reed design, typical of dry reed technology, yields high sensitivity, low input power and switching speeds that are faster than any competitive wetted reed design.

MYAD All-Position Mounting

Until now, a major disadvantage of the wetted reed relay has been that it must be mounted in an upright position. The MYAD captures the advantages of the wetted reed in relay packages that can now be mounted in any plane.

This unique switch design offers a contact rating 10 times greater than competitive all-position wetted reed relays.

Applications

General—The MSS-2 and MSS-7 relays provide the designer with many key features that are important in applications such as those listed below. For example, MSS-2 and MSS-7 are available in industry standard, epoxy-molded DIP packages for automatic board processing. These packages offer a miniature, cost-effective solution where fast operate times and bounce-free operation are important considerations. The MSS-7, 4 pin DIP is available for higher isolation input to output (1500 Vac). Both the MSS-2 and MSS-7 offer the enhanced performance of wetted reed contacts with the portability of all-position mounting in a package that requires minimum operate power.

For the Telecommunication and Datacommunication

Fields—MSS-2 and MSS-7 relays are often used in dial pulse, off-hook, and ancillary equipment. Of particular value is the MYAD's ability to switch both low level loads and higher or varying loads without degrading the contacts or contact life. Equally important are its immunity to line transient input, FCC 68 compatibility within specific applications, and extended life at ringer loads.

For Automatic Test Equipment — MSS-2 and MSS-7 offer contact stability over a wide range of switching loads. Also, their operation is enhanced by low leakage and high isolation. MSS-2 and MSS-7 are ideal for interface

applications.

For Process Controls —The design of MSS-2 and MSS-7 relays is ideal for applications where high isolation and extremely stable and reliable contact resistance is required over a variety of switching loads.

For Security Systems -MSS-2 and MSS-7 are truly cost-effective answers in security applications. These rugged epoxy-molded packages allow freedom from the effects of environmental influences.

Performance Characteristics

Wetted Reed Contacts

Wetted reed contacts provide a cushioning effect on closure, ensuring bounce-free operation. By eliminating the bounce that typically occurs on contact closure, the electrical continuity provided by the mercury film assures reliable switching and extends the life of the relay. The wetted contacts and the pressurized gas atmosphere within the switch combine to eliminate heat as the prime cause of contact erosion.

The MYAD switch, developed by the Clare Division, is oriented toward enhancing reliability, performance, and quality, as indicated in the accompanying checklist.

MYAD Performance Check List

Specifications

Engineering Data	- A (ODOT)					
Contact Form	1 Form A (SPST)					
Contact Rating: Maximum Switching Power Maximum Switching Voltage Maximum Switching Current Maximum Carrying Current	30 VA 350 Vdc or 350 V peak ac 0,75 Adc or 0,75 A peak ac 2,0 Adc or 2,0 A peak ac					
Contact Resistance, Initial	100 m Ω max. (stable within \pm 5 m! from original value over life)					
Contact Material	Platinum-Nickel alloy (mercury-wetted) to Nickel-Iron alloy (mercury-wetted)					
Life Expectancy: (with proper contact protection) 10 Vdc, 10 mA 48 Vdc, 100 mA	200×10^6 operations min. 50×10^6 operations min.					
Maximum Operating Frequency	100 Hz					
Timing: (at nominal coil voltage up to 10 Hz, 50% duty cycle with diode suppression) Operate Time Release Time, Diode Suppressed Bounce Time	1,2 ms typical, 1,75 ms max. 1,0 ms typical, 1,50 ms max. None					
Dielectric Standoff: Across Open Contacts Between Contact and Coil	1000 Vac rms min. 700 Vac rms min. (MSS-7 = 1500 Vac rms min.)					
Insulation Resistance: Across Open Contacts Between Contact and Coil	100 Mohms min. 10,000 Mohms min.					
Capacitance: Across Open Contacts Open Contact to Coil Closed Contact to Coil	1,75 pF typical, 2,0 pF max. 3,6 pF typical, 4,0 pF max. 7,0 pF typical, 8,0 pF max.					
Enviromental: Temperature Total Internal Relay (Storage) Operating Shock Resistance, Non-Operating Vibration Resistance, Non-Operating Mounting Position Unit Weight (approximate)	- 40°C to +105°C - 38,8°C to +75°C 30g, 11 ±1 ms, ½ sine wave 10g, 10 to 500 Hz All-position mounting 2,3g					

All characteristics at 25°C

Every effort is made to ensure the accuracy of the information contained in this brochure. General Instrument Clare Division reserves the right to make changes which would result in improved performance, reliability, or manufacturing.

How To Order

Mechanical Dimensions and Schematics MSS-7 - 19.6 MAX - 13 8 2.54 R. 2.79 - 1 - 6 2.54 - 10.16 - 2.54 - 2.0 0.46 - 0.84 3.18: 0.25 7.33 MAX. 6,7 MAX. 1 - 1.52 - 8.9 MAX- - 7.62 - 0.28 - 6.9 MAX- 0.76

All Dimensions are measured in millimeters (inches).

Wiring Diagrams 1 Form A

PCB Layout (Bottom View)

Specify the part number as indicated below. MSS-2 and MSS-7 relays are readily available from local Clare Distributors. Consult your local Clare Sales Office for technical assistance.

MSS 2	1A	05	В
Relay Name	Contact Form	Nominal Voltage	Options
MSS 2 = Molded, Dual-In-Line Relay—8 Pin MSS 7 = Molded, Dual-In-Line Relay—4 Pin	1A = 1 Form A	05 = 5 Vdc 12 = 12 Vdc 24 = 24 Vdc	B = Diode MSS 2 Diode Pins 2 13 & 6. Cathode Pin 2. MSS 7 Diode Pins 6 & 13, Cathode Pin 13

Part Number	Contact Form	Nominal Input Voltage (Vdc)	Coil Resistance (Ohms ± 10%)	Nominal Input Power (mW)	Must Operate Voltage (Vdc)	Must Release Voltage (Vdc)	Maximum Voltage (Vdc)
MSS2 1A05	*	5	140	178	3,75	0,5	11
MSS2 1A12		12	500	288	9,00	1,0	21
MSS2 1A24		24	2150	268	18,00	2,0	43
MSS7 1A05		5	140	178	3,75	0,5	11
MSS7 1A12		12	500	288	9,00	1,0	21
MSS7 1A24		24	2150	268	18.00	2,0	43

^{*} Stock Items All characteristics at 25°C

Notes

Clare Quality

- Compatibility: The MSS-2 MSS-7 are compatible with any standard 14 pin IC socket.
- Pins: The coil and switch terminals are 0,018 x 0,011 inch (0,46 x 0,28 mm). For normal PCB mounting, 0,024 inch (0,6mm) diameter holes are recommended.
- Terminals: All terminals are tin-lead plated.
- Soldering and Cleaning Operations: Should be conducted as quickly as possible. Solder bath should not exceed 260°C.
- Molded Package: Epoxy-molded body and epoxy heat-cured markings are impervious to all standard PCB cleaning agents.
- 6. Rugged, Transfer-Molded-Plastic Case: Provides terminal position stability and protection from extraneous mechanical or environmental forces in any application where these forces could compromise solder junctions between the coil or switch and terminals, or result in switch breakage.
- Clinching: The inserted MSS-2/MSS-7 can be clinched without damage to the structure.
- 8. **Maximum Life:** For best results, the specified contact ratings must not be exceeded.
- 9. Contact Protection: Wetted reed contacts can withstand changing currents better than any other relay type. However, contact loads that can cause severe arcing may result in contact erosion and shorten the relay's life. The designer must therefore provide contact protection to ensure the life expectancy of the relay by limiting the rate of change of voltage across the contacts when they are opened and also the current through them when they are closed. If you have any specific questions regarding contact protection, please see Clare Contact Protection Manual.
- Plastic Shipping Tube Packaging: Ensures ease of handling and compatibility with automatic insertion equipment.

Clare Division enjoys a worldwide reputation for leadership in the relay industry...a reputation that is based on our long-term dedication to the quality of an entire product line.

And, for over 48 years, we have introduced switching solutions to answer customer needs with no sacrifice in our quality standards.

Clare Quality Testing

Value Added

Our years of experience in solving switching application needs is your assurance that we will help you select the right relay for your application. Ongoing Clare R&D teams work on new relay designs based on the needs and requirements specified by users throughout the world.

Our technical service and product engineering staffs are available to assist you in the selection of stock or custom products for your applications.

Pioneering Technology

Continuous attention to quality and function have enabled us to develop major breakthroughs in switching technology. The MYAD switch has been designed to overcome two main disadvantages of conventional wetted reed relays—size and position-sensitivity. The miniature, symmetric construction of the switch guarantees the same operational characteristics when mounted in any position. The assembly of the MYAD switch incorporates many advanced technological processes. The glass envelope is drawn to exact tolerances and the contacts are sealed in a pressurized chamber. Laser welding and automated sealing are employed to achieve greater uniformity between the switches.

Our automated production techniques are tightly controlled to ensure a consistent, high uniformity of product quality at every stage of the manufacturing process. 100% electrical testing is conducted at the manufacturing locations. Stringent QA auditing programs are followed to ensure that the integrity of the product is maintained.

It is this combination of supplying you with the component, the service, and the technical expertise that makes Clare the worldwide leader in quality relay products.

Clare Division... We Help You Compete

Other Clare Relay Products

The table on the following page will help you to select a specific wetted reed, dry reed, and/or electromechanical contact relay for your application. Our product engineering staff is always ready to give you detailed information on the standard products shown or to assist you in selecting a special relay for any unique application.

Relay Product Selection Guide

												•
				CONTACT RATING				TIMING (SP	EED)	FULL LOAD		
			1		/	/ +	A LANGE OF THE PARTY OF THE PAR	14	/s. A.		A/2	
/		<i>/</i>	A)	_	4 /i	O. A.P.	LEPS.		CALCA		FOOTPRINT	4
Suc le	CON	K KALL	1	WER / I a	de lucies		4°/s	36 % 36 SE	The fire		600	
PROGRETOR	PRODUC	CONTORIA	inte	WER WAYO	\84.C)				et sterred	A	`	
							1.0	0.0	10*		P. 0,3x0.10	
ted 1	MSS2	1A	30 VA	350 VDC	0.75 A		1.2	0.0	10"		P. 0.3x0.10	
d sys	MSS6	2A	30 VA	350 VDC	0.75 A		1.0	0.0	10*		PIN-DIP 3x0,10	
	MSS7	1A	30 1/2				1,4	0.0	10*		0.1 OR 1x0.15	
	MMRB	1A TO 6A	30 VA	350 VDC	0.75 A 0.75 A		1.4	0.0	10*		TAGGERED	
	CUP (6)	1A TO 5A, 1B	30 VA 50 VA	350 VDC	0.75 A		1.5	0.0	10°	**************************************	8x0.15	
	HRM	1A TO 6A	50 VA	350 VDC	0.75 A		2.0	0.0	107		0.1 OR 1x0 15 3x0.10	
	851	1A TO 5A. 1B	50 VA	350 VDC	0.75 A	-	2.0	0.0	10°		TAGGERED	
	CUP (5)	1A TO 3A, 5A, 1B	30 VA	350 VDC	0.75 A		2.0	0.0	10°	- 11	0.10	
	MHC	1C. 2C	50 VA	350 VDC 500 VDC	2.00 A		1.1	0.0	20×109		4x0.10	
	HGJM	1C. 2C	100 VA	500 VDC	2.00 A	1.1	1,1	0.0	20x10°		2x0.10	
	HGWM HGRM	1C, 2C 1C, 2C, 1D, 2D	100 VA	500 VDC	2.00 A		2.4	0.0	10°	_ =====================================	4x0.10 4x0.10	
	GARA	1C, 2C	30 VA	350 VDC	0.75 A		2,4	0.0	10 ^a		IP 0 3x0 1c	
7	HGZM	2C	30 VA	150 VDC	1.00 A		1.7					'A
										$-\boldsymbol{A}$		
	PRMA	1A, 2A, 1B	10 VA	100 VDC	0.50 A	0.25	0.2	0.2	5×10 ⁶		IP. 0 3×0 10	
y ed	PRMA	1C	3 VA	28 VDC	0.25 A	1,5	1.5	1.0	5x10 ⁶		IP. 0 3×C	
iays	PRME	1A	10 VA	100 VDC	0.50 A	0.25	0.2	0.2	5x10 ⁶		7x0 1C	
	DSS3	1A	5 VA	100 VDC	0.50 A	0.5	0.2	0.2	5x10*		IP 0 2 . C	
	DSS4	1A	10 VA	100 VDC	0.50 A	0.25	0.2	0.2	5×10*	4	91N-D1F 3x0 10	
	DSS7	1A	10 47	100 100					10.		x010F1.	
199 m	MRB	1A TO 6A. 1B.	10 VA	200 VDC	0.75 A	0.8	0.1	0.3	10	100 mm		Michigan Sala
		2B.1AB. 2AB 1A LATCH										
		2A LATCH	H		1	0.45	0.4	0.3	10	- 111 3	TAGGERE:	
maine Project	CUP (1)	1A TO 5A 1B. 2B. 1A1B.	10 VA	200 VDC	0.75 A	0.43	0.4	0.5		5		
		2A2B, 1A LATCH						0.3	10°	- []	TAGGE AL.	
	CUPV	1A, 2A, 1B, 1A1B,	10 VA	200 VDC	0.75 A	0.45	0.4	0.3				
59.53 80.53	14000	1A	5 VA	75 VDC	0.15 A	1.5	1,0	0.5	10'		1x0 1. 1x0 1.	
	MRBS	2A. 3A	10 VA	100 VDC	0.50 A	1.0	0.5	0.3			1xC 1C	
	951	1A TO 5A. 1B	10 VA	150 VDC	0.75 A	0.2	0.3	0.2	3210	- 1		
				-	 							
		İ		l								~ 🔏
/				, , i, v								
			30 VA	125 Vdc) 2.00 A	3.5	2.0	2.5	5×10°		DIP	
ectro-	LM	2C & 2C LATCH	-30 VA	100 Vdc	1.00 A	4.0	2.5	3.0	2×10		0.10 IN LINE	
echanical elays	LX	2C 4C	30 VA	100 Vdc	1.00 A	15.0	3.0	10.0	10		0.10 IN LINE	
·	LB	6C	30 VA	100 Vdc	1.00 A	15.0	3.0	10.0	10		0 10 IN LINE	
	LC	12A	30 VA	100 Vdc	1.00 A	15.0	3.0	10.0	ľ			
£1333		6A6C.6B6C.		1	1	_	1			-		

Clare Sales Offices Worldwide

INTERNATIONAL DISTRIBUTOR HEADQUARTERS

C.P. Clare International N.V. Overhaamlaan B-3700 Tongeren (Belgium) Tel. 012-233311 - Telex 39020

EUROPE

Benelux

C.P. Clare International N.V. Overhaamlaan B-3700 Tongeren (Belgium) Tel. 012-233311 - Telex 39020

France

General Instrument France SA
Clare Division
9/11, Rue Georges Enesco
F - 94008 Créteil Cedex Tx 262435
Tel. 43.77.12.63 - Tlfx 43.99.15.24
General Instrument France SA
Clare Division
Negrefeuille - Marsonnas
F-01340 Montrevel
Tel. 74511660 - Telex 330105

Germany

Germany
General Instrument
Deutschland GMBH
Clare Division
Gartenstrasse 45
D-7140 Ludwigsburg
Tel. 07141-26972 - Telex 7264631

Italy

General Instrument Italia S.R.L. Clare Division Via Quintiliano 27 20138 Milano Tel. 02-506 18 26 - Telex 320348

Sweder

General Instrument Scandinavia AB Clare Division Box 107 S-191 22 Sollentuna Tel. 08-96 82 30 - Telex 17779

United Kingdom

General Instrument (U.K.) Ltd Clare Division Times House Station Approach Ruislip, Middsx, HA4 8JG Tel. 08956-39901 - Telex 23272

FAR EAST

Singapore

General Instrument Ltd 1 Scotts Road No. 19-08 Shaw Centre Singapore 0922 Tel. 235 80 30

Japan

General Instrument International Corp. Fukide Building, 5th Floor 1-13 Toranomon 4-Chome Minato-Ku, Tokyo 105 (Japan) Tel. 437-0281

Taiwan

General Instrument of Taiwan Ltd 233 Pao Chiao Road P.O. Box 22226 Hsin Tien, Taipei, Taiwan (R.O.C.) Tel. (02) 911 38 61-9

NORTH AMERICA

Canada

Clare Division General Instrument of Canada Ltd 91 Kelfield Street, Unit 5 Rexdale, Ontario M9W 5A3 Tel. (416) 249-8341

United States of America

Clare Division General Instrument Corporation 36 Commerce Way Woburn, MA 01801 Tel. (617) 938-0666

Clare Division General Instrument Corporation 3322 South Memorial Parkway Holiday Office Center, Suite 24 Huntsville, AL 35801 Tel. (205) 883-9130

Clare Division General Instrument Corporation 2355 South Arlington Heights Road Arlington Heights, ILL. 60005 Tel. (312) 981-0630

Clare Division General Instrument Corporation 1944 W. North Lane, Suite 2 Phoenix, AZ 85224 Tel. (602) 997-7448

Clare Division General Instrument Corporation 3101 West Pratt Boulevard Chicago, ILL. 60645 Tel, 1-312-262-7700 Telex 25-3775

Tongeren, november 1986

