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We study the ground-state properties of electrons confined to a quantum wire and subject to a smoothly
modulated Rashba spin-orbit coupling. When the period of the modulation becomes commensurate with the
band filling, the Rashba coupling drives a quantum phase transition to a nonmagnetic insulating state. Using
bosonization and a renormalization-group approach, we find that this state is robust against electron-electron
interactions. The gaps to charge and spin excitations scale with the amplitude of the Rashba modulation with
a common interaction-dependent exponent. An estimate of the expected size of the charge gap, using data for
a gated InAs heterostructure, suggests that the effect can be put to practical use in a future spin transistor
design.
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I. INTRODUCTION

Progress in the control and manipulation of spin degrees
of freedom in semiconductors holds great promise for the
development of future spintronics devices.1 Much of current
work in the field is inspired by various proposals for spin
transistors. In what has become the prototype for a spintron-
ics device scheme, the Datta-Das spin transistor,2 spin-
polarized electrons are injected from a ferromagnetic source
into a quasi-one-dimensional �1D� ballistic channel �“quan-
tum wire”� formed in a semiconductor heterostructure. The
structure inversion asymmetry of the heterostructure pro-
duces a Rashba spin-orbit coupling that makes the spins of
the electrons precess with a rate controllable via a gate. In a
simplified picture, an electron with the same spin projection
as that of the magnetized drain is accepted by the drain, or
else the electron is scattered away. This realizes an “on-off”
current switch, controllable by the gate bias. The scheme is
yet to be realized, however. One obstacle is the inefficiency
of present techniques for injecting spin-polarized electrons
from a ferromagnet into a quantum wire. Alternative ideas
for developing a current switch based on a Rashba coupling
are thus in high demand.

In an analysis of 1D spin transport, Wang3 suggested a
design for a spin transistor where the electrons experience a
spatially periodic Rashba spin-orbit coupling. In this scheme
segments of a quantum wire with a uniform Rashba coupling
are connected in series to segments with no coupling. A
Fabry-Pérot-like interference between electron waves scat-
tered at the interfaces between two segments leads to a trans-
mission gap with a complete blocking of the charge current
over a range of energies when the number of segments be-
comes sufficiently large. By tuning the electron density—and
hence the Fermi level—by a supplementary gate, the flow of
current in the wire can then be controlled effectively. As
pointed out by Gong and Yang,4 the effect is fully operative
for electrons with no spin polarization. By utilizing a peri-
odically modulated Rashba coupling, one may thus envision
a spin transistor without the injection of spin-polarized elec-
trons into the current-carrying channel.5

This intriguing prospect motivates a closer investigation.
In the present Rapid Communication we address two issues:
first, how robust is the opening of a charge excitation gap
against smoothening of the boundaries between regions with
different strengths of the Rashba coupling? In particular, if
the Rashba strength varies continuously on the scale of the
underlying lattice, can a gap still appear? If so, under what
conditions? Second, how do electron-electron interactions in-
fluence the gap opening? This question is crucial in view of
applications as electron interactions in 1D can dramatically
change the physics expected from an independent-electron
picture.6 As we shall see, by “locking” the band filling to the
periodicity of the Rashba modulation, a gap to charge
excitations—as well as to spin excitations—does open up for
a smooth Rashba interaction and it persists even when elec-
tron interactions are included. This gap-opening mechanism
is very different from that based on repeated potential scat-
tering in Refs. 3 and 4, the only common ingredient being
the presence of a periodic Rashba modulation. In fact, we
find that in the experimentally relevant parameter range,
electron interactions increase the size of the charge gap, thus
assisting the use of a gate-controlled modulated Rashba cou-
pling as a current switch.

II. NONINTERACTING ELECTRONS

We consider a Rashba spin-orbit interaction HR, which
can be split into a uniform and a harmonically varying piece,

HR = ��0kx +
�1

2
�cos�Qx�,kx���y . �1�

Here �0 and �1 are constants, Q is a wave number, kx is the
electron wave number along the wire, and �y is a Pauli ma-
trix. The anticommutator �cos�Qx� ,kx� ensures that the inter-
action is Hermitian. The structure of Eq. �1� may be used in
an attempt to qualitatively capture the effect of a piecewise
modulated Rashba coupling in a quantum wire where distor-
tions and stray electric fields smoothen the sharp interface
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between two consecutive segments of the wire �each of ex-
tension l0=2� /Q� with different values of the coupling. The
real raison d’être for our choice in Eq. �1�, however, is that it
allows for a well-controlled analysis of a modulated Rashba
coupling, also in the presence of electron interactions.

To set the stage, let us first focus on the case of noninter-
acting electrons. We shall assume that only the lowest-energy
subband is partly filled as this is the case most relevant for an
experimental realization. Making use of a tight-binding lat-
tice formulation, we represent the kinetic energy by

H0 = − t�
n,�

�cn,�
† cn+1,� + H.c.� . �2�

Here t is the hopping amplitude and cn,�
† �cn,�� are electron

creation �annihilation� operators on site n with spin projec-
tion �= ↑ ,↓ along the ẑ axis. The role of the Rashba inter-
action in Eq. �1� is taken by

HR = − i �
n,�,�

��0 + �1 cos�Qna�	�cn,�
† ���

y cn+1,� − H.c.� ,

�3�

where � j =� ja
−1�j=0,1�, with a as the lattice spacing.

It is useful to introduce spin-rotated operators
bn,+
�cn,↓− icn,↑� /�2 and bn,−
�cn,↑− icn,↓� /�2, and write
the Hamiltonian H=H0+HR as

H = − �
n,�

��t + i��0�bn,�
† bn+1,� + H.c.

− i�1 cos�Qna���bn,�
† bn+1,� − H.c.�	 , �4�

with �=	 labeling the eigenstates of the �y operator, i.e., the
spin projections on the axis along which the effective
momentum-dependent Rashba field is pointing. When �1=0,
the Hamiltonian in Eq. �4� describes a 1D system of nonin-
teracting electrons in the presence of a uniform Rashba spin-
orbit coupling. For this case the Hamiltonian is readily di-
agonalized in momentum space, and one finds that the spin-
degenerate band in the absence of Rashba coupling gets
shifted horizontally into two distinct branches,

E�
0�k� = − 2t̃ cos��k − �q0�a	 , �5�

where q0=a−1 arctan��0 / t� and t̃=�t2+�0
2. Note that we here

consider an ideal 1D quantum wire, thus avoiding the com-
plication of energy-band deformations produced by a spin-
orbit interaction in the presence of a soft transverse confining
potential.7

At band filling �=Ne /N0, with Ne �N0	 being the number
of electrons �lattice sites	, the system is characterized by the
four Fermi points kF,R

� =kF
0 +�q0, kF,L

� =−kF
0 +�q0 ��=	�,

where kF
0 =�� /2a. To simplify the analysis we linearize the

spectrum around these Fermi points and pass to a continuum
limit with na→x. By decomposing the lattice operators bn,�
into right- and left-moving fields R��x� and L��x�,

bn,� → �a�ei�kF
0+�q0�xR��x� + e−i�kF

0−�q0�xL��x�� ,

the lattice Hamiltonian in Eq. �4� takes the form
H=�dx�H++H−�, with

H� = − ivF�:R�
†�x��xR��x�:− :L�

†�x��xL��x�:�

− 2
R cos�Qx��e−2ikF
0 �x+a/2�R�

†�x�L��x� + H.c.� , �6�

where vF=2a�t2+�0
2 and 
R=�1 sin�q0a�, and where we

have omitted rapidly oscillating terms, which vanish upon
integration. The normal ordering :…: is carried out with re-
spect to the filled Dirac sea.

III. BOSONIZATION

To make progress we bosonize the theory, using
R��x�=�� exp�i�� ����x�+��x�	� /�2�a and L��x�
= �̄� exp�−i�� ����x�−��x�	� /�2�a, where ���x� and ��x�
are dual bosonic fields satisfying �t��=vF�x�, and where ��

and �̄� are Klein factors which keep track of the fermion
statistics for electrons in different branches.8 Inserting the
bosonized forms of R��x� and L��x� into Eq. �6�, and intro-
ducing the charge �c� and spin �s� fields �c
��++�−� /�2
and �s
��+−�−� /�2, we arrive at the bosonized
Hamiltonian

H = dx�vF

2 �
i=c,s

���x�i�2 + ��xi�2�

−
2
R

�a
�

j=	1
sin��Q + 2jkF

0	x + kF
0a + �2��c�cos��2��s�� .

When Q−2kF
0 �O�1 /a�, both Rashba terms �
R are rapidly

oscillating and average to zero. Thus, in this limit the model
describes free charge and spin bosons, i.e., a metallic phase
with gapless spin excitations.

In contrast, when Q−2kF
0 �O�1 /a� the j=−1 component

of the modulated Rashba coupling comes into play. For
this case it is useful to perform a transformation,
�Q−2kF

0�x+kF
0a+�2��c→� /2+�2��c, and rewrite the

Hamiltonian density as

H =
vF

2 �
i=c,s

���x�i�2 + ��xi�2� − �eff�x�c

−
2
R

�a
cos��2��c�cos��2��s� , �7�

where �eff
vF
�2 /��Q−2kF

0� is an effective “chemical po-
tential,” which, when tuned to zero, “locks” the band filling
to commensurability with the Rashba modulation. For this
case, i.e., with �eff=0, the Hamiltonian describes two
bosonic charge and spin fields coupled by the strongly
�renormalization-group �RG�	 relevant operator
cos��2��c�cos��2��s�. This operator pins the charge and
spin fields at their ground state expectation values

��c� = ��s� = ��/2n n = 0, 	 1, 	 2, . . . . �8�

and as a result both spin and charge excitations develop a
gap.9 Thus, when �eff=0, the system turns into a nonmag-
netic insulator.

To study the properties of the insulating state, specifically
the size of the charge excitation gap, we use a mean-field
decoupling of charge and spin in Eq. �7� and write the
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Hamiltonian as H=�dx�Hc+Hs�, where �for i=c ,s�

Hi =
vF

2
���x�i�2 + ��xi�2	 −

mi

�a
cos��2��i� , �9�

with

mc 
 
R�cos��2��s��, ms 
 
R�cos��2��c�� . �10�

Note that the mean-field decoupling is here under control
since the pinning �Eq. �8�	 implies that field fluctuations are
strongly suppressed. As seen from Eq. �9�, the mean-field
theory at �eff=0 is equivalent to two commuting sine-
Gordon models with �2=2�, and with “bare” masses defined
by Eq. �10�. From the exact solution of the sine-Gordon
model it is known that for this case the excitation spectrum is
gapped and consists of solitons and antisolitons with mass
Mc/s and soliton-antisoliton bound states �“breathers”� with
the lowest breather mass also equal to Mc/s.

10 As Mc deter-
mines the charge gap caused by the modulated Rashba cou-
pling, we shall derive an expression for Mc that allows us to
estimate its size in a given experimental setting. Before do-
ing so, however, let us show how the analysis above can be
extended so as to take into account the electron-electron in-
teractions.

IV. INTERACTING ELECTRONS

Since Umklapp scattering is absent in a ballistic quantum
wire, one is left with backscattering ��g1	�, dispersive scat-
tering ��g2	�, and forward scattering ��g4	�, controlled by

Hint = g1− : R�
†L�L−�

† R−� : + g̃2� : R+
†R+L�

†L� :

+
g4�

2
�:R+

†R+R�
†R� :+ R ↔ L� , �11�

with � =	 summed over, g̃2�
g2�−��+ g1� , and
�+,−�↔ �� ,�� in the standard “g-ology” notation.6

The strength of the electron interaction in a semiconduc-
tor structure is typically much smaller than the band width.
For this weak-coupling case the backscattering �g1− is mar-
ginally irrelevant and renormalizes to zero at low energies
�just as for a 1D electron system in the absence of spin-orbit
coupling�.11 From now on we therefore consider an effective
model where the backscattering has been renormalized away.
The bosonized mean field theory, including electron interac-
tions, then takes the form H=�dx �Hc+Hs	, where �for i
=c ,s�

Hi =
vi

2
���x�i�2 + ��xi�2	 −

mi

�a
cos��2�Ki�i� . �12�

For weak interactions, vi and Ki can be explicitly param-
etrized in terms of the amplitudes in Eq. �11�.6 Note that also
the bare masses mi get renormalized by the interaction, with
�i→�Ki�i in Eq. �10�. It is also important to note that the
breaking of spin-rotational invariance by the Rashba interac-
tion implies that the RG fixed-point value of Ks is not slaved
to unity6 but can take larger values.12

V. CHARGE AND SPIN EXCITATION GAPS

We can now derive an expression for the charge excitation
gap—identified as the physical soliton mass Mc in the charge
sector of Eq. �12�—with the electron interactions included.
The mass Mc and the corresponding mass Ms in the spin
sector are related to the �bare� mass parameters mc and ms,
respectively, by13

Mi = C1�Ki���mi/��2/�4−Ki�, i = c,s , �13�

where � is an energy cutoff, and C1�Ki�

����1−Ki /4� /��Ki /4�	2/�4−Ki��2���i /2� /����1 /2−�i /2�	,
with �i=Ki / �4−Ki�. The ground-state expectation values en-
tering the bare masses mi are in turn related to the physical
masses Mi by14

�cos��2�Ki�i�� = C2�Ki��Mi/��Ki/2, i = c,s �14�

with

C2�Ki� 
 ��1 + �i�� ��1 − Ki/4�/16 sin���i���Ki/4�	

����1/2 + �i/2���1 − �i/2�/4��	�Ki/2�−2

��2 sin���i/2�	Ki/2.

Combining Eqs. �10�, �13�, and �14�, some elementary alge-
bra yields for the charge excitation gap,

Mc = Cc��
R/��2/�4−Kc−Ks�, �15�

where

Cc
16−4Kc−4Ks 
 C1�Kc��4−Kc��4−Ks�

�C2�Kc�2Ks C1�Ks��4−Ks�Ks C2�Ks�2�4−Ks�.

The spin gap Ms is given by the same expression but with
c↔s.

The opening of the charge gap at a band-filling commen-
surate with the period of the Rashba modulation leads to a
reduction in the ground state energy and pins the band filling
at this value until the chemical potential reaches the bottom
of the upper band. The competition between the chemical
potential � and the commensurability energy drives a con-
tinuous quantum phase transition from a gapped �insulating�
phase at ���c=Mc to a gapless �metallic� phase at
���c.

15,16 Such a transition belongs to the universality class
of a commensurate-incommensurate metal-insulator
transition.6 The critical conductivity �, proportional to the
doping of the upper band, scales as ����−�c�1/2, while the
compressibility � diverges as ����−�c�−1/2 before drop-
ping to zero on the insulating side. In the gapless phase the
ground-state expectation value �cos��2�Kc�c�� vanishes
and, as follows from Eq. �10�, this implies that also the bare
mass ms vanishes. As a consequence, the quantum phase
transition in the charge sector at �=�c is accompanied by a
similar transition in the spin sector, with the system showing
Luttinger liquid behavior with gapless spin and charge exci-
tations for ���c.

VI. IMPLICATIONS

Our main result, Eq. �15�, boosts the proposal3,4 that a
controllable and modulated Rashba coupling may serve as a
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current switch in a quantum wire. It is here important to
emphasize that our scheme exploits a nontrivial commensu-
rability property, encoded in the condition Q=2kF, and is
hence different from that in Refs. 3 and 4, which is based on
a picture of repeated single-particle scattering. For an imple-
mentation one would need a configuration of switchable top
gates that produce the modulation, as well as a tunable back
gate by which the band filling can be adjusted. While a chal-
lenging quest in quantum engineering, our analysis testifies
to the soundness of the scheme as it shows that a Rashba-
induced charge gap is robust against electron-electron inter-
actions. In fact, as revealed by Eq. �15�, in the experimen-
tally relevant range Kc+Ks�2,6 the gap grows with the
strength of the electron interactions.

As for the size of the gap, we may take as illustration a
quantum wire patterned in an InAs heterostructure, which,
due to its strong spin-orbit coupling and large electron mean-
free path, is favored in spintronics applications.1 Using data
for a heterostructure grown by molecular-beam epitaxy,17

with Rashba parameter ���2�10−11 eV m, carrier density
ne�1�1012 cm−2, effective mass m��0.4me, and lattice
spacing a�5 Å, we have that �
R�4 meV, taking
�1��. A rough estimate of the charge and spin stiffness
parameters, assuming a well-screened interaction18 with
��15�0,19 yields that Kc�0.6 and Ks�1.2. With
�=�vF /a�0.5 eV, it follows from Eq. �15� that
Mc�1�102 meV, corresponding to a threshold voltage of
approximately 100 mV in a spin transistor application.

Using the estimate of Mc above, the characteristic length
scale ���vF /Mc at which the gap starts to open up is given
by ��5 nm. This number fits easily within the quantum
ballistic regime of an InAs quantum wire, with an estimated
mean-free path of �1.5 �m,19and one thus expects the gap
to open up fully. In this context one should realize that an
implementation of a gate-controlled Rashba modulation with
a well-defined periodicity is an experimental challenge and
must probably await further progress in device technology. It

is here important to note that a periodic gate bias will modu-
late also the electron density, thus favoring a build-up of
charge density wave correlations. While this effect is ex-
pected to assist the opening of the Rashba gap, its precise
influence needs to be studied in a more complete theory.

VII. SUMMARY

To conclude, we have shown that a smoothly modulated
Rashba spin-orbit coupling in a quantum wire drives a
commensurate-incommensurate metal-insulator transition at
a critical value of the band filling. The charge excitation gap
�as well as the associated spin gap� is found to scale with the
amplitude of the Rashba modulation �1 as �1

2/�4−Kc−Ks�, where
Kc and Ks are the charge and spin stiffness parameters that
encode electron interaction effects. In a next step one should
try to refine the analysis of the problem and go beyond the
minimal model employed here. In particular, effects from
local variations in the electron density and from electron
back scattering at very low densities11 are important to ex-
plore. Also, the question of what happens for more general
periodic profiles of the Rashba modulation is an important
issue. With a more complete theory, and with advances in
device technology, a low-bias spin transistor based on a swit-
chable and modulated Rashba coupling may well become a
reality.
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