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Two-channel Kondo effect in a Luttinger liquid
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Abstract. We review exact results obtained for the over-
screened multi-channel Kondo effect in a one-dimensional
interacting electron system. A simple rederivation of our re-
sults for the case of two channels is presented.
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1. Introduction

Since its inception in the mid-50s, Landau’s Fermi-liquid
theory has played a key role in the study of interacting
many-fermion systems [1]. The theory assumes that the low-
lying quasi-particle spectrum of a liquid of fermions can be
mapped onto that of the free Fermi gas. This hypothesis
and its ramifications has been enormously successful in the
theory of ordinary metals, as well as for describing cer-
tain strongly correlated electron systems, such as the “con-
ventional” heavy-fermion materials, or the (single-channel)
Kondo effect in magnetically doped metallic alloys.

In recent years, however, experimentalists have found
(or designed!) a number of systems which do not fit into
the standard Fermi-liquid picture. These include the high-
temperature superconductors, quasi one- and two-dimensio-
nal materials, d- and f-electron based metals close to a quan-
tum critical point, and certain artificially designed nano-scale
structures – to mention only the most prominent examples
[2]. This situation presents a challenge to the theorist who
must here abandon the comforting Fermi-liquid paradigm.

The best studied model problems showing non-Fermi liq-
uid behavior are the Luttinger liquid [3, 4] and the over-
screened multi-channel Kondo effect [5–7]. The notion of
a “Luttinger liquid” refers to the universal low-energy be-
havior of interacting electrons in one dimension (1D). The
perfect nesting due to the disjoint Fermi surface in 1D (con-
sisting of the two Fermi points ±kF ) produces a diverging
particle-hole response at 2kF for repulsive electron-electron
interaction. This leads to a breakdown of Fermi liquid the-
ory, with the quasi-particles decaying into spatially separated
charge- and spin modes. The multi-channel Kondo effect, on
the other hand, arises from the coupling of a local magnetic

moment to several degenerate channels m of noninteracting
electrons. When m > 2S (with S the magnitude of the im-
purity spin) the m channels of electron spin bind with the
impurity to form a new effective local moment of magni-
tude m/2 − S. The process repeats, with the participating
electrons forming a strongly correlated composite exhibiting
manifest non-Fermi liquid behavior.

Both problems have been studied extensively, and have
shaped much of our current thinking on strongly correlated
electron systems. In light of this it is natural to ask: What
happens if a magnetic impurity is inserted into a Luttinger
liquid with several copies of the conduction band? As for
the multi-channel Kondo effect in a Fermi liquid we expect
that the impurity also here will induce effective interactions
among the electrons. But in a Luttinger liquid the electrons
are already strongly correlated by their mutual interactions.
Then, what happens? Does the interplay between “induced”
and “direct” correlations lead to novel effects? Or do we
recover the same Kondo physics as in a Fermi liquid? Aside
from the possible experimental relevance of these questions
to the study of artificial impurities in quantum wires [9, 10],
their resolution is an interesting theoretical issue in its own
right, and may lead to new insights into the breakdown of
Fermi-liquid behavior.

We have recently attacked this problem using the tech-
niques of boundary conformal field theory (BCFT) [11]. The
method, as applied to quantum impurity problems, was pi-
oneered by Affleck and Ludwig in a series of remarkable
papers on the multi-channel Kondo effect in a Fermi liquid
[7]. Its extension to the single channel Kondo problem in
a Luttinger liquid was subsequently carried out in [12, 13],
supporting earlier renormalization-group results conjectured
by Furusaki and Nagaosa [14]. The heart of the method is
to replace the impurity by a scale invariant boundary con-
dition on the bulk theory. One then uses the tools of BCFT
to extract the scaling dimensions of the boundary opera-
tors that get generated under renormalization to increasing
length scales as T → 0. The leading thermal and magnetic
response added to the system by the presence of the impu-
rity is driven by the leading irrelevant boundary operator
and by computing its auto-correlation functions, the finite-
temperature properties due to the presence of the boundary
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(alias the impurity!) can be accessed via standard pertur-
bative techniques, treating (Euclidean) time as an inverse
temperature.

Carrying out this program for a multi-channel (antifer-
romagnetic) Kondo interaction in a Luttinger liquid [15],
we find that the change of the low-temperature specific heat
due to the impurity-electron (screening cloud) composite ac-
quires a new leading term when m > 2S [16], scaling in
temperature with a critical exponent αm = 1/m(1/Kρ,m −
1). Here Kρ,m = (1 + 2(2m− 1)g/vF )−

1
2 ≤ 1 is a channel-

dependent Luttinger liquid charge parameter, measuring the
strength g of the repulsive electron-electron interaction, with
vF the Fermi velocity. (Notably, by putting m = 1 we
recover the anomalous exponent for the exactly screened
single-channel case, first proposed by Furusaki and Nagaosa
[14].) In contrast, the leading impurity magnetic response
for any m remains the same as for noninteracting electrons.
In what follows we shall rederive these results for the spe-
cial case of two channels, m = 2, and with an impurity
spin S = 1/2. For this particular case the analysis can be
routed via the so called coset construction [17] in conformal
field theory, thus making certain aspects of the theory more
transparent.

2. The model

We describe the electrons in the bulk by a two-band spinful
Tomonaga-Luttinger type model:

Hel =
1
2π

∫
dx

{
vF

[
:ψ†L,iσ(x)i

d

dx
ψL,iσ(x) :

− :ψ†R,iσ(x)i
d

dx
ψR,iσ(x) :

]

+
g

2
:ψ†r,iσ(x)ψr,iσ(x)ψ

†
s,jµ(x)ψs,jµ(x) :

+g :ψ†L,iσ(x)ψR,iσ(x)ψ
†
R,jµ(x)ψL,jµ(x) :

}
. (1)

Here ψL/R,iσ(x) are the left/right moving components of the
electron field Ψiσ(x), expanded about the Fermi points ±kF :
Ψiσ(x) = e−ikF xψL,iσ(x) + eikF xψR,iσ(x). Summation over
repeated indices for chirality r, s = R,L, spin σ =↑, ↓, and
band (flavor) i, j = 1, 2 is implied. The first term in (1) is
that of free relativistic electrons in 1D, while the second and
third terms describe forward and backward electron-electron
scattering respectively. The normal ordering is defined w.r.t.
the filled Dirac sea.

The model in (1) can be obtained from a two-band Hub-
bard chain
Hel = −t

∑

n

(c†n,iσcn+1,iσ + c
†
n+1,iσcn,iσ)

+U
∑

n,ij,µσ

nn,iσnn,jµ , (2)

by performing a continuum limit cn,iσ →
√

a
2πΨiσ(na)

(with a the lattice spacing), linearizing the spectrum, and
then decomposing Ψiσ(na) in chiral components. The pa-
rameters vF and g in (1) thus become connected to the
lattice by vF = 2at sin(akF ) and g = Ua/π respectively.
The procedure is standard and gives a well-defined theory

for small energies and momenta in the limit of weak on-site
repulsion U .

We couple the electrons to a localized spin-1/2 impu-
rity S at the origin, using an antiferromagnetic (λ > 0)
spin-exchange interaction. In the continuum, with chirally
decomposed electron fields, this takes the form

HK =λ : (ψ†L,iσ(0)+ψ
†
R,iσ(0))

1
2
σσµ(ψL,iµ(0)+ψR,iµ(0))·S :(3)

Note that in contrast to the effective 1D Kondo model de-
scribing free 3D electrons in several degenerate orbital chan-
nels [5–7], the interaction in (3) mixes left- and right-moving
fields. As we shall see, this introduces a new twist into the
problem.

To make progress it is useful to first replace the spin and
flavor indices on the chiral fields, i and σ, by a single index
Λ, running from 1 to 4, and then cast the bulk Hamiltonian
Hel on the form

Hel =
1
2π

∫
dx

{
vF + 3g
8

:Jr(x)Jr(x) :

+
vF − g

5
:JA

r (x)JA
r (x) :

+
3
4
gJL(x)JR(x)− 2gJA

L (x)JA
R (x)

}
, (4)

with currents

Jr(x) = :ψ†r,Λ(x)ψr,Λ(x) : (5)

JA
r (x) = :ψ

†
r,Λ(x)T

A
ΛΓψr,Γ (x) :, (6)

obeying the U (1) and SU (4)1 Kac-Moody algebras, respec-
tively (with TA

ΛΓ , A = 1, .., 15 the generators of SU (4)). The
charge sector can be diagonalized by means of the canonical
transformation JL/R(x) = cosh(θ)jL/R − sinh(θ)jR/L, with
the parameter θ given by tanh(2θ) = 3g

vF +3g . Furthermore,
the non-diagonal term JA

L JA
R is (marginally) irrelevant [18]

and can hence be dropped. Doing this, we can then separate
the spin- and flavor degrees of freedom via the conformal
embedding SU (2)2 × SU (2)2 → SU (4)1. At the level of
currents this can be expressed as
1
5
:JA

L/R(x)J
A
L/R(x) :

.=
1
4
:Js

L/R(x) · Js
L/R(x) :

+
1
4
:Jf

L/R(x) · J
f
L/R(x) :, (7)

with the SU (2)2 spin- and flavor currents

Js
r(x) = :ψ

†
r,iσ(x)

1
2
σσµψr,iµ(x) : (8)

Jf
r (x) = :ψ

†
r,iσ

1
2
σijψr,jσ : , (9)

σ being the Pauli matrices. Collecting these results, we can
finally put the renormalized bulk Hamiltonian on diagonal
Sugawara form, with manifestly decoupled charge- (c), spin-
(s), and flavor (f) degrees of freedom:

H∗
el =

1
2π

∫ &

−&
dx

{
vc
8
:jiL(x)jiL(x) : +

vs
4
:Jsi

L (x) · Jsi
L (x) :

+
vf
4
:Jfi

L (x) · J
fi
L (x) :

}
, (10)
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with velocities vc = vF
√
1 + 6g/vF and vs = vf = vF − g

respectively. We have here confined the system to a finite
interval x ∈ [−), )] and replaced the right-moving currents
by a second species of left-moving currents: j2L/R(x) ≡
jR/L(−x) for x > 0 (with j1L/R(x) ≡ jL/R(x)). This is
equivalent to folding the interval in half to [0, )], imposing
a boundary condition

j1/2L (0) = j2/1R (0), (11)
and then using (11) to analytically continue the charge cur-
rents back to the full interval (and repeating the procedure
for spin- and flavor currents). The Sugawara structure in
(10) implies that H∗

el is invariant under independent U (1)
and SU (2)2 transformations on the two species of charge-
and spin/flavor currents, mirroring the chiral symmetry in
charge-, spin-, and flavor sectors of the renormalized bulk
theory. Also note that the decoupling of the three sectors in
(10) leads to three dynamically independent bulk theories,
each conformally invariant with a single effective velocity.

3. Kondo interaction:
symmetries and boundary operators

Adopting the hypothesis that any quantum impurity can be
traded for a scale invariant boundary condition on the appli-
cable bulk theory [19], we expect that the effect of the Kondo
interaction in (3) is to “renormalize” (11) into a new, non-
trivial boundary condition on H ∗

el. In BCFT, a boundary
condition is equivalent to a selection rule for quantum num-
bers of a conformal embedding of the symmetries of the
critical bulk Hamiltonian [11]. In our case, the conformal
embedding is ×i=1,2[U (1) × SU (2)2 × SU (2)2]i with U (1)
quantum numbers qi and SU (2) spin- and flavor quantum
numbers ji and Ii respectively. These label the conformal
towers [20] in charge-, spin- and flavor sectors into which
the eigenstates of H ∗

el organize, and take values according
to

q
1
2 =

1
2
C

1
2eθ ± 1

2
D

1
2e−θ ji, Ii ∈ {0, 1

2
, 1} (12)

with Ci, Di ∈ Z. For each boundary condition there is a se-
lection rule which determines the allowed combinations of
quantum numbers from (12). The eigenstates of H ∗

el (with
a particular boundary condition imposed) are in 1-1 corre-
spondence with the boundary operators On of the same the-
ory boosted to Euclidean space-time (with the time-axis as
boundary), their scaling dimensions ∆n being connected to
the finite-size energy levels En by En = E0 +πv∆n/) [11].
It follows that the selection rule completely specifies the
boundary operator content, and hence the boundary critical
behavior. The trivial boundary condition (11) is an artifact
of our construction, and the selection rule associated with
it must therefore be such as to reproduce the bulk scaling
dimensions of H ∗

el. It is less obvious how to identify the
selection rule for the nontrivial boundary condition repre-
senting (3). This is different from the ordinary two-channel
Kondo problem where the selection rule can easily be ob-
tained via a canonical transformation on the spin current
[7]: In our case the Kondo interaction in (3) mixes left- and
right moving electrons and can therefore not be expressed in

terms of a spin current built from the chiral fields ψL/R(x).
This obstructs the use of the standard approach. As it turns
out, however, we do not need the full selection rule to ob-
tain the impurity critical behavior: It is sufficient to identify
the leading irrelevant boundary operator (LIBO) contained
in the spectrum, as this is the operator that governs the re-
sponse of the impurity-electron composite. This opens up
a short cut for attacking the problem: We consider all se-
lection rules for combining quantum numbers in (12) (thus
exhausting all conceivable boundary fixed points), for each
selecting the corresponding LIBO. We then extract the pos-
sible impurity critical behaviors by selecting those LIBOs
that (i) respect the symmetries of H ∗

el +HK and (ii) cor-
rectly reproduce known results in the noninteracting limit
g → 0. Remarkably, via the supplementary condition that
(iii) the LIBO should emulate the symmetry breaking in-
duced by the Kondo interaction, we are able to pinpoint a
unique solution to the problem.

Starting with condition (i) we note that the Kondo in-
teraction (3) breaks the U (1)4 × U (1)4 (charge), SU (2)2 ×
SU (2)2 (spin) and SU (2)2 × SU (2)2 (flavor) symmetries of
H ∗

el down to the corresponding diagonal subgroups. For the
charge sector this means that we may allow operators with
non-zero charges q1 and q2, provided that q1 = −q2 as re-
quired by conservation of total charge. As follows from the
analysis in [12], this implies that any U (1) operators with
dimensions

∆c =
1
4
n2e±2θ +N , n,N ∈ N (13)

are allowed. The procedure for factoring out the diag-
onal subgroups in spin- and flavor sectors is more in-
volved. Working at the level of conformal towers it cor-
responds to decomposing products of two spin/flavor towers
(j1)2/(I1)2 and (j2)2/(I2)2 of SU (2)2 into (possibly sums
of) products of towers (j)4/(I)4 of SU (2)4 and the coset
SU (2)2 × SU (2)2/SU (2)4. The coset is generated by the
N = 1 superconformal algebra (SCA) of central charge
c = 1, which is an N = 1 supersymmetric extension of
the c = 1 Virasoro algebra [17]. The algebra is divided
into two sectors: the Ramond (R) and the Neveu-Schwartz
(NS) algebras with primary dimensions { 1

24 ,
1
16 ,

3
8 ,

1
16} and

{0, 116 ,
1
6 , 1} respectively. In addition, the grade of a generic

state is integer in the R sector, whereas it is half-integer
in the NS sector. Conservation of total spin and flavor, re-
spected by HK , requires that any operator in the spin/flavor
SU (2)4 sector transforms as a singlet. The two first singlet
states are the vacuum (j = I = 0)4 and the first Kac-Moody
descendant in the (j = I = 1)4 tower (with contracted vec-
tor indices). Primary states of the spin SU (2)4 sector have
conformal dimension j(j + 1)/6 with j ∈ {0, 1/2, ...2} (and
equivalently for the flavor sector), and we thus obtain:

∆s/f
SU (2)4 = 0,

4
3
, ... (14)

with “...” denoting higher dimensions of singlet operators,
of no relevance to us here. On the other hand, there is no
restriction on the coset sectors since the spin- and flavor
symmetries are broken for each species. Thus, excluding the
states of zero norm (null descendants), any SCA operators
with dimensions
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∆s/f
SCA = {0, 1

16
,
1
6
, 1} + 1

2
N {0, 1

24
,
3
8
, 1} +N , (15)

with N ∈ N may appear.
The scaling dimensions of the full (composite) bound-

ary operators, consistent with the symmetry constraint, are
accordingly given by

∆ = ∆c +
∑

j=s,f

(∆j
SU (2)4 +∆

j
SCA) (16)

where the combination of values from (13), (14) and (15)
depends on the particular selection rule considered. Note that
any selection rule forces ∆ ≥ 1, as the g = 0 boundary fixed
point is stable with g a marginal perturbation.

4. Impurity critical behavior

Each selection rule defines a scaling Hamiltonian

Hscaling = H ∗
el + µ1O1(0) + µ2O2(0) + ... (17)

with {On} boundary operators with dimensions chosen from
(16). Considering all combinations from (13), (14) and (15),
for each case keeping the leading terms in (17), the possible
impurity critical behaviors can be calculated perturbatively
in the scaling fields µj , using standard techniques [7]. As
we expect all response functions – including those of the
impurity-electron composite – to be smooth functions of the
marginal bulk coupling g, we must here invoke also the
constraint in (ii). In particular, the g = 0 scaling for the
change of the low-temperature specific heat and magnetic
susceptibility due to the impurity,

Cimp ∼ T ln (
TK
T
) + ..., χimp ∼ ln(

TK
T
) + ... T → 0 (18)

should be recovered in the limit g → 0. (Here TK is a
Kondo temperature and “...”’ denotes subleading contribu-
tions in T .) The result in (18) can be obtained by making
a canonical transformation to a Weyl basis of definite-parity
(P = ±) fields ψ±,iσ(x) = 1/

√
2 (ψL,iσ(x) ± ψR,iσ(−x))

[21]. In this basis Hel(g = 0) + HK becomes identical
to the Hamiltonian representing 3D noninteracting electrons
in four channels (P = ±, i = 1, 2), coupled to a local spin
in the positive parity channels only. At low temperatures it
is known to renormalize to the overscreened two-channel
Kondo fixed point with response functions as in (18) [22].

Performing the analysis for the impurity specific heat
Cimp, we find that there are only three candidates for critical
scaling satisfying the constraints in (i) and (ii):

Cimp = c1(1/Kρ − 1)2Tα + c2T ln (
1
T
) + O (T ), T → 0

(19)

where (a) c1,2 /= 0, α = 1/2(K−1
ρ − 1), (b) c1,2 /= 0, α =

2(K−1
ρ − 1), or (c) c1 = 0, c2 /= 0. Here Kρ ≡ Kρ,2 =√

vF /(vF + 6g) is the two-channel Luttinger liquid charge
parameter, and c1,2 are amplitudes of second order in the
scaling fields. The leading term in case (a) is generated
by the composite operator O1 ∼ : ei(

√
π/2mKρ)φ1L : × :

ei(
√
π/2mKρ)φ2L : ×ϕs×ϕf of dimension∆O1 = 1/4e2θ+3/4,

where φiL is a chiral boson of species i, and ϕs/f is a di-
mension ∆ϕs/f = 3/8 Ramond field in the spin/flavor coset
sector. This is the only candidate LIBO that breaks the chiral
symmetry in charge-, spin- and flavor sectors, as it contains
nontrivial operator factors from all sectors. In the derivation
of (a) - (c) we used a truncated scaling Hamiltonian, contain-
ing only the first few irrelevant boundary operators. If this
is to faithfully represent the effect of the Kondo interaction,
including its breaking of chiral symmetry, we must require
it to contain operators that break this symmetry as well.
With this condition we identify (a) as the unique solution
for Cimp. Note that the leading term in (19) vanishes in the
noninteracting limit Kρ → 1 and we recover the expected
result in (18) for g = 0.

Turning to the impurity susceptibility χimp, its leading
scaling behavior is produced by the lowest-dimensional irrel-
evant boundary operator that contains a singlet spin SU (2)4
factor of non-zero dimension. By our symmetry analysis
this is identified as the LIBO for the noninteracting prob-
lem [7], which in our scheme is obtained by combining the
first descendant in the spin-1 SU (2)4 conformal tower with
a ∆ = 1/6 Neveu-Schwartz field, thus yielding a composite
operator of dimension ∆ = 3/2. (Note that the operator O1
only contains the identity in the SU (2)4 sector, and hence
does not contribute to χimp.) Thus, the leading behavior of
χimp is insensitive to the electron-electron interaction, and
is still given by (18). It is important to emphasize that this
result remains valid also in the presence of the (marginally)
irrelevant spin terms which have been removed from the
renormalized bulk Hamiltonian (10). It is easy to verify that
any mixing between irrelevant bulk- and boundary operators
would produce subleading contributions to χimp compared
to that coming from the leading irrelevant boundary operator
alone [23]. Hence we can safely conclude that the leading
impurity magnetic response is blind to the electron-electron
interaction.

5. Summary

To summarize, we have shown that the low-T specific heat
of a Luttinger liquid with two degenerate electron bands
coupled to a localized S = 1/2 impurity gets shifted by the
impurity by an interaction-dependent term, scaling with a
critical exponent α = 1/2(K−1

ρ − 1). In contrast, the leading
change of the magnetic susceptibility due to the impurity is
insensitive to the electron-electron interaction. These results
are exact, given the central assumption that the effect of the
impurity is described by a renormalized boundary condition
on the bulk Hamiltonian. As reported in [15], an extended
analysis can be carried out for any number of electron bands
m and magnitude S of the impurity spin. Details of this
analysis, covering also transport properties of the system,
will be published elsewhere [23].
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