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We introduce an integrable model of spin-polarized interacting electrons subject to a spin-conserving spin-orbit
interaction. Using the Bethe ansatz and conformal field theory, we calculate the exact large-time single-electron
and density correlations and find that while the spin-orbit interaction enhances the single-electron Green’s
function, the density correlations get suppressed. Adding a localized impurity and coupling it to the electrons so
that integrability is preserved, the dynamic correlations are found to change significantly after a quantum quench
with the impurity interaction switched on suddenly. When the electrons are confined to a periodic structure, the
correlations are indifferent to the location of the impurity and only carry an imprint of its intrinsic properties. We
conjecture that this unusual feature originates from the integrability of the model.
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I. INTRODUCTION

In recent years, there has been a growing interest in materi-
als and solid-state devices with strong spin-orbit interactions.
Being a relativistic effect, a spin-orbit interaction (SOI) reveals
itself as a velocity-dependent magnetic field acting on the
spin of a particle moving in an electric field. This enables
the polarization and manipulation of carrier spins by electric
fields only—bypassing design complexities connected with
local magnetic fields—and is at the heart of the current efforts
to fuse spintronics with semiconductor technologies [1]. Spin
polarization can be generated by an SOI in a variety of ways:
impurity scattering (as in the anomalous [2] and spin Hall
effects [3]), via an external electric bias (“current-induced spin
polarization” [4]), or, topologically, through spin-momentum
locking from strong atomic SOIs (as in topological insulators
[5,6]). Once a spin-polarized current is produced, it may then
be manipulated by exploiting the presence of other SOIs due to
broken symmetries from interfaces, crystal structures, strain,
or electric fields. The generic examples in semiconductor
heterostructures are the Rashba and Dresselhaus SOIs [7].

In many proposals for spintronic devices, the interaction
between electrons has to be taken into account, hence it is
important to investigate the effects of SOIs together with
electron-electron interactions. This is particularly so for
low-dimensional structures where fluctuations are strongly
enhanced due to nonanalyticities in the density of states.
The additional presence of impurities and disorder leads to a
complex problem, making nonperturbative theoretical results
highly desirable.

In the present work, we make a first attempt at this task
by studying an exactly solvable model of one-dimensional
(1D) interacting electrons subject to spin-orbit and impurity
scattering. To allow for an exact solution, we study a minimal
model where the electrons are spin-polarized, and with the
added SOI preserving the spin polarization. To simplify
further, we consider a single impurity, and we devise its
interaction with the itinerant electrons in such a way as to make
the model integrable, amenable to a Bethe ansatz approach.

While the resulting interaction becomes rather unwieldy—as
expected from past work on integrable impurities [8]—it could
nowadays conceivably be synthesized in a cold atomic gas
confined to an optical nanotube [9]. Indeed, the study of
synthetic SOIs in cold atomic gases, mimicking effects from
semiconductor physics, is now coming of age [10], making
this line of research quite timely.

The Bethe ansatz solvability of the model allows us to
extract its finite-size spectrum, from which the scaling expo-
nents for correlation functions can be obtained via conformal
field theory [11]. Focusing on the large-time dynamical
correlations, we find that while the spin-orbit interaction
enhances the single-electron Green’s function, the density
correlations get suppressed. As expected, the presence of the
integrable impurity does not influence the scaling exponents
at equilibrium: Integrability implies that the impurity supports
forward scattering only, with the sole effect that a scattered
electron picks up a phase shift that can be absorbed in a
twisted boundary condition on its wave function. Considering a
local quantum quench—with the impurity-electron interaction
suddenly switched on—one might anticipate that the large-
time asymptotics maps onto the equilibrium impurity model
and therefore is also insensitive to the presence of the
impurity. However, this is not the case. When the electrons
are confined to a ring, the scaling exponents for the large-time
dynamic bulk correlation exponents do acquire a dependence
on the impurity. Moreover, the quantum quench tends to
boost electron density correlations, whereas the spin-orbit
interaction does the opposite. This suggests that the very
feature of integrability endows the ground state with a highly
quantum-entangled structure where also “far-away” electrons
feel the presence of the impurity. We conjecture that this feature
reflects the way in which an integrable impurity embedded
in a one-dimensional ring scatters electrons: All electrons
are perfectly transmitted across the impurity site, with the
quantum quench releasing a finite-momentum excitation that
runs around the ring and influences correlations uniformly in
the bulk at large times. This salient feature may enable the
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FIG. 1. Illustration of the coupling of the impurity to the host. The
impurity is coupled to its neighboring sites with a hopping amplitude
f (θ,η) cosh(θ )t and interaction f (θ,η)V , with f (θ,η) and V defined
in the text.

engineering of quantum states in one-dimensional structures
with “functional quantum impurities” that do not corrupt
electron transport and, moreover, could be used to promote
electron correlations.

II. MODEL

We consider a 1D spin-polarized interacting electron system,
with the SOI coming from an electric field perpendicular
to both the spin polarization and the direction of electron
propagation. Awaiting future cold atom realizations [10], such
a setup may be materialized using a quantum wire patterned in
a zinc-blende semiconductor quantum well where shear strain
gradients emulate an internal electric field [12], and with the
device put on top of a ferromagnetic insulator to provide for
the spin polarization. We should stress, however, that we do
not aspire to model a particular experiment. Instead, the main
reason for the design of our model is to obtain a sufficiently
simple but nontrivial theory that allows for an exact solution.
Thus, we take as a Hamiltonian Hwire = ∑

j hj,j+1, where

hj,j+1 = (t + iα)c†j cj+1 + H.c. + V njnj+1 − μnj , (1)

where c
†
j (cj ) is the creation (destruction) operator for an

electron at the j th site, nj = c
†
j cj , t is the hopping amplitude

in the absence of an SOI, α is the SOI amplitude, and V

is the interaction strength between electrons at neighboring
sites (see Fig. 1). The hopping term in Eq. (1) can be
rewritten [13] as t ′(ei2πφc

†
j cj+1 + H.c.), where t ′ = √

t2 + α2

and tan(2πφ) = α/t , and one then recognizes Hwire as a 1D
analog of the Haldane-Hubbard model [14]. With the help
of a gauge transformation, the phase factor can be removed
completely from the theory for the case of an open chain, and
transferred to twisted boundary conditions for a closed chain.
We will consider the case 0 < V � t ′, where we can use the
parametrization cos η = V/t ′. It is interesting to note that for
this case the Hamiltonian can be mapped with the help of the
Jordan-Wigner transformation onto that of an “easy-plane”
antiferromagnetic spin-1/2 chain with Dzyaloshinskii-Moriya
interaction, with V -μ playing the role of an external magnetic
field [15].

Let us now introduce an impurity by adding a lattice site,
labeled “imp” and located, say, between sites m and m + 1
of the chain. To maintain the integrability of the theory, the
coupling of the impurity site to the host has to be chosen
judiciously. Using a template from Ref. [16] and adapting it
to the present case, we are led to the following form of the

impurity Hamiltonian:

Himp = f (θ,η)(hm,imp + himp,m+1 − hm,m+1

− g(θ,η)[hm,imp,himp,m+1]), (2)

where [. . . , . . . ] denotes a commutator, f (θ,η) ≡ sin2 η/

[sinh2 θ + sin2 η], g(θ,η) ≡ i tanh θ/ sin η, and where hm,imp

and himp,m+1 have the same structure as in Eq. (1) but with
t → timp ≡ t cosh θ . The real parameter θ defines the coupling
of the impurity to the host. The case θ = 0 simply corresponds
to the addition of a lattice site with no other modification, while
for θ → ∞ the impurity site decouples from the host. Note
that for any θ �= 0, the hopping and interaction between the
neighboring sites m and m + 1 also get modified by Himp.
It is worth pointing out that the structure of the impurity
Hamiltonian becomes much simpler for the case of an open
chain with the impurity situated at its edge: For that case,
we have Himp = f (θ,η)hM,imp (where M = L/a labels the
last site in the chain, with L the length of the chain and a the
lattice spacing). Also note that the commutator term in Eq. (2),
while necessary for integrability, is irrelevant from the point of
view of the renormalization group and can be neglected in the
long-wavelength limit [17]. It can be checked that the gauge
transformation, which removes the phase shift 2πφ from the
Hamiltonian for open boundary conditions and transfers it
to twisted boundary conditions for the closed chain, can be
applied also when the impurity interaction in (2) is included.

III. PERIODIC CHAIN: FINITE-SIZE SPECTRUM FROM
THE BETHE ANSATZ

While the impurity Hamiltonian in Eq. (2) breaks lattice trans-
lational invariance, single-particle backscattering (reflection)
is not possible. This is a necessity for the applicability of the
BA method to which we now turn. For the case of a periodic
chain, with the SOI encoded by twisted boundary conditions,
we obtain the BA equations (cf. the corresponding equations
for the homogeneous chain without SOI [18])

e1(λα + θ )eM
1 (λα)(−1)−

M
2 −Nei2πφ

= −
N∏

β=1,β �=α

e2(λα − λβ), (3)

which determine the quantum numbers {λα}Nα=1 (with N the
number of electrons) that parametrize the eigenfunctions and
eigenvalues,

E = E0 −
N∑

α=1

(
V − μ − t ′

sin2 η

cosh λα − cos η

)
, (4)

of the total Hamiltonian H = Hwire + Himp. Here α =
1, . . . ,N , and en(x) = sinh[(x + inη)/2]/ sinh[(x − inη)/2],
with E0 = MV/4. In the noninteracting limit θ = V = 0,
the quantum numbers {λα}Nα=1 become ordinary rapidities
connected to the crystal momenta, and one recovers the
expected result for noninteracting spinless fermions with an
SOI. Less trivial is the property that the BA equations in (4)
are blind to the position of the impurity [19]. This feature,
signaling that the impurity is nonreflecting, appears also in
the related problem of “mobile” integrable impurities [20,21].
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As we shall see, it has dramatic consequences for correlation
functions and observables.

The parameter θ , determining the coupling of the impurity
to the host, introduces a low-energy scale Tθ ∼ t exp(−π |θ |),
analogous to a Kondo temperature [22]. It defines a crossover
between a low-energy regime where the impurity site is
strongly coupled to the host, and a high-energy regime with
the site being “asymptotically free.” Importantly, the scale Tθ

characterizes how the impurity influences the zero-frequency
response of the system to an applied electric field: At low
temperatures, T 	 Tθ , one finds that the impurity contribution
κimp to the charge stiffness behaves as κimp ∼ 1/Tθ , while at
high temperatures, T 
 Tθ , κimp ∼ 1/T cosh2(μ/2T ), in both
cases with corrections ∼ 1/ ln(T/Tθ ) for V = t . It is important
to point out that the appearance of the energy scale Tθ hinges on
the presence of the interaction ∼ V in Eq. (2). This is different
from the archetypal Anderson single-impurity model, in which
the charge sector does not feature a crossover scale [22].

The SOI shows up twofold in the BA equations (3), as a
renormalization of the hopping t due to the SOI amplitude α

and in the phase factor exp(i2πφ). Their influence on persistent
currents and correlation functions is most easily obtained via
the finite-size corrections to the energy [23]. The derivation of
the finite-size corrections 
E for the homogeneous model in
Eq. (1) follows standard routes. To leading order in 1/L,


E = 2πv

L

 , (5)

with 
 = [2Z]−2(
N )2 + Z2[D − φ]2 + n+ + n−, and v is
the velocity of low-lying excitations at the Fermi points. Here
Z is the “dressed charge” [23], connected to the ground-state
charge stiffness κ(μ) by Z2 = πvκ(μ) and taking values from√

π/2(π − η) to 1 as μ increases from V to t ′ + V (where the
number of electrons becomes zero). The quantum numbers,

N , D (= 
N/2 mod 1), and n±, keep track of particle
excitations, excitations from one Fermi point to the other (from
umklapp), and particle-hole excitations, respectively.

Let us now see how the result in Eq. (5) gets modified
when adding the impurity. An analysis similar to that for the
homogeneous model yields the same expression for 
E as in
Eq. (5), but with 
 → 
imp, where


imp = [2Z]−2[
N − nimp]2 + Z2[D − φ − dimp]2, (6)

where nimp = ∫ �

−�
dλρ(λ) is the valence of the impurity site,

and

dimp = 1

2

( ∫ −�

−∞
dλρ(λ) −

∫ ∞

�

dλρ(λ)

)
. (7)

Here ρ(λ) satisfies the integral equation

ρ(λ) = a1(λ − θ ) −
∫ �

−�

dλ′a2(λ − λ′)ρ(λ′), (8)

where an(x) ≡ 2∂x{tan−1[cot(nη/2) tanh(x/2)]}, and the inte-
gration limits ±� play the role of Fermi points. Note that the
values of nimp and dimp are defined mod 1.

IV. CORRELATION FUNCTIONS FOR
THE PERIODIC CHAIN

Given the results in Eqs. (5) and (6), one can now calculate the
persistent current [24] (Aharonov-Bohm-Casher effect [25])
by differentiating the finite-size correction to the ground-
state energy with respect to the external flux (which can be
introduced similar to φ). Here, we focus instead on how to
obtain the asymptotics of correlation functions. The method
for this is well known, and uses conformal field theory (CFT)
[26] to take advantage of the conformal symmetry underlying
the model. Introducing the conformal dimensions 
±, a
correlation function for an operator O in the ground state
of the closed homogeneous chain can be written as

〈O(x,t)O(0,0)〉 ∼ e−2i(D−φ)kF x

(x − ivt)2
+ (x + ivt)2
− , (9)

where kF = πN/2L is the Fermi wave number, and with the
distance x = ja satisfying a 	 x 	 L, with j an integer. For
small nonzero temperatures T one has to replace (x ∓ ivt)
by v sinh[πT (x ∓ ivt)/v]/πT in Eq. (9). By Cardy’s formula
[11], the conformal dimensions 
± are related to 
 in Eq. (5)
by 
 = 
+ + 
− with φ absorbed in a twisted boundary
condition on the operator O [20], as manifest in Eq. (9). One
thus obtains for the homogeneous model without impurity


± = 1

2

[
ZD ± 
N

2Z

]2

+ n±. (10)

For the density-density correlation function, the choice of
quantum numbers is 
N = 0, with D a nonzero integer [23].
It follows that the long-time dynamical density correlations
are given by

〈n(x,t)n(x,0)〉 = nc + const × t−γ1 + · · · , (11)

where γD ≡ 2(ZD)2, and nc is a constant. For the single-
electron Green’s function, we must instead choose 
N = 1
with D a half-odd integer [23]. We thus obtain

〈c(x,t)c†(x,0)〉 = const × t−ν1/2,1 + · · · , (12)

where νD,
N = 2(ZD)2 + (
N )2/2Z2. As revealed by
Eqs. (11) and (12), the dependence of the dressed charge
Z on the renormalized coupling t ′ = √

t2 + α2 makes the
SOI suppress large-time density-density correlations while the
single-electron Green’s function instead gets enhanced.

Adding the impurity, now considering the entire Hamil-
tonian H = Hwire + Himp, the theory is no longer invariant
under the full conformal group as the presence of the
impurity breaks translational invariance. However, exploiting a
boundary CFT approach [27], we can still extract information
about correlation functions using the following trick [28]: We
fold the system in half at the impurity position x = 0 [taken
between sites m and m + 1 in Eq. (2)], and we represent left-
(right-) moving electrons at x < 0 by an auxiliary channel of
electrons moving right (left) at x > 0. Via this construction,
the impurity gets traded for a boundary condition at x = 0
that is left invariant under a restricted set of conformal
transformations and where a forward scattering process [the
only process allowed byHimp in Eq. (2)] corresponds to having
an electron come in through one channel and then be reflected
back through the other. As shown in the Appendix, the sum
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of the boundary scaling dimensions in the auxiliary problem
for x > 0 precisely defines the bulk scaling dimensions of
the original problem, and one finds that these are identical
to those of the homogeneous chain without the impurity.
As a consequence, the long-time density and single-electron
correlations in the presence of the impurity differ from
those in Eqs. (11) and (12) only by the shift φ → φ + dimp.
This result signals the distinctive feature of an integrable
quantum impurity embedded in a one-dimensional system: All
particles impinging on the impurity are perfectly transmitted
across the impurity site, with the scattering phase shift dimp

absorbable into a twisted boundary condition.
Correlation effects become different when considering the

dynamic response after a quantum quench at t = 0, set off
by suddenly switching on the impurity-electron interaction
in Eq. (2). As detailed in the Appendix, the impurity-
renormalized boundary condition now implies that 
N →

N − nimp and D → D − dimp in Eq. (10). Thus, not only
the amplitudes but also the exponents γD and νD,
N get
modified by the presence of the impurity. Remarkably, the
large-time correlations are translationally invariant, insensitive
to the particular location of the impurity. We conjecture that
also this property reflects the integrability of the system:
By the quantum quench, energy is transferred to the sys-
tem via the impurity-electron interaction, and the perfectly
transmitting impurity releases a finite-momentum excitation
that runs around the ring and influences the correlations
uniformly in the bulk. This picture is suggestive considering
the structure of the BA equations, Eq. (3), which makes it
possible to associate nonzero momentum with the impurity.
In this way, it effectively comes to play the role of a wave
spreading over the ring, illustrating a kind of particle-wave
duality.

To elucidate the phenomenon, it may be useful to make an
analogy with recent work on interacting 1D spinless fermions
with nonlinear dispersion relations [21]. Formally, the non-
linear corrections to the low-energy spectrum can be related
here to the presence of a fictitious impurity with properties
very similar to the one introduced in our model. In short, the
difference between our impurity and the fictitious one is in the
definition of the parameter θ . For our case, θ is determined by
the impurity-host coupling, whereas for the fictitious impurity
θ is instead the rapidity of a high-energy excitation. With this
observation, it also becomes easy to generalize our results for
the correlation functions to include the nonzero curvature of
the dispersion relation. We simply use the additivity of the
1/L corrections, and we add n

f
imp(�h) and d

f
imp(�h) (with

f denoting “fictitious”) to nimp(θ ) and dimp(θ ), where �h

defines the rapidity of the high-energy excitation. For �h ∼ �,
n

f
imp(�) and d

f
imp(�) (both determined mod 1) can be expressed

in terms of the dressed charge Z [21]. In related, earlier
work, Tsukamoto et al. [20] argued that the sudden insertion
of a mobile impurity into an interacting 1D electron system
produces nontrivial bulk correlation functions at large times
when backscattering is suppressed, thus presaging our exact
results via the analogy above. Interestingly, the new correla-
tions produced by the quench are interpreted as being due to
an orthogonality catastrophe [29] similar to that in the x-ray
edge singularity for systems with a suddenly created localized
core hole: The screening effects due to the electrons lead

to an “infrared catastrophe,” yielding a nontrivial asymptotic
behavior of correlation functions in the long-time regime.

V. OPEN CHAIN

Turning to the case of an open chain, with a local potential
h attached to its edges, the stratagem from above can be
repeated step by step. We find the following for the finite-size
corrections:


E = πv

L

b, (13)

with


b = [2Z2]−1[
N + �(h,θ )]2 + n. (14)

By putting the impurity at one of the edges, choosing m in
Eq. (2) as the corresponding boundary site, 
b in Eq. (14)
takes the role of boundary scaling dimensions governing the
large-time correlation functions in the neighborhood of the
impurity. Here

�(h,θ ) = −1

2

∫ �

−�

dλρ(λ), (15)

with ρ(λ) the solution of the integral equation,

ρ(λ) = 1

2

⎛
⎝ ∑

j=0,±1

a1(λ + jθ ) + a2(λ)

⎞
⎠

+ aμh
(λ) −

∫ �

−�

dλ′a2(λ − λ′)ρ(λ′). (16)

The inhomogeneous term aμh
is determined as an

above with the formal substitution n → μh, with
μh = ln[g−(η,h/t)/g+(η,h/t)]1/2 an effective boundary
potential determined by h, and with g±(η,h/t) ≡
sinh[ln

√
cos η ± (2h/t) ± iη/2]. Since there is now only a

single Fermi point, D → 0, n± → n, as manifest in Eqs. (13)
and (14). The nonappearance of the phase φ reflects the trivial
topology of the open chain, with the spin-conserving SOI
only renormalizing the hopping amplitude t . Given our results
for the bulk correlations in the periodic chain, we conjecture
that the boundary correlations governed by 
b are insensitive
to a displacement of the integrable impurity away from the
boundary. Unfortunately, proof of this is not easily constructed
within a boundary CFT formalism.

VI. DISCUSSION

In summary, using a combined Bethe ansatz and conformal
field theory approach, we have obtained the exact asymptotic
behavior of correlation functions in an integrable model of
spin-polarized interacting electrons with a spin-conserving
spin-orbit interaction. When the electrons are confined to a
ring, the spin-orbit interaction tends to enhance the large-
time single-electron correlations while the density-density
correlations get suppressed. After a sudden insertion of
an integrable quantum impurity, with the impurity-electron
interaction switched on abruptly, the scaling of the dynamic
correlations picks up a nontrivial dependence on the presence
of the impurity. The way the scaling dimensions depend on the
spin-orbit coupling and the impurity phase shifts reveals that
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the quench enhances the long-time correlations, thus reducing
the suppressing effect of the spin-orbit interaction on the
density-density correlations. At large times, the phenomenon
plays out with the same strength anywhere on the ring,
independent of the distance to the impurity. We conjecture that
this reflects the integrability of the impurity-electron interac-
tion, which acts to produce a delocalized finite-momentum
excitation after the quench, with electrons suffering only
forward scattering off the impurity. Conceivably, the effect
could be exploited in a future device for boosting electron
correlations via a local quantum quench. The rapid progress
in “on-demand” design of interactions in fermionic cold-atom
systems holds promise for an experimental test.
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APPENDIX A: BOUNDARY CFT FOR A PURELY
TRANSMITTING IMPURITY

In this appendix, we show how to reformulate the problem
of an integrable—purely transmitting—quantum impurity
embedded in the bulk of a one-dimensional spinless fermion
system so that Cardy’s boundary conformal field theory (CFT)
applies [30].

Given the Hamiltonian in Eq. (1), we begin by taking a
continuum limit, representing the lattice fermion operators cn

by

cn → √
a[eikF xψR(x) + e−ikF xψL(x)], x = na, (A1)

where ψL and ψR are chiral fields defined in the neighborhood
of the Fermi points kF and −kF , respectively, satisfying

{ψλ(x),ψ†
λ′(y)} = δλ,λ′δ(x − y), λ,λ′ = L,R. (A2)

Linearizing the spectrum around the Fermi points, the contin-
uum limit of Eq. (1) can then be expressed in current algebra
form,

H = v

2

∫
dx

[ ∑
α=L,R

: Jα(x)Jα(x) : +gJL(x)JR(x)

]
(A3)

with U(1) currents

Jλ(x) =: ψ
†
λ(x)ψλ(x) : , (A4)

and where v and g are parametrized by vF and V [31].
The normal ordering : · · · : is carried out with respect to
the filled Dirac sea. The Hamiltonian in Eq. (A3) mixes left
and right currents but can be diagonalized by the Bogoliubov
transformation

JL/R = cosh θjL/R(x) − sinh θjR/L(x) (A5)

with 2θ = arctanh[g/(vF + g)]. One thus obtains

H = v

2

∫
dx[: jL(x)jL(x) : + : jR(x)jR(x) :], (A6)

with the new currents satisfying the U(1) Kac-Moody algebra,

[jL/R(x),jL/R(y)] = ±iδ′(x − y). (A7)

We now boost the currents into the complex plane {z = τ + ix}
(with τ a Euclidean time) and identify the impurity site in
Eq. (2) with the time axis x = 0. Whereas the impurity-
electron interaction in Eq. (2) is not easily expressible in terms
of the currents, the current algebra formulation is still helpful
for understanding how this interaction can be handled within
the boundary CFT formalism. In this approach—first used for
a quantum impurity problem in Ref. [32]—the interaction in
Eq. (2) is traded for a conformally invariant boundary condition
at x = 0 [27]. As follows from the integrability of the model,
in the present case the impurity is perfectly transmitting.
This simplifies the problem. However, there is a catch: In the
boundary CFT formalism, no momentum or charge is allowed
to pass through the boundary. To be able to use boundary CFT,
we therefore have to reformulate the problem in such a way
that our perfectly transmitting impurity gets represented by
a perfectly reflecting boundary. The “trick” how to do this
involves the introduction of an auxiliary channel of fermions,
where pure transmission through the impurity site gets rep-
resented by pure reflection from one channel into the other
[28]. Upon analytic continuation, one is left with two channels
of left-moving (or right-moving) currents, both respecting
translational invariance. The imprint of the impurity (which
has now superficially disappeared from the problem) is seen in
the new spectrum of scaling dimensions. These dimensions can
be read off from the exact finite-size Bethe ansatz spectrum,
thus providing access to the asymptotic correlation functions.

To see how this blueprint plays out in mathematical
terms, we first impose periodic boundary conditions on the
transformed currents,

jλ(τ,0+) = jλ(τ,0−), (A8)

thinking of the time axis x = 0 as a boundary with periodic
boundary conditions when there is no impurity present. Next,
we restrict the system to the interval −L � x � L (taking
L → ∞ at the end), fold it in half, double the currents, and
identify x = −L and x = L. The new currents, defined in the
semi-infinite complex plane x � 0, are connected to the old
ones by

j1L(x) ≡ jL(x), j1R(x) ≡ jR(x), (A9)

j2L(x) ≡ jR(−x), j2R(x) ≡ jL(−x), (A10)

where we have suppressed the common time argument. As
a consequence, the periodic boundary condition in Eq. (A8)
takes the form

j1L(0) = j2R(0), j2L(0) = j1R(0). (A11)

By this procedure, the Hamiltonian in Eq. (A6) is now defined
for x � 0 only. Using Eq. (A9) and the boundary condition
in Eq. (A11), however, we can analytically continue the left-
moving currents to x < 0, with

j1L(−x) = j2R(x), j2L(−x) = j1R(x), (A12)
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and then write the Hamiltonian in the full complex plane
in terms of left-moving currents only (after having taken
L → ∞):

H = v

2

∑
i=1,2

∫
dx : jL(x)jL(x) : . (A13)

We now bring in the impurity-electron interaction, Eq. (2).
Introducing the notation {
L} for the subset of chiral
(“left-moving,” say) scaling dimensions that make up the
boundary scaling dimensions for a given boundary condition,
Cardy’s finite-size boundary formula is expressed as E =
E0 + πv
L/l [11]. Adapting it to our case with two copies
of left-moving channels, indexed by i = 1,2, we have

E = E0 + πv

l
(
1 + 
2). (A14)

This formula connects the energy spectrum of the theory
on the strip {w = u + iv}, 0 � v � l, − ∞ < u < ∞, to
the sum of boundary scaling dimensions 
1 + 
2 = 2
L

in the semi-infinite plane {z = exp(πw/l)} associated with
the boundary condition at x = 0 which emulates the impurity
interaction [33]. It is crucial here to realize that the images
of this boundary condition at the two edges of the strip
effectively correspond to the insertion of two copies of the
impurity. While in our case we are not able to pinpoint the ap-
propriate boundary condition per se, having obtained the
exact finite-size spectrum from the Bethe ansatz solution, we
can nonetheless identify the spectrum of scaling dimensions
using Eq. (A14): The subset of chiral scaling dimensions
{
L} that corresponds to the new boundary condition is
simply selected via inspection of the finite-size Bethe ansatz
spectrum after insertion of two auxiliary impurities in each
channel, one at each edge of the strip. It follows that the
quantum numbers 
N and D in Eq. (10) get renormalized

twice, with 
N → 
N − nimp(v = 0) = 
N ′ and D →
D − dimp(v = 0) = D′ from the v = 0 edge, and 
N ′ →

N ′ + nimp(v = l) = 
N and D′ → D′ + dimp(v = l) = D

from the x = l edge. The opposite signs of the charge valences
nimp and level shifts dimp at the two edges here originate from
the opposite signs of the phase shifts at v = 0 and v = l

(corresponding to τ < 0 and τ > 0, respectively, in the semi-
infinite plane). In contrast, when the impurity interacts with
the fermions only when τ � 0, as after a quantum quench at
τ = 0, only the boundary condition at the corresponding edge
of the strip, v = 0, gets renormalized. As a result, the dynamic
correlation exponents pick up a nontrivial contribution from
the impurity, with 
N → 
N − nimp and D → D − dimp. As
was made explicit in our analysis above, the second channel of
left-moving currents in Eq. (A13) simulates the right-moving
currents in (A6). Therefore, bulk scaling dimensions {
}
appear in Eq. (A14), disguised as sums of chiral scaling
dimensions labeled by the channel index: 
 = 
1 + 
2. It
is important to emphasize that this conclusion is certain to be
valid only for an integrable impurity, since only for this case are
we ensured that the impurity is purely transmitting in the basis
of the jL/R(x) currents that diagonalize the bulk interactions,
thus maintaining the decoupling of the two channels.

As a concluding remark in this appendix, it is important to
realize that it is precisely the absence of backscattering from
the integrable impurity that causes all large-time dynamic
correlation functions to be governed by the same scaling
dimensions—independent of the distance from the impurity.
Hence there is no crossover from bulk to boundary critical
behavior as one approaches the impurity site. The breaking of
translational invariance due to the impurity shows up only in
a shift of the phase of the full space-time correlation function
in Eq. (9). Clearly, as emphasized throughout this work, this
feature is not generic but crucially hinges on the design of the
impurity interaction, having made it integrable and therefore
purely transmitting.
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