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Universal single-frequency oscillations in a quantum impurity system after a local quench
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Universal single-frequency oscillations in the local nonequilibrium dynamics of a quantum many-body system
are an exceptional phenomenon. In fact, till now, this has never been observed or predicted for the physically
relevant case where a system is prepared to be quenched from one quantum phase to another. Here we show how
the quench dynamics of the entanglement spectrum may reveal the emergence of such oscillations in a correlated
quantum system with Kondo impurities. The oscillations we find are characterized by a single frequency. This
frequency is independent of the amount of energy released by the local quench, and scales with the inverse
system size. Importantly, the quench-independent frequency manifests itself also in local observables, such as
the spin-spin correlation function of the impurities.
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I. INTRODUCTION

The dynamics of an isolated quantum many-body system
following an instantaneous change of a Hamiltonian param-
eter (quantum quench) is a topic of growing interest [1].
The problem touches on a multitude of subjects, from the
foundation of quantum statistical physics to the engineering
of quantum states and devices [2,3]. A quench injects energy
which disperses among the interacting degrees of freedom,
and as time evolves local observables relax to their equilibrium
values [4]. When the quench is local, with a sudden change of
a local parameter in a Hamiltonian, the energy injected to the
system is nonextensive. In such a case one may expect, and
indeed finds [5], intermediate times at which wave propagation
and reflection from boundaries can create slowly decaying
oscillatory behavior. This raises the question of whether one
could find a physically relevant model where, by tuning a per-
tinent parameter, the equilibration after a local quench of the
Hamiltonian is strongly suppressed, or even totally eliminated.

Here, in point of fact, we show that, for the spin emulator
[6] of the two-impurity Kondo model [7,8], a local quench
into the Kondo-screened phase [9] induces the onset of
universal oscillations. By analyzing the quench dynamics of
the lowest eigenvalues of the entanglement spectrum [10–12],
we find that the frequency fu of these oscillations is sharply
determined if one tunes the impurity-spin interaction so that
all spins become entangled with an impurity. Remarkably, fu

is independent of the local quench energy and scales as fuN

remaining constant when the system size N increases. More-
over, we find that the frequency fu leaves its fingerprints on
local observables, including the spin-spin impurity correlation
functions. As such, we believe that our finding is potentially
relevant to future designs of spin-based quantum devices as
the impurity spins do not seem to equilibrate despite being
strongly connected to reservoirs.

II. MODEL

We consider a spin chain emulator of the two-impurity
Kondo model [6] with two localized spin-1/2, each coupled to

a frustrated spin-1/2 Heisenberg chain, and to each other via
a Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. The
Hamiltonian can be written as

H =
∑

m=L,R

{
Hm

imp + Hm
bulk

} + HI , (1)

where

Hm
imp = J ′(J1σ

m
1 · σm

2 + J2σ
m
1 · σm

2

)
,

Hm
bulk = J1

Nm−1∑
i=2

σm
i · σm

i+1 + J2

Nm−2∑
i=2

σm
i · σm

i+2, (2)

HI = KJ1σ
L
1 · σR

1 .

Here m = L,R labels the left and right chains, with σm
i the

vector of Pauli matrices at site i on chain m. The couplings
J1 and J2 are nearest and next nearest neighbor couplings,
respectively. The dimensionless parameter J ′ > 0 plays the
role of an antiferromagnetic Kondo coupling between the
impurities and their corresponding bulks and the dimensionless
coupling K > 0 measures the RKKY impurity interaction.
The mapping to the Kondo model is valid for J2 � J c

2
(with J c

2 = 0.2412J1) [13,14] since in this interval the bulk
excitations are massless (as in the full electronic version
of the Kondo problem). As we will see, our analysis of
the quench dynamics applies to the entire Kondo regime,
although for J2 < Jc

2 a marginal coupling (in the sense of
the renormalization group) produces logarithmic corrections
which pollutes the numerical data [14,15]. In order to avoid
this, we tune J2 = J c

2 for which both HL and HR faithfully
represent the spin sector of a single-impurity Kondo model.
Note that the terms Hm

imp + Hm
bulk in Eq. (1) each define a

spin emulator of the single-channel Kondo model, with labels
m = L,R [13]. A schematic picture of the model is given in
Fig. 1.

The ground state shows a quantum phase transition at a
critical value K = Kc of the RKKY coupling. For a small
coupling K the Kondo interaction dominates and each impurity
spin gets screened by its bulk (Kondo phase), while in the
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FIG. 1. (Color online) Schematic picture of the spin emulator of
the two-impurity Kondo model. The impurity coupling J ′, together
with the RKKY coupling K , determines the extension of the
entanglement length ξ (J ′,K). The strength of the RKKY coupling
K can be externally controlled—for instance, in a quantum dot, by
tuning gate voltages as indicated in the figure. For any K � Kc,
in the Kondo regime, we define J ′

opt as the impurity coupling
for which the entanglement length extends over the entire chain,
i.e., ξ (J ′

opt,K) � N . By quenching the RKKY coupling K from
K1 in the RKKY regime to K2 in the Kondo phase one induces
the nonequilibrium dynamics being studied here. For the sake of
simplicity the next-nearest coupling J2 is not shown in the figure
since we fixed J2/J1 = 0.2412.

opposite limit the impurities form a local singlet (RKKY
phase) and decouple from the rest of the system [8].

III. RESULTS

A. Entanglement spectrum

Having partitioned the system into two parts, L and R (see
Fig. 1), one can write an arbitrary pure state in the orthogonal
Schmidt basis [16] as

|ψLR〉 =
∑

n

√
λn|Ln〉 ⊗ |Rn〉, λn � 0, (3)

where the ordered set of real numbers λ1 � λ2 � · · · form
the entanglement spectrum. The Schmidt bases {|Ln〉}2NL

n=1 and
{|Rn〉}2NR

n=1 diagonalize the reduced density matrices ρL and ρR

of the left and right parts, respectively. It has been shown that
the two largest Schmidt numbers dominate the entanglement
spectrum, with their difference, λ1 − λ2, behaving as an order
parameter at the quantum phase transition [12,17]. Notably,
all levels of the entanglement spectrum contribute essentially
to the von Neumann entropy:

s(ρL) = s(ρR) = −
∑

n

λn log2(λn). (4)

In the Kondo regime K � Kc, the system supports a length
scale ξ (J ′,K) which diverges at the critical point in the
thermodynamic limit. It may be determined numerically by
exploiting its interpretation as the length scale over which the
two impurities are entangled with two identical blocks of spins
on both sides [6]. One thus finds, for a large but finite system
with N = NL + NR [17],

ξ (J ′,K) ∼ e−α/J ′

|K − Kc|ν + O(1/N )
. (5)

Here α is a constant, with ν a critical exponent taking the
value ν = 2 in the neighborhood of the critical point Kc ∼
e−α/J ′

[6]. According to Eq. (5), for any given K � Kc in
the Kondo regime, it is always possible to find an optimal
impurity coupling J ′ = J ′

opt such that ξ (J ′
opt,K) = N , making

each impurity entangled with all spins in its bulk. For J ′ �
J ′

opt the length ξ exceeds the length of the chain and Kondo
screening does not take place [9].

The time evolution of entanglement spectra following
a quantum quench has been the subject of several recent
investigations [18–22]. As we shall see next, the entanglement
dynamics of the present problem exhibits some striking
features.

B. Entanglement dynamics

We initially prepare the system in the ground state |GS(K1)〉
of the Hamiltonian in Eq. (1), choosing the coupling K =
K1 > Kc in the RKKY regime. At time t = 0 the coupling
is instantaneously changed to K = K2 < Kc. As a result, the
system evolves as

|�(t)〉 =
∑

n

e−iEnt 〈Sn|�(0)〉|Sn〉, (6)

where |�(0)〉 = |GS(K1)〉, and where {En} are eigenvalues of
the quench Hamiltonian, defined by Eq. (1) with K = K2. The
corresponding eigenstates {|Sn〉} are global singlets, as implied
by spin-rotational symmetry. By tracing part R (see Fig. 1),
one can compute the reduced density matrix ρL(t) of part L,
from which the entanglement spectrum is obtained.

Figures 2(a) and 2(b) show the results for two quantum
quenches with different values of K1 using exact diagonaliza-
tion, with the two largest Schmidt numbers λ1(t) and λ2(t)
plotted as functions of time. In both cases J ′ = J ′

opt, so that
ξ (J ′

opt,K2) = N . While the amplitudes of the oscillations are
different for the two quenches, very surprisingly, the dynamics
of λ1,2 is governed by a single frequency f , independent of
the quench. Moreover, as seen in Figs. 2(a) and 2(b), the
oscillations do not damp.

It is instructive to study the power spectrum

	n(f ) ≡ F[λn(t)] = 1√
2π

∫
λn(t)ei2πf tdt, n = 1,2.

(7)
In Fig. 2(c), 	1(f ) is plotted for the two given quenches.
As revealed by the plot, a sharp peak, independent of the
quench, emerges at the frequency f = fu. This shows that
there exists a a unique frequency fu excited by quenching.
In Figs. 2(d)–2(f) the same quantities are plotted for a larger
chain, using a time-dependent density-matrix renormalization
group (tDMRG) algorithm [23]. Again, single-frequency
oscillations are uncovered on the numerically accessible time
scale. To a high precision, λ1,2(t) can be fitted by a sinusoidal
function as

λn = An sin(2πfut + φn), n = 1,2, (8)

where fu = (E2 − E1)/2π is the single frequency involved in
the dynamics, with E1,2 the eigenvalues of the states |S1,2〉
which dominate the expansion in Eq. (6). An and φn are the
quench-dependent amplitude and phase.
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FIG. 2. (Color online) Quench dynamics of the first two largest Schmidt numbers λ1 and λ2 versus time for J ′ = J ′
opt = 0.3 in a chain

of length N = 20 with K2 = 0.19 and K1 = 1 (blue solid line), K1 = 0.25 (red dashed line) using exact diagonalization: plots (a) and (b).
The Fourier transform 	1(f ) for J ′ = J ′

opt = 0.3 in a chain of length N = 20 with K2 = 0.19 and K1 = 1 (blue line with small solid circles
representing data points), K1 = 0.25 (red line with stars representing data points): plot (c). Quench dynamics of the first two largest Schmidt
numbers λ1 and λ2 versus time for J ′ = J ′

opt = 0.24 in a chain of length N = 40 when K1 = 1 and K2 = 0.08 using tDMRG: plots (d) and
(e). The Fourier transform 	1(f ) for J ′ = J ′

opt = 0.24 in a chain of length N = 40 with K1 = 1 and K2 = 0.08: plot (f). Quench dynamics
of the first two largest Schmidt numbers λ1 and λ2 versus time for a nonoptimal case, J ′ �= J ′

opt (here J ′ = 0.7), in a chain of length N = 20
when K1 = 1 and K2 = 0.19: plots (g) and (h). The Fourier transform 	1(f ) for J ′ = 0.7 �= J ′

opt in a chain of length N = 20 with K1 = 1 and
K2 = 0.19: plot (i).

Of course, the single-frequency oscillations disappear for
nonoptimal Kondo coupling J ′ �= J ′

opt as shown in Figs. 2(g)
and 2(h). Indeed, these plots clearly display dispersive multi-
frequency oscillations, also evidenced by the power spectrum
in Fig. 2(i). It is, however, very important to observe that
there always exists a dominant frequency fpeak in the power
spectrum of λ1,2 which exhibit a pertinent scaling with J ′. It
follows from Fig. 3(a) that fpeak scales with J ′ as the Kondo
temperature,

fpeak ∼ TK, (9)

using that TK ∼ 1/ξ (J ′,K2) ∼ exp(−α/J ′) [7]. For J ′ = J ′
opt,

i.e., when ξ (J ′
opt,K2) = N , this frequency becomes the only

one accessible to the system, i.e., fpeak = fu. For J ′ < J ′
opt we

see deviations from Eq. (9) due to finite-size effects, as now
ξ (J ′,K2) exceeds the length N .

It is important to realize that the single-frequency oscilla-
tions unveiled by our simulations are very different from the
quench dynamics studied in Refs. [5,24–28], which reflects a
finite-size effect when instantaneously joining two quantum
critical systems. Likewise, the oscillating quench dynamics
numerically observed in certain 1D lattice models [29–31]
are also different from our results, coming from a global
quench of an integrable interaction, and being either damped
[29] or exhibiting a multifrequency power spectrum [30,31].
In all these cases one observes dispersive wave propaga-
tion while our scenario is nonperturbative, universal, and
dispersionless.

C. Quench independence

The frequency fu is quench-independent as it depends
neither on K1 nor on K2. Independence from K1 is evident
from Eq. (8). Independence from K2 comes about by tuning the
Kondo coupling J ′ to its “optimal” value J ′

opt, thus entangling
the impurities with all spins in their respective bulks, i.e.,
ξ (J ′

opt,K2) = N . For instance, in a chain of length N = 20, for
K2 = 0.19 and J ′

opt = 0.30 one finds that fu = 0.11; the very
same value of fu is obtained for K2 = 0.1 and J ′

opt = 0.315.
The dependence of fu on the optimal Kondo coupling J ′

opt
is plotted in Fig. 3(b), showing that

fu ∼ e−α/J ′
opt , (10)

as expected from Eq. (9). By combining Eq. (10) with Eqs. (5)
and (9), it follows that for a chain of arbitrary size N ,

fu ∼ 1

ξ (J ′
opt,K2)

= 1

N
. (11)

To check Eq. (11), we have computed the product fuN for
various lengths N , keeping K2 fixed; see Table I which shows
that fuN � 2.1 ± 0.15. The scaling in Eq. (11) suggests that
we get data collapse onto a universal curve for different lengths
N if plotting λ1,2 vs fut . This is confirmed in Fig. 3(c).

D. Effective model for J ′ = J ′
opt

To expound on the resonance mechanism giving rise to the
quench-independent frequency fu, it is crucial to note that,

155141-3



BAYAT, BOSE, JOHANNESSON, AND SODANO PHYSICAL REVIEW B 92, 155141 (2015)

1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

1/J’

f
peak

(a)

2.5 3 3.5 4 4.5
10

−2

10
−1

10
0

1/J’
opt

f
u

(b)

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

f
u
t

λ
1

(c)

N=20
N=30
N=40J’=J’

opt

J’>J’
opt

J’<J’
opt

FIG. 3. (Color online) (a) The dominant frequency fpeak as a function of 1/J ′ in a semilogarithmic plot for a chain of fixed length N = 20
when the impurity coupling J ′ varies. The deviation from linearity for J ′ < J ′

opt is due to the finite-size effect as the entanglement length
exceeds the system size. (b) The quench-independent frequency fu as a function of 1/J ′

opt on a semilogarithmic plot. Each point corresponds
to a different length N for which the optimal coupling J ′

opt is found and then the quench-independent frequency fu is determined through time
evolution. (c) Data collapse for the dynamics of λ1(t) as a function of fut for three different lengths.

for an optimal quench J ′ = J ′
opt, only the two singlet eigen-

states |S1,2〉 with eigenvalues E1,2 are essentially involved in
the dynamics, with 〈Sn|ψ(0)〉 � 0 in Eq. (6) when n > 2.
Namely, one numerically verifies that there is a small residual
overlap 1 − |〈S1|GS(K1)〉|2 − |〈S2|GS(K1)〉|2 < 0.02 for any
K1 > Kc and K2 < Kc when J ′ = J ′

opt. As one moves away
from J ′ = J ′

opt, other eigenstates rapidly come into play and
significantly contribute to the time evolution in Eq. (6).

The dominance of two singlet eigenstates |S1,2〉 at the
optimal quench J ′ = J ′

opt suggests that the dynamics may be
captured by an effective four-spin model. Consider |↑〉L/R and
|↓〉L/R for the impurity spins in the L/R parts, and |⇑〉L/R and
|⇓〉L/R for the spins in the L/R bulks (see Fig. 1). We represent
|S1〉 � |0−〉L ⊗ |0−〉R , where |0±〉 = |↑⇓〉 ± |↓⇑〉. Similarly,
if we now make the ansatz that |S2〉 � |1〉L ⊗ |−1〉R −
|0+〉L ⊗ |0+〉R + |−1〉L ⊗ |1〉R , with |1〉 = |↑⇑〉 and |−1〉 =
|↓⇓〉; then the initial state |GS(K1)〉 will be |GS(K1)〉 �
1
2 |S1〉 −

√
3

2 |S2〉. Thus, |�(t)〉 � 1
2 |S1〉 − ei2πfut

√
3

2 |S2〉, which
periodically brings back |GS(K1)〉. It is truly remarkable
that the quench dynamics of a complex quantum many-body
system, when properly tuned, can qualitatively be mimicked
by four spins. Intuitively, the entanglement makes the bulk
spins collectively behave as two effective spins, forming
a dynamically coordinated composite with the impurities.
Putting this intuition on firm ground would be extremely
interesting, and could open a new vista on quantum-engineered
quench dynamics.

E. The von Neumann entropy

Since effectively one frequency governs the dynamics when
J ′ = J ′

opt, one may expect that the matrix elements of ρL(t)

TABLE I. The product fuN as a function of the length N : the
table shows that fuN � 2.1 ± 0.15 independently of the choice of
the initial coupling K1 when K2 < Kc.

N 8 12 16 20 24 28 32 36 40

fuN 2.250 2.184 2.192 2.180 2.136 2.100 2.080 2.01 2.000

oscillate with a few harmonics of fu. To verify this, we
study the von Neumann entropy s(ρL(t)) which depends on
all levels of the entanglement spectrum. In Fig. 4(a), s(ρL(t))
is given for two different quantum quenches. When increasing
the difference K2 − K1, and thus, the energy released to the
system through the quantum quench, deviations from a single-
frequency sinusoidal function become apparent, with the
appearance of higher harmonics in the power spectrum S(f ) =
F[s(t)]. This is shown in Fig. 4(b). A similar dependence on
higher harmonics of the fundamental frequency fu is observed
for the lower multiplets of the entanglement spectrum, i.e., for
λn with n > 2.

Singlet fraction and spin correlations. The emergence of a
single frequency (and of its harmonics) is not a feature only
of the dynamics of global quantities such as the entanglement
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FIG. 4. (Color online) (a) The von Neumann entropy s(t) versus
time for J ′ = J ′

opt = 0.3 in a chain of length N = 20 when K2 = 0.19
and K1 = 1 (blue solid line) and K1 = 0.25 (red dashed line). (b) The
Fourier transform S(f ) of the von Neumann entropy versus f for the
case of K1 = 1. The case for K1 = 0.25 (not shown in the figure)
shows a similar peak at fu with highly suppressed higher harmonics.
(c) The singlet fraction p(t) versus time for J ′ = J ′

opt = 0.3 in a chain
of length N = 20 when K2 = 0.19 and K1 = 1 (blue solid line) and
K1 = 0.25 (red dashed line). (d) The Fourier transform P (f ) of the
singlet fraction versus f for the case of K1 = 1.
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spectrum or the von Neumann entropy. To probe for local
quantities we trace out the bulks and compute the reduced
density matrix of the two impurities ρ1L,1R

(t). This has the
form of a Werner state due to the spin-rotational symmetry of
the model,

ρ1L,1R
(t) = p(t)|ψ−〉〈ψ−| + 1 − p(t)

3

∑
n=0,±

|T n〉〈T n|,

(12)

where p(t) is the singlet fraction, |ψ−〉 is the singlet, and |T n〉
are the triplets. The singlet fraction, which is nowadays exper-
imentally accessible [32,33], determines all local properties of
the two-impurity composite, such as the two-point correlation
〈σ z

1L
σ z

1R
〉 = (1 − 4p)/3 and the two-impurity concurrence [34]

E(t) = max{0,2p − 1}. In Fig. 4(c) the singlet fraction p(t)
is plotted versus time for two different quantum quenches. As
for the von Neumann entropy, the dynamics can be perfectly
matched to the quench-independent frequency fu for small
quenches, and its higher harmonics (essentially the third one)
for larger quenches. The Fourier transform P (f ) = F[p(t)] is
plotted in Fig. 4(d), showing the peaks for fu and 3fu.

IV. CONCLUSIONS

In this article we have shown that a local quantum quench
across the quantum critical point in a pertinently tuned
two-impurity Kondo spin chain may lead to the emergence
of universal single-frequency oscillations in the dynamics of
the entanglement spectrum. The frequency thus revealed is
independent of the energy released by the quench, and also
shows scaling behavior with the system size, implying data
collapse for the time evolution of levels in the entanglement
spectrum. Important for possible experiments in the future,
the quench-independent frequency leaves distinct fingerprints
in local observables, and it can be observed as the dominant
frequency even when the system is not tuned to make the
entanglement length extend over the full system.

The fact that the single-frequency dynamics is found to be
tied to the emergence of an optimal entanglement length may
hint at new physics. By identifying the entanglement length

with the dynamically generated screening length characteristic
of Kondo systems [6], our result points towards novel schemes
for measuring it in the laboratory. Recent experimental
progress in realizing two-impurity Kondo physics with tunable
interactions [35–37] makes this a tangible challenge.

We conjecture that a single frequency can be associated
also with other massless systems. For this to happen there
has to be a dynamically generated entanglement length which
extends over the full system. In this work we used a spin-chain
emulation of the two-impurity Kondo model as a paradigmatic
example where this phenomenon occurs. Since the spin-chain
emulator is a faithful realization of the spin sector of the
two-impurity Kondo model, with a dynamics that effectively
decouples from charge at low energies [38], we expect that
our results will be relevant also for the full two-impurity
Kondo model with itinerant electrons. Thus, a spinful double-
quantum-dot system, with the confined spins interacting with
the conduction electrons in their independent leads, could serve
as an experimental setup where the emergence of a universal
dynamics may be observed.
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[32] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,
A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and
I. Bloch, Time-resolved observation and control of superex-
change interactions with ultracold atoms in optical lattices,
Science 319, 295 (2008).

[33] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A.
Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and
A. C. Gossard, Coherent manipulation of coupled electron
spins in semiconductor quantum dots, Science 309, 2180
(2005).

[34] W. K. Wootters, Entanglement of Formation of an Arbitrary
State of Two Qubits, Phys. Rev. Lett. 80, 2245 (1998).

[35] J. Bork, Y.-H. Zhang, L. Diekhöner, Lázló Borda, P. Simon,
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