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Entanglement structure of the two-channel Kondo model
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Two electronic channels competing to screen a single impurity spin, as in the two-channel Kondo model,
are expected to generate a ground state with a nontrivial entanglement structure. We exploit a spin-chain
representation of the two-channel Kondo model to probe the ground-state block entropy, negativity, tangle, and
Schmidt gap, using a density matrix renormalization group approach. In the presence of symmetric coupling to
the two channels, we confirm field-theory predictions for the boundary entropy difference ln(gUV/gIR) = ln(2)/2
between the ultraviolet and infrared limits and the leading ln(x)/x impurity correction to the block entropy. The
impurity entanglement Simp is shown to scale with the characteristic length ξ2CK. We show that both the Schmidt
gap and the entanglement of the impurity with one of the channels—as measured by the negativity—faithfully
serve as order parameters for the impurity quantum phase transition appearing as a function of channel asymmetry,
allowing for explicit determination of critical exponents, ν ≈2 and β ≈0.2. Remarkably, we find the emergence
of tripartite entanglement only in the vicinity of the critical channel-symmetric point.

DOI: 10.1103/PhysRevB.93.081106

Introduction. The Kondo effect is one of the most intriguing
effects in quantum many-body physics. At low temperatures,
a localized magnetic impurity is screened by the conduction
electrons, leading to the formation of many-body entangle-
ment. A generalization of the Kondo model was introduced by
Nozières and Blandin [1], where another channel of electrons
is also coupled to the impurity. This is the well-known two-
channel Kondo (2CK) model, for which various results were
obtained using Bethe ansatz [2–4], conformal field theory [5,6]
(CFT), bosonization [7–9], and entanglement of formation
[10]. This model is very different from the one-channel Kondo
(1CK) model as the two channels compete to screen the
spin-1/2 impurity, leading to an “overscreened” residual spin
interacting with the electrons [5]. This leads to nontrivial
properties, including a residual zero-temperature impurity
entropy and a logarithmic behavior of magnetic susceptibility
and specific heat. However, channel symmetry is crucial; even
the smallest asymmetry leads to screening of the impurity by
the channel with the stronger coupling [1], and as the channel
asymmetry is varied, an impurity quantum phase transition
(IQPT) occurs at the symmetric point, corresponding to the
2CK model.

Intensive research has been carried out to investigate the
thermodynamics and the transport properties of the 2CK
model [1–3,5–9,11–25]. Experimentally, signatures of the
2CK model have been observed in mesoscopic structures
[26–29]. Still, the real-space entanglement structure and the
imprints of the two distinct length scales ξ2CK ∼ u/T2CK and
ξ ∗ ∼ u/T ∗ with u the spin velocity—implied by the known
crossover energy scales T2CK (2CK temperature) and T ∗
(critical crossover in the channel-asymmetric case) [5,23]—
have not yet been unraveled. A way forward is to use a

spin-chain representation of the 2CK model [11,12], which
allows for efficient density matrix renormalization group
(DMRG) computations [30–34] (m = 100–1024 states kept)
to uncover the ground-state entanglement properties.

In this Rapid Communication, we show how the imple-
mentation of this scheme allows for a detailed study of the
entanglement in the 2CK ground state and the IQPT between
the two channel-asymmetric 1CK phases. Specifically, we
present results for the impurity entanglement entropy [30,31],
the negativity [35,36], the Schmidt gap [37,38], and the
tripartite entanglement [39,40]. At the channel-symmetric
2CK point we show that ξ2CK can be interpreted as a dy-
namically generated cutoff length by demonstrating scaling of
the impurity entanglement entropy. A detailed analysis allows
us to extract the two-channel boundary entropy difference
ln(gUV/gIR) = ln(2)/2, between the ultraviolet and infrared
limits [41], as well as the leading correction ln(x)/x, for block
sizes x � ξ2CK [42]. In addition, we show that the negativity
and the Schmidt gap act as order parameters for the IQPT,
enabling us to predict, via finite-size scaling, the pertinent
critical exponents. Finally, we compute the tangle [39,40] and
show that tripartite entanglement emerges only in the vicinity
of the critical point.

Spin-chain representation. We consider two open Heisen-
berg chains coupled to a single spin-1/2 impurity as shown in
Fig. 1(a). The open chain Hamiltonian is given by

HOBC =
∑

m=L,R

[
J ′

m

(
J1σ

0 · σ 1
m + J2σ

0 · σ 2
m

)

+ J1

Nm−1∑
l=1

σ l
m · σ l+1

m + J2

Nm−2∑
l=1

σ l
m · σ l+2

m

]
, (1)
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FIG. 1. (a) Kondo spin chain with a spin-1/2 impurity coupled to
its left and right channels by �J ′ and J ′, respectively. For � = 1, the
impurity is screened by both channels representing the 2CK model,
while for � �= 1, 1CK physics emerges. (b) The impurity entropy Simp

is computed as the difference between the entropy of region A with
and without the impurity. (c) Partitioning of the system for computing
the Schmidt gap.

where σ 0 and σ l
m represent the vector of Pauli matrices

for the impurity spin and the spin at site l in channel m,
respectively, and Nm is the number of spins in chain m, making
the total number of spins N = NL + NR + 1. We choose the
nearest-neighbor coupling J1 to be unity and the next-nearest-
neighbor coupling J2 = J c

2 (with J c
2 = 0.2412J1) so as to

remove marginal coupling effects [34,43]. In this work, we set
the Kondo coupling J ′

L = �J ′ and J ′
R = J ′, with � = J ′

L/J ′
R

keeping J ′
m < 1. The Hamiltonian (1) has been introduced

in Refs. [11,12] as a representation of the spin sector of the
2CK model when � = 1. For further justifications, see the
Supplemental Material [44]. For any � �= 1, 1CK physics
emerges. For the case of � = 1, we also use a periodic chain,
as shown on the left-hand side of Fig. 1(b), by adding the
following terms:

HPBC = HOBC + J1σ
NL

L · σ
NR

R + J ′J2σ
1
L · σ 1

R

+ J2
(
σ

NL

L · σ
NR−1
R + σ

NL−1
L · σ

NR

R

)
. (2)

Again, N = NL + NR + 1, and at J ′ = 1 we obtain a uniform
periodic chain which presents significant advantages [44].
In the limit of N → ∞, the two boundary conditions are
equivalent. For HOBC, the parity of NL = NR is crucial [45],
but here we only study NL = NR odd, however, for HPBC it is
the parity of N that matters [45] and we only study N even
(NL = NR ± 1), which makes the parity effects compatible
for HOBC and HPBC.

Impurity entanglement entropy. We first study the channel-
symmetric case � = 1, with ξ2CK being the only relevant
length scale in the problem. We consider the von Neumann
entropy SA(J ′,x,N ) = −Tr ρA log ρA, with ρA the reduced
density matrix of a region A which includes the impurity
spin and x spins on either side of it. N is the total number
of spins in the system, including the impurity. We consider
an even periodic system, using HPBC as shown in Fig. 1(b).
This boundary condition should not affect our results as long
as x 
 N/2 [44]. Similar to the single-channel case [30,31],

the entanglement entropy behaves very differently in the two
limits x 
 ξ2CK and x � ξ2CK, with ξ2CK ∼ ea/J ′

growing
exponentially as J ′ → 0 (for some constant a). In what follows
we shall show how to pinpoint the impurity contribution Simp

to the von Neumann entropy. By doing so, we provide a direct
“quantum probe” of the boundary entropy predicted by CFT
[41], with no reference to the thermodynamic entropy.

Let us first consider the N → ∞ limit. When J ′ = 1, we
simply have a uniform periodic chain with region A consisting
of 2x + 1 sites. Then, using the fact that the central charge
c = 1, the entanglement entropy for region A of a periodic
chain is predicted to be, from CFT [46],

SA(J ′ = 1,x,N ) = 1
3 ln(2x + 1) + s1 (3)

for a nonuniversal constant s1. For finite but large N even, we
expect the limit of J ′ → 0+, x 
 N (which is different from
the case where the impurity is absent) to give

SA(J ′ → 0+,x,N ) = SA(x,N − 1) + ln 2, (4)

where SA(x,N − 1) represents the entropy of region A when
the impurity is absent but the region still consists of x

spins from each channel (so the total length is N − 1) as
shown on the right-hand side of Fig. 1(b). The additional ln 2
entanglement entropy in Eq. (4) is the impurity contribution
and can be understood by observing that a spin chain with
an even number of sites has a spin zero ground state for any
J ′ > 0 no matter how small. In a valence bond picture of the N

even ground state there will always be an (impurity) valence
bond (IVB) connecting the impurity spin to another spin in
the system, although the IVB becomes very long in the small
J ′ limit [30,31]. Intuitively, this long IVB adds an extra ln 2
to SA(J ′ → 0+,x,N ). The interesting case of N odd will be
considered elsewhere [45].

In the absence of an impurity, as long as x 
 N/2, the
entropy of region A is the sum of the entropy of two equal
blocks at either end of an open chain, as shown in the right-hand
part of Fig. 1(b). In this case the open boundaries induce
an alternating term in the entanglement entropy [47] and we
therefore only focus on the uniform part Su, finding [46,48]

Su
A(x,N − 1) = 2

[
1

6
ln(2x) + s1

2
+ ln g

]
, (5)

where s1 is the same nonuniversal constant appearing in Eq. (3)
and ln g is a universal term arising from a noninteger “ground-
state degeneracy” g [41].

The difference between the two entropies of the two extreme
regimes will be

SA(J ′ = 1,x,N ) − Su
A(J ′ → 0+,x,N )

= −2 ln g − ln 2 + O(1/x). (6)

Using the mapping of the spin-chain system onto the 2CK
model, we associate J ′ → 0+ with the weak coupling ultra-
violet fixed point and J ′ → 1 with the infrared fixed point.
Hence we expect

SA(J ′ = 1,x,N ) − Su
A(J ′ → 0+,x,N ) = ln gIR − ln gUV, (7)

where ln gUV and ln gIR are the boundary entropies for the
ultraviolet and infrared fixed points. Hence, it follows that
the degeneracies of the 2CK model and the open chain must

081106-2



RAPID COMMUNICATIONS

ENTANGLEMENT STRUCTURE OF THE TWO-CHANNEL . . . PHYSICAL REVIEW B 93, 081106(R) (2016)

be related as gUV/gIR = 2g2. While gUV = 2, corresponding
to the decoupled impurity spin, gIR has the nontrivial value
of

√
2. On the other hand, g was predicted, using field-

theory arguments for the open spin chain, to have the value
2−1/4 [11,12,49], validating the relation gUV/gIR = 2g2 = √

2.
This constitutes a highly nontrivial check of the spin-chain
representation of the 2CK model. We confirm the result g =
2−1/4 by extracting s1 from DMRG results for the entanglement
entropy for an even periodic chain, finding s1 = 0.743 743. We
then fit Su

A for a single open chain of length N to the finite N

generalization of Eq. (5),

Su
A(x,N ) = 2

[
1

6
ln[(2N/π ) sin(πx/N )] + s1

2
+ ln g

]

+ α

N
[2 + π (1 − 2x/N) cot(πx/N )]. (8)

Here, the last term is a correction, behaving as α/x in the
N → ∞ limit, calculated in Refs. [30,31,45] where α is a
nonuniversal parameter. Su

A is extracted using a seven-point
formula [30,31,45]. With s1 known, this then determines
ln g = −0.173 28, in excellent agreement with ln (2− 1

4 ) =
−0.173 286 7 . . ..

We now show that ln(gUV/gIR) enters as part of the limiting
behavior of the impurity entanglement entropy, allowing us
to numerically estimate this boundary entropy difference. We
begin by considering the behavior of SA for intermediate values
of J ′. Most notably, an alternating term appears in SA for any
J ′ �= 1 [45]. Hence, by subtracting off the entropy with the
impurity absent [30,31], as shown in Fig. 1(b), we define the
impurity entanglement entropy using the uniform part as

Simp(J ′,x,N ) = Su
A(J ′,x,N ) − Su

A(x,N − 1). (9)

The hallmark feature of the characteristic length ξ2CK ∼
u/T2CK is that Simp is a universal scaling function of the two
variables x/N and x/ξ2CK. Again, the parity of N also plays
a crucial role [45], but here we only focus on N even. If we
fix x/N = 1/10, Simp should then be a function of the single
variable x/ξ2CK. However, as evident from Eq. (8), the term
proportional to α in Su

A(x,N − 1) gives rise to corrections to
scaling disappearing as N → ∞ with x/N and x/ξ2CK held
fixed. For clarity, we subtract these corrections from Simp,
obtaining Ssub

imp. In Fig. 2(a) we demonstrate the scaling by
collapsing data for many values of J ′ and N with fixed x/N

onto a single curve by appropriately selecting ξ2CK(J ′). The
expected ξ2CK ∼ ea/J ′

behavior is also confirmed [inset of
Fig. 2(a)]. We see that an excellent data collapse appears
for a range of J ′ and the data approach fairly closely to
ln(2)/2 = 0.3465 at large x/ξ2CK. This limit corresponds to
J ′ → 1 and, using Eqs. (4) and (7), we have Simp(J ′ → 1) =
ln(2) − ln(gUV/gIR) = ln(2)/2, so we can conclude [44]

ln(gUV/gIR) � ln(2)/2, gUV/gIR �
√

2, (10)

providing a firm confirmation of the CFT predictions.
For x � ξ2CK at N → ∞ we are close to the infrared fixed

point. The leading irrelevant operator has dimension 3/2 [5]
and is expected to lead to corrections to the leading ln(2)/2
behavior of Simp that in second-order perturbation theory are
of the form δSimp ∝ ln(x)/x [42], valid in the regime ξ2CK 

x 
 N/2. Numerically we can confirm this by studying Ssub

imp

FIG. 2. (a) Scaling of Ssub
imp[x/ξ2CK(J ′)] for fixed x/N = 1/10 (N

even). At J ′ = 0.9, ξ2CK(J ′) is arbitrarily fixed at 0.077 47 to coincide
with the estimate from (b). Inset: ξ2CK(J ′) as a function of 1/J ′.
(b) DMRG results for Ssub

imp(x; J ′ = 0.9,N = 800). For ξ2CK(J ′) 

x 
 N/2, Ssub

imp can be fit to the form A ln(x/ξ2CK )/(x/ξ2CK) + B

(red line) with ξ2CK(J ′ = 0.9) = 0.077 47, A = 0.69, and B =
0.34 ∼ ln(2)/2 significantly better than to ∼ 1/x (green line). Inset:
Convergence to the limiting form at x 
 N/2 with N .

for J ′ ∼ 1, where ξ2CK is small. This is shown in Fig. 2(b) for
J ′ = 0.9 where a fit to the ln(x)/x correction is statistically
superior to a simpler 1/x form over a significant range of x.

Negativity as an order parameter. Several entanglement
measures have been used to detect quantum phase transitions
[37,38,50–54]. Here, we propose the negativity [35,36] as an
order parameter for the IQPT, with � as control parameter.
For any bipartite density matrix ρAB , the negativity, as an
entanglement measure, is defined as EA,B = −1 + ∑

k |ηk|,
where ηk’s are the eigenvalues of the matrix ρ

TA

AB , where TA

stands for partial transposition with respect to subsystem A

[44]. In this section, and through the remainder of this article,
we use HOBC, with NL = NR odd. In Fig. 3(a) we plot the
negativity between the impurity and right channel, E0,R , versus
�. It is expected that the ground state is overscreened only at
� = 1 where the impurity is entangled with both channels. For
any � �= 1 in the thermodynamic limit, the impurity is screened
only by the channel with the strongest coupling to the impurity,
resulting in a fully screened 1CK phase. Indeed, the behavior
of the negativity is consistent; E0,R goes from 1 to 0 around the
critical point. The thermodynamic behavior can be explored
by studying the derivative of the negativity with respect to
�, namely, E′

0,R , shown in Fig. 3(b). As the figure shows, the
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FIG. 3. (a) Negativity between the impurity and the right channel
(i.e., E0,R) vs � for N = 403 and J ′ = 0.4. (b) Derivative of E0,R

with respect to � for different system sizes. (c) Finite-size scaling of
E0,R . (d) Finite-size scaling of the Schmidt gap.

derivative dips at the critical point with the dip sharpening as N

increases. This suggests that, as N → ∞, E′
0,R diverges at the

critical point, implying that the 2CK ground state is destroyed
and 1CK physics is emerging.

The interpretation of the negativity as an order parameter
can be justified by a finite-size scaling analysis [55]. An order
parameter scales as |� − 1|β in the vicinity of the critical point
and the correlation length as |� − 1|−ν , where β and ν are
critical exponents. The role of a correlation length is here taken
by the critical crossover scale ξ ∗ at which the renormalization
group flow of the channel-asymmetric model crosses over from
the unstable overscreened fixed point to the fully screened
Kondo fixed point [5,23]. Finite-size scaling [55] implies that

E0,R = N−β/νF (|� − 1|N1/ν), (11)

with F a scaling function. In Fig. 3(c), we plot Nβ/νE0,R as
a function of (� − 1)N1/ν . When ν =2 ± 0.05 and β =0.2±
0.02, curves for different N collapse to a single curve. The
value of ν ≈2 matches CFT [5] and bosonization results [19],
verifying that the negativity behaves as an order parameter.
Here, ν =1/d, with d the scaling dimension of the relevant
operator that appears in the Hamiltonian when parity symmetry
is broken.

Schmidt gap. Another key quantity, related to the entangle-
ment spectrum, is the Schmidt gap �S . Given a bipartitioning
of the system, it is defined by �S = λ1 − λ2, where λ1 � λ2

are the two largest eigenvalues of the reduced density matrix
of any of the two subsystems. It was recently shown that the
Schmidt gap can serve as an order parameter across quantum
phase transitions [37,38]. For the 2CK model close to � = 1,
and choosing a bipartition as shown in Fig. 1(c) for two
complementary left and right blocks, the Schmidt gap is found
to obey finite-size scaling with the same critical exponents as
the negativity. Figure 3(d) shows the Schmidt gap data collapse
for three different system sizes, confirming it as an alternative
order parameter to the negativity in the 2CK model.
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FIG. 4. (a) The tripartite entanglement indicator τ vs �.
(b) Entanglement between the two channels vs �. In both panels,
J ′ = 0.4.

Tripartite entanglement. Changing from 1CK to 2CK
physics changes the entanglement structure fundamentally.
Inspired by tangle [39] and its generalization for negativity
[40], as tripartite entanglement measures for qubits, we
introduce a tripartite entanglement indicator as

τ = (π0 + πL + πR)/3 (12)

in which

π0 = E2
0,LR − E2

0,L − E2
0,R, πm = E2

m,0m − E2
m,0 − E2

m,m,

where m = L,R and m = R,L represent opposite channels,
E0,LR = 1 is the negativity of the impurity with the rest of the
system, E0,m = Em,0 is the negativity between the impurity
and channel m, and Em,m is the negativity between the two
channels.
For systems with odd length leads each channel effectively
behaves as a spin-1/2 system and our tripartite entanglement
indicator τ becomes a natural generalization of the tangle
defined for three qubits [40]. In Fig. 4(a) we plot τ vs �

for systems with odd length leads. τ clearly peaks at the
critical point with the peak becoming more pronounced with
increasing length, suggesting its divergence with N . The
emergence of tripartite entanglement is therefore related to
the overscreening at the critical point where the two channels
become highly entangled. In Fig. 4(b), we plot the negativity
between the two channels, EL,R , versus �. As the figure shows,
EL,R is maximal at � = 1, likely diverging with N .
Conclusions. Employing high-precision DMRG computa-
tions, we have studied the ground-state entanglement of the
2CK model, allowing us to uncover the fractional ground-state
degeneracy predicted by CFT. The existence of the characteris-
tic length scale ξ2CK is established through a scaling analysis of
Simp. The IQPT appearing as a function of channel asymmetry
and its exponents is detected using both the negativity and the
Schmidt gap as order parameters. Furthermore, the tangle is
used to show that tripartite entanglement emerges only in the
vicinity of the critical point.
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