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Synthesizing Majorana zero-energy modes in a periodically gated quantum wire
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We explore a scheme for engineering a one-dimensional spinless p-wave superconductor hosting unpaired
Majorana zero-energy modes, using an all-electric setup with a spin-orbit-coupled quantum wire in proximity to
an s-wave superconductor. The required crossing of the Fermi level by a single spin-split energy band is ensured
by employing a periodically modulated Rashba interaction, which, assisted by electron-electron interactions
and a uniform Dresselhaus interaction, opens a gap at two of the spin-orbit shifted Fermi points. While an
implementation in a hybrid superconductor-semiconductor device requires improvements upon present-day
capabilities, a variant of our scheme where spin-orbit-coupled cold fermions are effectively proximity coupled
to a BEC reservoir of Feshbach molecules may provide a ready-to-use platform.
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I. INTRODUCTION

The possible existence of an elementary fermionic particle
with the distinguishing property of being its own antiparticle,
a Majorana fermion, remains an outstanding puzzle, almost
80 years after the idea was first advanced [1]. By contrast,
emergent Majorana fermions are well known to appear in
disguise in condensed matter systems, the Bogoliubov quasi-
particle in a superconductor being a notable example [2,3].

Different, and more intriguing, is the concept of an
emergent quasiparticle which is its own antiparticle but
exhibits non-Abelian statistics [4], a Majorana zero-energy
mode (MZM), bound to a defect or a boundary [5]. Possible
hosts for these particles are fractional quantum Hall systems
[6], cold gases of fermionic atoms [7,8], and topological
superconductors in one dimension (1D) [9] and two dimen-
sions (2D) [10,11]. As first realized by Fu and Kane [12],
the required spinless p-wave pairing which makes a super-
conductor topological may be engineered in a semiconductor
structure hybridized with an ordinary s-wave superconductor.
This has made the topological superconductors the preferred
hunting grounds for MZMs [5], and there are now a variety
of theoretical proposals for how to access them in the
laboratory. Two schemes, both for proximity-induced 1D
p-wave pairing, have so far been explored in experiments:
a Rashba spin-orbit coupled quantum wire in proximity to an
s-wave superconductor and subject to a magnetic field [13,14],
and a setup with a chain of magnetic impurities deposited on
top of an s-wave superconductor [15]. While the experimental
results are promising [16], the verdict is still out as to whether
any of them unambiguously points to MZMs.

To produce a topological superconducting state in one
dimension, the basic trick is to make the Fermi level cross only
a single spin-split quasiparticle band. With this, the pairing of
the resulting helical (spin-momentum locked) states must then
effectively have p-wave symmetry so as to make the pair wave
function antisymmetric [9]. In the quantum wire proposals of
Refs. [13,14], the trick is carried out by combining a strong
Rashba spin-orbit interaction (which causes the spin splitting)
with a Zeeman interaction (which pushes one of the bands

away from the Fermi level). In the more recent scenario with a
magnetic impurity chain on top of an s-wave superconductor
[15], the microscopic spin texture of the chain emulates
a combined Rashba and Zeeman interaction to effectively
produce a protected set of one-dimensional p-wave states
in the surface layer of the superconductor. While this latter
setup has an advantage in allowing for STM probes of the
predicted MZMs, it is more difficult to manipulate and control,
and therefore probably less useful for future applications. The
quantum wire setup, on the other hand, is easily controllable,
with tunable gate voltages that may be used to move around
the MZMs in networks of quantum wires, as envisioned in
certain architectures for topological quantum gates [17].

A potential drawback of the quantum wire setup, however,
is the reliance on a magnetic field. While the strength of the
field can be varied, and allows to tune across the topological
quantum phase transition (in this way uncovering experimental
signatures of the MZMs), its presence also makes the device
less robust against disorder [18,19]. Moreover, magnetic
fields of the required strengths are difficult to apply locally
[20], and therefore, integrating them into useful designs for
quantum computing with MZMs may prove a challenge. This
is particularly so since a universal set of quantum gates [21]
using MZMs is obtainable only by supplying ancillary non-
topological states [22,23]. These states, in turn, may become
fragile when subject to a magnetic field. A case in point is when
the ancillary states are taken to be spin qubits, as in the proposal
in Ref. [24]. To ensure spin degeneracy, the magnetic field must
here be precisely tuned, with the spin-up and spin-down states
belonging to different orbitals in the quantum dot which hosts
them. This sets additional demands on the experimental setup.
From a more fundamental point of view, one asks whether
there could be a less invasive way to obtain 1D helical electrons
(the prerequisite for p-wave superconductivity) than breaking
time-reversal symmetry explicitly, as is the case with magnetic
field based proposals.

In view of this, it is interesting to inquire whether MZMs
may be produced in a quantum wire (or network of wires as
required for braiding and quantum information processing)
using an all-electric scheme, disposing of the magnetic
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field altogether. In fact, there is already an abundance of
theoretical proposals which employ “nonmagnetic” schemes:
dx2−y2 [25] or s±-wave proximity pairing [26], noncen-
trosymmetric superconductivity [27], two-channel quantum
wires with channel-dependent spin-orbit interactions [28], or
some other mechanism [29–36]. Common to these proposals
is that they describe quasi-1D (“multichannel”) topological
superconductors [37], hosting paired MZMs at each end of the
wire (“Majorana Kramers pairs”) [38]. In this work, we shall
instead explore the possibility to generate unpaired MZMs
at the ends of a single-channel proximity-coupled quantum
wire without applying a magnetic field. In our proposed setup,
the breaking of time-reversal symmetry (necessary to escape
the time-reversal analog of “fermion doubling” in 1D [39] and
obtain helical electron states) is spontaneous, and comes about
from an interplay between a spatially modulated spin-orbit
interaction and the electron-electron (e-e) repulsion. As we
shall show, this makes possible a magnetic field-free 1D
topological superconductor with a single unpaired MZM at
each end of the wire. To the best of our knowledge, schemes
for producing unpaired MZMs without the use of a magnetic
field have so far been discussed only for especially coupled
double nanowires or multichannel wires [40], and for Floquet
topological superconductors with a periodic high-frequency
driving of the spin-orbit interaction [41]. Here, we instead
make use of a spatially periodic Rashba spin-orbit interaction
in a single quantum wire.

Specifically, we shall build on a recent proposal of ours,
where a 1D helical system is engineered using a quantum
wire subject to a periodically modulated electric field [42].
The electric field gives rise to a spatially modulated Rashba
spin-orbit interaction, which, when assisted by e-e interactions
and a uniform Dresselhaus spin-orbit interaction, opens a
gap at two of the spin-orbit shifted Fermi points. As an
outcome, a helical Luttinger liquid (HLL) [43,44] emerges
at the two remaining gapless Fermi points. In this work,
we inquire about the conditions under which the proximity
of an ordinary s-wave superconductor could turn this HLL
into a 1D spinless p-wave superconductor hosting MZMs.
The problem becomes nontrivial considering that the induced
superconducting pairing competes with the insulating gap-
opening process from the modulated Rashba interaction.
Using a perturbative renormalization group (RG) argument,
we shall find that both processes can play out concurrently.
This establishes a “proof-of-concept” that a single-channel
quantum wire may host unpaired MZMs without the assistance
of a magnetic field (or a high-frequency driving of the
spin-orbit interaction [41]). However, a case study with an
InAs-based device shows that the required values of the
parameters lie outside the experimental range reported for
InAs quantum wells. A variant of our scheme with a cold-atom
emulation of a quantum wire, where interacting and spin-orbit
coupled fermionic atoms are in contact with a BEC reservoir
of Feshbach molecules, looks more promising. We shall
elaborate on this and argue that a spinless p-wave superfluid
phase with unpaired MZMs is well supported by a cold-atom
platform within the parameter regime where our scheme is
workable.

The paper is organized as follows. In the next section, we
introduce a microscopic model for a spin-orbit coupled and

periodically gated quantum wire in proximity to an s-wave
superconductor and advance, through general arguments, that
this system may be turned into a spinless p-wave superconduc-
tor. As mentioned above, the scheme calls for the assistance
of e-e interactions and this is discussed in Sec. III through a
low-energy effective description of the model. Bosonizing the
theory, we then carry out a detailed RG study which allows
us to establish the flow equations of the theory in the various
parameter regimes. In Sec. IV, we arrive at the phase diagram
of the system and provide the minimum practical conditions for
sustaining the topological phase in the laboratory. The number
of MZMs hosted by the topological superconductor and its
possible symmetry classes are discussed in Sec. V. Finally, in
Sec. VI, we present two case studies, one with a periodically
gated InAs quantum wire and the other with an ultracold gas
of optically trapped fermionic atoms, intended to assess the
experimental viability of our scheme. Our conclusions are
given in Sec. VII.

II. SYNOPSIS: PHYSICAL PICTURE FROM THE
MICROSCOPIC MODEL

In what follows, we present and discuss the microscopic
model that captures the physics of the system illustrated in
Fig. 1: a quantum wire is gated by a periodic sequence of
equally charged top gates and proximity coupled to an s-wave
superconductor. The electrons in the wire are subject to e-
e interactions and two types of spin-orbit interactions: the
Dresselhaus and Rashba interactions. The Rashba coupling,
being sensitive to an external electric field, will pick up the
same modulation of the field from the electrodes. In addition,
the chemical potential in the wire gets locally modulated by
the electric array. Finally, the superconductor induces s-wave
pairing in the wire through proximity effect.

To better understand the role of the various potentials
introduced above, it is instructive to first consider a reduced
system obtained by removing the s-wave pairing and e-e
interactions. The microscopic Hamiltonian thus obtained can
be written in a tight-binding formulation as H = H0 + Hcp +
Hso, with

H0 =
∑
n,α

[−tc†n,αcn+1,α + (μ/2)c†n,αcn,α]

− i
∑
n,α,α′

c†n,α

[
γRσ

y

αα′ +γDσx
αα′

]
cn+1,α′ +H.c., (1)

FIG. 1. A quantum wire supporting Rashba, Dresselhaus, and
e-e interactions is gated by a periodic sequence (with periodicity
2d) of equally charged top gates. An s-wave superconductor induces
superconducting pairing in the wire.
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and where

Hcp = μ′

2

∑
n,α

cos(Qna)c†n,αcn,α + H.c., (2)

Hso = −iγ ′
R

∑
n,α,β

cos(Qna)c†n,ασ
y

αβcn+1,β + H.c. (3)

are the modulated chemical potential and the modulated
Rashba spin-orbit interaction, respectively, due to the periodic
gating. Here, c

†
n,α (cn,α) creates (annihilates) an electron at

site n with spin projection α = ↑,↓ along the z axis, t is the
hopping amplitude, μ (μ′) is the amplitude of the uniform
(modulated) chemical potential, γD is the amplitude of the
uniform Dresselhaus interaction, γR (γ ′

R) is the amplitude
of the uniform (modulated) Rashba interaction (with the
former given as a spatial average of the spin-orbit interaction
randomized by the ions in nearby doping layers [45,46]), σx(y)

αα′
are the matrix elements of the Pauli matrix for the x (y)
direction, a is the wire lattice spacing, and Q = π/d is the
wave number of the modulation. For a thorough discussion of
the modeling described by the Hamiltonian in Eqs. (1)–(3), we
refer the reader to Ref. [47].

It is useful to change to a basis that diagonalizes H0 in spin
space, (

dn,+
dn,−

)
≡ 1√

2

(−ie−iθ cn,↑ + eiθ cn,↓
e−iθ cn,↑ − ieiθ cn,↓

)
, (4)

where tan(2θ ) = γD/γR , and τ = ± labels the spin projections
along the direction of the combined Dresselhaus (∝γDx̂) and
uniform Rashba (∝γRŷ) fields. The terms in the Hamiltonian
now take the form

H0 =
∑
n,τ

(−t + iτγeff)d
†
n,τ dn+1,τ

+
∑
n,τ

(μ/2)d†
n,τ dn,τ + H.c., (5)

Hcp = −1

2

∑
n,τ

μnd
†
n,τ dn,τ + H.c., (6)

Hso = i
∑
n,τ

cos(2θ ) γnτd†
n,τ dn+1,τ

+ i
∑
n,τ

sin(2θ ) γnd
†
n,τ dn+1,−τ + H.c., (7)

where γeff =
√

γ 2
R + γ 2

D, μn = μ′ cos(Qna), and
γn = γ ′

R cos(Qna).
The first term H0 in Eq. (5) can be immediately diagonalized

by a Fourier transform, yielding the familiar spin-split spec-
trum ε(0)

τ (k) = −2t̃ cos(ka − τq0a) + μ, with t̃ =
√

t2 + γ 2
eff

and q0a = arctan(γeff/t). Figure 2(a) displays the two lowest
τ = ± bands inside the first Brillouin zone (BZ). The bands
are shifted horizontally by ±q0, and support four Fermi points
±kF + τq0 (τ = ±), with kF = πNe/2Na, where Ne (N ) is
the number of electrons (lattice sites).

Adding the modulated chemical potential term, Hcp in
Eq. (6) with the wave number Q written as Q = (2π/a)(p/r)
for positive integers p and r , each band in Fig. 2(a)
splits up into r subbands gapped at ±kr ≡ ±mπ/(ra) =

FIG. 2. (a) Lowest bands inside the first BZ of a spin-orbit-
coupled wire. (b) Subbands inside the first reduced BZ of the
periodically gated wire for r = 3 and p = 1. (c) Splitting of the two
lowest subbands at the zone boundaries in (b), caused by the
modulated spin-orbit interaction in the presence of Dresselhaus and
e-e interactions (which break time-reversal invariance spontaneously)
and provided the outer Fermi points ±kF ± q0 match the boundaries
of the first reduced BZ. An HLL emerges in the vicinity of the inner
gapless Fermi points ±kF ∓ q0.

mQ/(2p), m = 1,2, . . . ,r , where ±kr define the boundaries
of the new reduced BZs of the periodically gated wire.
Figure 2(b) illustrates the six subbands of the case r = 3 and
p = 1 folded into the first reduced BZ.

By adding also the modulated spin-orbit interaction Hso in
Eq. (7), one may anticipate that its second spin-mixing term
(resulting from the interplay between the modulated Rashba
and the uniform Dresselhaus interactions as can be seen from
the definitions of γn and θ ) will lift the degeneracies at the
center and at the boundaries of the reduced BZs, through
hybridization of the states with spin projection ±. This is
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not so, however, since Kramers’ theorem forces these states
to remain degenerate at the time-reversal-invariant points
k = 0 and ±kr . So, while Hso will cause some distortion
of the subbands in Fig. 2(b), the bands remain connected at
k = 0, ± π/3a.

The picture changes if time-reversal symmetry gets broken,
either explicitly (by adding, e.g., a magnetic field) or sponta-
neously opening a bypass which avoids Kramers’ theorem.
In this context, recall that strong to intermediate umklapp
scattering in a HLL (which is here suppressed due to the
assumed low-electron density, being far from half-filling)
causes a spontaneous breaking of time-reversal symmetry, with
a concurrent opening of a gap in the spectrum [43,44]. As
we shall demonstrate, time-reversal symmetry similarly gets
spontaneously broken when a Coulomb e-e repulsion

He-e =
∑

n,n′,τ,τ ′
V (n − n′)d†

n,τ d
†
n′,τ ′dn′,τ ′dn,τ (8)

is added to the Hamiltonian H = H0 + Hcp + Hso. In fact, the
combined modulated spin-orbit and e-e- interactions produce
a spin-density wave for the electrons at the outer Fermi points,
leading to a spontaneous breaking of time-reversal invariance.
The presence of the spin-density wave, while being a highly
nontrivial phenomenon driven by the collective dynamics, is
easy to establish within a bosonization formalism. We will turn
to this matter in Sec III B.

By triggering a spontaneous breaking of time-reversal
symmetry in the wire, e-e interactions enable, in effect, the
detachment of the bands at the boundaries of a reduced BZ.
Specifically, in the next section we show that in the presence
of e-e interactions, with the two outer Fermi points residing
close to the boundaries of one of the reduced BZs such that
|Q − 2(kF + q0)| 	 O(1/a) (this will be the first reduced BZ
if p = 1, the second if p = 2, etc.), gaps open up at these
boundaries, lifting the degeneracy of the corresponding states
with spin projection ±. As a result, the interior of this reduced
BZ will support a HLL at the two remaining gapless Fermi
points, with the ± spin content of these states locked to the
direction of motion of the electrons. Figure 2(c) illustrates the
case p = 1 for which the lowest pair of bands of Fig. 2(b)
develop gaps at the zone boundaries after inclusion of e-e
interactions.

To understand how this scenario comes about, and why
the interplay between the e-e interaction and the modulated
Rashba interaction is key to the process, it is useful to first
recall some basics about time reversal of electron states. For
this, let us consider the possibility of a single-particle spin-
flip scattering event, from, say, the outer right Fermi point
in Fig. 2(a), kF + q0, to the outer left Fermi point −kF − q0.
Calling the initial and final states |α〉 and |β〉, respectively, the
matrix element for H to connect these states is

〈β|H |α〉 = 〈β|Hso|α〉, (9)

since only Hso in Eq. (7) can execute a spin flip. With |β〉 being
the time-reversed state of |α〉,|β〉 = T |α〉, it follows that

〈β|Hso|α〉 = 〈T α|Hso|α〉 = 〈T Hsoα|T 2α〉
= −〈T Hsoα|α〉 = −〈HsoT α|α〉 = −〈β|Hso|α〉
⇒ 〈β|Hso|α〉 = 0. (10)

We have here used that a single-electron state is odd under
T 2,T 2|α〉 = −|α〉. Also, in the second line of Eq. (10) we
use the antiunitarity of the time-reversal operator 〈T φ|T φ′〉 =
〈φ′|φ〉 for any states |φ〉 and |φ′〉, with the identity in the
third line following from the time-reversal invariance of
Hso : [Hso,T ] = 0. Equation (10) implies that single-particle
spin-flip scattering is forbidden since the matrix element
vanishes. However, if |α〉 is a two-electron state, one has
that T 2|α〉 = |α〉, and it follows that two-particle spin-flip
backscattering (from one Fermi point to the opposite) is indeed
possible. However, unless the electrons are correlated, the
probability that two of them would simultaneously backscatter
in response to the spin-flip term in Hso is vanishingly small. (In
the RG language to be used in Sec. III C, the process will be
demoted to irrelevant.) This, however, changes when adding
the e-e interaction. A two-particle correlated backscattering
channel with spin flip now opens up, and the process can
become relevant (in the jargon of RG) if the e-e interaction is
sufficiently strong. One may, loosely speaking, picture this as
resulting from a kind of “stimulated” backscattering: Driven
by Hso, an electron may attempt to backscatter with spin
flip, but can only do so if it induces, via the e-e interaction,
a second electron to do the same. As a result, and as we
shall derive formally, the amplitude of the combined process
becomes quadratic in the spin-orbit coupling. The modulation
of the spin-orbit interaction is crucial for making the process
selective, taking place only for electrons at one of the pairs
of Fermi points, specifically, the outer pair whose separation
matches the wave number Q of the external modulation
[see Fig. 2(c)]. This selectivity is an essential feature of our
proposal.

The effective “spinlessness” of the helical states in the
interior of the reduced BZ implies that by incorporating
into H = H0 + Hcp + Hso + He-e an s-wave superconducting
pairing potential of strength �,

Hsc =
∑

n

[�dn,+dn,− + H.c.], (11)

may drive the system into a p-wave superconducting phase.
By means of this, the addition of e-e interactions in effect
has triggered a quantum phase transition from an ordinary
proximity-coupled s-wave superconductor to a topological
spinless p-wave superconductor, with the “p-waveness” en-
forced by the antisymmetry of the pairing wave function
that follows from the “spinless” nature of the helical states.
It is interesting to note that this result is anticipated in a
work by Stoudenmire et al. [48], who hypothesized that
a proximity-coupled quantum wire with strong Rashba and
Dresselhaus couplings may be driven into a topological phase
by interactions, even without an applied magnetic field. In this
work, we provide the evidence that this is indeed possible.

The topological nontrivial character of a p-wave super-
conductor [9] implies that a finite wire, with the charging
energy tuned to a degeneracy point [49], can host localized
MZMs γL,i and γR,i, i = 1,2, . . . ,m, at its left and right ends,
respectively. These modes, protected by chiral symmetry [50],
lead to a degenerate ground state, up to small corrections
from wave-function overlaps between left and right MZMs.
Specifically, if |0〉 is a ground state, then (γL,i + iγR,i)|0〉 is
also a ground state, differing from the first by the presence of
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an extra electron. As we shall see, in the present case there is
always only a single unpaired MZM (m = 1) at each end of
the wire.

Having outlined the backbone of our proposal, we close
this section by stating the three basic conditions for it to work.
First, the proximity gap must be smaller than the dynamically
generated insulating gap at the zone boundaries, so that the
states of the insulating and empty bands do not mix with the
p-wave superconducting states. Second, the smaller proximity
gap must itself exceed the thermal energy so that the device is
robust against thermal leakage. Finally, the scaling lengths
at which the gaps open up (in the language of RG [51])
must fit within the system’s cutoff length. The wire has to
be sufficiently long also for suppressing the overlap between
a left and right MZM wave function (which would otherwise
produce a spectral weight for a finite-energy electronic mode).
Let us note in passing that having a long wire alleviates the need
to build in boundary- and finite-size effects into the description
of the HLL, thus, our use of an infinite-volume formalism
in what is to come. As we shall see, the conditions above
can be given a precise mathematical formulation within the
framework of RG. This and other key elements of the theory
will be closely examined in what follows.

III. LOW-ENERGY EFFECTIVE THEORY

To understand how the modulated spin-orbit interaction,
e-e interactions, and superconducting pairing team up to
drive a phase transition from a trivial s-wave to a topo-
logical p-wave superconducting phase in the wire, we shall
study the low-energy limit of the full Hamiltonian thus
introduced,

H = H0 + Hcp + Hso + He-e + Hsc, (12)

with the terms defined in Eqs. (5)–(7), (8), and (11). We carry
out this analysis in three steps: In Sec. III A, we linearize the
spectrum around the system’s four Fermi points in an extended
zone picture, with that producing an effective field theory
written in terms of fermionic right- and left-moving field
operators. A bosonization procedure is applied in Sec. III B,
casting the theory in a form that will be analyzed within an
RG formalism in Sec. III C.

A. Linearization of the spectrum

To fix a working ground (without loss of generality), let
us consider the lowest bands of Fig. 2(b). Using a low-energy
approach, we will show how these bands can be evolved into
the partially gapped band structure depicted in Fig. 2(c). The
first step is to choose the Fermi level so that the outer Fermi
points ±kF ± q0 reside in the neighborhoods of the boundaries
of the first reduced BZ, so that |Q − 2(kF + q0)|	O(1/a).
[For ease of exposition we put Q = 2(kF + q0) in the fol-
lowing. However, all results obtained in the continuum limit
remain valid as long as |Q − 2(kF + q0)|	O(1/a).] Here, it
is important to note that the modulation wave number Q is
likely to be preset in an experimental device. Thus, rather than
choosing Q, it is instead kF that is tuned, by filling up the

FIG. 3. (a) Energy bands (blue for + and red for −) with
boxed segments being displaced by a reciprocal vector. (b) Re-
sulting spin-split paraboliclike bands in the extended zone scheme.
(c) Linearization (yellow segments) of the spectrum around the Fermi
level.

system via a backgate, so as to make the outer Fermi points
approach the zone boundaries.

Having thus defined the Fermi level, the next step is to
linearize the spectrum around the four Fermi points ±kF + τq0

(τ = ±). This calls for an extended zone scheme that takes
advantage of translational symmetry to formally “disentangle”
the bands at the boundaries of the reduced BZ. This scheme
is represented in Figs. 3(a) and 3(b): the enclosed pieces of
the + and − bands are displaced by the reciprocal vector
Q, rendering two paraboliclike bands in the extended zone
scheme. With this, the linearization of the spectrum, as
illustrated in Fig. 3(c), can be carried out in the standard way.

The continuum limit of the low-energy (linearized) theory
is obtained through the transformations na → x,

∑
n →∫

dx/a, and

dn,τ → √
a[ei(+kF +τq0)xRτ (x) + ei(−kF +τq0)xLτ (x)],

where Rτ (x) and Lτ (x) are fermionic field operators that
annihilate right- and left-moving excitations at the respective
Fermi points. Specifically, L− and R+ apply to the “outer”
Fermi points −kF − q0 and +kF + q0, respectively, while L+
and R− apply to the “inner” ones −kF + q0 and +kF − q0,
respectively.

Omitting rapidly oscillating terms that vanish upon inte-
gration when Q = 2(kF + q0), we find that H → ∫

dx (Houter
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+Hinner + He-e) where

Houter = −ivF (: R
†
+∂xR+ : − : L

†
−∂xL− :)

+ λ(R†
+∂xL− + L

†
−∂xR+) + �(L†

−R
†
+ + R+L−),

(13)

Hinner = −ivF (: R
†
−∂xR− : − : L

†
+∂xL+ :)

+�(R†
−L

†
+ + L+R−), (14)

He-e =
∑
τ,τ ′

g1 : R†
τLτL

†
τ ′Rτ ′ : + g2 : R†

τRτL
†
τ ′Lτ ′ :

+ g2

2
(: L†

τLτL
†
τ ′Lτ ′ : +L → R), (15)

with vF = 2at̃ sin(kF a), λ = aγ ′
RγD/γeff, g1 ∼ Ṽ (k∼2kF ),

g2 ∼ Ṽ (k ∼ 0), Ṽ (k) being the Fourier transform of the
Coulomb potential, and where : . . . : denotes normal ordering.
The backscattering process ∼g1 is known to be RG irrelevant in
a Luttinger liquid [51], and the same holds true in the presence
of spin-orbit interactions and superconducting pairing [52].
Here, we thus consider only the dispersive and forward scatter-
ing processes ∼g2 in Eq. (15). The irrelevant g1 backscattering,
which conserves spin, is not to be confused with the spin-flip
backscattering discussed in Sec. II. The latter is a two-particle
correlated backscattering induced by the modulated spin-orbit
interaction which, as we shall show, becomes relevant in the
presence of strong enough g2 processes.

B. Bosonized theory

The physics of Eqs. (13)–(15) reveals itself in a more
transparent way if we go to a bosonized picture by applying
the prescription [51]

Rτ = ηR
τ√

2πa
e−i

√
π(φi+τθi ), (16)

Lτ = ηL
τ√

2πa
e+i

√
π (φj +τθj ). (17)

Here, i = 1 (2) applies to τ = + (−) and j = 1 (2) applies to
τ = − (+); φi(x) and θi(x) are dual bosonic fields satisfying
vF ∂xθi = ∓∂tφi [with i = 1 (2) for the minus (plus) sign],
and ηR,L

τ are the Klein factors needed to preserve the Fermi
statistics of the Rτ and Lτ fields.

The bosonized Hamiltonian reads as H = ∫
dx (H′

outer +
H′

inner + Hmix) with

H′
outer = u[(∂xθ1)2 + (∂xφ1)2] − �

πa
sin

(√
4π

K
θ1

)

+ λ√
πKa

cos(
√

4πKφ1)∂xθ1, (18)

H′
inner = u[(∂xθ2)2 + (∂xφ2)2] − �

πa
sin

(√
4π

K
θ2

)
, (19)

Hmix = g2K

π
∂xφ1∂xφ2, (20)

where K = [1 + g2/(πvF )]−1/2 is the Luttinger parameter,
and u = vF /2K is the Fermi velocity dressed by e-e inter-

actions. The noninteracting limit corresponds to K = 1 (i.e.,
g2 = 0), for which Hmix = 0, and, referring back to Eqs. (13)
and (14), H′

outer = Houter and H′
inner = Hinner. The bosonized

theory is thus seen to split into two branches given by H′
outer

and H′
inner, each acting at the corresponding pair of outer

and inner Fermi points, and, for K �= 1, coupled by the
density-density interaction Hmix.

In Ref. [42] we analyzed the bosonized theory defined by
Eqs. (18)–(20) in the absence of superconducting pairing, i.e.,
with � = 0. Going to a path-integral formulation, we found
that by integrating out the last term in Eq. (18), the outer branch
gets described by a quantum sine-Gordon model with potential
∝λ2 cos(

√
16πKφ1). This potential is strongly RG relevant if

K < 1
2 (strong e-e repulsion). If K � 1

2 (weak e-e repulsion),
it is marginally RG relevant provided the strength λ of the
modulated spin-orbit interaction is sufficiently large, satisfying
(λ/vF )2 > (2 − 1/K) [53]. In both cases, the term opens a gap
for the electrons in the outer branch, at the same time as it
suppresses the branch-mixing term in Eq. (20) by pinning the
φ1 field. As a result, the inner branch decouples and comes to
support an HLL. Folding back the extended zone into the first
reduced BZ, we arrive at the gapped band structure anticipated
in Fig. 2(c). If K � 1

2 but (λ/vF )2 � (2 − 1/K), the spin-orbit
potential becomes RG irrelevant, the bands remain gapless, and
the system an ordinary Luttinger liquid.

The HLL put forward in Ref. [42] is different from the
ones that have so far been studied experimentally: it is neither
holographic [39] (unlike the edge states of a quantum spin
Hall insulator) nor quasihelical [54] (unlike a magnetic-
field-assisted helical liquid). The time-reversal analog of
the fermion-doubling problem implied by Kramers’ theorem
[39] is instead avoided by the fact that the gapped branch
breaks time-reversal symmetry spontaneously by developing
a spin-density wave (SDW). This can be seen from an
analysis in Ref. [43], which, when carried over to H′

outer in
Eq. (18) with � = 0, reveals that the Ising-type SDW operator
i(R†

+L− − H.c.) ∼ cos(
√

4πφ1) takes on a finite expectation
value in the gapped ground state (due to the pinning of
the φ1 field) [42]. Is is important to point out that this
spontaneous breaking of time-reversal symmetry (that enables
the modulated spin-orbit interaction to gap out one branch,
isolating a HLL in the other) is only possible in the presence
of sufficiently strong e-e interactions. If the interaction is weak
(K ≈ 1), a pinning of φ1 would require the marginal RG flow
to be launched from an impracticably high point in the K − λ

plane with λ >
√

2vF .
Disregarding, for the moment, the coupling between the

two branches given by Eq. (20), let us now consider the effect
of the superconducting pairing. Switching on the pairing field
�, the inner branch acquires a sine-Gordon term as given by
Eq. (19). This perturbation is strongly RG relevant if K > 1

2
(weak e-e repulsion), while if K � 1

2 (strong e-e repulsion) it
is marginally relevant provided the strength � of the supercon-
ducting pairing is enough to survive the e-e repulsion, satis-
fying a�/vF > (1/K − 2). In both cases, a superconducting
gap opens up in the inner branch. If, on the other hand, K � 1

2
with a�/vF � (1/K − 2), the superconducting pairing gets
suppressed by strong e-e repulsion, becoming RG irrelevant.

One can now envision that combining a marginally/strongly
relevant superconducting pairing in the inner branch with a
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strongly/marginally relevant spin-orbit interaction in the outer
branch, the s-wave-coupled helical electrons will undergo a
transition to a p-wave topological phase. Because the outer
branch is now also subject to superconducting pairing [see
Eq. (18)], the parameter regime within which this phase
transition takes place depends on how superconductivity and
spin-orbit coupling play out together in that branch. Moreover,
reinstating the branch-mixing term [Eq. (20)], the emergence
of a topological phase is conditioned to Hmix becoming
dynamically frozen out on the relevant length scale so that
the inner and outer branches become effectively decoupled.
As we shall argue, inside a properly chosen parameter regime,
the opening of an insulating gap in the outer branch precisely
provides for this. The task in hand is, therefore, to determine
this parameter regime in which the insulating order dominates
superconducting pairing correlations in the outer branch, and
hence makes possible the emergence, in the inner branch,
of a decoupled helical state that will go topological under
superconducting pairing.

C. Renormalization group analysis of the outer branch

We start by examining the competition between the spin-
orbit interaction and the superconducting pairing in the outer
branch by investigating the theory given by Eq. (18) as such,
not concerning ourselves, in this section, with the effects from
the mixing between the two branches in Eq. (20).

For this purpose, it is convenient to go to a Lagrangian
formalism. After carrying out a Legendre transformation of
Eq. (18), and integrating out the conjugated momentum field
�1 = −∂xθ1 from the partition function, we arrive at the
effective action for the outer branch:

Souter =
∫

dx dτ

[
2u

2

(
(∂xφ1)2 + 1

(2u)2
(∂τφ1)2

)

− vF gso

πa2
cos(

√
16πKφ1) − vF gsc

πa2
cos

(√
4π

K
θ1

)]
,

(21)

where τ = it is the imaginary time and where gsc = a�/vF

and gso = λ2/(4v2
F ) are dimensionless coupling constants.

Note that the spin-orbit coupling gso is quadratic in the
amplitude of the modulated Rashba interaction, as anticipated
from our qualitative discussion of the correlated backscattering
in Sec. II.

The action (21) is an extended version of the sine-Gordon
model where, aside from the usual mass term given by the
cosine of the φ1 field, a cosine of the dual θ1 field is also present.
This model has been a subject of intensive studies during
the past decades [55–57]. We note the manifest invariance of
Eq. (21) under the duality transformation φ1 ↔ θ1 and 2K ↔
1/(2K) when gso = gsc, i.e., the property of a self-dual sine-
Gordon model. For details, we refer the reader to the Ref. [58].

A crucial feature of the model described by Eq. (21) is that
its two cosine potentials are mutually nonlocal and, therefore,
cannot be minimized simultaneously [57]. This property
per se suggests that the theory must support two regimes,
each governed by one of the antagonistic spin-orbit and
superconducting terms. But, the outcome of the competition

between the two regimes depends not only on the relation
between the corresponding energy scales gso and gsc, but also
on the energy scale of the e-e interaction as given by the
Luttinger parameter K . In fact, the scaling dimensions �so

and �sc of the spin-orbit and superconducting perturbation,
respectively, are controlled by the e-e interaction: �so = 4K

and �sc = 1/K . A necessary condition for a perturbation to
be strongly relevant is that its scaling dimensionality be less
than 2, else the perturbation will be irrelevant or, at most,
marginally relevant. Therefore, since �so�sc = 4, when either
one of the cosine perturbations is strongly relevant, then the
other perturbation must be irrelevant or marginally relevant.

When one of the perturbations is strongly or marginally
relevant and the other is irrelevant, the low-energy physics of
the model is simply governed by the relevant operator and
the problem effectively reduces to the standard sine-Gordon
model, either for the φ1 field or for the θ1 field. In this case, the
resulting low-energy theory is fully massive and the continuous
translational symmetry of the free gapless Gaussian model is
broken down to the discrete ZN symmetry associated with the
minima of the relevant cosine term. The corresponding field
becomes pinned in one of these minima. In the case of the
gso perturbation, the symmetry breaking is translated into an
insulating order sustained by a dynamically generated soliton
gap [58], whereas for the gsc perturbation, the symmetry
breaking is translated into a superconducting order sustained
by a superconducting gap.

To uncover this process in detail, we exploit the perturbative
RG solution of the model given by Eq. (21) obtained using
an operator product expansion of the S matrix. Defining
the electron-electron interaction parameter ge-e through K ≈
1/2 − ge-e, the RG flow equations for ge-e, gso, and gsc can be
read off from Ref. [58]:

dge-e

dl
= g2

so − g2
sc, (22)

dgso

dl
= 4gsoge-e, (23)

dgsc

dl
= −4gscge-e, (24)

where l = ln s, with s a scale factor.
By numerically solving these equations, we obtain the RG

flows ge-e(l), gso(l), and gsc(l) of the corresponding parameters
in the outer branch. Figure 4 displays the resulting phase
diagram for different sets of ge-e, gso, and gsc bare (l = 0)
values. For better visualization, we have split the phase
diagram in two separate panels, Figs. 4(a) and 4(b), according
to the sign of the bare ge-e.

Figure 4 shows that the phase diagram of the outer branch
consists of two regions separated by a critical plane which
is the locus of the theory’s fixed points. The plane equation
obtained from the numerics

gso − gsc + 2ge-e = 0 (25)

can also be derived analytically, as shown in Ref. [58]. For
initial values of the parameters corresponding to a point on
the plane, the resulting flow will be constrained to the plane,
eventually sticking to a fixed point.
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FIG. 4. RG phase diagram of the outer branch obtained by
numerical solution of the flow equations (22)–(24). The critical plane
equation is gso − gsc + 2ge-e = 0. (a) Bare ge-e > 0, (b) bare ge-e < 0.

Below the critical plane, the spin-orbit interaction be-
comes irrelevant whereas the superconducting pairing be-
comes marginally relevant if the bare ge-e � 0 [Fig. 4(a)]
and strongly relevant if the bare ge-e < 0 [Fig. 4(b)]. As a
result, a pairing gap opens below the plane, leading to a
superconducting phase in the outer branch. More interesting,
for the realization of our scheme, is the region above the critical
plane. Here, superconducting pairing goes irrelevant, while
the spin-orbit potential becomes strongly relevant if the bare

ge-e > 0 [Fig. 4(a)] and marginally relevant if the bare ge-e � 0
[Fig. 4(b)]. It follows that an insulating gap opens up above
the plane, sustaining an insulating phase in the outer branch.

IV. PHASE DIAGRAM

To delineate the phase diagram of the system, we now
combine the parameter regimes discussed in Sec. III B for the
inner branch (rewritten in terms of the parameters ge-e and
gsc) with the regimes obtained from the analysis carried out in
Sec. III C for the outer branch. Here, the coupling between the
branches must be addressed in order to correctly characterize
the emerging phases.

Recall from the analysis in Sec. III C, carried out in
the absence of the branch-mixing term (20) that when the
spin-orbit interaction becomes strongly or marginally relevant
in the outer branch, the associated φ1 field gets pinned. Since
the branch-mixing term is marginal (has scaling dimension
equal to 2), in the presence of a strongly relevant spin-orbit
interaction it gets suppressed by the pinning of φ1 already at
a short length scale (short in the RG sense, that is: shorter
than the scale at which the branch-mixing would start to affect
the RG flow of the spin-orbit and pairing interactions in a
consequential way). As a result, the inner and outer branches
decouple above the critical plane in Fig. 4(a). On the other
hand, above the critical plane in Fig. 4(b), it is possible that
the flow of the only marginally relevant spin-orbit interaction
will get distorted by the (also marginal) branch-mixing term
in such a way as to ultimately prevent the pinning of φ1, in
which case the branch mixing would survive and the branches
would remain coupled. More opportune for our purpose would
be if the distortion on the marginally relevant spin-orbit flow
would not halt the pinning of φ1, thus preserving the branch
decoupling. We shall return to this point below. Finally, if
the superconducting pairing is the strongly or marginally
relevant operator, then the pinned field would be θ1, with
no suppression effect upon Hmix. Therefore, in this case, the
branches remain coupled all across the region below the critical
plane in Figs. 4(a) and 4(b).

The table in Fig. 5 combines the parameter regimes of
the outer and inner branches and shows the resulting phases,
characterized as “branch coupled,” “branch decoupled,” or
“unknown” according to the discussion above.

The “branch-decoupled PWS” is our target phase: the
p-wave paired topological superconductor hosting MZMs at
its ends. In the “branch-decoupled HLL” entries, the system
simply reduces to the HLL realization when the superconduct-
ing pairing becomes irrelevant in the inner branch (entry 4-3)
or is absent (entry 3-3). [At first sight, the “branch-decoupled”
characterization in entry 3-3 may appear contradictory with
the discussion above since the corresponding state, a single
point in the phase diagram, arises from a marginally relevant
spin-orbit interaction. However, the competing superconduting
pairing being simply absent from this state (gsc = 0 in this
“pure” HLL realization), the spin-orbit interaction, even if
only marginally relevant, will eventually pin the φ1 field in the
outer branch, suppressing the branch mixing.]

The two “branch-coupled SWS” phases in Fig. 5 are simple
to assess. In these cases, the spin-orbit interaction has been
washed out from the outer branch (is RG irrelevant) and
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FIG. 5. Combining the parameter regimes of the outer and inner branches, taking into account the role of the coupling between the branches
in the characterization of the emerging phases. The abbreviation SWS is short for s-wave superconductor, PWS is for p-wave superconductor,
and, as before, HLL is for helical Luttinger liquid.

the full theory reduces to two identical sine-Gordon models,
one for each branch, coupled by the branch-mixing term:
Eqs. (18)–(20), with λ → 0. Since there is no distinction
between the outer and inner branches in these phases, the
branch-mixing term (20) can actually be absorbed by a simple
rotation to a basis in which the system is not resolved in
terms of inner and outer branches, but is described in terms of
collective excitations with no definite helicity. For example,
one may rotate the {φ1,φ2} (inner and outer basis) to the
standard {φρ,φσ } (charge and spin basis). The result is an
s-wave superconductor with pairing amplitude dressed by
the e-e forward scattering. The s-wave superconductors of
entries 1-1 and 2-2 differ from each other in that, in the first
case (strongly relevant superconducting pairing), the pairing
gap opens up and stabilizes the s-wave phase at a shorter
length scale than in the second case (marginally relevant
superconducting pairing).

Finally, in the “unknown” phases of Fig. 5 the underlying
physics does not surface from a simple rotation of basis. In
these phases, the selectiveness of the modulated spin-orbit
interaction (which acts, as we have seen, only on the external
Fermi points whose separation matches the wave number Q

of the external modulation) leads to the differentiation of the
outer and inner branches. This separation demands a choice of
basis (our outer and inner basis) capable of resolving the helical

nature of the system. The cost of this basis is the presence of
the branch coupling Hmix in Eq. (20). This coupling simply
encodes the Coulomb forward scattering process connecting
electrons from the outer and inner branches, with equal
chirality. The treatment of Hmix, out of the regime where
this term is suppressed, calls for methods that go beyond the
present bosonization-perturbative RG approach. To explore
whether the combination of a marginally relevant spin-orbit
interaction in the outer branch and a strongly or marginally
relevant superconducting pairing in the inner branch may in
fact be sufficient to generate the desired topological p-wave
phase is an interesting problem which we expect could be
analyzed using density matrix renormalization group (DMRG)
or some other numerical approach.

The phase diagram of the system that transpires from our
analysis is depicted in Fig. 6 (a fixed-gso cut through the 3D
phase diagram). We should stress that this phase diagram is a
first-order approximate prediction, obtained by extrapolating
the RG equations (22)–(24) to the entire [− 1

2 ,+ 1
2 ] range of

ge-e. However, away from ge-e ≈ 0 higher-order corrections
may enter into the RG equations, affecting the length scale of
gap opening within each phase.

Now, although necessary, the condition that the parameters
belong to the p-wave superconducting phase depicted in
Fig. 6 is not sufficient to guarantee a “working” topological
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FIG. 6. A fixed-gso cut through the phase diagram of the system.
The region labeled by a question mark is out of reach of the present
formalism.

superconductor. The corresponding conditions on the parame-
ters must be supplemented by at least three “practical” criteria.
PC1: The insulating gap must exceed the superconducting
gap, otherwise it becomes energetically favorable to open a
superconducting gap at all four Fermi points, thus losing the
p-wave state. This parallels the condition that the Zeeman gap
in the more conventional scheme for obtaining a 1D spinless p-
wave superconducor in a quantum wire must be larger than the
proximity gap [5]. PC2: The superconducting gap itself must
exceed the thermal energy kBT at laboratory temperatures
T , so as to withstand thermal leakage. PC3: The physical
scaling lengths at which the gaps open up (in the language
of RG [51]) must not exceed the system’s cutoff length. In
the case of a defect and impurity-free system (realizable in a
cold-atom emulation of a quantum wire, cf. Sec. VI B), the
cutoff length is the system’s size Na, while for a quantum
wire in a semiconductor heterostructure with electron-impurity
scattering, it will be the localization length Lloc.

The superconducting gap Msc and the insulating gap Mins

can be computed from the general expression [51]

M = �e−l� , (26)

where M is the gap, � is the RG energy cutoff, and l� is
the RG scaling length at which the gap opens up, that is, the
dimensionless length at which the coupling gsc or gso becomes
of order unity; call it l�sc for Msc and l�ins for Mins.

The physical dimensionful scaling length L at which a gap
opens is obtained from the corresponding RG scaling length
l� via

L = a el� . (27)

Using Eqs. (26) and (27), the practical criteria PC1, PC2,
and PC3 translate into

PC1 : Lins < Lpw, (28)

PC2,PC3 : Lsc < min{Lther, Lcut}. (29)

In PC1, the length Lpw ≡ Lsc/r , with r � 1, is the upper
bound on Lins above which the p-wave state is lost. This
upper bound follows from demanding that Mins � rMsc. The

FIG. 7. The scaling lengths Lsc and Lins at which the supercon-
ducting and insulating gaps, respectively, open up and their corre-
sponding upper bounds min{Lther ,Lcut} and Lpw for an observable
p-wave topological phase.

parameter Lther ≡ �a/(kBT ) in PC2 and PC3 is a thermal
length such that, if Lsc > Ltherm, thermal energy starts to
destroy the superconducting pairing in the inner branch and,
with increasing temperature, also the insulating state in the
outer branch. Finally, Lcut ≡ Na (Lloc) is the system’s cutoff
length for a defect and impurity-free system (quantum wire
with electron-impurity scattering). Figure 7 summarizes the
conditions on the various length scales as implied by the
practical criteria above.

Having established the regime of parameters of an ob-
servable p-wave superconducting phase, we next present
an analysis of the symmetry classes and number of MZMs
associated with this topological phase.

V. SYMMETRY CLASSES AND NUMBER OF UNPAIRED
MAJORANA ZERO MODES

As detailed in the previous section, the emergence of
a topological superconducting phase in the inner branch,
preconditioned by a decoupling of the inner and outer branches
in Eqs. (18)–(20), requires that the e-e interaction parameter
ge-e takes on a positive value (or, if a marginally relevant
spin-orbit interaction can pull off the decoupling, a value
> −gso/2) (cf. Fig. 5). As a gedankenexperiment, however,
let us temporarily remove the outer branch from the problem
entirely, allowing for the emergence of a spinless p-wave
superconducting phase for any ge-e < 0, that is, for K > 1

2 ,
for which the pairing potential in Eq. (19) is strongly RG
relevant. It is then instructive to consider the noninteracting
case K = 1, for which the effective theory in Eq. (19) is simply
the bosonized version of the fermionic Hamiltonian Hinner in
Eq. (14). This fermionic theory has a linearized spectrum,
and, as concerns its topological properties, does not easily fit
into the usual topological classification scheme [37] since the
unboundedness of its spectrum makes the k-space topology
fuzzy. While a Hamiltonian with a linearized spectrum around
the Fermi points may still allow for the identification of
differences in the winding numbers which define the 1D
topological invariants for different parametrizations [59,60],
it does not per se provide information about, e.g., the number
of end MZMs. For this one needs a Bogoliubov–de Gennes
(BdG) Hamiltonian defined on the full Brillouin zone. In other
words, the number of unpaired MZMs hosted by Hinner + He-e

when Houter is gapped out can only be deduced from the
full underlying theory which exhibits the topological phase.
However, in the present case we do not know this theory since
the possible topological phase is generated dynamically, and,
within our approach, can be accessed only by going to an
effective low-energy description with a linearized spectrum.
To evade this quagmire, we take resort to a construction that
connects our low-energy effective theory to an auxiliary theory
with a well-defined topological invariant.
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For this purpose, let us consider the Hamiltonian which
describes, in the full Brillouin zone, a 1D spinless p-wave
superconductor:

Hp =
∫

dx ψ

(
− ∂2

x

2m
− μ

)
ψ − �pψ

(
i∂x

kF

)
ψ + H.c.,

(30)
where ψ is a spinless fermion field, m is an effective mass, μ is
the chemical potential, and �p is the p-wave pairing potential.
By linearizing the spectrum of the theory described by Eq. (30)
for μ > 0 and writing ψ(x) = eikF xR+(x) + e−ikF xL−(x),
using that to leading order −iψ(x)∂xψ(x) ≈ 2L(x)R(x) (and
dropping RG irrelevant terms and terms which fluctuate fast
and average to zero upon integration), Hp in Eq. (30) gets
mapped onto

∫
dx Hinner, with Hinner given in Eq. (14) and

� ≈ 2�p. An analysis of the BdG Hamiltonian corresponding
to Hp shows that its band structure has topological winding
number W = 1 for μ > 0 and � real valued [50], implying
that each end of the wire hosts a single unpaired MZM.
Through the mapping above, the same conclusion can be
extended to Hinner with an added e-e interaction provided
that the superconducting gap remains finite since, in this
case, the unpaired MZMs are known to be stable against
e-e interactions [48,61–66]. It follows that if we reverse the
procedure and start with a linearized 1D theory supporting
a superconducting phase with e-e interactions, this phase
can be smoothly connected to the noninteracting 1D p-wave
superconductor in Eq. (30) with well-defined topological
properties: Inside the p-wave superconducting phase, the e-e
interaction is constrained to a “window of opportunity” so as
to stabilize the system of s-wave paired helical electrons in an
effectively spinless p-wave topological phase. This establishes
that our scheme is capable of producing a single unpaired
MZM at each end of the wire.

The discussion above assumed that the pairing field in
Eq. (30) is constant, with a complex phase which can be gauged
away. This puts the topological superconductor in the BDI
symmetry class [50] with manifest time-reversal symmetry,
and with a Z topological invariant calculated as a winding
number W which counts the number of unpaired end MZMs.
However, the appearance of a SDW in the outer insulating
branch (cf. Sec. III B) may possibly act as a dynamically
generated staggered magnetic field in the topological sector,
inducing a phase gradient in the pairing field. Since the inner
branch is effectively spinless, this staggered field cannot “by
itself” break time-reversal symmetry in the topological sector.
However, it is conceivable that some secondary process could
have this effect. (For a case in point, a supercurrent flowing in
the bulk superconductor in the proximity to the quantum wire
induces a phase gradient in the pairing field [67].) As a result,
the symmetry class would then change to D [68], with a Z2

topological invariant taking the value unity when μ > 0. As
before, this implies a single unpaired end MZMs. While our
formalism is not sufficiently powerful to decide whether or not
time-reversal symmetry is broken also in the inner branch, the
issue is immaterial to our objective to show the emergence of
MZMs. In either case, with (or without) symmetry breaking in
the inner branch, the D (BDI) symmetry class (with W = 1)
rules that there will be a single unpaired MZM at each end of
the wire.

Although not important for our study, one should still keep
in mind that the Z topological invariant of a 1D noninteracting
BDI phase gets broken down to Z8 in presence of interactions,
leaving eight distinct equivalence classes [69,70] that can be
matched to 8 of the 10 Altland-Zirnbauer symmetry classes
[71]. While a vital result which highlights the shortcoming
of topological band theory for interacting systems, we bypass
it by showing that the underlying auxiliary theory without
interactions, Hp in Eq. (30), has a topological winding number
with value unity, implying single unpaired end MZMs for
which we can then refer to the stability analyses carried out in
Refs. [48,61,62].

Next, we will attach experimental values to the parameters
in order to evaluate the viability of our proposal in light of
the theoretical and practical criteria established in Sec. IV. We
present two case studies: a quantum wire in a semiconductor
quantum well and a quantum wire made of cold atoms trapped
in an optical lattice.

VI. CASE STUDIES

A. Case study I: InAs quantum wire

As a first case study, we investigate the setup of Fig. 1
with the quantum wire patterned in an InAs quantum well
(QW). Starting with the practical criteria encoded in (29),
we may write Ltherm = �a/(kBT ) = �v/(kBT ), with v the
drift velocity of the electrons in the semiconductor QW. Using
v ≈ 105 m/s [72] and T ≈ 0.1 K, which is well above the low
temperatures at which the experimental searches for MZMs
have been carried out [73–75], we get Ltherm ≈ 7.6 μm. We
expect Lloc ≈ 10 μm, guided by a prediction by Liu and Das
Sarma [76] that the localization length in a high-quality GaAs
quantum wire can be several microns long, and using that the
electron mobility in an InAs wire is at least five times larger
than that of a GaAs wire [77]. Thus, PC2 and PC3 demand
that Lsc � 7.6 μm. Using Eq. (27) with a ≈ 5 Å [72], the
previous condition can be written in terms of the corresponding
dimensionless RG scaling length as l�sc � 9.6. It remains to
check whether this condition is experimentally attainable.

According to the analysis from Sec. IV, the p-wave
superconductor is expected to exist in the bare ge-e > 0 side of
the phase diagram (see Fig. 6). We take the bare e-e interaction
parameter ge-e = 0.1 and, with this choice, we then ask what
is the lower bound on the bare superconducting parameter gsc

so that its RG flow reaches unity at a scaling length l�sc � 9.6.
We find that gsc � 0.17, with a larger ge-e implying a larger
lower bound on gsc.

Turning to the practical criterion (28), maximizing the
upper bound on Lins by taking Lsc ≈ 7.6 μm (corresponding
to our choice ge-e = 0.1 with gsc ≈ 0.17) and taking r = 2
(corresponding to an insulating gap at least twice as large as the
superconducting gap), we obtain that Lins � 3.8 μm or, using
Eq. (27), l�ins � 8.9. It is interesting to translate the condition
on the length scale at which the insulating gap opens in terms
of an effective magnetic field to compare with the value
from a magnetic-field-assisted topological superconductor.
Our choice above of making Lsc ≈ Ltherm corresponds to
requiring an insulating gap Mins > 2Msc ≈ 2kBT . Equating
Mins and the Zeeman energy gμBB/2 of a spin-orbit coupled
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quantum wire subject to a magnetic field B, we get an effective
B > 30 mT at T ≈ 0.1 K, with g ≈ 20 for the g factor in an
InAs wire in proximity to an aluminium superconductor [78].
We note that our lower bound on B is in agreement with the
value of 50 mT for which a sharp zero bias peak (associated
with the transition to the topological phase and hence the
appearance of Majorana modes) is observed in Ref. [78].

We now search for the lower bound on the bare value of
the spin-orbit parameter gso so that, under RG, gso approaches
unity at a scaling length l�ins � 8.9. We find gso � 0.023, with
a larger gsc or a smaller ge-e corresponding to a larger lower
bound on gso.

Since K ≈ 1
2 − ge-e, ge-e = 0.1 requires a Luttinger pa-

rameter K ≈ 0.4. Recalling that K = [1 + g2/(πvF )]−1/2, the
value of K can be adjusted via the intensity of the g2 scattering
by modifying the screening from the dielectrics, the surface
of the nearby superconductor, and the metallic electrodes
attached to the heterostructure which defines the quantum well.
Focusing on metallic screening, a detailed analysis [79] shows
that, to leading order,

g2 ≈ e2

πε0εr

ln

(
2d

ξ

)
, (31)

where ξ is the width of the quantum wire and εr is the averaged
relative permittivity of the dopant and capping layers between
the quantum well and the nearest metallic surface, at a distance
d from the wire. Given this, the setup is now to be designed in
such a way that the parameters in Eq. (31) produce a value of g2

corresponding to the desired target value of K , with d playing
the role of a tuning parameter. We should caution the reader
that the bosonization formalism in fact constrains the validity
of the expression K = [1 + g2/(πvF )]−1/2 used above to the
weak coupling limit K ≈ 1. Still, Bethe ansatz and numerical
results for this class of models suggest that this expression
well captures the effective K parameter also for intermediate
to strong coupling [80].

As for the condition on the value of the spin-orbit
coupling, gso � 0.023, we now use our previous definitions
to write gso = (2�v)−2α′2/[(α/β)2 + 1] where α = aγR, β =
aγD, α′ = aγ ′

R , and �v = vF . With α/β ≈ 2 (drawn from
experimental estimates that α/β for a conventionally gated
InAs wire is in the range [1.6,2.3] [81]) and the same
v as above, gso � 0.023 implies that α′ � 5 × 10−11 eVm.
As a point of reference, this may be compared with data
from an InAs quantum well capped by a solid PEO/LiClO4
electrolyte, where the Rashba coupling was found to change
from 0.4 × 10−11 eVm to 2.8 × 10−11 eVm when tuning a
top gate from 0.3 to 0.8 V [82]. Thus, our lower bound
on α′ is around twice as large as the largest experimental
value from Ref. [82]. However, the same data reveal a Rashba
coupling growing almost five times faster than the gate voltage,
within the considered range. Supposing the same rate would
be maintained in the next voltage injection, a twofold boost in
α′ would be possible by raising the voltage to around 1.3 V.
Whereas this gives a first estimate, the actual relation between
the Rashba coupling energy and the voltage depends on various
microscopic details of the material and setup and, hence, might
not be a simple linear one. In any case, the tuning of the Rashba

coupling through the amplitude of the modulated electric field
is a general feature of the system and can be exploited, possibly
in association with other techniques.

Coming to the estimate gsc � 0.17, and recalling that gsc =
a�/(�v), gives (with the same values for a and v as above)
� � 3 × 102 K. The estimated zero-field proximity gap in an
InSb-NbTiN hybridized device [73] is � ≈ 3.5 K, with this
value being in the upper range of what has so far been reported
from experiments. Therefore, our lower bound is two orders of
magnitude above the present experimental capability, calling
for a material and engineering breakthrough if our scheme is
to become viable.

We conclude that a realization of the proposed setup
using an InAs quantum well is not feasible with present
day technologies and within the regime of parameter values
for which our formalism applies, especially in regard to the
required strength of the proximity effect. Nonetheless, it is
worth noting that should the p-wave superconducting phase
penetrate into the gray unknown region of Fig. 6, the chances of
an experimental realization would be significantly improved.
Assuming a proximity pairing in the upper experimental limit
(� ≈ 3.5 K leading to gsc ≈ 2.3 × 10−3) would require that
ge-e � −0.20 which, in turn, would demand gso � 0.43. The
ge-e value can always be adjusted, in principle, through metallic
screening, as discussed above. The new lower bound on
gso corresponds to α′ � 19 × 10−11 eVm. Using the same
extrapolation as before, the latter value could be attainable
by raising the external voltage to around 4 V.

B. Case study II: Spin-orbit-coupled cold atoms

Observations of p-wave Feshbach resonances in spin-
polarized 40K and 6Li atoms [83] have spurred hopes that a p-
wave superfluid of fermionic cold atoms may soon be realized
[84–86]. However, the short lifetimes of the p-wave pairs in
experiments [87] make this prospect appear challenging. Var-
ious alternative ways of generating a p-wave superfluid phase
have been proposed, like the one by Zhang et al. [88] where an
s-wave Feshbach resonance is combined with an artificial spin-
orbit coupling to produce a 2D px + ipy superfluid. Several
other proposals to realize topological phases with cold atoms
are discussed in Refs. [7,8,89–94]. Could our scheme provide
a new vista, now specifically for generating a one-dimensional
spinless p-wave superfluid exhibiting MZMs? While a precise
blueprint for an experimental setup is beyond this work, we
shall attempt an analysis of the various components that go into
it: (i) a repulsively interacting cold gas of fermionic atoms
trapped in a 1D optical lattice; (ii) a uniform coupling to
Rashba- and Dresselhaus-type spin-orbit fields; (iii) proximity
coupling to a reservoir of s-wave paired fermions; and (iv) a
spatially modulated Rashba-type spin-orbit interaction.

As for (i), there are by now a multitude of experimental
reports of ultracold gases of fermionic atoms confined to
one-dimensional lattices [95]. Experiments on 40K in a 3D
optical lattice [96,97] have shown that the repulsive interaction
strength as measured by U/t (with U a Hubbard-type onsite
coupling and t a hopping amplitude) can be tuned up to
two orders of magnitude, using a magnetically controlled
Feshbach resonance. We should here point out that while
alkali atoms only provide for effective onsite interactions,
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cold-atomic/molecular systems exhibiting long-range interac-
tions are presently under investigation. One promising candi-
date is ultracold polar molecules that interact via a long-range
dipolar potential [98,99]. Very recently, a possibility to realize
effective nearest-neighbor interactions from conventional cold
atoms whose bare interaction is onsite has also been considered
in Ref. [100].

The second element, (ii), is also expected to be within easy
reach, given the experimental progress in manufacturing syn-
thetic gauge fields [101]. Specifically, Rashba and Dresselhaus
spin-orbit couplings of equal strength can be synthesized in the
laboratory from two-photon Raman transitions driven by a pair
of laser beams [102]. The technique, with the equal mixture
of Rashba and Dresselhaus couplings dictated by symmetry,
and known from condensed matter physics as the “persistent
spin-helix symmetry point” [103,104], has been successfully
tested with both 40K and with 6Li cold atoms [105,106].

Turning to (iii), a proximity-type pairing can be engineered
via the coupling of the fermions to a BEC bulk reservoir of
Feshbach molecules, as discussed in Ref. [8]. The coupling
between the two systems is here transmitted by a pulsed rf
field with a Rabi frequency that sets the scale of the effective
proximity pairing.

Finally, considering (iv), we note that a theoretical proposal
for emulating a position-dependent Rashba-type interaction
for atomic BECs has very recently been put forward by Su
et al. [107]. The scheme relies on cyclically laser coupling
internal atomic states in an environment where the detuning
from resonance depends on the spatial position. In Ref. [107],
transitions between magnetically split hyperfine states in
87Rb are detuned from two-photon Raman resonance using
a spatially inhomogeneous magnetic field. The same scheme
is expected to apply for cyclically coupled states in the
two hyperfine manifolds of the fermionic alkali atoms 6Li
and 40K , F = 1

2 , 3
2 and F = 9

2 , 7
2 , respectively, making a

realization appear feasible.
With this as a backdrop, let us now check the expediency of

a cold-atom emulation by examining the practical conditions in
Sec. IV. In the present picture, it is convenient to use Eq. (27) to
rewrite the practical criterion (29) in terms of the dimensionless
RG scaling length as l�sc < min{ln[�/(kBT )], ln(N )}. We then
take T ≈ 1 nK as a typical temperature scale in a cold-atom
setup and assume � to be of the same order of magnitude
as the Fermi energy, which, importing data from Ref. [88],
gives � ≈ � × 1 KHz. This yields ln[�/(kBT )] ≈ 2.0, with
ln[�/(kBT )] < ln(N ) for any number of atoms N > 8. Our
task is now to assess the experimental viability of satisfying
l�sc � 2.0 in the proposed setup.

With the same choice as in Sec VI A, we take ge-e = 0.1,
which is expected to be attainable via the Feshbach resonance
technique in a system with nearest-neighbor or longer-range
interactions [98–100]. We now ask what is the lower bound on
the bare gsc so that its RG flow approaches unity at a length
l�sc � 2.0. We find that gsc � 0.39, with a larger ge-e enhancing
the lower bound on gsc.

Coming to the practical criterion (28), this inequality can
be rewritten through Eq. (27) as l�ins < l�sc − ln(r). Taking l�sc ≈
2.0 (corresponding to ge-e = 0.1 with gsc ≈ 0.39) and r = 2,
gives l�ins � 1.3. We find that to have gso reaching unity at an
RG length l�ins � 1.3, its bare value must satisfy gso � 0.38,

with a larger gsc or a smaller ge-e corresponding to a larger
lower bound on gso.

The numerical estimate gsc � 0.39 corresponds to � �
� × 0.39 kHz where we have used that gsc = �/EF , with the
Fermi energy EF = vF /a ≈ � × 1 kHz, as before. According
to Ref. [8], an order-of-magnitude estimate for the effective
pairing energy yields � ≈ � × 10 kHz. Hence, our lower
bound on � is far below the typical experimental value.

From our parametrization we may write gso =
(2EF )−2γ ′2

R /[(γR/γD)2 + 1]. Applying the estimate gso �
0.38, with γR ≈ γD and the same EF as before, we estimate
that γ ′

R � � × 1.8 kHz for a working device. From Ref. [88]
we learn that the experimental spin-orbit coupling in cold
atoms can reach magnitudes up to � × 10 kHz. Therefore, our
required lower bound on γ ′

R is well within today’s capabilities.
It is also interesting to numerically examine the condition

ge-e < 0, in case the p-wave superfluid pairing does advance
into this regime. In fact, in the best studied cold-atom real-
izations of repulsively interacting fermions using alkali atoms
[96,97], the predominantly onsite (Hubbard-type) character
of the interaction restricts the Luttinger parameter K to be
above 1

2 (hence ge-e below 0), with K = 1
2 corresponding to

an infinitely strong onsite repulsion. Assuming a repulsion
of intermediary strength we pick ge-e = −0.25. The resulting
conditions for a working device are gsc � 0.18 and gso � 0.78,
or � � � × 0.18 kHz and γ ′

R � � × 2.5 kHz. Both values are
well within the experimental range quoted above.

The numerical estimates above indicate that a sizable part of
the p-wave superfluid phase of the cold-atom implementation
is expected to be safely within the realm of what is possible to
probe in the laboratory.

VII. SUMMARY

We have proposed and analyzed a magnetic-field-free
scheme for synthesizing unpaired Majorana zero modes at
the ends of a single-channel quantum wire. In a solid-state
realization, the wire is modeled as gated by a periodic
array of charged top gates, supporting Rashba, Dresselhaus,
and e-e interactions, and proximity-coupled to an s-wave
superconductor which induces a topological p-wave supercon-
ducting phase. This type of all-electric device for synthesizing
Majorana zero modes, if realizable, would be an important
step towards applications in topological quantum computing.

The microscopic Hamiltonian which describes the
proximity-coupled quantum wire is cast in a low-energy
bosonized form that is treated using a renormalization group
approach. This formalism allows us to derive the RG flow
equations of the theory and predict the phase diagram of the
system. Adding “practical” limits (determined by temperature
and by the size of the system) on the RG length scales, we
extract the conditions for a working device in the laboratory.

Estimates based on a case study of an InAs wire, contacted
to a Nb or Al s-wave superconductor, indicate that a realization
of our scheme in a hybrid semiconductor-superconductor
device requires improvements upon present-day materials
and design capabilities. A variant of our scheme where
spin-orbit-coupled ultracold femionic atoms trapped in an
optical lattice are effectively proximity coupled to a BEC
reservoir of Feshbach molecules may provide a more easily
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accessible platform, at least for now. While there already
exist a large number of proposals for synthesizing Majorana
zero modes using cold fermionic atoms [7,8,89–94], ours is
distinguished by taking advantage of a Feshbach-generated
repulsive interaction between the atoms. Its realization would
be fascinating, opening up an experimental window on how
to drive a topological quantum phase transition (from s-wave
pairing to spinless p-wave pairing) by tuning the strength of
an effective fermion interaction.
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where part of this work was carried out. This research
was supported by CNPq (M.M.), Georgian National Science
Foundation and Science and Technology Center in Ukraine
through the joint Grant No. STCU-5893 (G.J.)1, and the
Swedish Research Council and STINT (H.J.)

[1] For a review, see F. Wilczek, Nat. Phys. 5, 614 (2009).
[2] C. Chamon, R. Jackiw, Y. Nishida, S.-Y. Pi, and L. Santos,

Phys. Rev. B 81, 224515 (2010).
[3] C. W. J. Beenakker, Phys. Rev. Lett. 112, 070604 (2014).
[4] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[5] For a review, see J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[6] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[7] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103,

020401 (2009).
[8] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,

G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller,
Phys. Rev. Lett. 106, 220402 (2011).

[9] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[10] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[11] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[12] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[13] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[14] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[15] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,

Phys. Rev. B 88, 020407(R) (2013).
[16] For the experimental status up to January 2015, see S. Das

Sarma, M. Freedman, and C. Nayak, Quantum Inf. 1, 15001
(2015).

[17] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher,
Nat. Phys. 7, 412 (2011).

[18] A. C. Potter and P. A. Lee, Phys. Rev. B 83, 184520 (2011).
[19] J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. B 85, 064512

(2012).
[20] D. Awschalom, Physics 2, 50 (2009).
[21] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, 2011).

[22] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[23] S. Bravyi, Phys. Rev. A 73, 042313 (2006).
[24] M. Leijnse and K. Flensberg, Phys. Rev. Lett. 107, 210502

(2011).
[25] C. L. M. Wong and K. T. Law, Phys. Rev. B 86, 184516 (2012).
[26] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 111,

056402 (2013).
[27] S. Nakosai, J. C. Budich, Y. Tanaka, B. Trauzettel, and N.

Nagaosa, Phys. Rev. Lett. 110, 117002 (2013).
[28] E. Gaidamauskas, J. Paaske, and K. Flensberg, Phys. Rev. Lett.

112, 126402 (2014).

[29] S. B. Chung, J. Horowitz, and X.-L. Qi, Phys. Rev. B 88,
214514 (2013).

[30] S. Deng, L. Viola, and G. Ortiz, Phys. Rev. Lett. 108, 036803
(2012).

[31] A. Keselman, L. Fu, A. Stern, and E. Berg, Phys. Rev. Lett.
111, 116402 (2013).

[32] D. Sticlet, C. Bena, and P. Simon, Phys. Rev. B 87, 104509
(2013).

[33] X.-J. Liu, C. L. M. Wong, and K. T. Law, Phys. Rev. X 4,
021018 (2014).

[34] E. Dumitrescu, J. D. Sau, and S. Tewari, Phys. Rev. B 90,
245438 (2014).

[35] A. Haim, A. Keselman, E. Berg, and Y. Oreg, Phys. Rev. B 89,
220504 (2014).

[36] J. Klinovaja and D. Loss, Phys. Rev. B 90, 045118 (2014).
[37] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[38] For a review, see P. Kotetes, New J. Phys. 15, 105027

(2013).
[39] For a review, see M. König, H. Buhmann, L. W. Molenkamp,

T. Hughes, C.-X. Liu, X.-L. Qi, and S.-C. Zhang, J. Phys. Soc.
Jpn. 77, 031007 (2008).

[40] P. Kotetes, Phys. Rev. B 92, 014514 (2015).
[41] A. A. Reynoso and D. Frustaglia, Phys. Rev. B 87, 115420

(2013).
[42] G. I. Japaridze, H. Johannesson, and M. Malard, Phys. Rev. B

89, 201403(R) (2014).
[43] C. Wu, B. A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett. 96,

106401 (2006).
[44] C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).
[45] E. Ya. Sherman, Phys. Rev. B 67, 161303(R) (2003).
[46] L. E. Golub and E. L. Ivchenko, Phys. Rev. B 69, 115333

(2004).
[47] M. Malard, I. Grusha, G. I. Japaridze, and H. Johannesson,

Phys. Rev. B 84, 075466 (2011).
[48] E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A.

Fisher, Phys. Rev. B 84, 014503 (2011).
[49] L. Fu, Phys. Rev. Lett. 104, 056402 (2010).
[50] S. Tewari and J. D. Sau, Phys. Rev. Lett. 109, 150408 (2012).
[51] T. Giamarchi, Quantum Physics in One Dimension (Oxford

University Press, Oxford, 2004).
[52] A. Schulz, A. De Martino, P. Ingenhoven, and R. Egger, Phys.

Rev. B 79, 205432 (2009).
[53] For a review, see M. Malard, Braz. J. Phys. 43, 182 (2013).
[54] B. Braunecker, A. Ström, and G. I. Japaridze, Phys. Rev. B 87,

075151 (2013).

115128-14

http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1103/PhysRevB.81.224515
http://dx.doi.org/10.1103/PhysRevB.81.224515
http://dx.doi.org/10.1103/PhysRevB.81.224515
http://dx.doi.org/10.1103/PhysRevB.81.224515
http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1103/PhysRevLett.112.070604
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.88.020407
http://dx.doi.org/10.1103/PhysRevB.88.020407
http://dx.doi.org/10.1103/PhysRevB.88.020407
http://dx.doi.org/10.1103/PhysRevB.88.020407
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1103/PhysRevB.83.184520
http://dx.doi.org/10.1103/PhysRevB.83.184520
http://dx.doi.org/10.1103/PhysRevB.83.184520
http://dx.doi.org/10.1103/PhysRevB.83.184520
http://dx.doi.org/10.1103/PhysRevB.85.064512
http://dx.doi.org/10.1103/PhysRevB.85.064512
http://dx.doi.org/10.1103/PhysRevB.85.064512
http://dx.doi.org/10.1103/PhysRevB.85.064512
http://dx.doi.org/10.1103/Physics.2.50
http://dx.doi.org/10.1103/Physics.2.50
http://dx.doi.org/10.1103/Physics.2.50
http://dx.doi.org/10.1103/Physics.2.50
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/PhysRevA.73.042313
http://dx.doi.org/10.1103/PhysRevA.73.042313
http://dx.doi.org/10.1103/PhysRevA.73.042313
http://dx.doi.org/10.1103/PhysRevA.73.042313
http://dx.doi.org/10.1103/PhysRevLett.107.210502
http://dx.doi.org/10.1103/PhysRevLett.107.210502
http://dx.doi.org/10.1103/PhysRevLett.107.210502
http://dx.doi.org/10.1103/PhysRevLett.107.210502
http://dx.doi.org/10.1103/PhysRevB.86.184516
http://dx.doi.org/10.1103/PhysRevB.86.184516
http://dx.doi.org/10.1103/PhysRevB.86.184516
http://dx.doi.org/10.1103/PhysRevB.86.184516
http://dx.doi.org/10.1103/PhysRevLett.111.056402
http://dx.doi.org/10.1103/PhysRevLett.111.056402
http://dx.doi.org/10.1103/PhysRevLett.111.056402
http://dx.doi.org/10.1103/PhysRevLett.111.056402
http://dx.doi.org/10.1103/PhysRevLett.110.117002
http://dx.doi.org/10.1103/PhysRevLett.110.117002
http://dx.doi.org/10.1103/PhysRevLett.110.117002
http://dx.doi.org/10.1103/PhysRevLett.110.117002
http://dx.doi.org/10.1103/PhysRevLett.112.126402
http://dx.doi.org/10.1103/PhysRevLett.112.126402
http://dx.doi.org/10.1103/PhysRevLett.112.126402
http://dx.doi.org/10.1103/PhysRevLett.112.126402
http://dx.doi.org/10.1103/PhysRevB.88.214514
http://dx.doi.org/10.1103/PhysRevB.88.214514
http://dx.doi.org/10.1103/PhysRevB.88.214514
http://dx.doi.org/10.1103/PhysRevB.88.214514
http://dx.doi.org/10.1103/PhysRevLett.108.036803
http://dx.doi.org/10.1103/PhysRevLett.108.036803
http://dx.doi.org/10.1103/PhysRevLett.108.036803
http://dx.doi.org/10.1103/PhysRevLett.108.036803
http://dx.doi.org/10.1103/PhysRevLett.111.116402
http://dx.doi.org/10.1103/PhysRevLett.111.116402
http://dx.doi.org/10.1103/PhysRevLett.111.116402
http://dx.doi.org/10.1103/PhysRevLett.111.116402
http://dx.doi.org/10.1103/PhysRevB.87.104509
http://dx.doi.org/10.1103/PhysRevB.87.104509
http://dx.doi.org/10.1103/PhysRevB.87.104509
http://dx.doi.org/10.1103/PhysRevB.87.104509
http://dx.doi.org/10.1103/PhysRevX.4.021018
http://dx.doi.org/10.1103/PhysRevX.4.021018
http://dx.doi.org/10.1103/PhysRevX.4.021018
http://dx.doi.org/10.1103/PhysRevX.4.021018
http://dx.doi.org/10.1103/PhysRevB.90.245438
http://dx.doi.org/10.1103/PhysRevB.90.245438
http://dx.doi.org/10.1103/PhysRevB.90.245438
http://dx.doi.org/10.1103/PhysRevB.90.245438
http://dx.doi.org/10.1103/PhysRevB.89.220504
http://dx.doi.org/10.1103/PhysRevB.89.220504
http://dx.doi.org/10.1103/PhysRevB.89.220504
http://dx.doi.org/10.1103/PhysRevB.89.220504
http://dx.doi.org/10.1103/PhysRevB.90.045118
http://dx.doi.org/10.1103/PhysRevB.90.045118
http://dx.doi.org/10.1103/PhysRevB.90.045118
http://dx.doi.org/10.1103/PhysRevB.90.045118
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1088/1367-2630/15/10/105027
http://dx.doi.org/10.1088/1367-2630/15/10/105027
http://dx.doi.org/10.1088/1367-2630/15/10/105027
http://dx.doi.org/10.1088/1367-2630/15/10/105027
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1103/PhysRevB.92.014514
http://dx.doi.org/10.1103/PhysRevB.92.014514
http://dx.doi.org/10.1103/PhysRevB.92.014514
http://dx.doi.org/10.1103/PhysRevB.92.014514
http://dx.doi.org/10.1103/PhysRevB.87.115420
http://dx.doi.org/10.1103/PhysRevB.87.115420
http://dx.doi.org/10.1103/PhysRevB.87.115420
http://dx.doi.org/10.1103/PhysRevB.87.115420
http://dx.doi.org/10.1103/PhysRevB.89.201403
http://dx.doi.org/10.1103/PhysRevB.89.201403
http://dx.doi.org/10.1103/PhysRevB.89.201403
http://dx.doi.org/10.1103/PhysRevB.89.201403
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.67.161303
http://dx.doi.org/10.1103/PhysRevB.67.161303
http://dx.doi.org/10.1103/PhysRevB.67.161303
http://dx.doi.org/10.1103/PhysRevB.67.161303
http://dx.doi.org/10.1103/PhysRevB.69.115333
http://dx.doi.org/10.1103/PhysRevB.69.115333
http://dx.doi.org/10.1103/PhysRevB.69.115333
http://dx.doi.org/10.1103/PhysRevB.69.115333
http://dx.doi.org/10.1103/PhysRevB.84.075466
http://dx.doi.org/10.1103/PhysRevB.84.075466
http://dx.doi.org/10.1103/PhysRevB.84.075466
http://dx.doi.org/10.1103/PhysRevB.84.075466
http://dx.doi.org/10.1103/PhysRevB.84.014503
http://dx.doi.org/10.1103/PhysRevB.84.014503
http://dx.doi.org/10.1103/PhysRevB.84.014503
http://dx.doi.org/10.1103/PhysRevB.84.014503
http://dx.doi.org/10.1103/PhysRevLett.104.056402
http://dx.doi.org/10.1103/PhysRevLett.104.056402
http://dx.doi.org/10.1103/PhysRevLett.104.056402
http://dx.doi.org/10.1103/PhysRevLett.104.056402
http://dx.doi.org/10.1103/PhysRevLett.109.150408
http://dx.doi.org/10.1103/PhysRevLett.109.150408
http://dx.doi.org/10.1103/PhysRevLett.109.150408
http://dx.doi.org/10.1103/PhysRevLett.109.150408
http://dx.doi.org/10.1103/PhysRevB.79.205432
http://dx.doi.org/10.1103/PhysRevB.79.205432
http://dx.doi.org/10.1103/PhysRevB.79.205432
http://dx.doi.org/10.1103/PhysRevB.79.205432
http://dx.doi.org/10.1007/s13538-013-0123-4
http://dx.doi.org/10.1007/s13538-013-0123-4
http://dx.doi.org/10.1007/s13538-013-0123-4
http://dx.doi.org/10.1007/s13538-013-0123-4
http://dx.doi.org/10.1103/PhysRevB.87.075151
http://dx.doi.org/10.1103/PhysRevB.87.075151
http://dx.doi.org/10.1103/PhysRevB.87.075151
http://dx.doi.org/10.1103/PhysRevB.87.075151


SYNTHESIZING MAJORANA ZERO-ENERGY MODES IN A . . . PHYSICAL REVIEW B 94, 115128 (2016)

[55] J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,
Phys. Rev. B 16, 1217 (1977).

[56] D. Boyanovsky, J. Phys. A: Math. Gen. 22, 2601 (1989).
[57] P. Lecheminant, A. O. Gogolin, and A. A. Nersesyan, Nucl.

Phys. B 639, 502 (2002).
[58] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosoniza-

tion and Strongly Correlated Systems (Cambridge University
Press, Cambridge, 1998).
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