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We study a generic class of fermionic two-band models under synchronized periodic driving, i.e., with
the different terms in a Hamiltonian subject to periodic drives with the same frequency and phase. With all
modes initially in a maximally mixed state, the synchronized drive is found to produce nonperiodic patterns of
dynamical quantum phase transitions, with their appearance determined by an interplay of the band structure and
the frequency of the drive. A case study of the anisotropic XY chain in a transverse magnetic field, transcribed
to an effective two-band model, shows that the modes come with quantized geometric phases, allowing for the
construction of an effective dynamical order parameter. Numerical studies in the limit of a strong magnetic field
reveal distinct signals of precursors of dynamical quantum phase transitions also when the initial state of the
XY chain is perturbed slightly away from maximal mixing, suggesting that the transitions may be accessible
experimentally. A blueprint for an experiment built around laser-trapped circular Rydberg atoms is proposed.
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I. INTRODUCTION

Dynamical phase transitions—phase transitions away from
equilibrium—span a large spectrum of phenomena, from the
domain formation in the early universe [1] to abrupt changes
in the relaxation dynamics of strongly correlated quantum
many-particle systems [2]. A particularly intriguing variety
are those nonequilibrium phase transitions where physical
quantities become nonanalytic as a function of time, known
as dynamical quantum phase transitions (DQPTs) [3].

The notion of a DQPT is rooted in the formal similarity
between an equilibrium partition function and the Loschmidt
amplitude that measures the overlap between an initial and
time-evolved state of a system out of equilibrium [4,5]. When
two such states become orthogonal, the vanishing of the
Loschmidt amplitude causes a nonanalyticity in the associated
dynamical free energy, mimicking the behavior of the free
energy (ground-state energy) of an equilibrium system at a
thermal (quantum) phase transition. While being conceptually
rather different phenomena, this formal analogy has informed
the study of DQPTs, allowing concepts and ideas to be bor-
rowed from the theory of equilibrium phase transitions. By
now, there is a large literature on the theory [3,6–28] and
modeling of DQPTs, with a growing number of experimental
reports [29–39].

Most studies so far have focused on DQPTs triggered by a
quantum quench where a system is forced out of equilibrium

*Corresponding author: jafari@iasbs.ac.ir,
raadmehr.jafari@gmail.com

by a sudden change of its Hamiltonian. More recently, how-
ever, there have been studies of DQPTs also in periodically
driven systems [40]—known as Floquet DQPTs—including
those, which exhibit nonequilibrium phases like Floquet topo-
logical phases [41] and discrete time crystals [42]. These
systems have been found to display DQPTs with nondecaying
return probabilities, which should make them easier to mon-
itor in the laboratory. In contrast, DQPTs set off by a single
quench have decaying return probabilities and are therefore
observable only on transient time scales.

The periodic drives that have been studied up till now, sup-
porting Floquet DQPTs, have come in various types: schemes
that can be described by a time-independent Hamiltonian in
a rotating frame [43–45]; stroboscopic drives, effectively em-
ulating a periodically repeated quantum quench [46,47]; or
a single quench in a periodically driven discrete time crys-
tal [48,49]. Considering the potential for future experimental
studies of DQPTs, it is expedient to inquire about other types
of periodic driving schemes. Specifically, do other schemes
support a classification of the nonequilibrium phases in terms
of a topological order parameter, known from most quench
and periodically driven systems studied so far? How does
the choice of initial states and tuning of parameters impact
the Floquet DQPTs? And what about the generalization of
Floquet DQPTs from pure states to density matrices, allowing
a system to be entangled with its environment? These are
some of the questions we wish to address in this paper.

For this purpose we introduce a class of periodically
driven lattice models in one dimension (1D), which cannot
be mimicked by a stroboscopically driven Hamiltonian or
by a Hamiltonian, which becomes time independent in a
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rotating frame. A minimal setup, amenable to exact analysis,
is a noninteracting fermionic two-band model with all terms
in its Hamiltonian subject to periodic drives with the same
frequency and phase—hence the notion of synchronized pe-
riodic driving. As we will show, hiding behind the apparent
triviality of such a model is some very interesting physics,
showcasing a nonperiodic sequence of DQPTs when properly
initialized, and with the DQPTs caused by single modes with
quantized geometric phases. Also, different from expectations
[43,46], the associated time-independent Floquet Hamiltonian
that governs the stroboscopic time evolution over one cy-
cle of the drive does not necessarily support topologically
nontrivial phases: DQPTs may appear independent of the
topological features of the ground state of the Floquet Hamil-
tonian, similar to the appearance of “accidental” DQPTs of
time-independent models subject to a single quantum quench
[13–15].

The paper is structured as follows: In the section to follow
(Sec. II) we introduce the notion of a synchronized periodic
drive in the setting of noninteracting fermionic two-band mod-
els. We briefly review some pertinent key concepts in the
theory of DQPTs and show how such transitions are trig-
gered in these models given a synchronized drive with all
modes initially populating the two bands with equal proba-
bility (“maximal mixing” in the language of an open system).
In Sec. III we analyze a benchmark model—the anisotropic
XY chain in a transverse magnetic field—by applying the
formalism from Sec. II after having fermionized the model,
in this way reducing it to a noninteracting two-band Hamil-
tonian. Numerical data for the rate function of the Loschmidt
echo and an effective dynamical order parameter exhibit clear
signals of precursors of DQPTs also when the initial state
of the system is perturbed slightly off maximal mixing, sug-
gesting that DQPTs under synchronized periodic driving may
be accessible experimentally. In Sec. IV we follow up on
this and sketch the backbones of an experimental protocol to
realize DQPTs in the synchronously driven XY chain studied
in the preceding section. Section V, finally, contains a brief
summary and outlook. Throughout the paper we use units with
h̄ = kB = 1.

II. FERMIONIC TWO-BAND MODELS UNDER
SYNCHRONIZED PERIODIC DRIVING

As a preamble, consider the time-independent first-
quantized Hamiltonian H =H ({J�}m

�=1), where J� is the
amplitude of the �th term in H . Subjecting all terms in H to
time-dependent drives λ�(t )(� = 1, 2, . . . , m) with the same
frequency and phase, we call the resulting time-dependent
Hamiltonian synchronously driven (not to be confused with
the phenomenon of “synchronization” where an oscillating
system with a stable limit cycle phase locks to an external
signal or to another oscillating system to which it is cou-
pled). For simplicity we shall assume that the amplitudes
of the drives for the different terms are also the same, i.e.,
λ1(t ) = λ2(t ) = · · · = λ(t ), with λ(t ) a real dimensionless
scalar function, which we take to satisfy λ(0) > 0. In this
case the resulting time-dependent Hamiltonian H (t ) is simply
given by H (t ) = λ(t )H .

Initializing the system in one of the eigenstates |ϕn〉 of
H , the time-evolved state |ϕn(t )〉 governed by H (t ) is read-
ily obtained from the time-dependent Schrödinger equation,
yielding

|ϕn(t )〉 = e−iεnτ (t )|ϕn〉, (1)

where εn is the eigenvalue of H associated with the state |ϕn〉,
and with τ (t ) = ∫ t

0 λ(t ′)dt ′. As expected, the synchronously
driven system hence remains in the same physical state un-
der time evolution. One may thus be tempted to dismiss a
setup with synchronized driving as being trivial. While this
is certainly so when the initial state is an eigenstate of H , the
situation changes when this condition is removed.

To see the implications, we shall consider the mode de-
composition of a generic fermionic two-band model with
Hamiltonian H, subject to a periodic synchronized drive λ(t ),
and with one mode initialized in a superposition of two eigen-
states. Examples of H include band insulators and mean-field
superconductors, paradigmatic in the study of symmetry-
protected topological phases [50]. Other noted instances are
effective models of spin chains, including the transverse field
Ising and XY chains [51], to be discussed in the next section.
Such two-band systems are widely studied in the literature,
and several of them have been realized experimentally, in
condensed matter or with analog quantum simulators using
ultracold atoms in optical lattices [52].

Assuming periodic boundary conditions, we write the
Fourier transformed Hamiltonian H in second quantization as

H =
∑

k

c†
kHkck, (2)

where, for simplicity, and with an eye to applications to come,
we assume H to be defined in 1D. Depending on the par-
ticular model, c†

k is an ordinary two-spinor, c†
k = (c†

k,A, c†
k,B),

with c†
k,A/B fermion creation operators where A, B refer to

two internal degrees of freedom (like spin or sublattice), or a
Nambu spinor, c†

k = (c†
k , c−k ), appropriate for superconductors

and certain fermionized models of spin chains. In the first
(second) case, the sum in Eq. (2) runs over all momenta
in the Brillouin zone, k ∈ [−π, π ] (half the Brillouin zone,
k ∈ [0, π ]). Hk is the first-quantized Hamiltonian for a mode
with momentum k, with Hk (t ) = λ(t )Hk the corresponding
synchronously driven mode Hamiltonian. We here focus on
the generic class of two-band models where

Hk = �k

2
n(k) · σ, (3)

with �k the gap between the two eigenstates of Hk , nk =
(sin θk cos φk, sin θk sin φk, cos θk ) a unit vector with θk and φk

spherical coordinates, and with σ = (σx, σy, σz ) the vector of
Pauli matrices. Explicitly, �k = 2εk , with ±εk = ε±

k the two
eigenvalues of Hk corresponding to the eigenstates

|ϕ+
k 〉=

(
e−iφk cos

(
θk
2

)
sin

(
θk
2

)
)

, |ϕ−
k 〉=

(−e−iφk sin
(

θk
2

)
cos

(
θk
2

)
.

)
. (4)

The time evolution of |ϕ±
k 〉 can be read off from Eq. (1),

yielding |ϕ±
k (t )〉 = e∓iεkτ (t )|ϕ±

k 〉. It follows that the time evo-
lution of a superposition |ϕk〉 = α−

k |ϕ−
k 〉 + α+

k |ϕ+
k 〉 takes the
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form

|ϕk (t )〉 = α−
k eiεkτ (t )|ϕ−

k 〉 + α+
k e−iεkτ (t )|ϕ+

k 〉, (5)

with |α−
k |2 + |α+

k |2 = 1. While this is an entirely expected
result given Eq. (1), the expression in (5) contains the seed
for generating DQPTs of an unconventional brand, different
from those studied so far in periodically driven systems. In
the following section we shall see how this comes about.

A. Dynamical quantum phase transitions for pure states

The key concept in the theory of DQPTs [4,5] is the
Loschmidt amplitude

G(t ) = 〈ψ (0)|ψ (t )〉, (6)

which measures the overlap of a state |ψ (0)〉 at time t = 0
with its time-evolved descendant |ψ (t )〉. When the Hamilto-
nian as here is synchronously driven, we have that

〈ψ (0)|ψ (t )〉 = 〈ψ (0)|e−iHτ (t )|ψ (0)〉, (7)

with τ (t ) introduced in Eq. (1). The return probability L(t ) ≡
|G(t )|2 linked with the amplitude G(t ) is the Loschmidt echo,
sometimes also termed “dynamical fidelity”.

A DQPT is signaled by the vanishing of G(t ), causing a
nonanalyticity in the rate function gG (t ) in the thermodynamic
limit,

gG (t ) = − lim
N→∞

N−1 ln G(t ), (8)

with N the number of degrees of freedom. The rate func-
tion gG (t ) can be interpreted as a dynamical free-energy
density, with time t replacing the control parameter at equilib-
rium (like temperature in a thermally driven phase transition)
and with the Loschmidt amplitude G(t ) masquerading as a
partition function (a role supported by the property that a
continuation of G(t ) into the complex plane formally yields
a boundary partition function [53]).

To apply the formalism to our generic two-band model with
second-quantized Hamiltonian H, we first note that the modes
in k space are decoupled, implying that all eigenstates |ψ〉 of
H can be factorized into those eigenstates of Hk , which are
occupied. Consider, for example, a system initialized in the
ground state |ψ0〉 of H, with the lower (upper) band com-
pletely filled (empty), i.e., with the system at “half filling”.
Reverting to a first-quantized formalism for |ψ0〉, we can write

|ψ0〉 = ⊗k|ϕ−
k 〉. (9)

Any external drive, which induces a time-dependence in
Hk without coupling the k modes—such as a synchronized
periodic driving—will preserve this property, and hence

|ψ0(t )〉 = ⊗k|ϕ−
k (t )〉, (10)

where |ϕ−
k (t )〉 = eiεkτ (t )|ϕ−

k 〉 [cf. text after Eq. (4)]. Thus, the
dynamics can be monitored for each mode k separately.

Now suppose that the system is again initialized with all
modes in the lower band except for one, say k′, which is
instead put in a superposition |ϕk′ 〉 of the lower and upper band
as in Eq. (5), with |α−

k′ |2(|α+
k′ |2) the probability for occupancy

of the lower (upper) band. We call such an initial state |ψ ′(0)〉,

and write the Loschmidt amplitude on factorized form as

G(t ) = 〈ψ ′(0)|ψ ′(t )〉 =
∏
k �=k′

〈ϕ−
k |ϕ−

k (t )〉 × 〈ϕk′ |ϕk′ (t )〉

=
∏
k �=k′

G−
k (t ) × Gk′ (t ). (11)

As follows from Eq. (1), a zero of G(t ) can only come from a
Loschmidt amplitude for a mode, which is not put in an eigen-
state of the Hamiltonian, that is, Gk′ (t ) = 〈ϕk′ |ϕk′ (t )〉 in (11).
As a Gedanken experiment we may envision that we can fine
tune the amplitudes in Eq. (5), choosing |α−

k′ |2 = |α+
k′ |2 = 1/2,

i.e., with the mode initially populating the two bands with
equal probability. It then follows that

Gk′ (t ) = cos (εk′τ (t )), (12)

with zeros at instants of time t∗
k′,n for which

τ (t∗
k′,n) = π

εk′
(n + 1/2); n = 0, 1, 2, . . . . (13)

To make explicit that these times are critical, associated with
DQPTs, and also, that they derive from a particular mode
k′, we have denoted them by t∗

k′,n, with n = 0, 1, 2, . . .. The
generalization to the case where more than one mode is put
in an initial state with |α−|2 =|α+|2 =1/2 is immediate: The
system will now exhibit DQPTs at several sequences of criti-
cal times t∗

k′,n, with k′ = k1, k2, . . . and with n = 0, 1, 2, .... By
an abuse of language we call these modes “critical” (although
their presence does not by itself lead to a DQPT; for this, the
thermodynamic limit must also be taken [4,5]).

The sequences of possible DQPTs thus unveiled have an
interesting property. As an illustration, let us take a drive
where λ(t ) = λ0 + λ1 cos(ωt ) (a case we shall return to), im-
plying that τ (t ) = ∫ t

0 λ(t ′)dt ′ = λ0t + (λ1/ω) sin(ωt ). While
the drive is periodic, with period T = 2π/ω, this is not the
case for the critical times t∗

k′,n, which, according to Eq. (13),
are nonperiodic for this choice of drive. This is different from
critical times of DQPTs set off by a quantum quench, which
display a periodicity for each critical mode k′, as proved
in Ref. [15] for any number of bands (where, in the case
of several bands, a critical mode is defined by occupying a
state with equal amplitudes for all bands). Case studies of
periodically driven two-band systems different from the type
considered here have also found that DQPT critical times tied
to a given critical mode are periodic [43–48]. Synchronously
driven systems provide a counterpoint, demonstrating that a
periodicity of such critical times is not an intrinsic feature of
DQPTs.

As transpires from our analysis of a generic two-band
model, the appearance of DQPTs under synchronized peri-
odic driving is conditioned on the initialization of the system,
where one or several k modes are put in a superposition of
states in the upper and lower band with equal amplitudes.
The presence of such states are necessary for the existence
of DQPTs in any two-band system, however, they may ap-
pear also from the dynamics, with no need for fine tuning
the initial state. In 1D, when considering quench dynamics,
a sufficient condition for the existence of critical modes k′
is that the quench is taken between two Hamiltonians with
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topologically distinct ground states as characterized by their
winding numbers [13].

Given any system driven periodically with a frequency
ω = 2π/T , it has been conjectured that critical modes appear
dynamically provided that the associated time-independent
Floquet Hamiltonian that controls the stroboscopic time evo-
lution (i.e., the time evolution monitored at instants of time
tn = t + nT, n = 0, 1, 2, . . .) supports a topologically non-
trivial ground state [43]. The Floquet Hamiltonian for a
synchronously driven systems is trivial to obtain, being equal
to the leading term in a Magnus expansion of the full
time-dependent Hamiltonian (since no time ordering of the
time-evolution operator is necessary, thus making all higher-
order terms in the expansion vanish; for details, see Ref. [54]).
It follows that the Floquet Hamiltonian HFk corresponding to
the synchronously driven mode Hamiltonian Hk (t ) = λ(t )Hk

is trivially given by an average over one period T of the drive:

HFk =
(

1

T

∫ t+T

t
λ(t ′)dt ′

)
× Hk = const. × Hk . (14)

Now suppose that Hk , and by that HFk , does support a topo-
logically nontrivial ground state. Does this imply that a critical
mode k′ is always ensured to appear dynamically, by this mak-
ing the fine tuning of the initial state unnecessary? The answer
is no. For example, suppose that one takes |ψ0〉 in Eq. (9) as
initial state, and that |ψ0〉 is topologically nontrivial. Since all
k modes occupy eigenstates of Hk , the synchronously driven
time evolution will return these same eigenstates multiplied
by a phase, with no critical mode appearing; cf. Eq. (1). This
shows that a Floquet Hamiltonian with a topologically non-
trivial ground state does not necessarily imply the appearance
of DQPTs under synchronized periodic driving.

From this one may be led to infer that DQPTs in these
systems only show up if the initial state is fine tuned. How-
ever, such fine tuning of pure states is experimentally hard
to achieve, if at all possible with present-day quantum tech-
nology. A possible way out is suggested by the very feature
that a critical mode has equal probability to be found in one
of two eigenstates. This is as if the mode were occupying a
maximally mixed state of a qubit, and such states may be
easier to prepare in the laboratory. We shall return to this
issue when discussing experimental realizations in Sec. IV.
For now, and as a forerunner to that discussion, let us briefly
review how the pure-state formalism used in this subsection
can be generalized to mixed states.

B. Dynamical quantum phase transitions for mixed states

Given that the initial state in which a system is prepared in
an experiment is typically a mixed state, it is vital to inquire
how to handle this more realistic situation. This issue was
addressed in general terms by the authors of Refs. [16,17],
and we here follow their approach.

One starts by considering the density matrix ρ(0) of the
mixed state at t = 0. Expanding ρ(0) in its eigenbasis {|ψi〉},

ρ(0) =
∑

i

pi|ψi〉〈ψi|, (15)

the purification |w(0)〉 of the mixed state can be written as

|w(0)〉 =
∑

i

√
pi|ψi〉 ⊗ |ψ ′

i 〉aux, (16)

where {|ψ ′
i 〉aux} are auxiliary orthonormal states with the

property that ρ(0) = Traux(|w(0)〉〈w(0)|). Introducing the
time-evolution operator, given by U (t, 0) = exp (−iHτ (t ))
under a synchronized periodic drive, the purification evolves
as |w(t )〉 = U (t, 0) ⊗ 1aux|w(0)〉, with 1aux the identity oper-
ator in the Hilbert space of the auxiliary states. It follows that
the generalized (mixed state) Loschmidt amplitude Gρ (t ) =
〈w(0)|w(t )〉 can be written as

Gρ (t ) = Tr(ρ(0)U (t, 0)). (17)

Carrying out a mode decomposition, with the mode Hamil-
tonians Hk expressed in the basis of Eq. (3), and assuming that
the initial state at t = 0 is in thermal equilibrium at a tem-
perature 1/β, we have that Gρ (t ) = ∏

k G
ρ

k (t ) with Gρ

k (t ) =
Tr(ρk (0)Uk (0, t )), where

ρk (0) = e−βHk (0)

Tr(e−βHk (0) )

= 1

2
(1 − tanh (λ(0)βεk ) nk · σ ), (18)

with λ(0) the initial value of the driving function.
An explicit expression for Uk (t, 0) is obtained by solving

the equation i∂tUk (t ) = Uk (t, 0)Hk (t ), implied by the defini-
tion Uk (t, 0) ≡ exp ( − iHkτ (t )). In the next section we shall
study an effective fermionic two-band model for a spin chain
for which there is no x component in the unit vector nk that
appears in Eqs. (3) and (18). For this class of models one finds
that

Uk (t, 0) =
(

uk,11(t ) uk,12(t )
uk,21(t ) uk,22(t )

)
(19)

with the simple expressions

uk,11(t ) = cos2

(
θk

2

)
e−iεkτ (t ) + sin2

(
θk

2

)
eiεkτ (t ),

uk,12(t ) = −uk,21(t )

= −i cos

(
θk

2

)
sin

(
θk

2

)
(e−iεkτ (t ) − eiεkτ (t ) ),

uk,22(t ) = sin2

(
θk

2

)
e−iεkτ (t ) + cos2

(
θk

2

)
eiεkτ (t ). (20)

Here θk is the polar angle that parametrizes nk . Combin-
ing Eqs. (18)–(20), a straightforward but lengthy calculation
yields a closed formula for the mixed-state Loschmidt ampli-
tude of the kth mode,

Gρ

k (t ) = cos (εkτ (t ))+i sin (εkτ (t )) tanh (λ(0)βεk ). (21)

When Gρ

k (t )=0, the mixed state rate function gρ (t )=
−(1/N ) lnLρ (t ) of the Loschmidt echo [with Lρ (t ) =∏

k |Gρ

k (t )|2] becomes nonanalytic, signaling a DQPT. As
seen from Eq. (21), Gρ

k (t ) has zeros only in the infinite-
temperature limit β → 0, for which it reduces to the pure-state
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single-mode Loschmidt amplitude in Eq. (12). This is ex-
pected from our treatment of pure states: Only critical modes,
occupying the upper and lower bands with equal probability,
can make a Loschmidt amplitude vanish for certain values of
t (the critical times). When β → 0 all modes of the system
become critical since in this limit the thermal ensemble is
maximally mixed. One concludes, and checks with Eq. (21),
that the model now exhibits a vast number of sequences of
DQPTs, happening at critical times t∗

k,n satisfying

τ (t∗
k,n) = π

εk
(n + 1/2); n = 0, 1, 2, . . . (22)

with k taking all allowed values in the Brillouin zone.
Admittedly, initializing a state by coupling a system to a

heat bath in the infinite-temperature limit β → 0 is not a very
realistic option for an experimentalist! However, the reasoning
can be sharpened by tweaking it slightly.

First, let us assume that the system is isolated from its envi-
ronment on experimentally relevant time scale (using, e.g., an
ultracold atomic gas trapped in an optical lattice). Next, let us
also assume that one may be able to realize a fully connected
nonintegrable mode coupling, making all modes coupled to
all others. This kind of setup, in configuration space, has
been conjectured to create fast scrambling [55,56]—a process
where local information spreads over a quantum system on
a time scale, which is only logarithmic with the size of the
system. Fast scrambling is expected to asymptotically lead
to maximal mixing of the modes, with the reduced density
matrix ρk of each mode evolving into a thermal state with
an effective infinite temperature. (Note that the assumption of
nonintegrability is here crucial, since otherwise a generalized
Gibbs ensemble may ensue [57].) Having reached maximal
mixing, within experimental limits, the mode coupling may
then be turned off, while simultaneously, at the reference
time t = 0, the synchronized periodic drive is turned on, now
predicted to cause DQPTs under time evolution.

Fast scrambling may be only one among several possi-
ble routes for realizing DQPTs under synchronized periodic
driving (or, more precisely, precursors of DQPTs under syn-
chronized periodic driving, since any experimental system is
finite). In Sec. V we shall discuss another possible protocol
for initializing a maximally mixed state of the system—maybe
easier to realize in the laboratory—using slow periodic driving
[58–60], again with the degrees of freedom coupled by a
nonintegrable interaction, but now not required to be fully
connected.

Our discussion—whether about pure or mixed states—has
been patterned on the simple example of two-band fermion
models. As we have already mentioned, these are most often
equated with tight-binding lattice models in an independent-
particle approximation or with mean-field superconductors.
However, none of these types of systems are very likely to
be realizable under synchronized periodic driving. More vi-
able candidates are spin systems, where two-band fermionic
models enter the stage as effective Hamiltonians governing
the spin dynamics. We shall study one such model in the
next section, in part as a preparation for the discussion in
Sec. IV, but also to unveil several more intriguing features
of synchronized periodic driving.

III. CASE STUDY: ANISOTROPIC XY CHAIN
IN A TRANSVERSE MAGNETIC FIELD

We have chosen as benchmark model the anisotropic XY
chain in a transverse magnetic field under synchronized peri-
odic driving. The static model is defined by the Hamiltonian

H =−J

2

N∑
n=1

(
(1+γ )σ x

n σ x
n+1+(1−γ )σ y

n σ
y
n+1

)−h
N∑

n=1

σ z
n ,

(23)
with N the number of sites on the chain, and where
σαwithα = x, y, z are the Pauli matrices. J > 0 denotes the
ferromagnetic exchange coupling, and h and γ are the mag-
nitude of the magnetic field and the anisotropy parameter,
respectively. We here consider the case with periodic bound-
ary conditions, σα

n+N = σα
n .

The XY chain defined by Eq. (23) is one of the best studied
lattice spin models. It exhibits an equilibrium quantum phase
transition in the thermodynamic limit N → ∞ at a critical
magnetic field hc = J , from a ferromagnetic phase (h < J)
to a paramagnetic phase (h > J). The case γ = 1 yields the
transverse field Ising chain, arguably the simplest instance
exhibiting such a transition [61].

The exact solution of the XY chain is well known [62]
and we here only recap the basic steps. The Hamiltonian in
Eq. (23) is first mapped onto a second-quantized Hamiltonian
H of free spinless fermions by a Jordan-Wigner transforma-
tion,

σ+
n = σ x

n + iσ yxn =
n−1∏
m=1

(1 − 2c†
mcm)c†

n,

σ−
n = σ x

n − iσ y
n =

n−1∏
m=1

cn(1 − 2c†
mcm),

σ z
n = c†

ncn − 1

2
, (24)

with c†
n (cn) fermion creation (annihilation) operators. We

have here dropped a boundary term induced by the Jordan-
Wigner transformation since this term contributes only to
O(1/N ) in the energy spectrum and hence is negligi-
ble for large N . Fourier transforming the operators, cn =∑

k e−iknck , and introducing a Nambu spinor c†
k = (c†

k , c−k ),
H can be decomposed as H = ∑

k c†
kHkck , where (choos-

ing to work in the even parity sector of the fermionic Fock
space [51]) the sum runs over half the Brillouin zone with
k = π/N, 3π/N, . . . , (N − 1)π/N . The first-quantized mode
Hamiltonian Hk is given by

Hk = 2

(−hz(k) −ihxy(k)
ihxy(k) hz(k)

)
(25)

with hz(k) = J cos(k) + h and hxy(k) = Jγ sin(k). The spec-
trum is now easily obtained by a Bogoliubov transformation,
and one finds

ε±
k = ±2

√
P2(k) + Q2(k) = ±εk, (26)
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with eigenstates

|ϕ+
k 〉=

(
i sin

(
θk
2

)
cos

(
θk
2

)
)

, |ϕ−
k 〉=

(
cos

(
θk
2

)
−i sin

(
θk
2

)
)

, (27)

where P(k) = J cos(k) + h, Q(k) = γ J sin(k), and θk =
− arctan (Q(k)/P(k)). The ground state |ψ0〉 of the system
is obtained as in Eq. (9): by filling all single-particle states
|ϕ−

k 〉 of the lower band. To investigate the topology of the
ground state it is convenient to got to a Majorana represen-
tation (“Kitaev chain”). For details, and a discussion also of
(nonsynchronized) periodically driven Kitaev chains, we refer
the reader to Ref. [63].

A. Pure state dynamical quantum phase transitions

As follows from the discussion in Sec. II, the time evo-
lution of the eigenstates in (27) under a synchronized drive
λ(t ) is simply given by |ϕ±

k (t )〉 = e∓iεkτ (t )|ϕ±
k 〉 where τ (t ) =∫ t

0 λ(t ′)dt ′. Thus, if the system is prepared in the ground state
at t = 0, the Loschmidt echo L(t ) takes the value unity and
there is no DQPT. Only if the initial state contains a critical
mode k′ occupying the lower and upper band with the same
probability will the drive set off a sequence of DQPTs at
critical times t∗

k′,n, cf. Eq. (13).
In close analogy to an equilibrium phase transition, classi-

cal or quantum, a DQPT appears only in the thermodynamic
limit since the rate function gG (t ) of the Loschmidt amplitude
in Eq. (8) is analytic for any finite N [4,5]. The exponential
suppression of the Loschmidt amplitude for large N , implied
by Eq. (8), therefore makes a direct observation of a DQPT
difficult. At a practical level, a precursor of a DQPT in a
large but finite system, signaled by the emergence of cusp-like
features in gG (t ) (or in g(t ) = 2Re[gG (t )], the associated rate
function of the Loschmidt echo), may still be challenging to
pick up in an experiment or a computer simulation: A DQPT
present due to a single critical mode k′ at a time t∗

k′ becomes
visible only if the experiment or the computation can resolve
t∗
k′ to a precision such that − ln G(t∗

k′ ) � N . Else the cusp-like
feature gets washed out by the averaging over N in the formula
for the rate function, Eq. (8). The problem is evaded if there
is a number of critical modes {k′}, ∼ N , with the same (or
nearly the same) critical time(s), together surviving the aver-
aging over N . In the present context of the effective fermionic
two-band model that emulates the XY chain, this requires two
conditions to be fulfilled. First, the system must be initialized
with a sufficient number of modes occupying the lower and
upper band with the same probability. Secondly, to share the
same critical time(s), the energies εk′ in Eq. (26) can depend
only weakly on k′ (requiring that J/h � 1), since otherwise
the critical times for the different modes will disperse; cf
Eq. (22). In the following we explore the scenario when both
these conditions are satisfied, with special attention to effects
from synchronized periodic driving.

1. Critical times

For simplicity, we shall study the case with the system ini-
tialized with all modes n = 1, 2, . . . , N occupying the lower
and upper band with the same probability, predicted to yield
an abundance of DQPTs appearing at critical times t∗

k,n with

k = ±π/N,±3π/N, . . . ,±(N − 1)π/N . For pure states this
is a Gedanken experiment only, useful to highlight certain
features of DQPTs under synchronized driving. Moreover, it
provides an instructive background to a discussion of such
DQPTs with mixed states, a scenario, which may actually be
possible to realize in the laboratory.

With this protocol, the Loschmidt amplitude is given by

G(t ) =
∏

k

Gk (t ) =
∏

k

〈ϕk|ϕk (t )〉, (28)

where

|ϕk (t )〉 = 1√
2

(eiεkτ (t )|ϕ−
k 〉 + e−iεkτ (t )|ϕ+

k 〉) (29)

with εk and |ϕ±
k 〉 to be read off from Eqs. (26) and (27),

respectively.
In Figs. 1(a)–1(c) we display the Loschmidt echo Lk (t )

in color-coded contour plots for a chain with N → ∞ sites,
choosing γ = 1 (also known as the transverse field Ising
chain) with three different values of J/h. The driving function
is taken to be the same as in our discussion in Sec. II A:
λ(t ) = λ0 + λ1 cos(ωt ), implying that τ (t ) = ∫ t

0 λ(t ′)dt ′ =
λ0t + (λ1/ω) sin(ωt ), where in Fig. 1 we have chosen λ0 =
λ1 =1 and ω=π/4.

Let us inspect panel (a). The zeros t∗
k,n of Gk (t ), and hence

those of the Loschmidt echo Lk (t ) = |Gk (t )|2, are here seen to
coalesce at a few critical times, giving rise to the near-vertical
black streaks in the contour plot. The associated nonanalytic-
ities in the rate function g(t ) = 2Re[gG (t )] of the Loschmidt
echo show up as distinct cusps in Fig. 1(d), with

g(t ) = − lim
N→∞

1

N

∑
k

lnLk (t )

= − 1

2π

∫ π

−π

lnLk (t )dk, (30)

as follows from Eqs. (8) and (28). Notably, Fig. 1(d) reveals
that the sequence of the individual cusps, and hence the
DQPTs, are manifestly nonperiodic. Note that the amplitudes
of the peaks in g(t ) are seen to decay with time, as caused
by the linear term λ0t in τ (t ), which disperses the critical
momenta in Eq. (22) as t increases.

Panels (b) and (c) of Fig. 1 show contour plots where the
zeros of Lk (t ) form increasingly snake-like structures as J/h
gets larger. The diminished clustering at a few critical times as
compared to (a) implies that the peaks of the rate function g(t )
in panels (e) and (f) now have lower heights. Note also that
there is no signal in Fig. 1 that the equilibrium quantum crit-
ical point at J/h = 1 plays any particular role; what matters
and what controls the qualitatively different behaviors is only
the magnitude of J/h. The feature that the DQPT critical times
become only very weakly k dependent when J/h is tuned to
a small value [as in panel (a)] is easy to see by inserting the
expression for εk in (26) into Eq. (13). One may speculate that
this reflects a tendency towards a certain rigidity of the system
when the magnetic field ∼h dominates the spin exchange ∼J ,
enforcing a strong spin polarization in the ground state of the
(static) XY chain.

The contour plots depicted in Fig. 1 will change with
a change of the driving function. Keeping to the same
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FIG. 1. The upper row of panels [(a)–(c)] show contour plots of the single-mode Loschmidt echo |Gk (t )|2 of the anisotropic XY chain
in a transverse field when γ = 1 (transverse field Ising chain) as a function of momentum k and time t for (a) J/h = 0.01; (b) J/h = 0.1;
and (c) J/h = 1, with synchronized periodic drive λ(t ) = 1 + cos(πt/4). The lower row of panels [(d)–(f)] display the corresponding time
dependence of the Loschmidt echo rate function g(t ) and the effective dynamical order parameter ζD(t ).

harmonic modulation as above but removing the offset λ0, i.e.,
with λ(t ) = λ1 cos(ωt ), yields the contour plots in Figs. 2(a)–
2(c). Having removed the offset, the periodicity of τ (t ) =
(1/ω) sin(ωt ) is now seen to bring about a periodicity in the
overall pattern of the Loschmidt echo. This, in turn, gives rise
to clusters of DQPTs [signaled by the cusps in panels (d)–(f)
of Fig. 2], which repeat periodically with no attenuation of the

rate function g(t ) with time. One notes in particular that these
features are insensitive to the choice of the ratio J/h, with J/h
only setting the scale of the rate function.

2. Effective dynamical order parameter

As was first shown in Ref. [14], dynamical phases sepa-
rated by DQPTs triggered by a single quantum quench may

FIG. 2. Plots of the Loschmidt echo |Gk (t )|2, rate function g(t ), and effective dynamical order parameter ζD(t ) for the transverse field Ising
chain with the same parameter values as in Fig. 1, but with the offset in the synchronized periodic drive removed, i.e., with λ(t ) = cos(πt/4).
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be characterized by a dynamical topological order parameter.
It was later found that this holds also for periodically driven
systems, whether the DQPTs are set off by a quench that
repeats periodically [46] or by a protocol, which allows the
system to be described by a time-independent Hamiltonian in
a rotating frame [43].

This raises the question whether the same is true also for
dynamical phases in systems under synchronized periodic
driving. The answer is in the negative: Since the existence
of DQPTs in these systems relies on a fine tuning of the
initial state, there can be no topological invariant that provides
protection of its dynamical phases. Still, it is instructive to
understand, at a formal level, how a dynamical topological
order parameter fails to capture the physics under a syn-
chronized drive. This will lead us to suggest a definition of
an alternative effective order parameter under synchronized
periodic driving, useful on short and intermediate time scales
given certain conditions. As we shall find for our benchmark
model—the anisotropic XY chain in a transverse magnetic
field—the important condition is that the ground state of the
initial (static) Hamiltonian is strongly spin polarized.

The construction of a dynamical topological order pa-
rameter takes off from the identification of a quantity that
behaves discontinuously if and only if there is a DQPT, i.e.,
at a zero of the Loschmidt amplitude. In Ref. [14], the Pan-
charatnam geometric phase φG(t ) [64]—which generalizes
the Berry phase to noncyclic (and not necessarily adiabatic)
time evolutions of a state vector [65]—was put forward as
a suitable choice. φG(t ) is defined as the gauge invariant
component of the phase φ(t ) of the Loschmidt amplitude,
G(t ) = |G(t )|eiφ(t ), obtained by subtracting the dynamical
phase φdyn(t ) = −i

∫ t
0 〈ψ (t ′)|∂t ′ |ψ (t ′)〉dt ′ from φ(t ):

φG(t ) = φ(t ) − φdyn(t ). (31)

Considering a particle-hole symmetric two-band fermionic
mode Hamiltonian Hk , the Pancharatnam phase φG(k, t ) of
a state vector labeled by k vanishes for k = 0, π , implying
that the map k ∈ [0, π ] → eiφG(k,t ) can be characterized by an
integer-valued winding number

νD(t ) = 1

2π

∮ π

0

∂φG(k, t )

∂k
dk. (32)

This topological invariant defines a dynamical topological
order parameter, which, in analogy to order parameters of
equilibrium topological phase transitions, jumps by an integer
at a DQPT and specifies the dynamical phase in between two
such transitions.

Let us now turn to our synchronously driven two-band
model that represents the XY chain, with single-mode
Loschmidt amplitudes G(k, t ) = |G(k, t )|eiφ(k,t ) = 〈ϕk|ϕk (t )〉.
Here |ϕk (t )〉 is given in Eq. (29). As follows from Eq. (12),

φ(k, t ) = arg(cos (εkτ (t ))), (33)

with εk given in Eq. (26). The phase φ(k, t ) is seen to
be quantized with π -phase slips at the critical times t∗

k,n in
Eq. (13), formally a consequence of the staircase structure
of the arg function with a cosine as argument, implying that
φ(k, t ) = nπ for (n − 1/2)π < εkτ (t ) < (n + 1/2)π, n =
0,±1,±2, . . .. Considering the dynamical phase φdyn(k, t )

for a single mode, it can be written as

φdyn(k, t ) = −i
∫ t

0
〈ϕk (t ′)|dτ

dt ′ ∂τ |ϕk (t ′)〉dt ′, (34)

recalling that the state |ϕk (t ′)〉 depends on time via the integral
τ (t ′) of the driving function; cf. text after Eq. (1). Insert-
ing the expression for |ϕk (t ′)〉 using Eq. (29), one verifies
that φdyn(k, t ) in (34) vanishes identically, independent of the
choice of the driving function, and by that, independent of the
specifics of τ (t ′). It follows from Eq. (31) that

φG(k, t ) = φ(k, t ), (35)

implying that φG(k, t )/π is quantized, taking integer values,
which jump by unity at a DQPT. In particular, this means that
the dynamical topological order parameter νD(t ) in Eq. (32)
vanishes identically.

The π -phase slips of the single-mode Pancharatnam phase
φG(k, t ) at the critical times t∗

k,n suggests that it may still serve
as a basis for a differently constructed dynamical order pa-
rameter, devoid of topology, but still useful for characterizing
a dynamical phase between two DQPTs. Naming it ζD(t ), we
define it as the average of φG(k, t )/π ,

ζD(t ) = 1

2π2

∫ π

−π

φG(k, t )dk, (36)

assuming, as above, that N is sufficiently large to allow for an
integration over the Brillouin zone.

As an illustration, let us again consider the driving function
λ(t ) = λ0 + λ1 cos(ωt ), with τ (t ) = λ0t + (λ1/ω) sin(ωt ).
By inspection of the expression for εk in Eq. (26), one notes
that εkτ (t ) will be only weakly k dependent for small J/h
unless t takes large values. In other words, within these
constraints—a small ratio J/h and not too large time series
− φG(k, t )/π will take the same integer value for all momenta
k except when getting very close to a branch cut (also known
as a critical time) where the small spread of εkτ (t ) for differ-
ent k will make φG(k, t )/π jump to the next integer at slightly
different k-dependent critical times [cf. text after Eq. (33)]. It
follows that ζD(t ) in Eq. (36) will exhibit a staircase structure,
as seen in panel (d) of Fig. 1, but with the vertical steps
slightly tilted due to the narrowly shifted jumps for different
modes. The same behavior of ζD(t ) is manifest in panel (d)
of Fig. 2, now with driving function λ(t ) = λ1 cos(ωt ). Note,
however, that while the vertical steps remain well defined up
to small tilts [like in Fig. 1(d)], the staircase in Fig. 2(d) is not
ascending since the linear term λ0t is absent from τ (t ).

The quantity ζD(t ) for small values of J/h, as in Figs. 1(d)
and 2(d), serves much the same purpose as the dynamical
topological order parameter νD(t ): ζD(t ) signals a DQPT (but
now with a limited resolution) and assigns an integer num-
ber to the dynamical phase in between two such transitions.
Since this number is not a winding number, however, but
simply an average over φG(k, t )/π , it should be defined mod
2 [since φG(k, t ) is an angle and given by the principal value
of the arg function in Eq. (33)], suggesting that the dynam-
ical phases come in only two classes, labeled by ζD(t )=0
and 1. One may be tempted to speculate that this feature
may point to the presence of an emergent Z2 symmetry of
the driven XY chain. However, such a conclusion would be

094311-8



FLOQUET DYNAMICAL QUANTUM PHASE TRANSITIONS … PHYSICAL REVIEW B 105, 094311 (2022)

FIG. 3. Contour plots of the single-mode geometric Pancharatnam phase φG(k, t ) as function of momentum k and time t for the transverse
field Ising chain with synchronized periodic drive λ(t ) = 1 + cos(πt/4) when (a) J/h = 0.1; (b) J/h = 1.

premature. The quantity ζD(t ) can only stand in for an ef-
fective order parameter since it exhibits a continuous change
between 0 and 1 when going from one phase to the next—
albeit extremely fast for the cases in Figs. 1(d) and 2(d),
producing slightly tilted vertical steps in the staircases. Since
a ramp, however steep, does not signal a change of a discrete
symmetry, such a change can be argued for only by construct-
ing an improved dynamical order parameter, if this is at all
possible.

As J/h and (or) time t get(s) larger, the ramps in ζD(t )
become more pronounced, with the vertical steps in a stair-
case getting more tilted and the horizontal steps more narrow,
rendering ζD(t ) impractical as an effective order parameter.
Eventually the staircase structure is all but washed out and
replaced by a smooth graph (after coarse graining over short
time intervals); cf. panels (e) and (f) in Figs. 1 and 2. Figure 3
vividly illustrates why the Pancharatnam phase φG(k, t ) for
different values of J/h yield such different behaviors of ζ (t )
when the driving function has an offset, like for the case
displayed in Fig. 1.

One may inquire how the tuning of other parameters than
J/h and λ0/λ1 influences the appearance of DQPTs in the
synchronously driven XY chain. Numerical data for a large
range of choices of the XY anisotropy γ and the frequency ω

of the drive show that changing the values of these parameters
do not make a qualitative change compared to the cases that
we have discussed in this section [66]. What matters for the
overall picture of DQPTs are the ratios J/h and λ0/λ1, where
the cusps in the rate function become increasingly sharper
and repeat for longer times the smaller one (or both) of these
ratios is (are) taken—with the clusters of peaks in the rate
function g(t ) being periodic and persistent in time only when
λ0/λ1 = 0.

More pressing is the question what happens when deviating
slightly from the fine-tuned t =0 initial state in Eq. (29).
While the pristine DQPTs in the thermodynamic limit—
manifested by visible nonanalyticities in the dynamical free
energy of each single k mode—are killed off as soon as the
amplitudes for the two eigenstates |ϕ±

k 〉 in Eq. (29) become
different, this is not obvious for the signatures of the DQPTs
captured in Figs. 1 and 2, emerging from a collective clus-
tering of single-mode nonanalyticities around shared critical
times. Maybe these signatures will still be present, albeit
somewhat blurred, serving as precursors of DQPTs? Rather
than addressing this question head on, we defer it to the next

section in the context of mixed states—with mixed states
being more relevant for discussing possible experimental re-
alizations.

B. Mixed state dynamical quantum phase transitions

In Sec. II B we laid out a scheme for analyzing DQPTs
in fermionic two-band systems under synchronized periodic
driving, with the systems initialized in a mixed state. Specif-
ically, we obtained an exact formula for the single-mode
mixed-state Loschmidt amplitude Gρ

k (t ), Eq. (21), in terms of
λ(0), τ (t ), εk , and the polar angle θk [with the latter defined in
the text after Eq. (3)]. Thus, knowing λ(0) and τ (t ), an appli-
cation of Eq. (21) to the anisotropic XY chain in a transverse
field only requires to collect the appropriate expressions for εk

and θk , with εk given by Eq. (26), and where θk is obtained by
inserting Hk from Eq. (25) into Eq. (3).

1. Critical times

Given the expression for Gρ

k (t ) in Eq. (21), with param-
eters adapted to the XY chain, we numerically plot the rate
function gρ (t ) of the mixed-state Loschmidt echo Lρ (t ) =∏

k L
ρ

k (t ) = ∏
k |Gρ

k |2, defined as in Eq. (30) with gρ (t ) and
Lρ

k (t ) replacing g(t ) and Lk (t ), respectively. Taking the same
synchronized drives and parameter values as in the preceding
section, and choosing β = 0 (i.e., effective infinite tempera-
ture), one obtains plots identical with those in Figs. 1 and
2 as realized by simply comparing Eq. (21) with (33). As
we have discussed, this is anticipated since in this case the
reduced density matrices for the states of the decoupled k
modes are maximally mixed: The Loschmidt echo does not
discriminate between maximal mixing and equal-amplitude
pure-state superpositions of two orthogonal states. Being an
expected outcome at infinite temperature, we refrain from
plotting this particular case.

To address the question whether there are still signatures
of DQPTs present when deviating slightly from a maximally
mixed initial state, we have plotted the rate function gρ (t ) of
the Loschmidt echo for β = 0.01, 0.05, and 0.1 in Figs. 4(a)–
4(c). We here consider the case when the driving function
λ(t ) has an offset, like in Fig. 1. Further, we have chosen the
same ratio J/h = 0.01 as in Fig. 1(d) (favoring strong spin
polarization in the ground state of the static model), the case
in Fig. 1 with the most distinct cusps in the rate function. As
evidenced by panel (a) of Fig. 4, the signatures of DQPTs are
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FIG. 4. The upper row of panels [(a)–(c)] show plots of the time dependence of the mixed-state Loschmidt echo rate function gρ (t ) and
the mixed-state effective dynamical order parameter ζ

ρ
D (t ) for the transverse field Ising chain with J/h = 0.01 and synchronized periodic

drive λ(t ) = 1 + cos(πt/4) at inverse temperature (a) β = 0.01; (b) β = 0.05; and (c) β = 0.1. The lower row of panels [(d)–(f)] show the
corresponding time dependence when the offset in the drive is removed, i.e., with λ(t ) = cos(πt/4).

still manifest when β is taken sufficiently small, but then taper
off as β increases [panels (b) and (c)].

Removing the offset from the driving function yields the
rate function plots in Figs. 4(d)–4(f). The overall picture is
much the same as with a nonzero offset: strong signatures
of DQPTs in panel (d) with the same critical times as in the
pure state case of Fig. 2(d), with a softening of the cusps as β

increases [panels (e) and (f)].

2. Effective dynamical order parameter

The finite-temperature counterpart of the effective dynami-
cal order parameter ζD(t ) discussed in the previous section can
be defined in analogy to Eq. (36), as an average of φG

ρ (k, t )/π ,

ζ
ρ
D (t ) = 1

2π2

∫ π

−π

φG
ρ (k, t )dk, (37)

with φG
ρ (k, t ) the mixed-state Pancharatnam phase. As shown

by Sjöqvist et al. [67], the expression for φG
ρ (k, t ),

φG
ρ (k, t ) = φρ (k, t ) − φdyn

ρ (k, t ), (38)

is obtained by extending the construction of the Pancharat-
nam phase for pure states, Eq. (31), to purifications of mixed
states, Eq. (16). The phase φρ (k, t ) is that of the mixed-state
Loschmidt amplitude Gρ

k (t ) = |Gρ

k (t )| exp (iφρ (k, t )) and can
be read off directly from Eq. (21):

φρ (k, t ) = arg(cos(εkτ (t ))+i sin(εkτ (t )) tanh(λ(0)βεk )).

(39)

The mixed-state dynamical phase φ
dyn
ρ (k, t ) in turn is given by

φdyn
ρ (k, t ) = −

∫ t

0
Tr(ρk (t ′)Hk (t ′))dt ′, (40)

using the definition φdyn(t ) = −i
∫ t

0 〈w(t ′)|∂t ′ |w(t ′)〉dt ′ ap-
plied to the purified state |w(t )〉 = Uk (t, 0)|w(0)〉, cf. Eq. (16)
[where, in Eq. (40), ρk (t ) is the time-evolved density matrix].
An explicit expression for φ

dyn
ρ (k, t ) for the XY chain is ob-

tained from Eq. (40) using Eqs. (18)–(21):

φdyn
ρ (k, t ) = − tanh(λ(0)βεk ))εkτ (t ). (41)

In Fig. 4, superposed on the rate function graphs, we have
plotted ζ

ρ
D (t ) for three effective temperatures close to maximal

mixing. Taken together, the results displayed in Fig. 4 suggest
that signatures of precursors of DQPTs under synchronized
periodic driving may actually be picked up in an experiment—
with these signatures due to collective clustering of a large
number of critical modes. While amplitude and sharpness of
the signatures degrade as one departs from maximal mixing,
their very presence suggest that a DQPT can be inferred from
data away from (effective) infinite temperature. This should
put less demand on the preparation of the initial state of the
system. In the next section we elaborate on this and related
issues with a view to possible experimental observations. Be-
fore concluding this section, let us mention that an alternative
approach to interpreting zeros of Loschmidt amplitudes for
mixed states has been proposed in Ref. [68], taking off from
the Uhlmann geometric phase [69].
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IV. TOWARDS EXPERIMENTAL OBSERVATIONS

Experimental breakthroughs with analog quantum simu-
lators have allowed observations of quench-induced DQPTs
exploiting a variety of platforms: trapped ions [29,30] and
Rydberg atoms [31], cold atomic gases [32,33,37], su-
perconducting qubits [34], photonic quantum walks [35],
nanomechanical oscillators [36], nuclear spins [38], and NV
centers [39]. What are the prospects for experimental observa-
tions of the type of DQPTs that we have studied here? Without
going into details, let us outline some of the opportunities and
challenges.

The required experimental backbones are threefold: (i)
realization/simulation of a synchronously driven system; (ii)
preparation of a nearly maximally mixed initial state; and (iii)
detection of DQPT signatures.

(i) Realization/simulation. Taking off from the realm of
the anisotropic XY chain, there have been a number of ex-
periments probing the dynamics of short transverse field Ising
chains simulated by trapped ions [70,71] however, with finite-
range interactions between the spins. While this feature may
not impact the appearance of DQPTs, one would ideally opt
for a platform that can simulate nearest-neighbor spin interac-
tions in larger chains, and crucially, which is also sufficiently
versatile to allow for synchronized periodic driving of the spin
coupling and the magnitude of the transverse magnetic field.
A setup that comes across as particularly promising for this
purpose is the analog spin chain simulator recently proposed
by Nguyen et al. [72], based on laser-trapped circular Rydberg
atoms. The proposed device realizes a spin-1/2 XXZ Hamil-
tonian in a magnetic field, with fully tunable parameters,
allowing for a realization of the transverse field Ising chain
with nearest-neighbor interactions. Importantly, all parame-
ters can easily be modulated in time within a wide range of
frequencies, in principle allowing for synchronized driving.
Thus, as for the problem of realization/simulation, prospects
look bright.

(ii) Initial state preparation. In Sec. II B we briefly dis-
cussed a scheme to prepare a (near) maximally mixed initial
state by exploiting fast scrambling of spins [55,56]. However,
experimental studies of spin scrambling have only recently
come of age [73], making this route somewhat uncertain.
More critically, fast scrambling appears incompatible with the
circular Rydberg simulator in Ref. [72] as it assumes spin
interactions of uniform strength ranging over the full system.
A simpler scenario, more likely to be realizable within the
setting of this device, is to add a single magnetic impurity
to the XXZ chain. As shown recently by Brenes et al. [74],
such a local perturbation of the integrable XXZ Hamiltonian
gives rise to eigenstate thermalization. By this, the system is
expected to quickly heat up close to an infinite-temperature
state when subject to a slow periodic drive [58–60]. Provided
that this kind of perturbation can be mimicked by inserting a
defect into the chain of Rydberg atoms, this would be a way
to experimentally prepare a(n almost) maximally mixed state.
Having obtained this state, the tunable parameters are then set
to the transverse field Ising Hamiltonian and the synchronized
drive is turned on.

The viability of this type of scenario is for the experimen-
talist to judge. Quite likely, there may be other, maybe more

direct ways to tweak the circular Rydberg simulator so as to
achieve nonintegrability, and by that, near maximal mixing of
the initial state.

(iii) Detection. Direct detection of DQPTs requires experi-
mental access to the Loschmidt echo or some related quantity,
like the quantum work statistics [75], from which the rate
function g(t ) can be deduced. An experimental protocol for
measuring the Loschmidt echo for interacting Rydberg atoms
in a lattice has been proposed in Ref. [76], suggesting that it
is in principle accessible with the circular Rydberg simulator
proposed in Ref. [72]. Other observables, indirectly linked to
signatures of DQPTs, have been proposed [24,25,27] or put to
actual use in recent experiments [29]. A specific proposal for
detecting Floquet DQPTs under synchronized periodic drives
has recently been put forward by one of us [77], based on
the notion of out-of-time-order correlations. Measurements of
such correlations have been reported in the literature [78],
however in the different context of a nuclear magnetic reso-
nance quantum simulator, and not with periodic drives. The
prospect that similar measurements could be carried out also
for the Rydberg simulator with an applied synchronized drive
is attractive but needs to be demonstrated in the laboratory.
For a theoretical discussion we refer the reader to Ref. [77].

All things considered, the three legs (i)–(iii) of a required
experiment are expected to be demanding to carry out, how-
ever, there is a robust platform to build on—the circular
Rydberg simulator put forward by Nguyen et al. [72]. This
gives good grounds to anticipate that DQPTs under synchro-
nized periodic driving will soon become accessible in the
laboratory.

V. SUMMARY

To summarize, we have analyzed the occurrence of Flo-
quet DQPTs in a quantum system subject to synchronized
periodic driving, more specifically, DQPTs in a generic 1D
fermionic two-band model with all terms in its Hamiltonian
subject to harmonic periodic drives with the same frequency
and phase. As known from general theory [4,15], all DQPTs
are conditioned on the presence of “critical modes”, which
occupy the available energy levels with equal probability,
i.e., in the language of an open system, modes in maximally
mixed states. This can happen dynamically, in topologically
protected DQPTs, or, in “accidental” DQPTs by fine tuning
the Hamiltonian or the initial condition. Taking the effective
model of the anisotropic XY chain in a transverse magnetic
field as a benchmark—with Jordan-Wigner fermions emulat-
ing the spin dynamics—we have examined the case where the
system is initialized with all modes in a maximally mixed
state (or, very close to maximal mixing), causing a coales-
cence of the critical times for the modes, in effect producing
“collective” DQPTs (or, precursors of such DQPTs) provided
that the magnetic field is large compared to the energy scale
of the spin exchange.

Our analysis shows that the existence of a DQPT can
be inferred from numerical data for the rate function of the
Loschmidt echo also when the initial state of the system is per-
turbed slightly away from maximal mixing. This is somewhat
analogous to the well known situation where a continuous
equilibrium phase transition can be inferred from finite-size
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data (with a system off criticality), with precise predictions
about scaling, universality, and critical exponents obtainable
via finite-size scaling [79]. It would be interesting to find a
well-controlled procedure, which would allow precise char-
acteristics of DQPTs to be predicted from off-critical data
(coming, e.g., from the blurring of an initial condition as in
Sec. III B), similar in spirit to how finite-size scaling allows
properties of equilibrium phase transitions to be deduced from
off-critical data.

A synchronized periodic drive is found to give rise to
nonperiodic sequences of DQPTs with an attenuation of the
amplitude of the rate function of the Loschmidt echo with time
when there is an initial offset of the harmonic drive (causing a
sudden change of the scale of the Hamiltonian when the drive
is turned on). If there is no offset, clusters of DQPTs repeat
periodically with no attenuation, allowing for the monitoring
of DQPTs in long time series. The nonperiodic pattern of

DQPTs within a cluster can be calculated exactly, knowing the
driving frequency and the band structure of the model. This
offers an expedient route to a thorough comparison between
theory and experiment. With the current rapid advances in
realizing analog quantum simulators, such a test may not be
too far into the future.
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