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We analyze a quantum spin Hall device with a point contact connecting two of its edges. The contact

supports a net spin tunneling current that can be probed experimentally via a two-terminal resistance

measurement. We find that the low-bias tunneling current and the differential conductance exhibit scaling

with voltage and temperature that depend nonlinearly on the strength of the electron-electron interaction.
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A rapidly growing branch of condensed matter physics
draws on the exploration of topologically nontrivial quan-
tum states. Experimentally realized examples, which are
by now well understood, are given by the integer [1] and
fractional [2] quantum Hall states. These states defy a
classification in terms of the standard Ginzburg-Landau
theory of symmetry breaking and a local order parameter,
but can instead be characterized by a topological quantity
[1,2]. The importance of being able to identify a phase of
quantum matter that does not fall under the Ginzburg-
Landau paradigm has set off a search for other topologi-
cally nontrivial states, analogous to, but distinct from those
connected to the quantum Hall effects.

Some time ago, Kane and Mele—building on work by
Haldane [3]—discussed the possibility of a new type of
‘‘topologically ordered’’ state of electrons in two dimen-
sions: a quantum spin Hall (QSH) insulator, proposed to be
realized at low energies in a plane of graphene due to spin-
orbit interactions [4]. Being a band insulator, a QSH insu-
lator has a charge excitation gap in the bulk, but at its
boundary, there are gapless edge states with energies inside
the bulk gap. These states, which come in an odd number
of Kramers’ doublets, are ’’helical’’ [with clockwise (coun-
terclockwise) circling states carrying spin up (down), or
vice versa, depending on the orientation of the effective
electric field that enters the spin-orbit interaction] and are
responsible for the intrinsic spin Hall effect that Murakami
et al. had earlier predicted may occur in bulk insulators [5].
Time-reversal invariance implies that the energy levels of
the counterpropagating edge states cross at particular
points in the Brillouin zone. It follows that the spectrum
of a QSH insulator cannot be continuously deformed into
that of an ordinary band insulator, which has zero (or
equivalently, an even number of) Kramers’ doublets. In
this exact sense, a QSH insulator realizes a topologically
nontrivial state of matter [6]. In subsequent and indepen-
dent work, the QSH insulator state was proposed to occur
also in strained semiconductors [7] and in HgTe quantum
wells with an ‘‘inverted’’ electronic gap [8]. An experiment
carried out on quasi-two-dimensional HgTe quantum wells
grown by molecular beam epitaxy and sandwiched be-
tween (Hg,Cd)Te barriers has revealed data consistent

with helical edge state transport, suggesting the first ob-
servation of the QSH effect [9]. The possibility of dissipa-
tionless transport of spin currents along the edges of a QSH
insulator is a tantalizing prospect for future spintronics
applications [10]. To make progress, however, a more
complete picture of the physics is required.
An important issue is to understand the behavior of edge

currents in the presence of a tunneling junction connecting
two opposite edges of a QSH bar (Fig. 1). When the bar is
connected to a battery, a net spin current can tunnel through
the junction, and one would like to know how the electron-
electron interaction influences its conductance. This is the
problem we shall address here.
We consider the simplest situation with a single

Kramers’ doublet of helical edge states, applicable to a
tunneling experiment on a HgTe quantum well [9]. In the
absence of electron interactions, this case can formally be
thought of as resulting from a superposition of two integer
quantum Hall systems with the up- and down-spins of the
electrons being subject to opposite effective magnetic
fields. This emulates the spin-orbit interaction that is
built-in in the k-p Hamiltonian that defines the electron
dynamics close to the Fermi level of the quantum well [9].
The bar is connected to a battery with left (L) and right (R)
contacts as in Fig. 1. Applying a gate voltage Vg perpen-

dicular to the upper and lower edge of the bar at x ¼ 0 will
bring the edges close to each other, forming a point contact
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FIG. 1 (color online). Geometry of the QSH point contact
device studied in this Letter. The full (dotted) lines represent
helical edge states in equilibrium with the left (right) contact.

PRL 102, 096806 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 MARCH 2009

0031-9007=09=102(9)=096806(4) 096806-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.096806


at which electrons may tunnel from one edge to the other.
With the gate voltage turned off, there is no tunneling
present, assuming the edges to be well separated. For the
case illustrated in Fig. 1, electrons originating in the L [R]
contact of the battery carry current to the right [left], with
spin up [spin down] on the upper edge and spin down [spin
up] on the lower edge. The right- [left-] moving electrons
are in equilibrium with the left [right] contact and have a
Fermi energy equal to the electrochemical potential
�L½�R� of that contact. Note that counterpropagating elec-
trons do not equilibrate when injected at different chemical
potentials since any scattering off impurities or defects
conserves spin, thus making impossible transfer of elec-
trons from one type of edge state to the other. If the driving
voltage V � ð�L ��RÞ=e > 0, a net charge current flows
from left to right on each edge, accompanied by a spin
current carrying spin up [spin down] on the upper [lower]
edge. Neglecting electron interactions, the ratio of the
drain-source charge [spin] edge current to the driving
voltage is the Hall [spin Hall] conductance e2=h [e=4�]
[11]. When the gate voltage Vg is turned on, more of the

right-moving electrons tunnel through the point contact at
a finite driving voltage V > 0, leading to a depletion of the
source-drain current. While there is no net tunneling of
charge between the edges, the point contact supports a net
interedge spin tunneling current (cf. Fig. 1).

The picture becomes more complex when allowing for
electron-electron interactions at the edges. Away from
half-filling of the one-dimensional (1D) band of edge
states, time-reversal invariance constrains the possible
scattering processes at an edge to dispersive (d) and for-
ward (f) scattering [12,13]. In the vicinity of the Fermi
points, the corresponding interactions are given by

Hd ¼ gd
Z

dxðc y
R"c R"c

y
L#c L# þ c y

L"c L"c
y
R#c R#Þ (1)

and

Hf ¼ gf
X
�¼R;L
�¼";#

Z
dxc y

��c ��c
y
��c ��: (2)

Here, c R" and c L" are 1D fields that annihilate an electron

in a clockwise propagating helical state on the upper and
lower edge, respectively. Similarly, c L# and c R# are fields
that correspond to a counterclockwise propagating state on
the upper and lower edge, respectively. It is here important
to emphasize that the presence of the dispersive scattering
channel, controlled by (1), is a fundamental difference
between the edge physics of a QSH insulator and a system
exhibiting the integer quantum Hall effect (IQHE). As a
result, the QSH insulator may show interaction effects
which are suppressed in the IQHE. Adding a linearized
kinetic term

H0 ¼ �ivF

X
�¼";#

Z
dxðc y

R�@xc R� � c y
L�@xc L�Þ; (3)

we can bosonize H ¼ H0 þHd þHf, and obtain

H ¼ v

2

X
i¼1;2

Z
dx

�
1

K
ð@x�iÞ2 þ Kð@x�iÞ2

�
; (4)

with K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�vFþgf�2gd
2�vFþgfþ2gd

r
, and v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvF þ gf

2�Þ2 � ðgd� Þ2
q

, vF

being the Fermi velocity. The indices 1 and 2 label the
upper and lower edge, respectively, with �1 ¼ �R" þ�L#,
�2 ¼ �L" þ�R#, �1 ¼ �R" ��L#, and �2 ¼ �L" ��R#,
where ��� and ��� define chiral boson fields and their
duals within the standard bosonization scheme [14]. Note
that in contrast to an ordinary spinful Luttinger liquid
which exhibits spin-charge separation, the boson fields in
(4) contain both charge and spin. While helicity makes spin
a redundant quantum number on a single edge, it is im-
portant to include it when two edges are connected via a
point contact. The tunneling through the contact, with
amplitude u, is governed by the operator

Ht ¼ uðc y
L"c R" þ c y

R"c L" þ c y
R#c L# þ c y

L#c R#Þ; (5)

defined at x ¼ 0. It can similarly be bosonized

Ht ¼ 2u

�
sin½ ffiffiffiffi

�
p ð�1 þ�2Þ� cos½

ffiffiffiffi
�

p ð�1 þ �2Þ�: (6)

Given the bosonized theory, Eqs. (4) and (6), we may now
use standard perturbative RG arguments to uncover the
effect of electron interactions on the tunneling.
As a first step, we integrate out the bosonic fields in the

partition function of the system except at x ¼ 0, thus
obtaining a theory defined only at the location of the point
contact [15]. With � an energy cutoff, and � ¼ it
Euclidean time, this gives

Z�
Z Y

i¼1;2

D�iD�i expð�S� StÞ; (7)

where

S ¼ X
i¼1;2

Z �

��

d!

2�
j!j

�
1

2K
j�ið!Þj2 þ K

2
j�ið!Þj2

�
(8)

and

St ¼ � 2u

�

Z
d� sin½ ffiffiffiffi

�
p ð�1ð�Þ þ�2ð�ÞÞ�

� cos½ ffiffiffiffi
�

p ð�1ð�Þ þ �2ð�ÞÞ�: (9)

Next, the localized fields are split into slow (s) and fast (f)

modes, �isð�Þ �
R�=b
��=b

d!
2� e

�i!��ð!Þ and �ifð�Þ �R
�=b<j!j<�

d!
2� e

�i!��ð!Þ, with b > 1 a scale factor, and

with a similar definition of �is and �ifði ¼ 1; 2Þ. A cumu-

lant expansion in u then gives an expression for the low-
energy effective action, call it Seff . To Oðu2Þ,

e�Seff ½�s� ¼ e�Ss½�s�ehStif�ð1=2ÞðhS2t if�hSti2fÞþ...: (10)

Here, Ss½�s� is the slowly fluctuating part of S, while h. . .if
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is an average taken over the fast modes. The calculation of
hStif and the second-order cumulant hS2t if � hSti2f is here

somewhat cumbersome, but is facilitated by the presence
of the time-reversal symmetry. We find that

hStif ¼ 2u

�
b�ð1=2ÞðKþ1=KÞSt½�1s; �2s; �1s; �2s�; (11)

with St½�1s; �2s; �1s; �2s� as in (9) but with the slow fields
replacing the original ones. As for the second-order term,

hS2t if � hSti2f ¼
u2

�

Z
d�ðV� cos½

ffiffiffiffi
�

p ð2�1 þ 2�2Þ�
þ V� cos½ ffiffiffiffi

�
p ð2�1 þ 2�2Þ� þ . . . Þ;

(12)

where V�¼b1�2=K�b1�K�1=K, V�¼b1�K�1=K�b1�2K,

and where . . . indicate higher-order terms that do not
influence the renormalization to this order in u. The first-
order RG equation for u,

du

d lnb
¼ u

�
1� 1

2

�
K þ 1

K

��
; (13)

is obtained from (10) and (11) and reveals that the scaling
dimension �K of the tunneling operator Ht in (6) is �K ¼
1
2 ðK þ 1=KÞ. As for the second-order equations, these are
extracted from (10) and (12), and read

dV�

d lnb
¼ u2

�2

��
1� 2

K

�
eð1�2=KÞ lnb � ð1� 2�KÞeð1�2�KÞ lnb

�
;

dV�

d lnb
¼ u2

�2
ðð1� 2�KÞeð1�2�KÞ lnb � ð1� 2KÞeð1�2KÞ lnbÞ:

These equations imply that, to second order in u, Ht

renormalizes to zero for all values of K in the interval
1=2<K < 2. This includes the experimentally relevant
regime for a HgTe quantum well: A rough estimate of K

for this case, based on the approximate relation K � ½1þ
U=ð2EFÞ��1=2 [16], yields that 0:8<K < 0:9, using that
EF � @=m�r2s and U � e2=�rs, where e is the electron
charge, � � 20�0 is the dielectric constant, m� � 0:02me

(with me the electron mass) [17], and where rs is the
effective Bohr radius for electron densities ne in the inter-
val 0:5� 1011 cm�2 < ne < 3:5� 1011 cm�2 (at which
the experiment in Ref. [9] was carried out).

It is interesting to compare the ’’weak-tunneling’’ fixed
point found here to the situation for the quantum Hall
effects, where for the IQHE, the tunneling between edge
states is marginal, while for the fractional quantum Hall
effect the tunneling renormalizes to large values for all
filling fractions [18]. In contrast, as seen from the second-
order RG equations above, a ‘‘strong-tunneling’’ QSH
fixed point appears only for K < 1=2 (or for the unphysical
region K > 2 with attractive electron interaction).

Turning to the tunneling current in the presence of a
nonzero driving voltage V ¼ ð�L ��RÞ=e, we shall con-
fine ourselves to the case of a low bias, allowing us to treat

the problem within a linear response formalism [19]. The
current IcðtÞ that we shall calculate is the sum of the charge
tunneling currents between edge states with the same
helicity, related to the total spin tunneling current IsðtÞ by
IcðtÞ ¼ ð2e=@ÞIsðtÞ. Since IcðtÞ is equal to the depletion of
the charged source-to-drain current in the presence of the
point contact (cf. Fig. 1), it follows that the spin current
IsðtÞ can be detected experimentally by a two-terminal
resistance measurement.
With V > 0, the current IcðtÞ can be expressed as the rate

of change of the number of electrons in equilibrium with
the left contact of the battery (see Fig. 1), IcðtÞ ¼
�eh _NLðtÞi. The number operator NL ¼ aðc y

R#c R# þ
c y

R"c R"Þ, where a is a lattice constant, has the property

that _NL ¼ i½H þHt; NL� ¼ i½Ht; NL�. This implies that

IcðtÞ ¼ eu2
Z

dt0�ðt� t0Þðeie
R

t0
t
dt00Vðt00Þh½AðtÞ; Ayðt0Þ�i

� e�ie
R

t0
t
dt00Vðt00Þh½AyðtÞ; Aðt0Þ�iÞ; (14)

where A ¼ aðc y
L"c R" þ c y

L#c R#Þ. Introducing the retarded
Green’s function GretðtÞ ¼ �i�ðtÞh½AðtÞ; Ayð0Þ�i and its
transform Gretð�eVÞ ¼ R

dte�ieVtGretðtÞ, it follows that

for constant V the integral in Eq. (14) can be written as
�2Im½Gretð�eVÞ�. The correlation functions GþðtÞ ¼
hAðtÞAyð0Þi and G�ðtÞ ¼ hAyð0ÞAðtÞi are easily calculated
in the bosonized theory, and one finds that

G�ðtÞ ¼ 1

�

�
a

�vðt� i	Þ
�
2�K

; (15)

where 	 is a short-time cutoff. Collecting the results, one
arrives at

Ic ¼ 2eu2
ða=vÞ2�K

�ð2�KÞ ðeVÞ2�K�1; (16)

which tells us how the dc tunneling current scales with V in
the limit V ! 0, and also how its amplitude depends on the
parameter K that encodes the electron interaction. To
account for the full K-dependence in Eq. (16), one uses
the parameterizations of K and v after Eq. (4), with gd �
4gf [14]. To Oðgf=vFÞ, v � vFð5þ 3KÞ=ð3þ 5KÞ.
In order to extract the finite-temperature tunneling con-

ductance G, we perform a conformal transformation of the
correlation functions in (15), first going to Euclidean time
� ¼ it, and then taking v� ! ðv
=2�Þ arctanð2��=
vÞ,
with 
 ¼ 1=T. It follows that

Ic ¼ �2eu2ða=vÞ2�K ð2�TÞ2�K�1

� Im

�
Bð�K þ ieV=2�T;�K � ieV=2�TÞ

� sin½�ð�K � ieV=2�TÞ�
cosð��KÞ

�
;

(17)

where B is the Euler beta function. In Fig. 2, the current is
plotted for a few different values of K and T. We have here

PRL 102, 096806 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 MARCH 2009

096806-3



taken a � 1 nm and vF � 6� 106 m=s [9,17] and put u ¼
0:1vF=a. From (17), we obtain the scaling of the zero-bias
conductance G with temperature T,

G � dIc
dV

jV¼0 / T2�K�2: (18)

It is also interesting to explore the tunneling current
for an ac voltage of the form VðtÞ ¼ V0 þ V1 sinð�tÞ.
Inserting VðtÞ into Eq. (14) and following Ref. [20],
we find that the dc component Ic;0 of the current, defined

as the time average of IcðtÞ, can be expressed as Ic;0 ¼
2eu2ða=vÞ2�K

P
nanðeV1=�ÞðeV0 þ n�Þ2�K�1; where

anðeV1=�Þ ¼ 1
ð2�Þ2

R
2�
0

R
2�
0 dtdt0einðt0�tÞeieV1ðcost0�costÞ=�.

In Fig. 3, we have plotted the dependence of Ic;0 on V0 for

some different values of K and V1. As seen from the
figures, Ic;0 decreases with increasing electron-electron

interaction (i.e., with decreasing values of K).
To summarize, we have found that a point contact con-

necting two edges of a QSH bar supports a spin tunneling
current I / V2�K�1 at small voltages V, with a zero-bias
conductance G / T2�K�2 for all values of �K ¼
ðK þ 1=KÞ=2 with 1=2<K < 2, where K encodes the
strength of the electron interaction. This spin current can
be probed experimentally via a two-terminal resistance
measurement. The interval 1=2<K < 2 contains the
K-values applicable to a HgTe quantum well in the QSH
regime [9]. When K < 1=2, the tunneling amplitude scales
to large values, effectively severing the edges, analogous to
what happens in a fractional quantum Hall system. Given
that a QSH device can be manufactured which allows K to
pass through the value of 1=2, this would open for the

possibility to experimentally study the transition between
strong and weak tunneling in a topologically nontrivial
phase of matter.
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Note added: Upon completion of this work, we found a

preprint by Hou et al. [21] on tunneling between QSH edge
states in a four-terminal corner junction geometry. For
weak and intermediate electron interactions, these authors
find a weak-tunneling fixed point, similar to our result for a
two-terminal device.
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FIG. 2 (color online). The two graphs show the charge tunnel-
ing current Ic as a function of the applied voltage V for different
values of K and T. [The spin tunneling current Is that transfers
spin between the edges is given by Is ¼ ð@=2eÞIc.]
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FIG. 3 (color online). The dc component of the charge tunnel-
ing current Ic;0 as a function of V0 for different values of K and

V1. [The dc component of the accompanying spin tunneling
current Is;0 is given by Is;0 ¼ ð@=2eÞIc;0.]
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