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Controllable spin entanglement production in a quantum spin Hall ring
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We study the entanglement production in a quantum spin Hall ring geometry where electrons of opposite spins
are emitted in pairs from a source and collected in two different detectors. Postselection of coincidence detector
events gives rise to entanglement in the system, measurable through correlations between the outcomes in the
detectors. We have chosen a geometry such that the entanglement depends on the dynamical phases picked up by
the edge states as they move around the ring. In turn, the dependence of the phases on gate potential and Rashba
interaction allows for a precise electrical control of the entanglement production in the ring.
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I. INTRODUCTION

Quantum information processing relies on entanglement as
its basic resource, with a high demand for viable and efficient
schemes for producing and detecting quantum entangled
states [1,2]. Much of the original research has focused on
how to create two-electron entanglement in the solid state,
with the aim to explore various paths towards scalable devices
for quantum information processing. In equilibrium, spin
entanglement can be produced controllably using pairs of
quantum dots in the Coulomb blockade regime coupled to each
other [3,4] or to a common superconductor [5]. However, in
nonequilibrium situations, pairwise spin-entangled electrons
could be transported and the spin entanglement could be mea-
sured using similar means as in quantum optics with an appro-
priate spin to charge conversion [6–8]. Such “entanglers” have
been proposed in superconductor-normal junctions [9–16]
enjoying recent experimental support [17–20] or in a three-
terminal quantum dot device [21]. Other schemes use a laser
field [22], or Kondo scattering by a magnetic impurity [23,24].
Besides spin, entanglement in the orbital sector of Cooper
pairs [25], in Hanbury Brown and Twiss charge interferom-
eters [26] or carried by electron-hole pairs [27] created by a
tunnel junction, has been proposed.

To guide electrons in solid-state systems, one-dimensional
channels in integer quantum Hall devices are promising
candidates and together with a controlled particle injection,
tunneling junctions taking the role of linear optics beam
splitters, and detection via correlation measurements, an all
electronic table-top analog of photonics has been realized [28].

More recently, there have been suggestions that the helical
edge states in a two-dimensional quantum spin Hall insulator
can also be used as electronic wave guides. These states,
coming in Kramers’ pairs of counterpropagating electrons
with opposite spins, are topologically protected from elastic
backscattering in the absence of time-reversal symmetry
breaking [29,30]. Their intrinsic helicity are readily usable
for detecting spin entanglement [16,31,32] or even for cre-
ating entanglement—employing an Aharonov-Bohm flux to
entangle the electrons (so-called time-bin entanglement) when
injected into the quantum spin Hall insulator device [33], or
applying gate electrodes as beam splitters [34,35]. The latter
two proposals have their analog in devices with quantum Hall
edge states [26,27].

In this paper, we suggest a setup for producing entangled
pairs of electron spins in a quantum spin Hall ring, using
gate electrodes to control—with high precision—the amount
of entanglement produced in each pair. Any source producing
pairs of electrons with opposite spins can be used with our
design, provided that each electron comes with a definite spin.
The electrons thus injected into the device are completely
unentangled, with the entanglement of the outgoing electron
states instead originating from a proper postselection [36–38]
of detection events.

Our setup provides an easily accessible means to control the
entanglement production by shifting the phases of the plane
waves representing the electrons moving around the ring. This
can be performed by tuning the voltage of a backgate, leading
to a shift of the phases via the resulting change of effective gate
potentials felt by the electrons and strength of the Rashba spin-
orbit interaction intrinsic to a two-dimensional electron system
confined in a quantum well [39,40]. Furthermore, we show that
the possibility to individually tune the spin-flipping and spin-
preserving tunneling amplitudes of the tunneling junctions of
the setup allows for a full control of the quantization axes
of the entangled spin states: any linear combination of the
four possible Bell states are achievable as output states of the
device. This may pave the way for experimental tests of Bell
inequalities using electron spins, and also has potential as a
resource for quantum information purposes.

In the next section, Sec. II, we present the design of the
setup, write down the associated Hamiltonian and introduce
a scattering matrix formalism, enabling us to monitor how
the outgoing electron states change as the effective gate
potential, Rashba interaction, and tunneling amplitudes are
varied. The scattering matrix approach is put to use in Sec. III,
where we carry out a detailed analysis of the amount of
entanglement in the outgoing states. In Sec. IV, we address
the issue how to experimentally measure the entanglement
produced by our device. Section V, finally, contains a brief
summary.

II. MODEL

A. Setup

We consider a setup consisting of a ring formed in a
HgTe quantum well supporting a quantum spin Hall (QSH)
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FIG. 1. (Color online) Sketch of the setup, showing the source
S and the two detectors D1 and D2 connected to a QSH ring. The
two tunneling junctions have amplitudes pi , fi , and ti (i ∈ {1,2})
for spin-preserving tunneling, spin-flip tunneling, and transmission,
respectively. The length of the different parts of the edges are denoted
l1 through l7. Red and blue arrows denote the travel direction of
spin-up and spin-down electrons, respectively. Solid arrows are used
for paths where the electrons originate from the source and end up in
the detectors.

state [29,30]. The ring, sketched in Fig. 1, is separated into two
halves joined together by two tunneling junctions. Moreover,
as also shown in Fig. 1, a source (S) and two detectors (D1

and D2) are connected to the edges of the ring. A closed ring
in topological insulators based on HgTe quantum wells has
previously been investigated in Ref. [41], in a different context.
In a QSH system, the edge states are helical, meaning that
counterpropagating electrons are Kramers partners, related by
time reversal symmetry (TRS). In the realization of a QSH
phase in a HgTe quantum well, the spinor components of the
edge states are labeled by a quantum number taking two values,
call them ±, depending on which linear combination of total
angular momentum states they are built from [42]. By choosing
the spin quantization axis along 〈+|S|+〉, with S the spin
operator of an electron, the orthogonal |+〉 and |−〉 states will
correspond to spin-up and spin-down eigenstates (related by
time reversal), and can be relabeled |↑〉 and |↓〉, respectively.
In other words, particles emitted from the source S with spin
along 〈+|S|+〉 will enter only |↑〉 states, conversely the ones
with opposite spin will enter only |↓〉 states. It is important
to note, however, that 〈+|S|+〉 depends on the energy of
an electron [41,43,44], and therefore, using it to define a
spin quantization direction is meaningful only in a narrow
energy range. To have a common spin-quantization axis for
the electrons thus requires that they all leave the source S with
roughly the same energy.

Sources for single spin-polarized electron pairs emitted into
helical edge states have been recently proposed in Refs. [33]
and [34], where a periodically driven quantum dot connected
to a helical edge emits a pair of electrons every time the highest
occupied energy level of the dot crosses the Fermi level of the

FIG. 2. (Color online) Sketch of the source S (cf. Fig. 1). The
two quantum dots (QDs) emit single electrons simultaneously into
the helical edge when their energy levels cross the Fermi level of
the edge from below. If the upper QD releases a spin-up electron,
and the lower QD a spin-down electron, the device produces a pair of
opposite spins traveling away from the source. Otherwise, an electron
with unwanted spin orientation is collected in the drain.

edge from below. We propose a similar source, but with two
separate quantum dots capacitively connected to a metallic
gate with their energy levels aligned, emitting one electron
each into the helical edge via a tunneling junction. Having
double single-particle sources [45,46] ensures that the emitted
electrons are unentangled, a crucial feature of our setup. As
depicted in Fig. 2, a drain is placed between the two dots to
ensure that only electron pairs with opposite spins are injected
into the ring. The proposed source is sketched in Fig. 2 and
corresponds to the source S in Fig. 1.

In Fig. 1, electrons emitted from the source S are assumed
to move counterclockwise along the outer edge of the ring
if their spins are up, and clockwise if their spins are down
(and vice versa on the inside of the ring). Assuming now
that all electrons emitted from S have the same energy, there
are then two different emitted single-electron states, which
we denote a

†
S↑|0〉 and a

†
S↓|0〉, with |0〉 the filled Fermi sea of

edge electrons defining the ground state. An electron exiting
the ring can have either spin up or spin down as it enters
either detector D1 or detector D2. There are thus four possible
outgoing states in the detectors, b

†
j,σ |0〉, where j = 1,2

and σ = ↑,↓.
At junctions a and b (the upper and lower junction in Fig. 1,

respectively), electrons can either tunnel between the left and
right halves of the ring through the junction, or be transmitted
past the junction and stay on the same half. In the tunneling
junctions, the two edges are squeezed together, allowing for
scattering between the edges [47,48]. Without breaking TRS,
the electrons can either stay on the same edge, keeping its
spin, or scatter to the opposite edge where states of both spins
(and therefore both directions) are available. In the general
case, there is thus a finite amplitude pi for spin-preserving
tunneling and a finite amplitude fi for spin-flip tunneling
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(i = a,b). The amplitude for transmission past the junction,
between the inner and outer side of the ring, is denoted ti . In
this process the spin is conserved, assuming the quantization
axes on the inner and outer sides of the ring to be the same.
Note that depending on the exact configurations of the different
potential energies experienced by the electrons in the various
scattering processes, the notions of “tunneling” and “trans-
mission” may be interchanged. For simplicity, we will keep
the terms as introduced above for all possible configurations
of potentials. The probabilities for the possible processes of
an electron arriving at one of the junctions must add up
to one,

|ta|2 + |pa|2 + |fa|2 = |tb|2 + |pb|2 + |fb|2 = 1. (1)

By symmetry, with no bias applied, |pi | and |fi | are the same
regardless of whether electrons tunnel from left to right or
vice versa. For the two different (left and right) transmission
amplitudes at each junction, Eq. (1) therefore implies that
|ti,left|2 = |ti,right|2. We assume furthermore that the extra phase
contribution from transmission past the junction is negligible,
so that ti,left = ti,right = ti holds.

B. Hamiltonian

To analyze the physics of the setup, we shall use time-
independent scattering theory with the energy fixed to the
Fermi level of the edge states. Setting the stage, we introduce
coordinates x1,x2, . . . ,x7 for the different edge segments
of length l1,l2, . . . ,l7, respectively (see Fig. 1). Imposing
open boundary conditions for each segment, we write the
corresponding single-particle Hamiltonians (with � = 1) as

Hj = −ivF ∂xj
σz − iα∂xj

σy − eVg, j = 1,2, . . . ,7, (2)

having linearized the edge state dispersion about the Fermi
points ±kF . Here vF is the Fermi velocity, and σy and σz

are Pauli matrices acting on the spin states |↑〉 = (1 0)T and
|↓〉 = (0 1)T . The second term of Hj encodes the Rashba spin-
orbit interaction of strength α, with the third term a potential
term, where Vg denotes the effective gate potential felt by the
electrons.

The Rashba coupling α has a complex dependence on
several distinct features of the quantum well in which the
ring is defined [49]. Like the effective gate potential, it
depends in particular on the electric field from any top or
bottom gates applied to the device, and can thus be tuned
by tuning the gate potentials. It is convenient to absorb the
Rashba interaction into the kinetic energy via the unitary
transformation U = exp(−iσxθ/2), and write the Hamiltonian
as H ′

j = UHjU
† with

H ′
j = −ivα∂xj

σz′ − eVg, j = 1,2, . . . ,7, (3)

with vα =
√

v2
F + α2, and with the spin-quantization axis ẑ′

inclined by an angle θ = arcsin(α/vF ) with respect to the
ẑ axis which defined the original spin-quantization axis. In
this way, we are dealing with pure helical edge states with a
renormalized Fermi velocity vα and a new spin-quantization
axis ẑ′.

Given a wave number k, the corresponding helical eigen-
state of H ′

j ,

ψk,↑(xj ) = eikxj |↑〉, (4)

has a Kramers’ partner

ψ−k,↓(xj ) = e−ikxj |↓〉, (5)

both with energy

E = kvα − eVg. (6)

Joining together the open boundaries of the segments at
the junctions a and b so as to form the ring in Fig. 1,
electrons can tunnel or be transmitted from one segment to
another. In the present case of elastic tunneling processes, an
electron in a state with wave number ±k will then emerge
on the other side of the junction in a state with the same or
the opposite wave number, corresponding to spin-preserving
and spin-flip tunneling, respectively. Likewise, a transmitted
electron is simply transferred between states with the same
wave number. Independent of the type of process or the
direction of motion, it follows that the plane wave representing
an electron having traveled a distance l from the source S will
be phase shifted by an amount (E + eVg)l/vα , not counting
the phase shifts acquired in the tunneling processes. Since the
phase (E + eVg)l/vα is proportional to the distance traveled
by the electron, the geometry of the ring becomes crucial.
Importantly, the path l6 is only traveled by electrons which have
flipped their spin. As will be explained in the next section, this
fact allows for controlling the entanglement in the postselected
states that originate from a Kramers’ pair emitted from the
source S.

Before proceeding, let us pause and recall that the part
of the dynamical phase that depends on the Rashba SO
coupling is spin dependent in ordinary spinful electron liquids.
This is somewhat related to the dynamical part of the
Aharonov-Casher effect [50], where electron spins moving
around a uniformly charged thread acquire a phase due to
the electric field (dual to the Aharonov-Bohm effect where
electron charges move around a magnetic flux and acquire a
phase due to the magnetic field). In this situation, the electric
field also affects the dynamical phases of the electrons, just
as in the case of a Rashba SO coupling. This “dynamical
part of the Aharonov-Casher effect” from the Rashba ef-
fect has been experimentally detected in a HgTe quantum
well [51].

C. S matrix

Following Büttiker [52], we introduce second-quantized
operators a

†
jσ and ajσ ,j = S,D1,D2; σ = ↑,↓, which create

and annihilate electrons in the “incoming” states (i.e., the
states emitted from the source and the detectors before hitting
a junction). Similarly, b

†
jσ and bjσ ,j = S,D1,D2; σ = ↑,↓,

create and annihilate electrons in the “outgoing” states (i.e.,
the scattered states leading to the detectors or the source).
The a and b operators are connected through the scattering
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relation ⎛
⎜⎜⎜⎜⎜⎝

b1↑
b1↓
b2↑
b2↓
bS↑
bS↓

⎞
⎟⎟⎟⎟⎟⎠

= S

⎛
⎜⎜⎜⎜⎜⎝

a1↓
a1↑
a2↓
a2↑
aS↓
aS↑

⎞
⎟⎟⎟⎟⎟⎠

, (7)

with the scattering matrix S providing a unitary mapping of the a operators into the b operators. The full S matrix is
presented in the Appendix [see Eq. (A2)]. If the temperature is low enough we can neglect incoming electrons from the
detectors, and we can focus on the part of the S matrix which maps the a operators for states emitted from the source into
the b operators for the scattered states. We call this the reduced scattering matrix S̃. From Eq. (A2) in the Appendix we
read off: ⎛

⎜⎜⎜⎜⎜⎝

b1↑
b1↓
b2↑
b2↓
bS↑
bS↓

⎞
⎟⎟⎟⎟⎟⎠

= S̃

(
aS↑
aS↓

)
, (8)

with

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pae
−iK(l1+l2) fbt

∗
a e−iK(l2+l4+l6)

f ∗
a tbe

−iK(l1+l3+l6) p∗
be

−iK(l3+l4)

−tae
−iK(l1+l5) fbp

∗
ae

−iK(l4+l5+l6)

−f ∗
a pbe

−iK(l1+l6+l7) t∗b e−iK(l4+l7)

−f ∗
a fbe

−iK(l1+l4+l6) 0
0 −f ∗

a fbe
−iK(l1+l4+l6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Here K ≡ (E + eVg)/vα , with the relative minus signs and the complex conjugations of the tunneling and transmission amplitudes
in Eq. (9) prescribed by the unitarity of the full S matrix in Eq. (7). Note that the phase factor exp(iKl6) occurs only in the matrix
elements for spin-flipping processes.

III. ENTANGLEMENT

A. Postselection

When the source emits two unentangled electrons of opposite spins, the incoming two-electron state is |�in〉 = a
†
S↑a

†
S↓|0〉,

with |0〉 the filled Fermi sea of edge electrons. By inspection of the S matrix, with four possible scattering channels for each
electron, we can easily read off the outgoing two-electron state, calling it |� ′

out〉. Using that S−1 = S†, it follows from Eqs. (9)
and (A2) that

(
aS↑
aS↓

)
= S̃†

⎛
⎜⎜⎜⎜⎜⎝

b1↑
b1↓
b2↑
b2↓
bS↑
bS↓

⎞
⎟⎟⎟⎟⎟⎠

, (10)

and we obtain

|� ′
out〉 = N ′(pae

−iK(l1+l2)b
†
1↑ + f ∗

a tbe
−iK(l1+l3+l6)b

†
1↓ − tae

−iK(l1+l5)b
†
2↑ − f ∗

a pbe
−iK(l1+l6+l7)b

†
2↓

− f ∗
a fbe

−iK(l1+l4+l6)b
†
S↑

)(
fbt

∗
a e−iK(l2+l4+l6)b

†
1↑ + p∗

be
−iK(l3+l4)b

†
1↓ + fbp

∗
ae

−iK(l4+l5+l6)b
†
2↑

+ t∗b e−iK(l4+l7)b
†
2↓ − f ∗

a fbe
−iK(l1+l4+l6)b

†
S↓

)|0〉, (11)

where N ′ is a normalization factor, determined by choosing 〈� ′
out|� ′

out〉 = 1.
We project this state to the realization that each detector receives exactly one electron. This process is referred to as

postselection [37,38]. Thus we keep only the terms in Eq. (11) where one particle gets detected in D1 and the other in D2. By
using the antisymmetry of the b

†
jσ operators, we can express the resulting state on the form

|�out〉 = N (fb(|pa|2 + |ta|2)e−iK(l↑↑+l6)|↑↑〉 + f ∗
a (|pb|2 + |tb|2)e−iK(l↓↓+l6)|↓↓〉

+ [pat
∗
b e−iKl↑↓ + f ∗

a fbpbt
∗
a e−iK(l↑↓+2l6)]|↑↓〉 + [p∗

b tae
−iKl↓↑ + f ∗

a fbp
∗
a tbe

−iK(l↓↑+2l6)]|↓↑〉), (12)
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where the states |σσ ′〉 are defined as b
†
1σ b

†
2σ ′ |0〉, the lengths

are defined through

l↑↑ = l1 + l2 + l4 + l5, (13)

l↓↓ = l1 + l3 + l4 + l7, (14)

l↑↓ = l1 + l2 + l4 + l7, (15)

l↓↑ = l1 + l3 + l4 + l5, (16)

and the normalization factor is

N = (|fb(|pa|2 + |ta|2)|2 + |pat
∗
b + f ∗

a fbpbt
∗
a e−2iKl6 |2

+|f ∗
a (|pb|2 + |tb|2)|2 + |p∗

b ta + f ∗
a fbp

∗
a tbe

−2iKl6 |2)−1/2,

(17)

chosen so that 〈�out|�out〉 = 1. This incorporates the postse-
lection condition. Clearly, the different tunneling and transition
amplitudes play an important role for the spin entanglement of
|�out〉 that we will study in the following. In the two cases
where (1) fa=fb=0 and (2) pa=pb=0, the corresponding
outgoing states are

|�1〉 = N (pat
∗
b e−iKl↑↓ |↑↓〉 + p∗

b tae
−iKl↓↑ |↓↑〉), (18)

|�2〉 = N (fb|ta|2e−iK(l↑↑+l6)|↑↑〉 + f ∗
a |tb|2e−iK(l↓↓+l6)|↓↓〉),

(19)

respectively, which are maximally entangled Bell states if
the two junctions are equal (i.e., |fa| = |fb|, |pa| = |pb|, and
|ta| = |tb|). Setting |ta| = |tb| = 0 also produces the state |�2〉,
with ti in Eq. (19) replaced by pi . This means that if we are able
to separately tune the amplitudes for spin-flipping and spin-
preserving tunneling through the junctions, we can choose the
states going out of the device freely, from the opposite-spin
Bell state �1 to the same-spin Bell state �2, as well as any
superposition of the two. Although not yet experimentally
verified, such control of the different amplitudes in tunneling
junctions of helical edges—using local electrical gates to
control the amount of spin-orbit coupling experienced by the
electrons in the junctions—has previously been proposed in
Refs. [47,48].

Importantly, by tuning the effective gate potential eVg

and/or the Rashba coupling α to control the relative phases
between the |↑↓〉 and |↓↑〉 terms in Eq. (18) and the
|↑↑〉 and |↓↓〉 terms in Eq. (19) allows for choosing the
outgoing states to be any linear combination of all four
of the standard Bell states, |�±

1 〉 = (|↑↓〉 ± |↓↑〉)/√2 and
|�±

2 〉 = (|↑↑〉 ± |↓↓〉)/√2. This is a particular advantage of
our device, made possible by its special geometry. Below
we shall explore in detail how it can be used to yield a
precise control of the spin entanglement production. We
note that tunable spin-entanglement production has also been
proposed in a non-helical Mach-Zehnder setup with Rashba
spin-orbit interaction leading to spin-rotation [53] different to
our proposal.

B. Efficiency

One must note that the postselection of only certain events
will decrease the efficiency of the setup, and it is essential
to calculate how large the fraction of postselected states is

compared to the discarded ones. Let us call the probability
for ending up with at least one electron in the source Psource,
the probability for detecting one electron in each detector
Pdiff , and have Psame denoting the probability for ending up
with both electrons in the same detector. No other options are
available, so Psource + Pdiff + Psame = 1. In the case of equal
junctions, i.e., fa = fb ≡ f , pa = pb ≡ p, and ta = tb ≡ t ,
Eq. (11) implies that the probability for the two electrons to
end up in different detectors is

Pdiff = (N ′)2[2PT |1 − F e−2iKl6 |2 + 2F (P − T )2], (20)

where the tunneling and transmission probabilities F ≡ |f |2,
P ≡ |p|2, and T ≡ |t |2 have been introduced for convenience,
while

Psource = (N ′)2[F 4 + 2F 2(FP + P + FT + T )], (21)

and

Psame = (N ′)2[|P + FT e−2iKl6 |2
+ |T + FP e−2iKl6 |2]. (22)

An expression for (N ′)2 can now be read off from
Eqs. (20)–(22), using the fact that the probabilities sum up to
one. Varying f between 0 and 1, while keeping p = t , gives
Pdiff = 0.5 when f = 0. The choice f = 1 causes all electrons
to travel back to the source, rendering Pdiff = 0. Varying p

(t) between 0 and 1, while keeping f = t (f = p), gives
Pdiff = 0.25 when p = 0 (t = 0), increasing to its maximum
value Pdiff = 0.40 when p = 0.75 (t = 0.75). When p (t)
grows larger, the probability to end up in D1 (D2) will approach
unity, which means that Pdiff = 0 also for p = 1 (t = 1). This
is illustrated in Fig. 3.

If a source with two quantum dots like the one in Fig. 2 is
used, with no preferred spin orientation in the dots, only 1/4 of
the produced pairs will be useful for the entangler. In this case,
Pdiff is further reduced by a factor of 4. As an example, in the
case of small p, around 6% of the produced electrons are left
available for entanglement. We can compare this to the setup
of Ref. [34], where the number of entangled electrons instead
approach zero in the limit of maximal spin entanglement.

C. Concurrence

To estimate the entanglement produced by the postselection
of the detected states, we use the concurrence C as an
entanglement measure [54]. For a pure state of a bipartite
system |�〉, this is defined as

C = |〈�|σy ⊗ σy |�∗〉|, (23)

where the complex conjugate is to be taken in the basis in
which the Pauli matrices are written. We let Aσσ ′ denote the
amplitude for the |σσ ′〉 state, so that

|�out〉 = N (A↑↑|↑↑〉 + A↑↓|↑↓〉 + A↓↑|↓↑〉 + A↓↓|↓↓〉)
(24)

and

C = 2N2|A↑↓A↓↑ − A↑↑A↓↓|. (25)

As can be read off from Eqs. (13)–(16), l↑↓ + l↓↑ = l↑↑ + l↓↓,
and it then follows from Eq. (12) that the concurrence can be
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written as

C = 2N2|(f ∗
a fb[|pa|2|tb|2 + |pb|2|ta|2]e−2iKl6

− f ∗
a fb[|pa|2 + |ta|2][|pb|2 + |tb|2]e−2iKl6

+pap
∗
b tat

∗
b + f ∗2

a f 2
b p∗

apbt
∗
a tbe

−4iKl6 )e−iK(l↑↑+l↓↓)|
= 2N2|pap

∗
b tat

∗
b + p∗

apbt
∗
a tbf

∗2
a f 2

b e−4iKl6

− f ∗
a fb(|pa|2|pb|2 + |ta|2|tb|2)e−2iKl6 | (26)

and we see that the only length affecting the concurrence is l6.
Equation (26) shows that our setup allows for entanglement

production of highly detailed control. It is instructive to
uncover the particular role of the phase factors e±2iKl6 in
Eq. (26) for achieving this. First note that according to
Eq. (25), the amount of entanglement is determined by the
absolute value of the difference between the products of the
same-spin and opposite-spin state amplitudes. The phases of
these products are proportional to the total distance traveled
by the electrons. Our setup is designed so that the total length
of the paths for two different states with either the same or
opposite spins is always given by the length l6 times the
total number of spin flips, plus l↑↑ + l↓↓ (same-spin states)
or l↑↓ + l↓↑ (opposite-spin states). Now, Eqs. (13)–(16) show
that l↑↑ + l↓↓ = l↑↓ + l↓↑, so that part of the phase factor will
be common to the full expression within the absolute signs
in Eq. (25). Since the electrons are injected into the edge
with opposite spins, the same-spin and opposite-spin states
will have experienced different numbers of spin flips. As a
consequence, and as seen in Eq. (26), only phases proportional
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FIG. 3. (Color online) Probabilities (i) for the electrons to end
up in different detectors (Pdiff ), (ii) for at least one electron returning
back to the source (Psource), and (iii) for both electrons being collected
in the same detector (Psame) as a function of (a) the spin-flip and (b)
the spin preserving tunneling amplitudes. In (a) p = t , and in (b)
f = t . Maximum entanglement is always produced when f = 0 or
p = 0, and both cases are supported by a finite Pdiff (blue curve).

FIG. 4. (Color online) Maximal concurrence obtainable by tun-
ing Vg , as a function of the ratios rf and rp between the different
tunneling amplitudes in the two junctions. The difference between
(e) and (f) illustrates the effect of allowing for differences in the
phases added to the edge states during scattering in the two junctions.

to l6 will remain in the various terms in the expression for the
concurrence C. These phases contain the parameter K , which
makes them experimentally tunable via the gate voltage Vg

that parametrizes K: the effective gate potential eVg as well as
the tunable part of the Rashba coupling α (which enters into
the expression for vα) depend on Vg . We should here stress that
it is the topology of the ring structure, where both junctions
are directly connected to both detectors, that makes this phase
dependence of the concurrence possible. In this context, we
also point out that the expression for C is gauge invariant, as it
should be. This is most easily seen by going back to Eq. (26):
the phase factor exp(−2iKl6) appears always together with
f ∗

a fb which describes traversing the l6 segment in two different
directions. This phase is therefore gauge invariant [55]. In the
next section we shall elaborate on how the phase dependence
of the concurrence can be exploited experimentally to control
the quantum entanglement of the spins.

Before doing so, however, let us study how the various
tunneling amplitudes in Eq. (26) influence the concurrence. In
Fig. 4, the maximum concurrence obtainable by tuning the gate
voltage Vg is shown for a number of different configurations of
the tunneling amplitudes. The x and y axes represent the ratio
rf ≡ |fa|/|fb| and rp ≡ |pa|/|pb|, respectively. Five different
configurations of fa , pa , and ta are chosen for Figs. 4(a)–4(e).
The important information to be read off from these figures
is that for the case of equal junctions [represented by the
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(rf ,rp) = (1,1) corners of the figures], Vg can always be cho-
sen so as to obtain maximal entanglement (C = 1). Moreover,
most other configurations also give reasonably high values
for C. The (rf ,rp) = (0,0) corners of the figures on the other
hand represent the case where |ta| → 1, fixing the spins of the
electrons ending up in D2 and consequently making C → 0.

The five Figures 4(a)–4(e) are all plotted under the assump-
tion that the differences in the phases acquired during tunneling
in the junctions are zero. Most configurations of tunneling am-
plitudes allow for the Vg-controlled phases to compensate for
finite phase differences to a large extent, but the concurrence
is typically lowered somewhat. Let us denote by �φf , �φp,
and �φt the differences between the two junctions a and b

in phases added to the edge states due to spin-flip tunneling,
spin-preserving tunneling, and transmission, respectively. In
Fig. 4(f), these phase differences are chosen to destroy as
much as possible of the entanglement for the case where the
absolute values of the tunneling amplitudes are equal. It shows
that the concurrence is lowered from C = 1 to C ≈ 0.6.

Having full control over the spin quantization axis of the
entangled states is of course also highly desirable, in particular
in a quantum information setting. As we have pointed out
above, this requires control also over the spin-flip and spin-
preserving amplitudes in the two tunneling junctions. In this
context one should note that in the case of equal junctions a

and b, the concurrence in Eq. (26) takes the form

C = |PT (e2iKl6 + F 2e−2iKl6 ) − F (P 2 + T 2)|
PT |1 + F e−2iKl6 |2 + F (P + T )2

, (27)

showing that for this particular case the amount of entan-
glement produced does not depend on the phases which the
electrons acquire during tunneling. As expected, we also see
from Eq. (27) that C reaches unity for the cases with maximally
entangled Bell pairs, choosing one of the possibilities f = 0,
p = 0, or t = 0.

It is also interesting to inquire into the role of the Aharonov-
Bohm effect on the entanglement production. If the middle of
the ring is threaded with a magnetic flux 
, the states will
acquire an Aharonov-Bohm (AB) phase φAB [56]. We choose
the direction of the flux so that a full counterclockwise revolu-
tion produces the AB phase φAB = 
/
0, where 
0 = h/e.
In this case, the sign of the phase is dependent on the direction
of propagation, and the reduced scattering matrix becomes

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pae
−iK(l1+l2)−iφ12 fbt

∗
a e−iK(l2+l4+l6)+iφ34

f ∗
a tbe

−iK(l1+l3+l6)−iφ12 p∗
be

−iK(l3+l4)+iφ34

−tae
−iK(l1+l5) fbp

∗
ae

−iK(l4+l5+l6)+iφAB

−f ∗
a pbe

−iK(l1+l6+l7)−iφAB t∗b e−iK(l4+l7)

−f ∗
a fbe

−iK(l1+l4+l6) 0
0 −f ∗

a fbe
−iK(l1+l4+l6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(28)

where φ12 + φ34 = φAB , with φ12 and φ34 the parts of the total
phase picked up from the upper and lower half of the ring,
respectively. Using the notation of Eq. (24), it follows that the
outgoing state in the AB case is, up to an unimportant global
phase,

|�out,AB〉 = N (A↑↑eiφAB |↑↑〉 + A↑↓|↑↓〉
+A↓↑eiφAB |↓↑〉 + A↓↓|↓↓〉), (29)

and thus, according to Eq. (25), the concurrence is

CAB = 2N2|(A↑↓A↓↑ − A↑↑A↓↓)eiφAB |
= 2N2|A↑↓A↓↑ − A↑↑A↓↓|, (30)

i.e., the same as without the AB phase.

IV. MEASUREMENTS

A. Bell test

As discussed above, the spin entanglement in our device
is produced through postselection of entangled electron pairs,
discarding the pairs where either both electrons end up in the
same detector, or where at least one of them returns back
to the source. If a spin measurement is performed in the
detectors, e.g.,to assess the potential entanglement produced
by the system, the very detection of the electrons gives us
the possibility to disregard unwanted events. However, the
measurement of the spins destroys the entanglement, so if
we want to produce entangled pairs for quantum information
processing, a noninvasive charge measurement that leaves the
spins intact must first be performed in order to discard same-
detector events [37,53]. To achieve this, one may use a quantum
point contact (QPC) capacitively coupled to the part of the
leads where the electrons leave the entangler. The conductance
through the QPC can be tuned to be extremely sensitive to
nearby charges and this type of charge sensing is widely used
in detecting single electrons on quantum dots [57–59]. The
precise setup of the charge measurement will of course depend
on the setting in which the entangler will be used.

Measuring the nonlocal quantum correlations associated
with the spin entanglement is a challenging task. It is here
important to realize that the relative phases of the entangled
spin states in Eq. (12) imply that the spins in a generic state are
rotated out of the xz plane. When measuring the correlations
between the states in the two detectors, we therefore need
to be able to measure the spin along an arbitrary axis.
This could be accomplished by having detectors where the
spin-quantization axis is magnetically rotated in an arbitrary
direction, parametrized by two angles θ and φ. An example
of this type of spin measurement is the use of a Zeeman-split
quantum dot as a spin filter [60,61].

A simpler solution in our case is to use detectors according
to the sketch in Fig. 5 (each of the detectors D1 and D2 in
Fig. 1 are now replaced by the setup within the dashed frame
of Fig. 5), similar to the quantum state tomography setup
of Ref. [62]. Here, the role of the spin quantization axis is
taken by a controllable tunnel junction with spin-flip and spin-
preserving amplitudes f and p, respectively. Since we want all
electrons entering the detector to be measured, the amplitude
for transmission should be t = 0, and thus |f | + |p| = 1. This
means that we can introduce a single parameter θ to represent
the control of the tunable tunneling amplitudes and define
θ through the relations |f (θ )| = sin θ and |p(θ )| = cos θ .
Tuning θ is then equivalent to rotating the spin-quantization
axis in the xz plane. Specifically, detecting an electron in
detector d↑ or d↓ becomes equivalent to measuring spin ↑
or ↓ along the spin axis rotated by an angle θ around the
original y axis. A gate is placed along the path for one of the
spins (here the ↑ spin), allowing us to impose an extra phase
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FIG. 5. (Color online) Sketch of a principle for measuring the
entanglement produced in the system. The angles θ and φ are effective
rotation angles for the spin quantization axis, realized by using electric
gates to control the spin-preserving and spin-flip tunneling and to add
a phase to the states of spin up, respectively. The detectors d↑ and d↓
detect electrons with spin up and spin down, respectively.

eiφ to the states with spin up, equivalent to a rotation of the
spin-quantization axis around the z axis. The operators d↑ and
d↓ of the detected states are then related to the operators b↑ and
b↓ of the outgoing states from the device through the relation

(
d↑
d↓

)
=

(
p(θ )eiφ −f (θ )
f (θ )eiφ p(θ )

)(
b↑
b↓

)
. (31)

With these detectors, a Bell test can be carried out. Bell’s
inequality gives an upper bound for classical correlations
between two states, and if it is violated we know that the
states are quantum entangled. The correlations are expressed
through the Bell parameter B, and the inequality is B � 2.
The version we will discuss here was proposed by Clauser,
Horne, Shimony, and Holt (CHSH) [63]. In this version the
Bell parameter B is calculated according to

B = E(θ1,φ1,θ2,φ2) − E(θ ′
1,φ

′
1,θ2,φ2)

+E(θ1,φ1,θ
′
2,φ

′
2) − E(θ ′

1,φ
′
1,θ

′
2,φ

′
2), (32)

where

E(θ1,φ1,θ2,φ2) = P↑↓ + P↓↑ − P↑↑ − P↓↓ (33)

and Pσ1σ2 = |A′
σ1σ2

|2 is the probability to measure a state
with spin σ1 in D1 and one with σ2 in D2 (A′

σ1σ2
being the

amplitude). These probabilities depend on the chosen angles
θi , θ ′

i , φi , and φ′
i , i = 1,2, in the corresponding detectors (cf.

Fig. 5), and by varying them a maximal value B = Bmax is
obtained. For the pure states that we are considering—having
ensured that the two detected electrons were emitted with
different spins—the maximal value of B is related to the
concurrence through the relation Bmax = 2

√
1 + C2 [64].

Using the notation in Eq. (24), the amplitudes A′
σ1σ2

for the
different outcomes are

A′
σ1σ2

= A↑↑〈σ1σ2|↑↑〉 + A↑↓〈σ1σ2|↑↓〉
+A↓↑〈σ1σ2|↓↑〉 + A↓↓〈σ1σ2|↓↓〉. (34)

The matrix elements in Eq. (34) should be read as
〈σ1σ2|λ1λ2〉 = (〈dσ1 | ⊗ 〈dσ2 |)(|bλ1〉 ⊗ |bλ2 )〉, i.e., the ampli-
tude for the state |bλ1bλ2〉 to be detected with spin σ1 in D1 and
spin σ2 in D2. They can be calculated using Eq. (31) so that,
for example, 〈− + |↑↓〉 = f ∗

1 (θ1)f ∗
2 (θ2)e−iφ1 , 〈− − |↓↑〉 =

−p∗
1(θ1)f ∗

2 (θ2)e−iφ2 , and so on, where + and − denote spin
up and down in the d↑ and d↓ detectors, respectively. With
the source producing pairs of electrons of opposite spins well
separated in time, the probabilities that enter the CHSH test
described in Eqs. (32) and (33) are found by taking statistical
averages of several events.

B. Experimental realization

Most experiments on the QSH effect have been performed
on HgTe/CdTe quantum wells [65]. In the aforementioned ex-
periment where the Aharonov-Casher effect was measured in
a ring structure in such a quantum well, a ring with an average
radius of 1 μm was used [51]. Conductance oscillations due to
the phase change was observed with one period of oscillation

FIG. 6. (Color online) C as a function of eVg/vα and (a) l6, (b)
|f |, for the case of equal junctions. The oscillations in entanglement
production due to the change in dynamical phase allow for using the
effective gate potential Vg and/or Rashba strength (via vα) to tune
the concurrence to one with any set of tunneling amplitudes in the
junctions, as long as they are equal in the two junctions a and b.
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for every change �Vg ≈ 15 mV of the gate voltage, estimated
to correspond to tuning the Rashba SO splitting �R between
0 < �R < 50 μeV. Using an effective mass of m∗ = 0.04me,
this is calculated to correspond to a tunable Rashba parameter
in the interval 0 < α < 4 × 10−12 eV m [66]. It should be
noted that huge SO splittings of �R = 30 meV have been
observed in HgTe quantum wells with inverted band gaps [67].
The width of the helical edge states are assumed to be
approximately 40 nm [65], so the thickness of the ring has
to exceed, say, ∼100 nm to prevent unwanted overlaps across
the edges.

With these numbers in mind, we can use Eq. (26) to
estimate the expected spin entanglement produced by our
proposed device. Figure 6 shows the concurrence C in Eq. (26)
calculated as a function of eVg/vα and (a) the length l6
and (b) the absolute value of the spin-flip amplitude |f |. In
both cases we have chosen E = 0 in Eq. (6), and have also
chosen identical junctions a and b, with f = fa = fb = 1/

√
2

and p = pa = pb = t = ta = tb = 1/(2
√

2) in (a), and l6 =
400 nm in (b). In (b), we have also chosen p = t = 1/(2

√
2).

The reason we plot C as a function of eVg/vα , rather than as
a function of only Vg , is because of the complex dependence
of vα on Vg , being specific to the particular design of the
semiconductor heterostructure which supports the quantum
well [49]. The oscillations in the entanglement production
are shown clearly in Fig. 6(a) and along the eVg/vα axis of
Fig. 6(b). Importantly, Fig. 6(b) shows that any spin-flip tunnel-
ing amplitude can produce maximum entanglement, given the
right choice of effective gate potential and/or Rashba strength.
It is also interesting to note that the role of the relative sizes
of spin-flip and spin-preserving amplitudes in the junctions
when calculating the concurrence agrees qualitatively with the
findings of Ref. [34], where a related setup was considered in
a topologically nonequivalent geometry.

V. CONCLUSION

We considered a ring made from a quantum spin Hall
insulator where a source injects pairs of electrons that
are detected in two drains. Two beamsplitters in the ring
with spin-flip and spin-preserving scattering paths result in
spin-entangled portions of the wave functions where two
electrons enter different detectors. Employing the process of
postselection, spin entanglement could be produced and then

measured, e.g., via the violation of a Bell inequality, using
spin-sensitive detectors. By exploiting the helical nature of the
edge states, this detection may most effectively be carried out
via a charge measurement. Most importantly, having a device
with two equal beamsplitters allows for an electrical tuning of
the output states between all four Bell states. This goes beyond
earlier proposals based on chiral [25–27] and helical [34]
edge states. The calculated concurrence shows an oscillating
behavior as a function of a dynamical phase which can be tuned
via gate voltages. This dependence on the dynamical phase
allows for electrical tuning of the amount of entanglement
produced even in the case of an asymmetry between the two
junctions. Postselection induces the entanglement in the first
place, and the procedure could be used to create spin-entangled
states useful for quantum information if the detection used for
discarding unwanted events is spin insensitive (i.e., only charge
coincidences of the electrons are detected [37,53]).
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APPENDIX: FULL S MATRIX

In order to make the time-reversal symmetry of the system
manifest, we choose to write the scattering matrix in a basis
where ⎛

⎜⎜⎜⎜⎜⎝

b1↑
b1↓
b2↑
b2↓
bS↑
bS↓

⎞
⎟⎟⎟⎟⎟⎠

= S

⎛
⎜⎜⎜⎜⎜⎝

a1↓
a1↑
a2↓
a2↑
aS↓
aS↑

⎞
⎟⎟⎟⎟⎟⎠

. (A1)

As defined in Sec. II C, ajσ (bjσ ),j = S,D1,D2; σ = ↑,↓, an-
nihilates an electron in an “incoming” (“outgoing”) scattering
state. By inspection of Fig. 1, and by imposing unitarity, the
full S matrix is thus obtained as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t∗
a tbe

−iK(l2+l3+l6) −fae
−iK(l2+l5) −t∗

a pbe
−iK(l2+l6+l7) t∗

a fbe
−iK(l2+l4+l6) pae

−iK(l1+l2)

t∗
a tbe

−iK(l2+l3+l6) 0 p∗
a tbe

−iK(l3+l5+l6) f ∗
b e−iK(l3+l7) p∗

be
−iK(l3+l4) f ∗

a tbe
−iK(l1+l3+l6)

fae
−iK(l2+l5) p∗

a tbe
−iK(l3+l5+l6) 0 −p∗

apbe
−iK(l5+l6+l7) p∗

afbe
−iK(l4+l5+l6) −tae

−iK(l1+l5)

−t∗
a pbe

−iK(l2+l6+l7) −f ∗
b e−iK(l3+l7) −p∗

apbe
−iK(l5+l6+l7) 0 t∗

b e−iK(l4+l7) −f ∗
a pbe

−iK(l1+l6+l7)

−t∗
a fbe

−iK(l2+l4+l6) p∗
be

−iK(l3+l4) −p∗
afbe

−iK(l4+l5+l6) t∗
b e−iK(l4+l7) 0 −f ∗

a fbe
−iK(l1+l4+l6)

pae
−iK(l1+l2) −f ∗

a tbe
−iK(l1+l3+l6) −tae

−iK(l1+l5) f ∗
a pbe

−iK(l1+l6+l7) −f ∗
a fbe

−iK(l1+l4+l6) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A2)

with all quantities entering the matrix elements defined in Sec. II. When extracting the reduced scattering matrix S̃ from S, it
is convenient to pass to a new basis by switching columns 1 ↔ 2, 3 ↔ 4, and 5 ↔ 6. Reading off from (A2), this yields the
expression for S̃ as in Eq. (9).
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Hock, V. Daumer, M. Schäfer, C. R. Becker, H. Buhmann, and
L. W. Molenkamp, Phys. Rev. Lett. 96, 076804 (2006).
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