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Abstract
We consider a generalization of the quantum Rabi model where the two-level 
system and the single-mode cavity oscillator are coupled by an additional 
Stark-like term. By adapting a method recently introduced by Braak (2011 
Phys. Rev. Lett. 107 100401), we solve the model exactly. The low-lying 
spectrum in the experimentally relevant ultrastrong and deep strong regimes 
of the Rabi coupling is found to exhibit two striking features absent from the 
original quantum Rabi model: avoided level crossings for states of the same 
parity and an anomalously rapid onset of two-fold near-degenerate levels as 
the Rabi coupling increases.

Keywords: quantum optics, quantum Rabi–Stark model,  
regular and exceptional spectrum

(Some figures may appear in colour only in the online journal)

1.  Introduction

The integration of coherent nanoscale systems with quantum resonators is a focal point of cur
rent quantum engineering of states and devices. Examples range from trapped ions interact-
ing with a cavity field [1] to superconducting charge qubits in circuit QED architectures [2]. 
The paradigmatic model for these systems is the Rabi model [3] which was first introduced  
80 years ago to discuss the phenomenon of nuclear magnetic resonance in a semi-classical 
way. While Rabi treated the atom quantum mechanically, he still construed the rapidly varying 
weak magnetic field as a rotating classical field [4].
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In the course of investigating the relationship between the quantum theory of radiation and 
the corresponding semi-classical theory, Jaynes and Cummings [5] discussed a model similar 
to Rabi’s. However, their model of an idealized atom consisting of only two levels coupled to 
a single quantised oscillator mode in an optical cavity was now a fully quantum mechanical 
model, the quantum Rabi model (sometimes also designated as the quantum electrodynamic 
Rabi problem [4]). Jaynes and Cummings [5] also introduced an important approximation 
to the quantum Rabi model, the so-called rotating wave approximation (RWA), leading to 
a model which can be solved exactly by elementary means and which now bears the name 
quantum Jaynes–Cummings model.

The quantum Rabi model, on the other hand, although still describing the interaction between 
matter and light in one of the simplest ways, only recently yielded to an exact and complete 
analytical solution [6] when Braak found an ingenious way to exploit the underlying Z2 parity 
symmetry of the model to derive its energy spectrum. While the quantum Jaynes–Cummings 
model has sufficed for a long time to describe experiments in quantum optics, recently it has 
become more and more necessary to go beyond the RWA as the larger Rabi coupling strengths 
of the ultrastrong and deep strong regimes come within experimental reach [7, 8].

In connection with his investigation of the exact solvability of the quantum Rabi model, 
Braak also developed a new proposal for quantum integrability [6]. This proposal is of consid-
erable importance in view of the ongoing quest for a consistent notion of quantum integrabil-
ity [9–12].

Concurrent with this theoretical breakthrough, and motivated mostly by novel experimental 
setups, there has been an avalanche of studies of the quantum Rabi model and its many gener-
alizations, revealing a plethora of intriguing and intrinsically nonclassical effects (for a recent 
review, see [13]).

A particularly interesting generalization of the model was proposed by Grimsmo and 
Parkins in 2013 [14]. These authors inquired about the possibility to realize the quantum Rabi 
model with a single atom coupled to a high-finesse optical cavity mode. They arrived at a 
scheme where two hyperfine ground states of a multilevel atom emulate an effective two-level 
system, with resonant Raman transitions between the two states induced by the cavity field 
and two auxiliary laser fields. Importantly, this scheme allows for a realization of the quantum 
Rabi model where coupling constants and effective frequencies can be freely and indepen-
dently tuned, opening an experimental inroad to systematically probe also the ultrastrong and 
deep-strong coupling regimes. These are the regimes where the Rabi model comes into its 
own, while the time-honoured RWA—which allowed the Rabi model to be replaced by the 
much simpler Jaynes–Cummings model [5]—breaks down.

For generic values of the parameters of the model, however, the Grimsmo–Parkins scheme 
requires the addition of a new term to the quantum Rabi Hamiltonian, a nonlinear coupling term 
between the two-level system and the quantum oscillator. Such a coupling term has been discussed 
in the quantum optics literature under the name of dynamical Stark shift, a quantum version of 
the Bloch–Siegert shift [15]. Accordingly, we shall call the quantum Rabi model augmented by 
a nonlinear term of the kind discussed by Grimsmo and Parkins the quantum Rabi–Stark model.

Note, however, that in the usual dynamical Stark shift the corresponding nonlinear cou-
pling strength is determined by the parameters of the underlying quantum Rabi model. In the 
scheme proposed by Grimsmo and Parkins [14] also the Stark coupling can be adjusted freely 
and independently.

Grimsmo and Parkins conjecture [16] that the Rabi–Stark model may undergo a superradi-
ant transition in the deep strong coupling regime of the Rabi coupling when the Stark coupling 
strength becomes equal to the frequency of the cavity mode. The additional nonlinear term in 
the Hamiltonian, the Stark term, may therefore give rise to new physics. It will therefore be 
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of considerable importance to thoroughly investigate the spectral properties of the quantum 
Rabi–Stark model.

The exact solvability of the model has been elegantly demonstrated in recent work by 
Maciejewski et  al [17, 18], using a Bargmann representation. The ensuing coupled set of 
differential equations were then solved by a technique involving Wronskian determinants in 
the general case and an analysis based on the Stokes phenomenon [19] for the special case 
when the Stark coupling becomes equal to the quantum oscillator frequency.

In this paper we take a different route to obtain the exact solution of the quantum Rabi–
Stark model, adapting Braak’s method from 2011 [6] developed for the original quantum Rabi 
model. This alternative approach has the virtue of laying bare certain structural similarities 
between the two models, and highlights the importance of the underlying Z2 parity symmetry 
which is present also in the quantum Rabi–Stark model. In particular—according to Braak’s 
criterion for quantum integrability [6]—the retaining of the Z2 symmetry implies that also the 
Rabi–Stark model is integrable.

Almost all energy eigenvalues are determined by the zeros of two transcendental functions, 
obtained from a Frobenius analysis of the coupled singular differential equations which define 
the eigenvalue problem in the Bargmann representation. Provided that the model parameters 
are chosen so that these transcendental functions are reasonably well-behaved, this allows for 
numerical access to large portions of the spectrum. Fortunately, the parameter regimes where 
this property holds cover the most interesting cases for current experiments: the ultrastrong 
and opening deep strong regimes of the Rabi coupling.

There also exist, again like in the original quantum Rabi model, exceptional spectral points 
which do not correspond to zeros of these transcendental functions, but to points in parameter 
space where the singularities of the transcendental functions are lifted. As for the original 
quantum Rabi model, the exceptional solutions may define level crossings in the spectrum 
between energy levels of different parity. By increasing the magnitude of the Stark coupling 
we find that these level crossing points become less and less frequent. Instead there is a 
stronger tendency—as compared to the original quantum Rabi model—for neighboring levels 
to coalesce and eventually become two-fold degenerate. This surprising effect comes about 
from a ‘reshuffling’ of energy levels caused by the added nonlinear Stark coupling, yielding 
a compressed spectrum which favors pairwise degenerate levels as the two-level system gets 
coupled to the quantum oscillator more strongly.

The layout of the paper is as follows: in the next section, section 2, we introduce the model, 
with reference to [14], and discuss some of its key properties. Section 3 contains the analyti-
cal solution of the model, leading up to the construction of the transcendental functions, the 
zeros (lifted singularities) of which determine the regular (two-fold degenerate exceptional) 
part of the exact spectrum (which becomes complete when adding also the non-degenerate 
exceptional part of the spectrum, as discussed in section 3). In section 4, the spectral structure 
in the ultrastrong and opening deep strong coupling regimes is extracted numerically from 
the exact solution, and the novel features—as compared to that of the original quantum Rabi 
model—are highlighted and discussed. Section 5, finally, contains a summary and outlook.

2. The quantum Rabi–Stark model

As we have expounded in the introduction, the quantum Rabi model describes the interaction 
between light and matter, next to the Jaynes–Cummings model, in the simplest possible way 
and is used as a basic model in many fields of physics [20].
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The simplest generic experimental set-up to realize the quantum Rabi model, a cavity 
quantum electrodynamics (cavity QED) system, consists of a single atom put into a single-mode 
photon field which is enclosed by mirrors in a cavity. The frequency of the single-mode photon 
is chosen in such a way as to interact predominantly only with two levels of the atom [21]

In an experiment, there will inevitably be processes which lead to dissipative losses. In a 
cavity QED experiment, such processes include the dissipative loss of photons from the cavity 
(at rate κ) and the emission of the atom into other modes than the single cavity mode (at rate τ).  
If such losses can be made small compared to the interaction strength between the single pho-
ton mode and the atom, described now as a two-level system, the experimental situation can 
be described by the quantum Rabi model Hamiltonian

HRabi = ωa†a +∆σz + gσx(a + a†)� (1)

= ωa†a +∆σz + g
(
σ+ + σ−) (a + a†),� (2)

where a† and a are the creation and annihilation operators of the quantum oscillator mode with 
frequency ω. The two-level atom is described by the Pauli matrices σx  and σz with the splitting 
between the two levels given by ∆. The interaction strength between the single photon mode 
and the two-level system is g which we call the Rabi coupling to distinguish it from the Stark 
coupling which will be introduced below.

As already mentioned in the introduction, the Rabi model was originally introduced as the 
basis to understand nuclear magnetic resonance [3] and has since been applied to physical 
systems ranging from quantum optics to condensed matter physics, e.g. cavity and circuit 
quantum electrodynamics, quantum dots, trapped ions, and superconducting qubits. Moreover, 
it is used to describe nanoelectromechanical devices where the role of the photons is taken by 
phonons (see, for instance, [22] and [23]). These physical systems are also under investigation 
as candidates for the physical realization of quantum information processing.

Grimsmo and Parkins [14] propose an experimental arrangement where the two relevant 
levels of a 87Rb atom in the single-mode cavity is subjected to two auxiliary laser beams. 
Under conditions equivalent to the ones described above where losses can be neglected, 
Grimsmo and Parkins can describe their proposed experimental arrangement by an effective 
Hamiltonian

H = HRabi + γσza†a� (3)

= ωa†a +∆σz + gσx(a + a†) + γσza†a,� (4)

where an additional term, γσza†a, appears compared to the original quantum Rabi Hamiltonian 
HRabi. This additional term models a nonlinear coupling between the two-level atom and 
the single-mode cavity oscillator. In the introduction, we gave an argument for naming this 
Hamilton and the corresponding model the quantum Rabi–Stark Hamiltonian and model, 
respectively, with the coupling constant γ, the Stark coupling.

The Hamiltonian (2) of the original quantum Rabi model is solvable by elementary 
means, employing the RWA (see for example [4] where also the classical and semi-classical 
versions of the Rabi model are discussed). The resulting model, the quantum Jaynes–
Cummings model, emerges through the RWA by neglecting the terms a†σ+ and aσ− in the 
Hamiltonian (2).

The Jaynes–Cummings model can also be investigated with an analogous nonlinear Stark 
term added. Interestingly, this variant of the Jaynes–Cummings model sheds light on the 
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Bethe ansatz solution of the original Jaynes–Cummings model. The former can be solved by 
a standard algebraic Bethe ansatz procedure which allows to extract the algebraic solution of 
the latter in the limit when the Stark term vanishes [24, 25].

3.  Exact solution of the Rabi–Stark model

In this section, we shall outline the exact solution of the quantum Rabi–Stark model repre-
sented by the Hamiltonian (4). In doing so, we shall generalize the method introduced by 
Braak in [6] for the solution of the original quantum Rabi model, described by the Hamiltonian 
(1), and especially highlight those aspects where the two models differ.

3.1.  Bargmann space representation of the eigenvalue problem

It will prove advantageous to rewrite the quantum Rabi–Stark Hamiltonian (4) in the spin-
Boson representation, achieved through a unitary rotation of the Hamiltonian by the operator 
eiπσy/4. The Hamiltonian (4) then becomes

H = ωa†a +∆σx + gσz(a + a†) + γσxa†a.� (5)

In order to calculate the eigenvalues of this Hamiltonian exactly, we employ the Bargmann 
space representation [26] (for a recent summary, with a view on its application to the quantum 
Rabi model, of the properties of the Bargmann space representation, which is isomorphic to 
the space of square integrable functions L2(R), see [27]). In the Bargmann space representa-
tion, the quantum oscillator creation operator is replaced by a complex variable z, i.e. a† → z, 
and the quantum oscillator annihilation operator by the derivative with respect to the complex 
variable, i.e. a → d/dz. The state vector |ψ〉 is represented in the Bargmann space representa-
tion by a wave function u(z) depending on the complex variable z.

We briefly state the two requirements a function u(z) needs to satisfy in order to be an 
admissible function of the Bargmann space B, i.e. to be a physically allowed wave function. 
These requirements were carried over by Bargmann from the corresponding requirements 
which wave functions have to satisfy in the space of square integrable functions L2(R). The 
first requirement is that the function must have a finite norm 〈u|u〉 < ∞, where the scalar 
product is defined by

〈u|v〉 = 1
π

∫

C
d�(z) d�(z) u(z)v(z)e−z̄z,� (6)

and the second requirement that it be holomorphic everywhere in C, i.e. be an entire function 
[26].

Measuring energy in units of the quantum oscillator frequency, i.e. formally putting ω = 1, 
the Rabi–Stark Hamiltonian (5) becomes in the Bargmann representation

H =

(
z d

dz + g
(
z + d

dz

)
γz d

dz +∆

γz d
dz +∆ z d

dz − g
(
z + d

dz

)
)

.� (7)

The canonical Fulton–Gouterman transformation [28]

U =
1√
2

(
1 1
T −T

)
,� (8)
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employing the parity operator T [u(z)] = u(−z), transforms the Hamiltonian (7) onto diagonal 
form

U−1HU =

(
H+ 0

0 H−

)
� (9)

with the Hamiltonians

H± = z
d
dz

+ g
(

z +
d
dz

)
±
(
γz

d
dz

+∆

)
T� (10)

in the parity Hilbert spaces H±. The corresponding Schrödinger equations in the positive and 
negative parity sectors, respectively,

H±ψ
(±)(z) = E±ψ

(±)(z)� (11)

become, written explicitly, non-local functional differential equations

z
d
dz

ψ(±)(z) + g
(

z +
d
dz

)
ψ(±)(z)±

(
γz

d
dz

+∆

)
ψ(±)(−z) = E±ψ

(±)(z).

�

(12)

These two differential equations are converted into each other by the simultaneous replace-
ments γ → −γ  and ∆ → −∆. It is therefore sufficient, and we shall do this in the following, 
to concentrate on one differential equation, here chosen as the one in the positive parity sector.

The reducibility of the Bargmann representation (7), into two blocks H± with definite 
parities ±1, reflects that the Rabi–Stark Hamiltonian (3) is invariant under the Z2 parity 
transformation

P = (−1)a†aσz.� (13)

Hence, the eigenstates |ψ〉 can be labeled by the energy eigenvalue E and the parity eigenvalue 
p = ±1,

|ψ〉 = |E, p〉.� (14)

The Z2 parity symmetry is crucial for both, the exact solution of the model, and also its 
quantum integrability according to the quantum integrability criterion proposed by Braak [6].

Returning to (12), in order to deal with the non-locality of the differential equation  for 
ψ(+), we define the two new functions (dropping the upper index (+) for the time being)

φ(z) ≡ ψ(z) and φ̄(z) ≡ ψ(−z),� (15)

thus obtaining a set of two local differential equations. Note that this definition means that we 
now have two representations of the same function ψ(z) which are to be determined from the 
two coupled local differential equations. With these definitions and rearranging terms, this set 
of two coupled local differential equations becomes explicitly

(z + g)
d
dz

φ(z) + (gz − E)φ(z) + γz
d
dz

φ̄(z) + ∆φ̄(z) = 0,� (16)

(z − g)
d
dz

φ̄(z)− (gz + E) φ̄(z) + γz
d
dz

φ(z) + ∆φ(z) = 0.� (17)

Note that these two first-order complex differential equations are coupled in both, the unknown 
functions φ(z) and φ̄(z) and their derivatives dφ(z)/dz and dφ̄(z)/dz. This is an important 
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difference and complication compared to the original quantum Rabi model and is due to the 
nonlinear term proportional to the Stark coupling strength γ.

The two coupled first-order differential equations can be partially decoupled with respect 
to the coupling of the derivatives. In compact notation, we obtain the set of two first-order 
ordinary differential equations

Γ(z)φ′ = Λ(z)φ− Ē(z)φ̄,� (18)

Γ(z)φ̄′ = Λ̄(z)φ̄− E(z)φ,� (19)

where we introduced the functions

Γ(z) = (1 − γ2)(z − w)(z + w)� (20)

with w = g/
√

1 − γ2 , and

Λ(z) = (E − gz)(z − g) + γ∆z, Λ̄(z) = (E + gz)(z + g) + γ∆z,� (21)

E(z) = ∆(z + g) + γz(E − gz), Ē(z) = ∆(z − g) + γz(E + gz).� (22)

From these functions, especially (20), we observe that the differential equations are singular 
with regular singularities at z = ±w (see figure 1). Note that the regular singularities in the 
Rabi–Stark model depend on both, the Rabi coupling g and the Stark coupling γ.

Furthermore, the equations have an irregular singularity at z = ∞ of s-rank R(∞) = 2 [29] 
which can be demonstrated by transforming the equations into second-order equations outside 
of a sufficiently large disk of radius |z| = R which includes all singularities lying in a finite 
region of the complex plane. The s-rank R(∞) = 2 of the differential equations guarantees 
that the solutions have a finite norm asymptotically for z → ∞ and are thus members of the 
Bargmann space [27, 29, 30].

3.2.  Frobenius analysis of the singular differential equations

An indicial analysis [30] of the Frobenius ansatz around the regular singular points z0 = ±w

φ(z) =
∞∑

n=0

An(z − z0)
n+r

� (23)

of the decoupled second-order differential equation for φ—obtained from the coupled first-
order differential equations in (18) and (19)—reveals that there is one indicial exponent

r = r1 =
E + g2 +∆γ

1 − γ2 ≡ xγ � 0� (24)

at each of the regular singular points z0 = ±w.
The other indicial exponent is given by

r = r2 = 0,� (25)

again at both regular singular points z0 = ±w. The same indicial exponents are also obtained 
for the Frobenius ansatz

φ̄(z) =
∞∑

n=0

Ān(z − z0)
n+r

� (26)
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from an indicial analysis of the second-order differential equation for φ̄, again at both regular 
singular points z0 = ±w.

There is a subtle point to note about the indicial analysis. The limit γ → 0 does not in 
general reproduce the indicial exponents of the differential equations for the original quantum 
Rabi model [27]. The reason for this is that the indical analysis requires a limit z → ±w which 
cannot be interchanged with the limit γ → 0.

It is important to stress that the indicial exponents determine whether the series solutions of 
the differential equations are also physically acceptable solutions, i.e. wave functions, belong-
ing to the Bargmann space B. If r ∈ N0, this is the case. However, solutions for generic r, i.e. 
for values of r /∈ N0, although mathematically valid, are not members of the Bargmann space 
of physical wave functions.

For the quantum Rabi model where γ = 0, the further analysis of our differential 
equations  (18) and (19) can proceed directly [27] or after transforming them into second-
order equations  [31]. In the present case, the transformation to second-order differential 
equations generates further singularities not present in the first-order equations which make 
the analysis difficult. It is therefore preferable to directly solve the first-order equations as 
we shall do in the following. For generic values of the parameters {∆, γ, g} and the energy 
eigenvalue E, the indicial exponent r1 will be a positive non-integer real number and, hence, 
the corresponding Frobenius solution, exhibiting a branch cut, will not be a member of the 
Bargmann space B, i.e. will not be a physical solution. In these cases only the indicial expo-
nents r2 = 0 correspond to physical solutions φ(z) and φ̄(z) belonging to the Bargmann 
space. The corresponding energy eigenvalues constitute the regular spectrum [32–34] of the  
Rabi–Stark model Hamiltonian.

Figure 1.  Singularity structure of the differential equations (18) and (19). The regular 
singular points are at �z = ±w,�z = 0 (blue dots) with w = g/

√
1 − γ2 , the irregular 

singular point is at z = ∞. While all other points of the complex plane C are ordinary 
points, the ordinary point at �z = �z = 0 (red dot) will play a particularly prominent 
role in obtaining the spectrum, see sections 3 and 4.
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However, for special combinations of the parameters {∆, γ, g} and the energy eigenvalue 
E, the indicial exponent r1 may become a non-negative integer. Such combinations give rise to 
the exceptional spectrum of the model, in close analogy with how exceptional spectra emerge 
in Jahn-Teller-like systems, first discussed by Judd [32].

In the following section 3.3, we concentrate our attention on the regular spectrum, while 
we shall discuss the exceptional spectrum in section 3.4.

3.3.  Regular spectrum

Through the solution of the set of coupled differential equations (18) and (19) for the case 
r2 = 0, we obtain the regular part of the spectrum. We focus on the singularity at z0 = −w 
and introduce the new complex variable y = z − z0 = z + w to perform a transformation of 
the functions φ(z) and φ̄(z) according to

φ(z) = e−wzρ(z) = e−wy+w2
ρ(y),� (27)

φ̄(z) = e−wzρ̄(z) = e−wy+w2
ρ̄(y),� (28)

which implies for the first derivatives

dφ(z)
dz

= e−wy+w2
(

d
dy

− w
)
ρ(y),� (29)

dφ̄(z)
dz

= e−wy+w2
(

d
dy

− w
)
ρ̄(y),� (30)

such that the two first-order differential equations become

(1 − γ2)(y − 2w)yρ′ = (K2y2 + K1y + K0)ρ+ (K̄2y2 + K̄1y + K̄0)ρ̄,� (31)

(1 − γ2)(y − 2w)yρ̄′ = (C̄2y2 + C̄1y + C̄0)ρ̄+ (C2y2 + C1y + C0)ρ� (32)

with the constants K2, . . . , C0 depending on the parameters {∆, γ, g} and the energy eigen-
value E:

K2 = (1 − γ2)w − g,� (33)

K1 = E − g2 + 2gw + γ∆,� (34)

K0 = − [(E + gw)(w + g) + γ∆w] ,� (35)

K̄2 = −γg,� (36)

K̄1 = − [∆ + γ(E − 2gw)] ,� (37)

K̄0 = ∆(w + g) + γw(E − gw),� (38)

and,

C̄2 = 2g,� (39)

C̄1 = E + g2 − 4gw + γ∆,� (40)
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C̄0 = − [(E − gw)(w − g) + γ∆w] ,� (41)

C2 = γg,� (42)

C1 = − [γ(E + 2gw) + ∆] ,� (43)

C0 = γw(E + gw) + ∆(w − g).� (44)

Writing ρ(y) and ρ̄(y) as a power series

ρ(y) =
∞∑

n=0

αnyn,� (45)

ρ̄(y) =
∞∑

n=0

ᾱnyn,� (46)

where the expansion coefficients αn and ᾱn depend on the parameters {∆, γ, g} and the energy 
eigenvalue E, we obtain a set of two coupled recursion relations for n � 2,

− K2αn−2 +
(
(1 − γ2)(n − 1)− K1

)
αn−1 −

(
2w(1 − γ2)n + K0

)
αn

= K̄2ᾱn−2 + K̄1ᾱn−1 + K̄0ᾱn,
�

(47)

− C̄2ᾱn−2 +
(
(1 − γ2)(n − 1)− C̄1

)
ᾱn−1 −

(
2w(1 − γ2) n + C̄0)ᾱn

= C2αn−2 + C1αn−1 + C0αn.
� (48)

The recursion relations for n = 0 and n = 1 can be obtained directly but also by the formal 
requirement that the expansion coefficients αn and ᾱn with index n = −2 and n = −1 vanish 
in the recursion relations (47) and (48).

For n = 0, we obtain

K0α0 + K̄0ᾱ0 = 0,� (49)

C0α0 + C̄0ᾱ0 = 0,� (50)

i.e. a set of two homogeneous algebraic equations  for α0 and ᾱ0. These algebraic equa-
tions have a non-trivial solution only if the coefficient determinant vanishes,

K0C̄0 − K̄0C0 = 0.� (51)

This determinant indeed vanishes identically for all values of the parameters {∆, γ, g} and all 
values of the energy eigenvalue E. The solutions of (49) and (50),

α0 = − K̄0

K0
= − C̄0

C0
,� (52)

ᾱ0 = 1,� (53)

can therefore be used as initial values for the coupled recursion relations (47) and (48).
With the procedure described above, we have now obtained the holomorphic solutions φ(z) 

and φ̄(z) at the regular singular point z0 = −w of the coupled set of the two first-order ordi-
nary differential equations (18) and (19). These solutions are valid in a disk of convergence 
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of radius 2w around the regular singular point z0 = −w (see figure 1). They will, however, in 
general, i.e. for arbitrary values of the energy eigenvalue E not be holomorphic at the other 
regular singular point, z0 = w, but will develop branch cuts at this singular point.

On the other hand, by a corresponding analysis we can find the holomorphic solutions 
φ(z) and φ̄(z) to (18) and (19) which are valid in a disk of convergence of radius 2w around 
the regular singular point z0 = w. Again, these expansions, holomorphic at the regular sin-
gular point z0 = w, will in general not be holomorphic at the other regular singular point 
z0 = −w.

The symmetry of the differential equations (18) and (19) under reflection z → −z reveals 
that the two combinations, written in vector notation as 

(
φ(z), φ̄(z)

)
T  and 

(
φ̄(−z),φ(−z)

)
T, 

satisfy the set of differential equations  (18) and (19). This property implies that, having 
obtained a holomorphic solution at one regular singularity through the procedure outlined 
above, say at z0 = −w, we also have one at the other regular singularity, i.e. at z0 = w. 
However, they represent one and the same function, as required in (15), only if the corre
sponding energy eigenvalue E belongs to the discrete spectrum of the Hamiltonian (4). Then 
these solutions can serve as analytic continuations of each other. Together with the s-rank 
R(∞) = 2 for the irregular singularity at z → ∞, this guarantees that we can find solutions 
of (18) and (19) which satisfy the requirements for physical solutions of the Bargmann 
space B.

In practice, the coupled recursion relations can only be solved numerically. Assuming 
that we have obtained the expansion coefficients, at least to a sufficient degree of numer
ical accuracy, we can extract the energy eigenvalue E from the solutions of the first-order 
differential equations, i.e. the wave functions in the Bargmann space representation. This is 
done by adapting the G± function formalism developed by Braak [6] for the quantum Rabi 
model to our purposes of the generalization of the Rabi model, the quantum Rabi–Stark 
model. Reintroducing the parity label (±) for the wave functions φ and φ̄, we accordingly 
introduce the G± functions which are functions of the energy eigenvalue E, the parameters 
of the Hamiltonian {∆, γ, g}, measured in units of the quantum oscillator frequency ω, and 
the complex variable z

G±(±∆,±γ, g|E; z) = φ̄(±)(−z)− φ(±)(z).� (54)

These functions must vanish for E being an eigenvalue of the Hamiltonian (4), i.e. their zeros 
at, e.g. z = 0, G±(E; 0) = 0, determine the energy eigenvalues E of the regular spectrum.

3.4.  Exceptional spectrum

We have seen in the previous section that the zeros of the functions G± determine the energy 
eigenvalues of the regular spectrum of the quantum Rabi–Stark model.

However, the functions G± have poles at certain discrete values of the energy E. Thus, 
while almost all eigenvalues belong to the regular spectrum, in order to determine the com-
plete spectrum, one has to investigate also the values of E where at least one of the G± func-
tions diverges. These values of E cannot belong to the regular spectrum, as this is determined 
by the set of zeros of the G± functions.

Instead, these values appear as candidates for the exceptional eigenvalues, which, together 
with particular combinations of the model parameters {∆, γ, g}, turn the indicial exponent 
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r1 = (E + g2 + γ∆)/(1 − γ2) = xγ  into a non-negative integer. Thus, in addition to the 
Frobenius solutions (23) and (26) corresponding to the indicial exponent r2 = 0 which always 
belongs to the (physical) Bargmann space, now also the Frobenius solutions corresponding to 
an indicial exponent r1 = xγ ∈ N0 in (23) and (26) become members of the Bargmann space B.

Similar to the case of the original quantum Rabi model [27], we expect two possibilities for 
the exceptional spectrum. This expectation is borne out by our numerical exploration of our 
exact solution of the Rabi–Stark model which we report on in the next section 4.

4.  Spectral structure

In this section, we report on our numerical procedure to extract the spectrum of the Rabi–Stark 
model and present our numerical findings.

4.1.  Numerical procedure for the regular spectrum

Given the formal solution of the quantum Rabi–Stark model, as derived in section 3.3, the 
recipe to numerically extract the regular part of the energy spectrum can be summarized as 
follows:

	 (i)	In order to access the regular part of the spectrum in the positive parity sector for generic 
values of the model parameters {∆, γ, g} (as before, always having set ω = 1), determine 
the expansion coefficients αn and ᾱn for n = 1, 2, . . . , N, from the recursion relations (47) 
and (48) with initial conditions as given in (49) and (50), supplemented by the definitions 
α−2 = ᾱ−2 = α−1 = ᾱ−1 = 0; 

	(ii)	Insert the expressions for αn and ᾱn from (i) into (23) and (26) (with r = r2 = 0) via 
(45) and (46) as well as (27) and (28) and sum the first N + 1 terms to obtain truncated 
series representations of φ(+)(z) and φ̄(+)(z) (for book keeping purposes, now labeled as 
belonging to the positive parity sector); 

	(iii)	Refer to (54) to construct the corresponding G+ function; 
	(iv)	Locate the zeros (a.k.a. energy eigenvalues) E1, E2, . . . of G+(∆, γ, g|E; 0).

The regular spectrum of the negative parity sector is obtained by repeating the steps (i)–(iv) 
above, but with the replacements ∆ → −∆ and γ → −γ  (and with φ(z) and φ̄(z) in (ii) now 
labeled as φ(−)(z) and φ̄(−)(z) respectively, and with the energy eigenvalues obtained as the 
zeros of the corresponding function G−(−∆,−γ, g|E; 0) in (54)).

As long as the G± functions are reasonably well-behaved (as they are, if one does not 
venture too far into the deep strong coupling regime g > 1), the numerical root-finding can be 
carried out expeditiously, with stable results already for a truncation of the series in (23) and 
(26) to N = 12 terms.

It is worth pointing out that the essential difference from the analogous protocol for obtain-
ing the regular spectrum of the original quantum Rabi model [6] is that the expansion coef-
ficients αn and ᾱn now have to be derived from two coupled recursion relations, (47) and (48). 
As discussed in sections 3.1 and 3.2, this reflects the fact that the differential equations (18) 
and (19) which determine the eigenfunctions φ(+)(z) and φ̄(+)(z) (and φ(−)(z) and φ̄(−)(z), 
respectively) of the quantum Rabi–Stark model have a more complex structure as compared 
to the case of the original quantum Rabi model.
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4.2.  Numerical procedure for the exceptional spectrum

Let us now turn to the exceptional part of the spectrum which can be obtained by the follow-
ing route:

	 (i)	For fixed model parameters {∆, γ, g}, rewrite the recursion relations (47) and (48) in 
matrix form, i.e.

(
αn

ᾱn

)
= Dn(E)−1Vn(E), n = 2, 3, ...,� (55)

		 where the vector Vn(E) is defined as

Vn(E) ≡

(
C̄0n −K̄0

−C0 K0n

)(
K1n−1αn−1 − K̄1ᾱn−1 − K2αn−2 − K̄2ᾱn−2

−C1αn−1 + C̄1n−1ᾱn−1 − C2αn−2 − C̄2ᾱn−2

)
,

� (56)

		 with

K1n ≡ (1 − γ2)n − K1, K0n ≡ 2w(1 − γ2)n + K0,� (57)

C̄1n ≡ (1 − γ2)n − C̄1, C̄0n ≡ 2w(1 − γ2)n + C̄0,� (58)

		 and where we have defined the determinant and then used (24),

Dn(E) ≡ K0nC̄0n − K̄0C0 = 4w2n(1 − γ2)2
[

n − E + g2 + γ∆

1 − γ2

]
.� (59)

	(ii)	Find the zeros E1, E2, ... of the determinant Dn(E). These zeros locate the common sin-
gularities of the functions G+ and G− since they cause a divergence of the corresponding 
αn and ᾱn coefficients in (55).

	(iii)	For each Ej thus identified, determine whether it is also a zero of the vector Vn(E) defined 
in (56). If this is the case, the singularity is lifted in both parity sectors (since the zeros of 
the vector Vn(E) are invariant under ∆ → −∆ and γ → −γ), and Ej becomes a two-fold 
degenerate exceptional energy eigenvalue, determining a crossing between a positive and 
a negative parity energy level.

	(iv)	If Ej is not a zero of Vn(E), the vanishing of Dn(Ej) still makes room for Ej to become an 
exceptional solution. This is because the vanishing of Dn(Ej) corresponds to the indicial 
exponent r1 = (Ej + g2 + γ∆)/(1 − γ2) becoming a positive integer, i.e. r1 = n ∈ N. As 
a consequence, and as explained at the end of section 3.4, Ej becomes a nondegenerate 
exceptional energy eigenvalue in one of the parity sectors, corresponding to the Frobenius 
solution now turned into a new physical Bargmann wave function at this particular junc-
ture of parameters which turns r1 into a positive integer.

As we have seen from the discussion in this section, the eigenvalue spectrum consists of a 
continuous part, the regular spectrum, which is interrupted or punctured by isolated points of 
the exceptional spectrum. These latter punctures are characterized by zeros of the determinant 
Dn(E) which cause divergences of the G+ or G− function. The degenerate exceptional points 
occur simultaneously in both parity sectors and, thus, determine the level crossing points (as 
will be studied in an example in section 4.3).
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As for the nondegenerate exceptional points, the continuity of the energy levels as func-
tions of any of the model parameters ∆, γ or g implies that also these points can only ‘fill out’ 
some isolated punctures in the energy levels of either one or the other parity sector. Their loca-
tions are, thus, not immediately visible in a numerical plot of the spectrum, but must be calcu-
lated analytically. Since the nondegenerate exceptional points carry no particular significance 
for the interpretation of the spectrum, and also, since their detailed analytical determination is 
quite involved, we shall henceforth not elaborate upon these solutions.

For a discussion of the exceptional spectrum in the case of the original quantum Rabi 
model, see [27, 35]; for a discussion of the exceptional spectrum of a different generaliza-
tion of the quantum Rabi model, obtained by adding an asymmetric term εσx , see [36, 37]. A 
detailed mathematical symmetry analysis using Lie algebra representations of sl2(R) is given 
for the spectrum of the original quantum Rabi model in [38] and of the asymmetric quantum 
Rabi model in [39].

4.3.  Level crossings

It is instructive to witness in detail how a level crossing emerges by the lifting of a singularity 
in the G± functions. This is but one of the advantages of the G function approach pioneered 
by Braak [6]: it allows for a compact encoding of the key features of the energy spectrum.

Figure 2 exhibits a case study, where G+ (G−) is shown in red (blue) versus x = E + g2 
in the interval [−1, 2] (with E a running parameter which takes energy eigenvalues when x 
becomes a zero of the corresponding G± function). The different panels correspond to dif-
ferent values of g, all with ∆ = 0.4 and γ = 0.5. In all panels, the two zeros closest to the 
singularity at x = xs ≈ 0.55 are marked with black circles. In the upper left panel (a), the red 
(blue) zero is seen to be to the right (left) of xs. As g decreases, the two zeros creep closer 
to xs, panel (b), to eventually coalesce and annihilate at xs for a value of g = gs at which the 
singularity gets lifted, panel (c). By further decreasing g, the zeros move away from xs, which 
has now regained its role as a locus of a singularity in G±. As seen in panel (d), the zeros have 
traded their relative positions.

To sum up, the zeros of the G+ and G− functions trade places as g is varied across a com-
mon singularity of the two functions by lifting the singularity. As a consequence, a crossing 
between the positive and negative parity energy levels develops at Ecross = xs − g2

s . We should 
add that while the loci of the G± singularities in the original quantum Rabi model appear at 
integer values of x, the loci for the quantum Rabi–Stark model now depend on the Stark cou-
pling γ, with their presence being conditioned by the vanishing of the determinant (59).

4.4.  Spectral structure of the quantum Rabi model

Before we present our numerical results for the spectrum of the quantum Rabi–Stark model, 
let us set the stage by recalling the main characteristics of the original quantum Rabi spectrum 
[6, 27]. A low-lying part of the spectrum with the levels as function of the Rabi coupling g 
is depicted in figure 3, here with g ranging continuously from the Jaynes–Cumming limit, 
0 < g � ∆ < 1, into the opening deep strong coupling regime, 1 < g < 1.6, with the splitting 
of the two-level system ∆ = 0.4.

The most notable feature in figure 3 is the absence of crossings between energy levels of 
the same parity. This allows for a unique labeling of the corresponding eigenstates, using the 
pair of quantum numbers p and n, with p = ±1 denoting the eigenvalues of the parity opera-
tor P , (13), and with n = 0, 1, 2, ... indexing the progression of levels of increasing energy, 
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identified as the zeros of G±. According to the criterion proposed by Braak [6], the quantum 
Rabi model is quantum integrable because the eigenstates can be uniquely identified by using 
two quantum numbers (p and n), equal to the number of degrees of freedom of the system 
(one two-dimensional degree of freedom characterizing the states of the two-level system, one 
infinite-dimensional degree of freedom for the quantum oscillator).

Since crossings, corresponding to the two-fold degenerate exceptional solutions (see  
figure  3), appear only between levels of different parity, one may find the resulting  
non-violation of the Wigner-von Neumann non-crossing rule [40] surprising: Quantum inte-
grable systems are believed to violate the non-crossing rule [41, 42]. However, as expounded 
in [43], crossings between levels belonging to the same invariant subspace of a symmetry 
group (here: Z2 with positive and negative parity subspaces) are inevitable only for quantum 
integrable Hamiltonians where the number of local conserved quantities which depend lin-
early on the control parameter (here: the Rabi coupling g) is maximal, i.e. equal to the total 
number of constants of motion. Given that the quantum Rabi model does not belong to this 
class, there is no contradiction with the criterion suggested by Braak [6].

As seen in figure 3, levels of different parity with the same n cross n times before coa-
lescing into near-degenerate levels for large Rabi-coupling g. This feature, present when 
0 < ∆ < 1, is also known from an analysis of the two-fold degenerate exceptional solutions, 
being of ‘Juddian’ type [32] and accessible analytically [44]. In contrast, when ∆ > 1, levels 

Figure 2.  Plots of the G± functions versus x = E + g2 ∈ [−1, 2] for γ = 0.5, ∆ = 0.4 
and (a) g = 0.4, (b) g = 0.3, c) g = 0.208 08, and (d) g = 0.1. The black dots indicate 
the zeros of the corresponding G± functions closest to the singularity at x = xs = 0.55. 
In panel (c) this singularity is lifted.
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of opposite parities disentangle for small and intermediary values of g, with at most avoided 
level crossings remaining [45].

Given the analytical solution for the two-fold degenerate exceptional levels when 
0 < ∆ < 1 [44], one may further infer how two neighboring levels of different parity coa-
lesce into a near-degenerate band [33]: for a given n and for large g � ∆, the levels will 
tend to the curve E = n − g2, corresponding to one of the two-fold degenerate levels of the 
quantum Rabi model with ∆ = 0. This behaviour is also easily read off from figure 3. It has 
a simple explanation: the two-fold degeneracy at ∆ = 0 reflects the presence of a parity-flip 
symmetry: when ∆ = 0, the quantum Rabi Hamiltonian (2) commutes with the parity-flip 
operator σx. This symmetry is destroyed when turning on ∆, and thus, the two-fold degener-
ate levels get split. However, as the Rabi term ∼ g starts to dominate the level splitting ∆ of 
the two-level system, there is a smooth crossover to the two-fold degenerate level with an 
emergent ‘approximate’ parity-flip symmetry for very large g (‘approximate’ in the sense that 
the residual terms which remain after commuting the Rabi Hamiltonian with the parity-flip 
operator σx are small).

4.5.  Spectral structure of the quantum Rabi–Stark model

With the description of the original quantum Rabi spectrum as a backdrop, we now turn to the 
quantum Rabi–Stark model, defined by the Hamiltonian (4). Its fourteen lowest energy levels 
for ∆ = 0.4 are shown in figure 4 as functions of g in the interval 0 � g � 1.6 for γ = 0.5 
and ∆ = 0.4.

Figure 3.  The fourteen lowest levels in the spectrum of the quantum Rabi model (γ = 0) 
for g ∈ [0, 1.6] (∆ = 0.4). Red (blue) levels correspond to the positive (negative) parity 
sector. The plot is composed by a dense set of points E = x0 − g2 extracted from the 
zeros {x0} of the G± functions. The glitches in some of the levels reflect that some of 
the zeros are hard to resolve numerically at the level of precision used: some zeros come 
extremely close to a singularity, or to a local extremum of a G+ or G− graph which 
grazes the x-axis (see figure 2).
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Higher energy levels as well as spectra for larger values of ∆, γ or g can also be extracted 
from the series representations of the G± functions in (54). However, the proliferation of sin-
gularities in the G± functions and the slowdown of the convergence of the series in (23) and 
(26) in these cases make the numerics more costly. We here confine our attention to the chosen 
parameter and energy regime in figure 4.

Inspection of the spectrum in figure 4 shows that crossings of energy levels of the same 
parity remain absent in the presence of the added nonlinear Stark coupling term. What may 
first appear as equal-parity level crossings (e.g. between the fifth and sixth blue curves close to 
g = 0.5 in figure 4), at close scrutiny are revealed to be avoided level crossings, see figure 5. 
Intriguingly, by tuning the splitting ∆ of the two-level system, the avoided level crossings 
can be made progressively sharper, suggesting the possibility of a nonanalyticity for a critical 
value of ∆, see figure 4.

While it is tempting to speculate that this incipient nonanalyticity may be a precur-
sor of an ‘excited state quantum phase transition’ [46–48], this would be premature. In 
order to present support for such a transition, one must first and foremost establish a crit-
ical energy below which there is a symmetry breaking, with the critical energy accompa-
nied by a singularity in the density of states. Let us note in passing that Puebla et al, using 
an effective Hamiltonian, have recently conjectured that such a transition may actually 
be present in the original quantum Rabi model [49] (see also [50]). Their approach was 
very recently generalized [51] for an anisotropic quantum Rabi model where the rotating 
and counterrotating parts of the Rabi coupling term acquire different coupling strengths: 
g (σ+ + σ−)

(
a + a†

)
→ gr

(
σ+a + σ−a†)+ gcr

(
σ+a† + σ−a

)
. We further note, again in 

passing, that this anisotropic model is also within the reach of the experimental proposal of 
Grimsmo and Parkins [14], that it admits an exact solution and that it can be used in a variety 

Figure 4.  The fourteen lowest levels in the spectrum of the quantum Rabi–Stark model 
with γ = 0.5 for g ∈ [0, 1.6] (∆ = 0.4). Red (blue) levels correspond to the positive 
(negative) parity sector. Similar to the quantum Rabi spectrum in figure 3, the glitches 
in some of the levels reflect that some of the zeros are difficult to resolve numerically at 
the level of precision used (see caption to figure 3).
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of physical situations [34, 52, 53], including a proposed realization of supersymmetry [54]. In 
view of these developments, it will be very interesting to examine the anisotropic generaliza-
tion of the Rabi–Stark model.

As for the avoided level crossings in the quantum Rabi–Stark model, we expect that they 
rather reflect the model’s integrability (in the sense of Braak [6]): in order to uphold integrabil-
ity as the original quantum Rabi levels get reshuffled by the nonlinear Stark term with strength 
γ, same-parity avoided level crossings appear in various parts of the spectrum. If same-parity 
level crossings had developed, this would have required the model to be ‘superintegrable’ [10] 
for nonzero values of γ, supporting an additional ‘good quantum number’ by which the energy 
levels could be uniquely labeled. This—by itself quite unlikely—scenario is made the more 
improbable by the presence of the avoided level crossings in figure 4.

As is evident from figure  4, the reshuffling of levels as γ increases also leads to more 
densely spaced levels. This latter ‘compression’ effect is anticipated from the trivial solution 
of the Rabi–Stark model with Rabi coupling g = 0 which is solvable by elementary means 
since for this case the Hamiltonian is diagonal. Explicitly, the eigenvalues for g = 0 are

E±
n (g = 0, γ) = (1 ± γ)n ±∆ n = 0, 1, 2, . . .� (60)

from which it can be seen that more and more levels accumulate at E−
n (g = 0, γ → 1) → −∆ 

as γ → 1. In the same limit γ → 1, the other levels, become equally spaced,  
E+

n (g = 0, γ → 1) → ∆+ 2n, starting from +∆. Please note that the label +/− in (60) does  
not refer to parity. The parity of these levels is determined by the parity operator (13).

In this context: we have already dispelled a possible concern about nonviolations of 
the Wigner–von Neumann no-crossing rule. But what about the Berry–Tabor criterion [55] 
that an integrable model exhibits a Poissonian distribution of energy levels? Similar to the 
original quantum Rabi model, the levels for the quantum Rabi–Stark model when γ �= 0 
appear to be distributed fairly regularly (see figure 4) and not Poissonian. Thus both, the 
quantum Rabi and Rabi–Stark spectral distributions fail this test of integrability. However, 
it is important to be precise about the range of applicability of the Berry–Tabor criterion: it 

Figure 5.  Zoom in of the spectrum of the quantum Rabi–Stark model in figure  4, 
showing an avoided level crossing at g ≈ 0.5.
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has been proved only in the semiclassical limit, and moreover assumes that the theory sup-
ports only continuous degrees of freedom [55]. None of this applies to the quantum Rabi or 
Rabi–Stark model.

Figure 4 reveals that the level crossings of opposite-parity levels for the Rabi–Stark 
model (γ �= 0) no longer follow the simple ‘braiding rule’ of the Rabi model where two 
neighbouring levels with quantum number n cross n times. As a case in point, when γ = 0.5 
(figure 4), the first four pairs of opposite-parity levels cross at most two times before coa-
lescing into a near-degenerate level. The implied reduction of two-fold degenerate excep-
tional solutions of the differential equations  (18) and (19) when γ �= 0,—underlying the 
reduction of opposite-parity level crossings—should have an explanation in terms of the 
γ-dependent loci of the singularities in the G± functions (see the discussion in section 4.2). 
However, to pinpoint the resulting structure of level crossings in the spectrum goes beyond 
the aim of this work. Indeed, a closer analytic examination of the G± functions remains a 
challenge for the future.

As already mentioned, there occurs a compression of the spacings of the energy lev-
els as the coupling γ of the nonlinear Stark term increases. This effect may facilitate—
but does not explain—that for large γ, neighbouring levels with opposite parity coalesce 
into near-degenerate levels already for quite small values of g. For an example, see fig-
ure 6, where the two lowest pairs of opposite-parity levels are shown as functions of g 
when γ = 0.95 (with the two lowest pairs of levels for γ = 0 shown for comparison in the 
inset). Already for g = 0.6 in the figure, the difference between the two lowest levels is 
< 0.000 04 and then rapidly decreases as g increases further. The rapid approach in figure 6 
to near-degeneracy of the energy levels for γ = 0.95, as compared to the case with γ = 0, 
in fact is surprising in view of the Hamiltonian H in (4). In order to make H approximately 

Figure 6.  The four lowest energy levels of the quantum Rabi–Stark model with γ = 0.95 
in the interval g ∈ [0, 0.75]. For comparison, the four lowest levels of the quantum Rabi 
model (γ = 0) are shown in the inset for g ∈ [0, 1]. In both cases ∆ = 0.4.
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invariant under a parity flip with parity-flip operator σx—which guarantees near-degener-
acy of neighbouring levels of opposite parity—the Rabi term must now dominate both the 
term of the two-level system (with splitting ∆) and the nonlinear Stark term (with coupling 
parameter γ). When γ > ∆, as in figure 6, one would expect that the approximate parity-
flip symmetry, and thus, the concurrent near-degeneracy, would set in for values of g larger 
than what is required when γ = 0. However, as revealed by the same figure (with its inset), 
the opposite is the case!

These numerical observations suggest that the spectral compression dramatically enhances 
the effect of a reduced parity-flip symmetry breaking (so as to boost the early onset of near-
degenerate energy levels), or else, that some hidden symmetry is at play for values of g for 
which the parity-flip symmetry is still manifestly broken. While we find this latter alternative 
to be rather unlikely, we should alert the reader that there are indeed claims that already the 
original quantum Rabi model has a hidden symmetry, with implications for its dynamics [56]. 
In any event, a further analysis of the compression of the spectrum for increasing γ, with the 
concurrent rapid emergence of near-degeneracy, seems to be called for.

5.  Discussion and summary

The generalized quantum Rabi model described by the Hamiltonian (4), the quantum Rabi–
Stark model, is particularly interesting from the point of view that it offers a further tunable 
parameter, the Stark coupling γ, which can be used to investigate various regimes of the model 
which may be less accessible for the original quantum Rabi model where the Stark coupling 
vanishes. This is an especially intriguing aspect of the model since an experimental realiza-
tion has been proposed with all the energy parameters {ω,∆, γ, g} freely and independently 
variable [14].

In the investigation reported here, the quantum Rabi–Stark model has been shown to be 
exactly solvable and also quantum integrable in the sense of quantum integrability introduced 
by Braak in his seminal work on the original quantum Rabi model [6]. Furthermore, we have 
obtained the exact analytical solution of the quantum Rabi–Stark model Hamiltonian adapt-
ing the methods devised for the original quantum Rabi model in [6]. In particular, we high-
lighted the differences created by the nonlinear Stark term γσza†a in the generalized model. 
One of these differences concerns the reproduction of the results for the original quantum 
Rabi model from those of the generalized model. The naive limit γ → 0 fails for the non-zero 
indicial exponents of the Frobenius solution of the generalized model. This observation will 
be crucial for a study of the exceptional points in the spectrum of the quantum Rabi–Stark 
model.

From the exact solution, we constructed functions G±(E; z) which can be used to numer
ically extract the regular part of the spectrum of the model. The exact solution also allows for 
a classification of the exceptional part of the spectrum which consists in its turn of a degener-
ate and a nondegenerate part. The spectrum and its properties, especially its dependence on 
the parameter γ of the non-linear Stark term in the Hamiltonian has been the major aim of the 
investigation we have reported on in this paper. As detailed in the last section, the low-lying 
Rabi–Stark spectrum in the experimentally most relevant ultrastrong and opening deep strong 
regimes of the Rabi coupling exhibits two striking features absent from the original quantum 
Rabi spectrum: distinctive avoided level crossings within each parity sector, and the onset 
of two-fold near-degenerate levels already in the ultrastong regime when γ becomes suffi-
ciently large. While the same-parity avoided level crossings most likely reflect the integra-
biltiy of the model—as bolstered by the underlying Z2 parity symmetry [6]—the rapid onset 
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of near-degeneracy remains more intriguing. To provide for its interpretation or explanation 
remains an open problem.

Acknowledgments

We thank Murray Batchelor, Daniel Braak, Mang Feng, and Michael Tomka for illuminating 
discussions, and Arne Grimsmo and Jonas Larson for valuable correspondence. Furthermore 
we thank Elinor Irish for pointing out an erroneous statement in an early version of the 
manuscript. This work was supported by STINT (Grant No. IG2011-2028) and the Swedish 
Research Council (Grant No. 621-2014-5972).

ORCID

Hans-Peter Eckle  https://orcid.org/0000-0002-1105-1343
Henrik Johannesson  https://orcid.org/0000-0002-5653-4787

References

	 [1]	 Leibfried D, Blatt R, Monroe C and Wineland D 2003 Quantum dynamics of single trapped ions 
Rev. Mod. Phys. 75 281

	 [2]	 Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 
Quantum-information processing with circuit quantum electrodynamics Phys. Rev. A 75 032329

	 [3]	 Rabi I I 1936 On the process of space quantization Phys. Rev. 49 324
		  Rabi I I 1937 Space quantization in a gyrating magnetic field Phys. Rev. 51 652
	 [4]	 Allen L and Eberly J H 1987 Optical Resonance and Two-Level Atoms (New York: Dover)
	 [5]	 Jaynes E T and Cummings F W 1963 Comparison of quantum and semiclassical radiation theories 

with application to the beam maser Proc. IEEE 51 89
	 [6]	 Braak D 2011 Integrability of the Rabi model Phys. Rev. Lett. 107 100401
	 [7]	 Niemczyk T et al 2010 Circuit quantum electrodynamics in the ultrastrong-coupling regime Nat. 

Phys. 6 772
	 [8]	 Casanova  J, Romero  G, Lizuain  I, García-Ripoll  J  J and Solano  E 2010 Deep strong coupling 

regime of the Jaynes-Cummings model Phys. Rev. Lett. 105 263603
	 [9]	 Weigert S 1992 The problem of quantum integrability Physica D 56 107
	[10]	 Caux J-C and Mossel J 2011 Remarks on the notion of quantum integrability J. Stat. Mech. P02023
	[11]	 Larson  J 2013 Integrability versus quantum thermalization J. Phys. B: At. Mol. Opt. Phys. 

46 224016
	[12]	 Batchelor M T and Zhou H-Q 2015 Integrability versus exact solvability in the quantum Rabi and 

Dicke models Phys. Rev. A 91 053808
	[13]	 Xie Q, Zhong H, Batchelor M T and Lee C 2017 The quantum Rabi model: solution and dynamics 

J. Phys. A: Math. Theor. 50 113001
	[14]	 Grimsmo  A  L and Parkins  S 2013 Cavity-QED simulation of qubit-oscillator dynamics in the 

ultrastrong-coupling regime Phys. Rev. A 87 033814
	[15]	 Klimov A B and Chumakov S M 2009 A Group-Theoretical Approach to Quantum Optics—Models 

of Atom-Field Interactions (Weinheim: Wiley)
	[16]	 Grimsmo A L and Parkins S 2014 Open Rabi model with ultrastrong coupling plus large dispersive-

type nonlinearity: nonclassical light via a tailored degeneracy Phys. Rev. A 89 033802
	[17]	 Maciejewski A J, Przybylska M and Stachowiak T 2014 Analytical method of spectra calculations 

in the Bargmann representation Phys. Lett. A 378 3445
	[18]	 Maciejewski A J, Przybylska M and Stachowiak T 2015 An exactly solvable system from quantum 

optics Phys. Lett. A 379 1505
	[19]	 Balser W 2000 Formal Power Series and Linear Systems of Meromorphic Differential Equations 

(Berlin: Springer)

H-P Eckle and H Johannesson﻿J. Phys. A: Math. Theor. 50 (2017) 294004

https://orcid.org/0000-0002-1105-1343
https://orcid.org/0000-0002-1105-1343
https://orcid.org/0000-0002-1105-1343
https://orcid.org/0000-0002-5653-4787
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1016/0167-2789(92)90053-P
https://doi.org/10.1016/0167-2789(92)90053-P
https://doi.org/10.1088/1742-5468/2011/02/P02023
https://doi.org/10.1088/0953-4075/46/22/224016
https://doi.org/10.1088/0953-4075/46/22/224016
https://doi.org/10.1103/PhysRevA.91.053808
https://doi.org/10.1103/PhysRevA.91.053808
https://doi.org/10.1088/1751-8121/aa5a65
https://doi.org/10.1088/1751-8121/aa5a65
https://doi.org/10.1103/PhysRevA.87.033814
https://doi.org/10.1103/PhysRevA.87.033814
https://doi.org/10.1103/PhysRevA.89.033802
https://doi.org/10.1103/PhysRevA.89.033802
https://doi.org/10.1016/j.physleta.2014.10.001
https://doi.org/10.1016/j.physleta.2014.10.001
https://doi.org/10.1016/j.physleta.2015.03.033
https://doi.org/10.1016/j.physleta.2015.03.033


22

	[20]	 Haroche S and Raimond J-M 2006 Exploring the Quantum—Atoms, Cavities, and Photons (Oxford: 
Oxford University Press)

	[21]	 Walther H, Varcoe B T H, Englert B-G and Becker T 2006 Cavity quantum electrodynamics Rep. 
Prog. Phys. 69 1325

	[22]	 Geller  M  R and Cleland  A  N 2005 Superconducting qubits coupled to nanoelectromechanical 
resonators: an architecture for solid-state quantum-information processing Phys. Rev. A 71 032311

	[23]	 Tian L 2011 Cavity cooling of a mechanical resonator in the presence of a two-level-system defect 
Phys. Rev. B 84 035417

	[24]	 Bogoliubov  N  M, Bullough  R  K and Timonen  J 1996 Exact solution of generalized Tavis–
Cummings models in quantum optics J. Phys. A: Math. Gen. 29 6305

	[25]	 Eckle  H-P 2017 A First Course on Bethe Ansatz and Integrable Models of Quantum Matter 
(Oxford: Oxford University Press)

	[26]	 Bargmann V 1961 On a Hilbert space of analytic functions and an associated integral transform 
part I Commun. Pure Appl. Math. 14 187

	[27]	 Braak D 2015 Analytical Solutions of Basic Models in Quantum Optics (Mathematics for Industry 
vol 11) ed R S Anderssen (New York: Springer)

	[28]	 Fulton R L and Gouterman M 1961 Vibronic coupling. I. Mathematical treatment for two electronic 
states J. Chem. Phys. 35 1059

	[29]	 Slavyanov  S  Y and Lay  W 2000 Special Functions. A Unified Theory Based on Singularities 
(Oxford: Oxford University Press)

	[30]	 Ince E L 1956 Ordinary Differential Equations (New York: Dover)
	[31]	 Zhong H, Xie Q, Batchelor M and Lee C 2013 Analytical eigenstates for the quantum Rabi model 

J. Phys. A: Math. Theor. 46 415302
	[32]	 Judd  B  R 1979 Exact solutions to a class of Jahn–Teller systems J. Phys. C: Sol. State Phys. 

12 1685
	[33]	 Kuś M 1985 On the spectrum of a two-level system J. Math. Phys. 26 2792
	[34]	 Tomka M, El Araby O, Pletyukhov M and Gritsev M 2014 Exceptional and regular spectra of a 

generalized Rabi model Phys. Rev. A 90 063839
	[35]	 Maciejewski A J, Przybylska M and Stachowiak T 2014 Full spectrum of the Rabi model Phys. 

Lett. A 378 16
	[36]	 Li Z-M and Batchelor M T 2015 Algebraic equations for the exceptional spectrum of the generalized 

Rabi model J. Phys. A: Math. Theor. 48 454005
	[37]	 Li Z-M and Batchelor M T 2016 Addendum to algebraic equations for the exceptional spectrum of 

the generalized Rabi model J. Phys. A: Math. Theor. 49 369401
	[38]	 Wakayama M and Yamasaki T 2014 The quantum Rabi model and Lie algebra representations of 

sl2 J. Phys. A: Math. Theor. 47 335203
	[39]	 Wakayama  M 2017 Symmetry of asymmetric quantum Rabi models J. Phys. A: Math. Theor. 

50 174001
	[40]	 Landau  L  D and Lifshitz  E  M 1980 Quantum Mechanics: Non-Relativisitic Theory (Oxford: 

Pergamon) pp 304–5
	[41]	 Heilmann O and Lieb E H 1970 Violation of the non-crossing rule: the hubbard Hamiltonian for 

benzene Trans. New York Acad. Sci. 33 116
	[42]	 Jain C S, Krishan K, Majumdar C K and Mubayi V 1975 Exact numerical results on finite one-and 

two-dimensional Heisenberg systems Phys. Rev. B 12 5235
	[43]	 Owusu H K, Wagh K and Yuzbashyan E A 2009 The link between integrability, level crossings and 

exact solution in quantum models J. Phys. A: Math. Theor. 42 035206
	[44]	 Kuś M and Lewenstein M 1986 Exact isolated solutions for the class of quantum optical systems J. 

Phys. A: Math. Gen. 19 305
	[45]	 Eckle H-P and Johannesson H 2017 unpublished
	[46]	 Heiss W D and Müller M 2002 Universal relationship between a quantum phase transition and 

instability points of classical systems Phys. Rev. E 66 016217
	[47]	 Leyvraz F and Heiss W D 2005 Large-N scaling behavior of the Lipkin–Meshkov–Glick Model 

Phys. Rev. Lett. 95 050402
	[48]	 Cejnar P, Macek M, Heinze S, Jolie J and Dobeš J 2006 Monodromy and excited-state quantum 

phase transitions in integrable systems: collective vibrations of nuclei J. Phys. A: Math. Gen. 
39 L515

	[49]	 Puebla R, Hwang M-J and Plenio M B 2016 Excited-state quantum phase transition in the Rabi 
model Phys. Rev. A 94 023835

H-P Eckle and H Johannesson﻿J. Phys. A: Math. Theor. 50 (2017) 294004

https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1103/PhysRevA.71.032311
https://doi.org/10.1103/PhysRevA.71.032311
https://doi.org/10.1103/PhysRevB.84.035417
https://doi.org/10.1103/PhysRevB.84.035417
https://doi.org/10.1088/0305-4470/29/19/015
https://doi.org/10.1088/0305-4470/29/19/015
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1063/1.1701181
https://doi.org/10.1063/1.1701181
https://doi.org/10.1088/1751-8113/46/41/415302
https://doi.org/10.1088/1751-8113/46/41/415302
https://doi.org/10.1088/0022-3719/12/9/010
https://doi.org/10.1088/0022-3719/12/9/010
https://doi.org/10.1063/1.526703
https://doi.org/10.1063/1.526703
https://doi.org/10.1103/PhysRevA.90.063839
https://doi.org/10.1103/PhysRevA.90.063839
https://doi.org/10.1016/j.physleta.2013.10.032
https://doi.org/10.1016/j.physleta.2013.10.032
https://doi.org/10.1088/1751-8113/48/45/454005
https://doi.org/10.1088/1751-8113/48/45/454005
https://doi.org/10.1088/1751-8113/49/36/369401
https://doi.org/10.1088/1751-8113/49/36/369401
https://doi.org/10.1088/1751-8113/47/33/335203
https://doi.org/10.1088/1751-8113/47/33/335203
https://doi.org/10.1088/1751-8121/aa649b
https://doi.org/10.1088/1751-8121/aa649b
https://doi.org/10.1111/j.2164-0947.1971.tb02577.x
https://doi.org/10.1111/j.2164-0947.1971.tb02577.x
https://doi.org/10.1103/PhysRevB.12.5235
https://doi.org/10.1103/PhysRevB.12.5235
https://doi.org/10.1088/1751-8113/42/3/035206
https://doi.org/10.1088/1751-8113/42/3/035206
https://doi.org/10.1088/0305-4470/19/2/023
https://doi.org/10.1088/0305-4470/19/2/023
https://doi.org/10.1103/PhysRevE.66.016217
https://doi.org/10.1103/PhysRevE.66.016217
https://doi.org/10.1103/PhysRevLett.95.050402
https://doi.org/10.1103/PhysRevLett.95.050402
https://doi.org/10.1088/0305-4470/39/31/L01
https://doi.org/10.1088/0305-4470/39/31/L01
https://doi.org/10.1103/PhysRevA.94.023835
https://doi.org/10.1103/PhysRevA.94.023835


23

	[50]	 Larson  J and Irish  E  K 2017 Some remarks on ‘superradiant’ phase transitions in light-matter 
systems J. Phys. A: Math. Theor. 50 174002

	[51]	 Shen L-T, Yang Z-B, Wu H-Z and Zheng S-B 2017 Quantum phase transition and quench dynamics 
in the anisotropic Rabi model Phys. Rev. A 95 013819

	[52]	 Xie Q-T, Cui S, Cao J-P, Amico L and Fan H 2014 Anisotropic Rabi model Phys. Rev. X 4 021046
	[53]	 Zhang G and Zhu H 2015 Analytical solution for the anisotropic Rabi model: effects of counter-

rotating terms Sci. Rep. 5 8756
	[54]	 Tomka M, Pletyukhov M and Gritsev V 2015 Supersymmetry in quantum optics and in spin–orbit 

coupled systems Sci. Rep. 5 13097
	[55]	 Berry M V and Tabor M 1977 Level clustering in the regular spectrum Proc. R. Soc. A 356 375
	[56]	 Gardas B and Dajka J 2013 New symmetry in the Rabi model J. Phys. A: Math. Theor. 46 265302

H-P Eckle and H Johannesson﻿J. Phys. A: Math. Theor. 50 (2017) 294004

https://doi.org/10.1088/1751-8121/aa65dc
https://doi.org/10.1088/1751-8121/aa65dc
https://doi.org/10.1103/PhysRevA.95.013819
https://doi.org/10.1103/PhysRevA.95.013819
https://doi.org/10.1103/PhysRevX.4.021046
https://doi.org/10.1103/PhysRevX.4.021046
https://doi.org/10.1038/srep08756
https://doi.org/10.1038/srep08756
https://doi.org/10.1038/srep13097
https://doi.org/10.1038/srep13097
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1088/1751-8113/46/26/265302
https://doi.org/10.1088/1751-8113/46/26/265302

