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Quantum Thermodynamics at Impurity
Quantum Phase Transitions
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Abstract The study of quantum thermodynamics, i.e. equilibrium and non-
equilibrium thermodynamics of quantum systems, has been applied to various many-
body problems, including quantum phase transitions. An important question is
whether out-of-equilibrium quantities from this emerging field, such as fluctuations
of work, exhibit scaling after a sudden quench. In particular, it is very interesting
to explore this problem in impurity models where the lack of an obvious symmetry
breaking at criticality makes it very challenging to characterize. Here, by considering
a spin emulation of the two impurity Kondo model and performing density matrix
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renormalization group computations,we establish that the irreversiblework produced
in a quench exhibits finite-size scaling at quantum criticality. Our approach predicts
the equilibrium critical exponents for the crossover length and the order parameter of
the model, and, moreover, implies a new exponent for the rescaled irreversible work.

17.1 Introduction

Impurities in the bulk of a material are the heart of solid state technologies which
is exemplified by the computing revolution driven by the invention of transistors.
In fact, even the addition of a single impurity can change the properties of matter.
The theory of quantum impurities underpins much of the current understanding of
correlated electrons. A case in point is the two-impurity Kondo model (TIKM) [1],
with bearing on heavy fermion physics [2], correlation effects in nanostructures [3],
spin-based quantum computing [4, 5], and more. The model describes two localized
spin-1/2 impurities in an electron gas, coupled by the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interaction via their spin exchange with the electrons. In addition to
the RKKY coupling, the model exhibits a second energy scale, the Kondo temper-
ature TK , below which the electrons may screen the impurity spins. For the sake of
simplicity, in numerical computations, a spin chain emulation of the TIKM has been
introduced which faithfully reproduces its physics [6]. Universal quantum quenches
[7] and entanglement properties [8] of the TIKM model have been investigated.

Out-of-equilibrium thermodynamics of closed many-body systems subject to a
variation of a Hamiltonian parameter has received considerable attention in the past
few years, both experimentally and theoretically [9]. The increasing level of control
over few-particle quantum systems has allowed to demonstrate experimentally the
information-to-energy conversion and the Jarzynski equality [10–14]. On the one
hand, the increasing level of control of simple systems consisting of a few quantum
particles has led to the experimental possibility both of building the first quantum
engines [15–17] and of investigating nonequilibrium theoretical predictions [11]. On
the other hand, studies of the interplay between quantum thermodynamics, many-
body physics, and quantum information, have shed light on fundamental aspects
of thermalisation of closed quantum systems [19], fluctuation theorems [20], and
prospects for quantum coherent thermal machines [21, 22].

A central issue is how the presence of a quantum phase transition (QPT) man-
ifests itself in the out-of-equilibrium thermodynamics after a sudden quench of a
Hamiltonian parameter [9, 19, 23–32]. In the sudden quench approach, the thermo-
dynamic properties of a quantum system, initially at thermal equilibrium and experi-
encing a sudden variation of some global hamiltonian parameter, are investigated. It
is nowwell established [24] that a second-order QPT is signaled by a discontinuity in
the derivative of the irreversible entropy production (with the derivative taken with
respect to the QPT driving parameter which is being quenched), as well as of the
variance of the work [20]. This is to be contrasted with a first-order QPT, where the
derivative of the average work (i.e. the first moment of the probability distribution
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function of the work) exhibits a discontinuity at the transition [28] (with a peak in the
irreversible entropy productionwhen theQPT is induced by a local quench [32]). The
obvious parallels to the diverging behavior of response functions at a second-order
equilibrium QPT prompts the question whether out-of-equilibrium quantities, like
the irreversible work [20] (which is a measure of the nonadiabaticity of a quantum
quench), may also exhibit scaling at criticality. Here, via a novel inroad—studying
the quantum thermodynamics for a sudden quench across an impurity quantum crit-
ical point—we are able to provide an affirmative answer. Recent studies have also
demonstrated a similar conclusion for first order transitions [33].

While for an ordinary bulk QPT the behavior of thermodynamic quantities after
a sudden quench reflects the discontinuity of a corresponding equilibrium average
value of a global observable [25], the same is not so obvious in an impurity quan-
tum phase transition (iQPT) [34]. Local quenches in many-body quantum systems
displaying iQPTs have not been investigated adequately. The lack of such works can
be related both to the fact that iQPTs are a relatively new concept compared to the
more well-established theory of QPTs classified according to the Ehrenfest-Landau
scheme, and, most importantly but related, the identification of an order parame-
ter exhibiting scaling properties according to some critical exponents for the iQPT
has been only recently tackled [35, 36]. In ordinary QPTs the fact that the out-of-
equilibrium thermodynamics of a global sudden quantum quench highlights the QPT
point in the moments of the work probability distribution function (PDF) is due, in
the final analysis, to the discontinuity of a corresponding equilibrium average value
of a global observable, the latter being the order parameter. This holds, for instance,
in spinmodels where themagnetization and the susceptibility show, respectively, dis-
continuities for 1st- and 2nd-order QPTs, thus reflecting in nonequilibrium quantum
thermodynamics variables, which, as a consequence, inherit also the correspond-
ing universality class scaling behaviour [37]. Moreover, as the irreversible entropy
production can be related to the relative entropy of pre- and post-quenched thermal
states, the abrupt change induced by the QPT of the latter (at low temperatures)
is responsible for the its divergence at the critical point [25]. Based on these, one
may ask whether, after a local quench of the impurity coupling, the behaviour of
nonequilibrium quantum thermodynamic variables can reveal the iQPT?

In this paper, we elaborate on our results in [38] for the two-impurity Kondo
model (TIKM) [39], one of the best studied models supporting an iQPT [2, 40–48].
Here, two spin-1/2 quantum impurities are coupled to each other by a Ruderman–
Kittel–Kasuya–Yosida (RKKY) interaction, and, in the simplest variant of the the-
ory [45], to separate bulk reservoirs of conduction electrons by Kondo interactions.
When the RKKY interaction dominates, the two impurities form a local spin-singlet
state (RKKY phase), while in the opposite limit each of the impurities form a spa-
tially extended singlet state with the electrons in the reservoir to which it is coupled
(Kondo-screened phase). We shall show that the iQPT between these two phases is
signaled both by the irreversible work production and the variance of work following
a sudden quench. Remarkably, the irreversible work shows clear scaling with well-
defined critical exponents, related to known equilibrium critical exponents by scaling
laws. Moreover, by means of a small quench approximation for the irreversible work
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production, we are able to link the latter to the two-impurity spin correlation func-
tion, which is amenable to experimental determination. While our findings have
broad ramifications, they are particularly timely considering recent breakthroughs
in designing and performing measurements on tunable nanoscale realizations of the
TIKM [3, 49, 50].

17.2 Two Impurity Kondo Model

For the purpose of exploring quantum critical properties of the TIKM, it is sufficient
to focus on the spin sector of themodel by considering its spin chain emulation which
is sufficient to reproduce the underlying physics [6]. This can be emulated by the
Kondo spin-chain Hamiltonian H(K ) = ∑

m=L ,R Hm + HI [6], where

Hm = J ′ (J1σm
1 ·σm

2 + J2σ
m
1 ·σm

3

) +

+ J1

Nm−1∑

i=2

σm
i ·σm

i+1 + J2

Nm−2∑

i=2

σm
i ·σm

i+2,

HI = J1Kσ L
1 ·σ R

1 . (17.1)

Here m = L , R labels the left and right chains with σm
i the vector of Pauli matrices

at site i in chain m, and with J1 (J2) nearest- (next-nearest-) neighbor couplings
(see Fig. 17.1). In the following we set J1 = 1 as our energy unit. The parameter
J ′ > 0 plays the role of antiferromagnetic Kondo coupling and K represents the
dimensionless RKKY coupling between the impurity spins σ L

1 and σ R
1 . The total

size of the system is thus N = NL + NR . By fine tuning J2/J1 to the critical point
(J2/J1)c = 0.2412 of the spin chain dimerization transition [51, 52] all logarithmic
scaling corrections vanish, allowing for an unambiguous fit of numerical data using
the Density Matrix Renormalization Group (DMRG) [53–55]. Indeed, a DMRG
study reveals that the Hamiltonian (17.1) faithfully reproduces the features of the
iQPT in the TIKM [6].

K J’J’

J1     J1 
J1     J1 J1 J1 

Fig. 17.1 Schematic of the two impurity Kondo mode. The two-impurity Kondo spin chain
model consists of two spin-1/2 impurities, each interacting with an array of spin-1/2 particles via
a Kondo coupling J ′. The two impurity interacts with each other via an inter-impurity RKKY
coupling K which serves as the control parameter. By varying K system exhibits a second order
quantum phase transition at a critical value K = Kc which depends on the impurity coupling J ′
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17.3 Thermodynamic Properties: Work Distribution

We assume that the impurity coupling is initially K . The system is at zero tempera-
ture in its ground state |E0(K )〉 with energy E0(K ). The impurity coupling is then
quenched infinitesimally from K to K + ΔK , with the Hamiltonian H(K ) suddenly
changed to H(K + ΔK ). The work performed on the system becomes a stochastic
variable W described by the probability distribution function (PDF) [20]

p(W ) =
∑

m

∣
∣
〈
E ′
m

∣
∣ E0(K )〉∣∣2 δ

[
W − (E ′

m − E0(K ))
]
, (17.2)

where {E ′
m} and {∣∣E ′

m

〉} are the eigenenergies and eigenvectors of H(K + ΔK ),
respectively. Notice that the work PDF is an experimentally accessible quantity [56,
57] and that from its knowledge all the statistical moments can be derived as

〈
Wn

〉 =
∫

Wn p(W )dW. (17.3)

Due to the nature of the sudden quench in theHamiltonian, the system is driven out
of equilibrium and, by means of the Jarzynski fluctuation relation [10], it is possible
to define the so-called irreversible work:

Wirr = 〈W 〉 − ΔF ≥ 0 , (17.4)

where ΔF is the difference between the free energies after and before the quench.
Since we assume zero temperature, ΔF is simply the difference of the post- and pre-
quench ground state energies. The irreversiblework has a simple physical explanation
as the amount of energy which has to be taken out from the quenched system in
order to bring it to its new equilibrium state which, for our case, is the ground state
of H(K + ΔK ) [27]. For the instantaneous quantum quench we have

Wirr= 〈E0(K )| H(K + ΔK ) |E0(K )〉 − E ′
0(K + ΔK ) , (17.5)

i.e., the irreversible work is given by the difference between the expectation value of
the post-quenched Hamiltonian evaluated on the pre-quenched ground state and the
post-quench ground state energy. It is worth emphasizing that the (17.2) and (17.5)
are truly out-of-equilibrium quantum thermodynamic quantities, although evaluated
at equilibrium due to the sudden quench approximation. In fact, for quasi-static
processes, the work PDF would be a delta function peaked at the energy difference
between the pre- and post-quenched ground states, whereas the irreversible work
would result identically null. Instead, in the sudden quench case, which approximates
the case where the quench is performed at a rate much faster than the typical time
evolution scale of the pre-quenched ground state, both quantities give a measure of
the irreversibility by performing the quench [10, 27].
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17.4 Scaling of the Irreversible Work

In order to capture the iQPT between the Kondo regime and the RKKY phase, we
introduce the rescaled quantity

W̃irr = Wirr

ΔK 2
, (17.6)

and study the variation of W̃irr when the coupling K is varied. In this paper we
only consider infinitesimal quantum quenches, ΔK � 1. In Fig. 17.2a, b we plot the
irreversiblework W̃irr for two impurity couplings J ′ = 0.4 and J ′ = 0.5 respectively.
It is clear from the plots that W̃irr shows a sharp peak which becomes even more
pronounced by increasing the system size N (apart from slightly shifting towards
lower values of K ’s). This signifies that W̃irr exhibits non-analytic behaviour at the
critical point in the thermodynamic limit. In finite-size systems, such as the ones
considered here, the position of the peak determines the critical point Kc which
slowly moves towards the left by increasing N .

By considering the specific value of theRKKYcoupling K atwhich W̃irr diverges,
one can determine numerically the critical point Kc, which then shows a particular
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Fig. 17.2 The rescaled irreversible work near criticality. The irreversible work W̃irr in terms
of K in a chain with a J ′ = 0.4; b J ′ = 0.5. c The critical coupling Kc (blue circles) versus 1/J ′
in a semi-logarithmic scale and its exponential fit (blue line). d The maximum of the irreversible
work Wm

irr versus N 0.4 and the linear fits. From top to bottom: J ′ = 0.4; J ′ = 0.5; J ′ = 0.6 and
J ′ = 0.7. From [38]
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dependence on 1/J ′, just as the Kondo temperature TK (which sets the energy scale
for the weak-to-strong of the renormalized Kondo coupling [39]). This can be seen
in Fig. 17.2c in which the critical coupling Kc is plotted as a function of 1/J ′. The
manifest linear trend in a semi-logarithmic scale confirms that

Kc ∼ e−a/J ′ ∼ TK (17.7)

for some constant a, in agreement with other studies of the two-impurity Kondo spin
chain [6, 35].

In the finite-size systems studied here, the divergence of W̃irr at K = Kc appears
as a finite peak becoming more prominent for increasing system size, as shown in
Fig. 17.2a, b. We define the maximum of the irreversible work as W̃m

irr = W̃irr (K =
Kc). Since W̃m

irr increases by increasing the system size N one can try to fit it by an
algebraic map of the form

W̃m
irr ∼ N λ, (17.8)

where λ is a positive exponent. In fact, a perfect match is found for various impurity
couplings J ′ by choosing λ = 0.4 as depicted in Fig. 17.2d. Note that the exponent
λ governs the scaling of a purely non-equilibrium quantity with system size. Note
that, whereas for a global quench the irreversible work is expected to have a func-
tional dependence on the system size because in (17.4) both the work and the free
energy become extensive quantities, it is far from trivial that the same holds for a
local quench. Nevertheless, in the TIKM here considered, this behavior of W̃m

irr is
determined by the distinctive nature of the iQPT, where a local change in the RKKY
coupling induces a global rearrangement of the ground state of the total system at
criticality.

The above analysis for W̃irr suggests the Ansatz:

W̃irr = A

|K − Kc|κ + BN−λ
, (17.9)

where A and B are two constants that may vary with J ′. This Ansatz is based on
the fact that W̃irr diverges in the thermodynamic limit as W̃irr ∼ |K − Kc|−κ , while
for finite-size systems at K = Kc it increases algebraically with the system size as
in (17.8). In order to deal with the divergence more conveniently at the critical point
we define a normalized function as

Wnor = (W̃m
irr − W̃irr )/W̃

m
irr . (17.10)

Using the Ansatz of (17.9) one can show that

Wnor = g(N λ/κ |K − Kc|), (17.11)

where g(x) is a scaling function which can be determined numerically. In order to
evaluate the exponent κ we search for the value of κ such that the values of Wnor as
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Fig. 17.3 Finite-size
scaling. The finite-size
scaling of Wnor according to
the Ansatz of (17.11) for: a
J ′ = 0.4; b J ′ = 0.5. From
[38]
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a function of N λ/κ |K − Kc|, for various system sizes N , collapse on each other, as
shown in Fig. 17.3a, b for two different impurity couplings J ′ = 0.4 and J ′ = 0.5
respectively.As is evident from thefigure, using the predetermined exponentλ = 0.4,
one finds that κ = 0.8.

The irreversible work has been measured in quantum mechanical setups using
various methods [13, 14]. Here we follow a different route, showing that, for the
present system and for small quenches, one can rely on measuring only the two-
impurity correlation function

〈
σ L
1 ·σ R

1

〉
with respect to the ground state. The SU(2)

symmetry of the Hamiltonian (17.1) implies that the reduced density matrix of the
two impurities is always a Werner state

ρ1L ,1R = 3 + 〈
σ L
1 ·σ R

1

〉

12
I4 −

〈
σ L
1 ·σ R

1

〉

3

∣
∣ψ−〉 〈

ψ−∣
∣ , (17.12)

where
∣
∣ψ−〉

is the singlet state, I4 represents the 4 × 4 identity matrix and
〈
σ L
1 ·σ R

1

〉

is the two-point correlation function of the impurity spins with respect to the ground
state. It is immediate to see that the two-point correlation functions determine all
the properties of the two impurities [58], including their entanglement (measured by
concurrence [59]) which becomes

C = max

{

−1 + 〈
σ L
1 ·σ R

1

〉

2
, 0

}

. (17.13)

By expanding (17.5) for small ΔK we obtain

W̃irr=−1

2

∂
〈
σ L
1 ·σ R

1

〉

∂K
. (17.14)

The divergence of W̃irr at the critical point and (17.14) suggest that the two-point
impurity correlator 〈σ L

1 ·σ R
1 〉mimics the behavior of an order parameter, capturing the

quantum criticality and showing scaling behavior near the transition. In Fig. 17.4a, b
we plot the spin correlator 〈σ L

1 ·σ R
1 〉 versus the coupling K for two impurity couplings
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Fig. 17.4 Two-point impurity correlation function. Correlation function 〈σ L
1 ·σ R

1 〉 of the two
impurities versus RKKY coupling K in a chain with a J ′ = 0.4; b J ′ = 0.5. The finite-size scaling
for 〈σ L

1 ·σ R
1 〉 with c J ′ = 0.4; d J ′ = 0.5 [38]

J ′ = 0.4 and J ′ = 0.5 respectively. The correlator varies from 0 (for K = 0) in the
Kondo regime to 〈σ L

1 ·σ R
1 〉 = −3 (for very large K ) deep in the RKKY phase. To

extract its scaling properties, we make the finite-size-scaling Ansatz

〈σ L
1 ·σ R

1 〉 = N−β/ν f (N 1/ν |K − Kc|), (17.15)

where, in the limit N → ∞, β characterizes scaling of the correlator near criticality,
〈σ L

1 ·σ R
1 〉 ∼ |K − Kc|β , ν is the exponent governing the divergence of the crossover

scale ξ ∼ |K − Kc|−ν [42, 46], and f (x) is a scaling function. In order to determine
these critical exponents we identify the values of β and ν such that the plots of
〈σ L

1 ·σ R
1 〉Nβ/ν as a function of N 1/ν |K − Kc| collapse to a single curve for arbitrary

system sizes, as shown in Fig. 17.4c, d. The best data collapse is achieved by choosing
β = 0.2 and ν = 2, which are in excellent agreement with the ones found from the
analysis of the Schmidt gap [35].

Furthermore, as an alternative way of computing the scaling of the irreversible
work W̃irr , one may directly differentiate both sides of (17.15) with respect to the
RKKY coupling K to get
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W̃irr ∼ ∂K 〈σ L
1 ·σ R

1 〉 ∼ N (1−β)/ν f ′(N 1/ν |K − Kc|), (17.16)

where f ′(x) = d f/dx . The finite-size scaling of (17.16) implies that W̃irr ∼ |K −
Kc|β−1, which then leads to

κ = 1 − β. (17.17)

Moreover, comparing (17.16) and (17.11), we obtain another constraint between the
exponents as

κ = λν. (17.18)

Equation (17.17) and (17.18) are indeed satisfied for the values found in our numerical
analysis as λ = 0.4, ν = 2, β = 0.2 and κ = 0.8, confirming our scaling Ansätze.

It is worth emphasizing that in our local quench problem the energy change, for
every finite quench, is always finite and, for an infinitesimal quench ΔK , the irre-
versible work can be approximated by Wirr 
 −ΔKΔ

〈
σ L
1 ·σ R

1

〉
/2. Since

〈
σ L
1 ·σ R

1

〉

varies between 0 and 3, then Wirr ≤ −3ΔK/2, which vanishes for ΔK → 0.
As a consequence, the un-rescaled irreversible work Wirr shows no divergences
even as N → ∞.

17.5 Variance Analysis of Work

The variance of work is another important non-equilibrium quantity which is
defined as

ΔW 2 = 〈
W 2

〉 − 〈W 〉2 . (17.19)

For convenience, we also rescale the variance as ΔW̃ 2=ΔW 2/ΔK 2. For a sudden
quench one can show that

ΔW̃ 2=3−2
〈
σ L
1 ·σ R

1

〉 − 〈
σ L
1 ·σ R

1

〉2
. (17.20)

The derivative of the rescaled variance with respect to K becomes

∂K (ΔW̃ 2) = 4
(
1 + 〈

σ L
1 ·σ R

1

〉)
W̃irr . (17.21)

Since the correlation function
〈
σ L
1 ·σ R

1

〉
is always finite, both W̃irr and ∂K (ΔW̃ 2)

diverge at the critical point in the thermodynamic limit. Moreover, ΔW̃ 2 takes its
maximum for values of K slightly smaller than Kc where

〈
σ L
1 ·σ R

1

〉 = −1, i.e. the
minimum value of K at which the two impurities are entangled [6].
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17.6 Out-of-Equilibrium Features

We should emphasise the fact that both the irreversible work and the variance of work
are truly out-of-equilibrium quantum thermodynamic quantities, although evaluated
at equilibrium due to the sudden small-quench approximation. In fact, for quasi-static
processes, the irreversible work would result identically null as the work equals the
free energy difference, and the work PDF would be a delta function peaked at the
energy difference between the pre- and post-quenched ground states, resulting in zero
variance. In the sudden quench case, however, both quantities give certain measures
of irreversibility [10, 27].Moreover, as another feature of non-equilibrium,we should
point out that whereas a temperature can be associated to the initial state (which is
T = 0 in our analysis), the same does not hold after the quench has been performed.

17.7 Summary

In this paper, we have numerically shown that both irreversible work and work
variance, as non-equilibrium quantities, signal the impurity quantum phase transition
between the Kondo and RKKY regimes in the TIKM. Both quantities exhibit scaling
at the quantum critical point, and allow for known equilibrium critical exponents to
be extracted. In addition, a new critical exponent κ , governing the behavior of the
rescaled irreversible work at the phase transition, is brought to light. Importantly, all
out-of-equilibrium quantities considered are amenable to experimental observation
in solid-state nanostructures or ultra cold atoms, since ultimately it is sufficient to
measure a two-point spin correlation function.
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