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Abstract

We exploit our recent boundary conformal field theory description (Johannesson et al., Phys. Rev. B 68 (2003)

075112) of the two-channel Anderson impurity model to construct its exact space- and time-dependent single-electron

Green’s function. The universal zero-temperature resistivity and leading temperature-dependent term are derived. We

discuss possible implications for a quadrupolar-magnetic mixed-valent scenario for the UBe13 compound.
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The possibility of non-Fermi liquid (NFL)
behavior in certain cerium- and uranium-based
alloys has been a topic of intense discussion and
research ever since the first discovery of the
anomalous transport and thermodynamics in these
materials [1]. Recently, the two-channel Anderson
impurity model was proposed to account for the
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NFL physics of UBe13 [2]. In this model, a low-
lying quadrupolar 5f2 doublet mixes with a
magnetic 5f3 doublet via the hybridization be-
tween the local f orbital and the conduction band:

H ¼ H0 þ esf
y
sf s þ eqby

aba

þ V ðcy
asð0Þb

y

āf s þ f y
sbācasð0ÞÞ. ð1Þ

The free electron Hamiltonian is denoted here by
H0; with the conduction electrons represented by
radial (1D) fields cy

as carrying spin (s ¼";#) and
quadrupolar (a ¼ 	) quantum numbers. The
electrons hybridize with the local f levels via the
matrix element V. The quadrupolar [magnetic]
d.
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doublet of energy eq [es] is created by a boson
[fermion] operator by

a [f
y
s]. Strong Coulomb repul-

sion implies single occupancy of the localized
levels: f y

sf s þ by
aba ¼ 1: For more details, see

Ref. [3].
We have applied our recent boundary confor-

mal field theory (BCFT) description of the model
[3] to construct its exact space- and time-depen-
dent single-electron Green’s function in the limit of
low temperatures. Within the BCFT formalism, a
quantum impurity gets replaced by a scale-
invariant boundary condition on the free electron
fields, inserted at the location of the impurity [4].
The specific boundary condition that emulates the
presence of the f levels in Eq. (1) was identified in
Ref. [3]. The single-electron Green’s function picks
up a dependence on this boundary condition (alias
the impurity) via the one-particle S-matrix.

Sð1ÞðoFÞ ¼ e2idFCð1ÞðoFÞ. (2)

Here Cð1ÞðoFÞ is the amplitude for a single electron
to scatter elastically off the impurity at the Fermi
level oF; and dF ¼ pnc=4 is the corresponding
single-electron scattering phase shift, with nc the
impurity charge valence. Carrying out the same
kind of analysis as in Ref. [5] for the two-channel
Kondo model (integer valence limit, nc ¼ 1; of the
present model), we find that Cð1ÞðoFÞ ¼ 0; inde-
pendent of the value of nc: In other words, the
outgoing scattering state has no remaining single-
electron component after interaction with the
impurity. This extreme non-Fermi liquid behavior
is the same as for the two-channel Kondo model
and is not modified as one moves into the mixed

valence regime where nca0; 1:
Using the BCFT machinery to extract the

effective scaling Hamiltonian at low temperatures,
a perturbative analysis combined with the result
for the one-particle S-matrix, produces an exact
analytic expression for the leading terms of the
single-electron Green’s function. For a dilute
distribution of uncorrelated impurities we obtain
the standard form

Gðon; kÞ ¼
1

ion � �k � SðonÞ
, (3)

where the Matsubara self-energy SðonÞ splits into
a universal zero-temperature part which is inde-
pendent of frequency on and impurity valence nc;
and a finite-T part which contains two nc-
dependent ‘‘scaling fields’’ lq and ls which mea-
sure the participation of the quadrupolar and spin
degrees of freedom in the scattering of the
conduction electrons off the impurity [6].
Having obtained the self-energy SðonÞ in Eq. (3)

we can calculate the resistivity r of the model by
analytically continuing SðonÞ ! SRð�kÞ; with SR

the self-energy of the retarded Green’s function.
As follows from the analysis in Ref. [7] for this
class of problems, vertex corrections to the
resistivity involve s-wave correlations which vanish
identically. The resistivity is thus determined by
the quasi-particle life time

tð�kÞ ¼ �1
2
ðImSRð�kÞÞ

�1, (4)

via the simple Kubo formula

r�1ðTÞ ¼
4e2

3me

Z
d3k

ð2pÞ3
�
dnFð�kÞ

d�k

� �
k2tð�kÞ. (5)

Here e and me are the electron charge and mass,
respectively, with nFð�kÞ the Fermi distribution
function. From Eqs. (4) and (5) we obtain

rðTÞ ¼
3ni

4pðegFvFÞ
2
ð1� AðncÞ

ffiffiffiffi
T

p
þ . . .Þ, (6)

with ‘‘. . .’’ denoting subleading temperature cor-
rections. The T ¼ 0 resistivity is universal and is
the same as for the two-channel Kondo model [5].
The leading finite-T term also exhibits the sameffiffiffiffi

T
p

scaling as the two-channel Kondo model, but
now with an amplitude AðncÞ which depends on
the impurity valence nc: This amplitude can be
determined numerically by fitting the BCFT
scaling fields lq;s to the impurity-free energy
obtained from the exact Bethe Ansatz solution of
the model [8]. This work is currently underway [6].
As we mentioned in the introduction, the two-

channel single-impurity Anderson model has been
proposed as a description of the NFL physics of
the UBe13 alloy [2]. However, our exact result for
the resistivity does not support this conjecture:
The experimentally observed T

3
2-behavior of the

low-temperature resistivity for this material [9] is
in conflict with the T

1
2-scaling in Eq. (6). This may

not come as a surprise: The thermodynamics of the
model found in Ref. [8] also does not seem to agree
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with available experimental data on UBe13: More-
over, experimental results for the third-order
susceptibility are difficult to explain with the
present model [11]. Taken together, these results
suggest that additional effects (near-degenerate
impurity multiplets [8], excited crystalline electric
field states [10], etc.) may have to be taken into
account in order to explain the anomalous
behavior of this compound.
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