
PHYSICAL REVIEW B 98, 165127 (2018)

Movable but not removable band degeneracies in a symmorphic crystal
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Crossings of energy bands in solids that are not pinned at symmetry points in the Brillouin zone and yet cannot
be removed by perturbations are thought to be conditioned on the presence of a nonsymmorphic symmetry. In
this article we show that such band crossings can actually appear also in a symmorphic crystal. A study of a class
of tight-binding multiband one-dimensional lattice models of spinful electrons reveals that chiral, time-reversal,
and site-mirror symmetries are sufficient to produce such movable but not removable band degeneracies.
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I. INTRODUCTION

Level crossings—the appearance of degeneracies in the
spectrum of a Hamiltonian—underlie a variety of phenomena,
from quantum phase transitions [1] to properties of topolog-
ical semimetals [2]. The noncrossing rule by von Neumann
and Wigner [3] here gets circumvented by the presence of one
or several symmetries which inhibit level repulsion. When a
level crossing occurs through tuning a control parameter, the
resulting degeneracy is said to be accidental; else, if symmetry
alone dictates the presence of the degeneracy, it is commonly
called symmetry enforced.

Level crossings, or “nodes,” play a particularly important
role in the theory of electronic band structures of solids
[4]. Whereas the possibility of accidental band degeneracies
was pointed out early on [5], only rather recently have their
physical implications been more systematically investigated,
leading to the discovery of Weyl semimetals [6,7]. Symmetry-
enforced degeneracies, on the other hand, have long played a
key role in band theory. Typically pinned at high-symmetry
momenta in the Brillouin zone (BZ) [8], they form the “essen-
tial” degeneracies well known from textbooks [9]. A seem-
ingly unique situation occurs in the presence of a nonsym-
morphic symmetry, i.e., when the crystal is invariant under
a point group transformation combined with a nonprimitive
lattice translation [9]. In this case, the electronic bands form
a connected net [10] and while the resulting nodes cannot
be lifted by symmetry-preserving perturbations, their location
can be moved in the BZ by the same perturbation, leading to
the notion of movable but not removable degeneracies.

The degeneracies which emerge from nonsymmorphic
symmetries have come to play a crucial role in the theory of
Dirac [11,12] and nodal line [13] semimetals. It has recently
been shown that they may appear also in other unconventional
band structures, leading to nodal chains [14] and surface
modes with “hourglass” dispersions [15]. The mobility of
these nodes throughout the BZ—when unconstrained by other
symmetries—suggests that their robustness against perturba-
tions is linked to a global topological invariant [16,17]. This is
different from the movable accidental nodes in Weyl semimet-
als which are endowed with only local topological protection

[6]. For extended discussions of symmetry-enforced nodal
phenomena in semimetals, and also in unconventional super-
conductors, see Refs. [18,19].

Given the importance of symmetry-enforced and yet un-
pinned degeneracies, one may inquire whether similar level
crossings can appear also in a symmorphic crystal, charac-
terized by invariance under point group transformations and
primitive lattice translations [9]. In this article we show that
this is indeed possible. Specifically, we show that a pair of
movable but not removable nodes exists in the multiband
spectra of a class of symmorphic tight-binding chains of
spinful electrons possessing chiral, time-reversal, and site-
mirror symmetries. When perturbed, these nodes move sym-
metrically in the BZ, conspicuously making them akin to Weyl
nodes [6], with the crucial difference that here they cannot be
pairwise annihilated through a perturbation which respects the
underlying symmetries. Relevant for applications, realizations
of the investigated class of models may be engineered from a
quantum wire supporting spin-orbit interactions of arbitrary
strength. The fact that the symmorphic mirror symmetry
enforces movable but not removable nodes already in one
spatial dimension allows for a simple and transparent analysis.
We shall build our argument starting from a chain of spinless
fermions, and then show how our result emerges by bringing
in spin.

II. SPINLESS CHAINS WITH CHIRAL, TIME-REVERSAL,
AND INVERSION SYMMETRIES

Consider a translational invariant one-dimensional (1D)
lattice with r ∈ 2N sites per unit cell, distributed between
two sublattices, one formed out of the odd-labeled sites and
the other from the even-labeled sites. The chain is populated
by spinless fermions with nearest-neighbor hopping only.
The r × r Bloch matrix describing the system in the spinor
representation introduced in the Supplemental Material (SM)
[20] has the general form

H(k) =
[

0 Q(k)
Q†(k) 0

]
, (1)
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FIG. 1. Chains 2b and 4b with a bond-inversion point and chain
4s with a site-inversion point. The colored segments represent bonds
with different strengths. The inversion point is indicated by I.

where Q(k) is the matrix containing the hopping amplitudes
between the two sublattices. The model supports chiral sym-
metry, i.e., S H(k)S−1 =−H(k), with S = σz ⊗ 1r/2×r/2 the
matrix implementing the chiral transformation. In addition,
we impose time-reversal symmetry T H(k)T −1 = H∗(−k)
with T = 1r×r , implying real hopping amplitudes, which we
take to be positive.

There are two ways in which a tight-binding chain with
nearest-neighbor hopping may be invariant under inversion.
They differ by the inversion point being located on the bond
between two sites—“bond inversion” or on a site—“site in-
version.” Figure 1 illustrates both situations for r = 2, 4, with
larger unit cells easily represented by repeating the underlying
pattern. As seen in Fig. 1, a chain with two sites per unit cell
supports only bond-inversion symmetry (chain 2b), while for
larger unit cells both types of symmetries are possible. Chain
2b corresponds to the well known spinless Su-Schrieffer-
Heeger (SSH) model [21].

In the following we will analyze the cases with r > 2.
Our goal is to establish the conditions under which the gap
closes through the appearance of a zero-energy degeneracy.
Given that chiral symmetry forces the spectrum of H(k) to
be symmetric around zero energy [21], the existence of such
a node is guaranteed if the spectrum has at least one zero
eigenvalue. The latter requirement is fulfilled if det[Q(k)] = 0.
The Q matrices for the chains in Fig. 1 with r =4 read

Q4b =
[
a cz

b a

]
, Q4s =

[
a bz

a b

]
, (2)

where z = e−ik with k ∈ [−π, π ], and a, b, and c are the
hopping amplitudes along the blue, red, and green bonds,
respectively [20]. The condition det[Q(k)] = 0, subject to
|z| = 1, implies in each case: z = z4b = a2/(bc) if a2 = bc;
z = z4s = 1 for any a and b. Since z = e−ik , in both cases
the node is located at k = 0, a consequence of a, b, and c

being real numbers. The crucial difference comes from the
constraint imposed on the hopping amplitudes, in the case
of bond inversion, or lack thereof, in the case of site inver-
sion: Bond-inversion symmetry, when combined with chiral
and time-reversal symmetries, leads to an accidental node,
while with site-inversion symmetry the degeneracy becomes

unavoidable. This conclusion immediately generalizes to a
unit cell with r > 4 sites.

To prove that the combination of chiral (S), time-reversal
(T ), and site-inversion (I ) symmetries enforces a k = 0
node, we consider the site-inversion transformation I (k) =
I (k)× ‖, where the “hard wall” operator ‖ reverses mo-
mentum and I (k) is an r×r matrix acting on the intracell
positions,

I (k) =
[
R1(k) 0

0 R2(k)

]
. (3)

The forms of the R1(k) and R2(k) matrices depend on the
size of the unit cell. If I (k) is a symmetry transformation,
then H(k) must satisfy I (k)H(−k) I−1(k) = H(k) [20]. It
follows, using Eqs. (1), (3), and the identity I−1(k) = I (−k),
that R1(k) Q(−k) R2(−k) = Q(k). With r = 4 sites per unit
cell, R1(k) = z adiag(1 1), R2(k) = z diag(1 z∗) [20], with the
symbol diag (adiag) denoting a diagonal (antidiagonal) matrix
and, as before, z = e−ik . Assuming a generic Q(k) with r =
4, it follows that the k-independent parameters appearing in
Q(k), call them qij , must satisfy q21 = q11 and q12 = q22.
This confirms that Q4s in Eq. (2) is the most general matrix
describing a spinless ST I -invariant chain with r = 4 sites per
unit cell. Again, the procedure applies to an arbitrarily large
unit cell with r > 4 once the corresponding R1(k) and R2(k)
have been obtained [20].

One can now understand how the noncrossing rule is
bypassed in the spinless ST I -invariant chain. In order to avoid
level repulsion, states must carry distinct quantum numbers.
This requirement is satisfied by S which prescribes that degen-
erate zero-energy states are eigenstates of the chiral operator
with opposite eigenvalues [21]. Still, S symmetry alone only
paves the way for the appearance of an accidental degeneracy.
Adding I symmetry constrains the Bloch matrix in such a
way that a nodal solution exists in the whole parameter space.
By enforcing real hopping amplitudes, T symmetry pins the
node at k = 0. As we shall see, adding spin creates a pair of
Kramers related nodes with the striking effect of unpinning
them, without disrupting the symmetry enforcement.

A final remark on the spinless case: At a first glance,
the k dependence of I might appear as a signature of a
nonsymmorphic transformation, in which case our inversion
would actually be a glide operation [9]. This is not the case:
By the crystallographic definition, the k dependence of a
nonsymmorphic transformation is along the direction parallel
to the mirror plane [22]. In the case of a 1D system, k is, by
construction, perpendicular to the plane of inversion. The k

dependence of I instead comes about from the lack of invari-
ance of the unit cell under the site-inversion transformation
which, in turn, stems from the offset between the inversion
point and the center of the cell (see Fig. 1). This is a feature
of site inversion which does not occur with bond inversion.
Using the property I (−k) = I−1(k), it can also be seen that
I 2n(k) = 11, and thus I 2n+1(k) = I (k), with n = 1, 2, . . . .
This means that, unlike a nonsymmorphic transformation,
I (k) cannot be iterated to eventually produce a full translation
eik11. For discussions of other lattice models with symmorphic
k-dependent symmetry transformations, see Refs. [23–25].
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FIG. 2. The 4s-chain populated by spinful fermions. The colored
segments represent bonds with different strengths; up and down
arrows illustrate the spin degree of freedom. A site-mirror point is
indicated by M.

III. SPINFUL CHAIN WITH CHIRAL, TIME REVERSAL,
AND SITE-MIRROR SYMMETRIES

Let us consider again the minimal 4s chain which, in the
spinful case, can be represented as in Fig. 2. The matrix Q4s

from Eq. (2) is now replaced by

Q̃4s =
[

A B∗z

A∗ B

]
, (4)

where the hopping amplitudes a and b became 2 × 2 matrices
A and B whose diagonal (off-diagonal) entries account for
hoppings with equal (flipped) spin [20]. An experimental real-
ization of both the spin-conserving and spin-flipping terms in
Q̃4s may be found in a quantum wire with spatially modulated
Rashba and uniform Dresselhaus spin-orbit interactions [26].
The Bloch matrix, given by Eq. (1), supports S symmetry
with S = σz ⊗ 1r×r . With T = 1r×r ⊗ (−iσy ) now being the
matrix which implements a spin flip, T symmetry is fulfilled
if (−iσy )X(iσy ) = X∗, X = A,B. Applying this relation
to A and B, we get x22 = x∗

11, x21 = −x∗
12, x = a, b. These

constraints replace the stronger condition of real hopping
amplitudes imposed by T in the spinless case, resulting in
unpinned band degeneracies.

To see this, let us remove T and consider Q̃4s in Eq. (4),
now with unconstrained A and B. For general A and B,
det[Q̃4s] = p∗z2 + qz + p, where

p = detA detB = |p| eiα,

q = 2
∑
x �=y

Re(x11x
∗
22y12y

∗
21) − 2Re(a11a

∗
22b11b

∗
22)

−2Re(a12a
∗
21b12b

∗
21) − 4

∑
x �=y

Im(x11x
∗
12)Im(y21y

∗
22),

(5)

with x, y = a, b. The condition det[Q(k)] = 0 yielding a
zero-energy node is fulfilled if z = z± = (t ± √

t2 − 1)eiα ,
where t ≡ −q/(2|p|). Since |z±| = 1, one must have
t ∈ [−1, 1], in which case z± = ei(±θ+α), with θ =
arctan(

√
1 − t2/t ) if 0 � t � 1 or θ = arctan(

√
1 − t2/t ) +

π if −1 � t < 0. Therefore, a pair of nodes occurs at
k = k± = ±θ + α and they move (asymmetrically with
respect to k = 0) as the phases θ and α change. It follows
from the definition of t and Eqs. (5) that satisfying t ∈ [−1, 1]
demands fine tuning the microscopic parameters, meaning
that such a node would be accidental. These nodes are shown
in a movie appended to the SM [20].

We now reintroduce the T -constraints x22 = x∗
11, x21 =

−x∗
12, x = a, b, for which p in Eq. (5) becomes a real positive

FIG. 3. Spectrum of the spinful 4s chain for (a) θa11 = 1.53π

and (b) θa11 = 0.04π . For both (a) and (b): |a11| = 2, |a12| = 1,
|b11| = √

2/2, |b12| = √
2, and θa12 = π/6, θb11 = π/3, θb12 = π/12.

Color code: Red and blue are employed on the bands to highlight
the symmetry of the spectrum around energy = 0 and k = 0, a
consequence of chiral and time-reversal symmetries, respectively. Up
and down triangles represent the two opposite spin orientations.

number, i.e., α = 0, |p| = p. Also, under the T constraints
t ∈ (−1, 1), and hence |z±| = 1 with no further constraints
on the parameters. It follows that z± = e±iθ meaning that two
nodes occur at the BZ points k = k± = ±θ , with θ as given
above but excluding t = ±1. The effect of T is thus to turn the
former asymmetric pair of accidental nodes into a symmetric
pair of movable but not removable degeneracies. Figure 3
illustrates the spectrum for two parameter configurations, with
the parameters xij , x = a, b, written as xij = |xij |exp(iθxij

).
At the node for positive (negative) k, the two degenerate
states have both spin down (up), so the four zero-energy
states together form two Kramers pairs. In the SM [20] the
reader will find movies of the spectrum which fully exposes
the motion of the nodes in the BZ for different parameter
variations.

The BZ locations of the nodes, given by k± = ±θ , are
shown in Fig. 4 as a function of the phase and of the modulus
of a11. Figure 4(a) shows that as θa11 goes from 0 to 2π ,
the nodes at opposite sides of the BZ bounce back and forth
between the center and the zone boundaries. Varying |a11|
causes the nodes to initially approach each other, but they
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FIG. 4. The locations k± of the nodes as a function of (a) θa11

with |a11| = 1 and (b) |a11| with θa11 = π/5. For both (a) and (b):
|a12| = |b11| = |b12| = 1 and θa12 = 5π/8, θb11 = 2π/3, θb12 = π/4.

are eventually pushed apart, as shown in Fig. 4(b). In neither
case do the nodes merge at k = 0 or at k = ±π . Mathe-
matically, this fact follows from z± being complex numbers,
hence z± �= ±1 and thus k± �= 0,±π . Differently from the
Weyl nodes [6] and the triple point fermions discussed in
Ref. [27] (which, in both cases, are topologically protected
only locally), our symmetry-enforced nodes cannot coalesce
and annihilate. However, the effective repulsion between the
nodes as they symmetrically approach the center or the bound-
aries of the BZ is not easily explained by symmetry alone.
Topology may conceivably also play a role, similar to the case
of nonsymmorphic degeneracies which come with a global
topological invariant [17].

To conclude our analysis, we show that the form of Q̃4s in
Eq. (4) follows from the combination of T and a site-mirror
(M) symmetries. For that we construct the unitary site-mirror
transformation M (k) = I (k)T formed out of site-inversion
I (k) = Ĩ (k)× ‖ times the spin flip T . For the spinful chain,
Ĩ (k) = I (k) ⊗ 12×2. Employing Eq. (3),

M(k) ≡ Ĩ(k) T =
[
R̃1(k) 0

0 R̃2(k)

]
, (6)

with R̃1(k) = R1(k) ⊗ (−iσy ) and R̃2(k) = R2(k) ⊗ (−iσy ).
Demanding that M (k) is a symmetry transformation yields
M(k)H(−k)M−1(k) = H(k) [20]. Bringing in Eqs. (1) and
(6), and using that M−1(k) = −M(−k), it follows that
R̃1(k) Q(−k) R̃2(−k) = −Q(k). Inserting a generic Q(k)
with r = 4 into this relation leads to (−iσy )Qij (iσy ) = Qjj ,
with i �= j = 1, 2, and Qij the k-independent 2 × 2 matrices
appearing in Q(k). Combining this with the fact that T

constrains these matrices as (−iσy )Qij (iσy ) = Q∗
ij , we get

Qij = Q∗
jj , with i �= j = 1, 2. This means that Q̃4s in Eq. (4)

is indeed the most general matrix describing a spinful ST M-
invariant chain with r = 4 sites per unit cell. The analysis can

be extended to unit cells with r > 4, and one concludes that
any spinful ST M-invariant chain exhibits a pair of movable
but not removable degeneracies.

IV. SYMMETRY CLASSES

Let us briefly discuss the symmetry classes of the studied
models. In the presence of S and T symmetries, the multiband
spinless (spinful) chain belongs to class BDI (CII) [20] of
the Altland-Zirnbauer classification [28]. This means that the
spinless ST I - and the spinful ST M-invariant chains are at
the boundary between trivial and topological insulating phases
which, in both cases, can be characterized by a Z-winding
number. Breaking the I or M symmetry will generically open
a gap at zero energy, driving the system into either one of the
insulating regimes. This is similar to how a nonsymmorphic
symmetry correlates with a topological phase transition in
models of 2D Dirac semimetals [12].

V. SUMMARY

We have identified a class of 1D electronic tight-binding
models which allow the presence of spin-orbit interactions
and whose band structures exhibit movable but not remov-
able degeneracies without the presence of a nonsymmorphic
symmetry. Chiral, time-reversal, and site-mirror symmetry
comprise a sufficient set of symmetries for the emergence
of this type of degeneracy which, in the case at hand, come
in the form of a Kramers related pair of nodes. An inter-
esting open problem is whether these nodes are endowed
with a global topological invariant, analogous to the case of
nonsymmorphic degeneracies [17]. Possible generalizations
include adding longer-range odd-neighbor hoppings or super-
conducting pairing that preserve the enforcing symmetries.
Of obvious interest would be to extend our finding to higher
dimensions. This could open a pathway to search for new
nodal semimetals in symmorphic crystals and, important for
applications, in the presence of strong spin-orbit interactions.
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