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Impurity entanglement entropy in Kondo systems from conformal field theory
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The entanglement entropy in Kondo impurity systems is studied analytically using conformal field theory. From
the impurity contribution to the scaling corrections of the entanglement entropy we extract information about
the screening cloud profile for general non-Fermi-liquid fixed points. By also considering the finite-temperature
corrections to scaling of the von Neumann entropy we point out a direct connection between the long-distance
screening cloud profile and thermodynamic observables such as the specific heat.
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Introduction. Entanglement—nonseparability of states—
lies at the very heart of quantum theory. It has been recognized
as the crucial resource needed for performing quantum
computing and teleportation, but has also entered as an
important concept in a wide range of fields spanning from
black holes to biological systems.1 Entanglement entropy, a
measure of the entanglement between two parts of a quantum
many-body system, has been used as a theoretical tool to study
quantum phase transitions as well as characterizing topological
phases of matter2 and developing numerical algorithms.3 A
particularly important result has been for one-dimensional
(1D) critical systems, where conformal field theory yields
a universal prediction for the scaling of the entanglement
entropy.4,5 When such a system has a boundary, it provides
a framework for the description of universal features of
quantum impurity systems.6 Important information can be
obtained by studying the subleading corrections to the scaling
of the entanglement entropy,7 suggesting a new perspective on
the long-standing problem of the evasive “Kondo screening
cloud.”8

Regarding the question of measuring entanglement entropy
experimentally, it needs to be related to observable quantities.
Recent attempts have focused on the connection between
entanglement and fluctuations.9,10 In particular, for critical
one-dimensional systems with boundaries there is not only the
same logarithmic scaling, but also the corrections to scaling
of the entanglement entropy and those of the particle (or spin)
fluctuations show interesting similarities.10

In this Rapid Communication, we employ boundary con-
formal field theory (BCFT) to give a unified picture of
the entanglement entropy in quantum impurity problems. In
particular, we unveil another type of connection between
zero-temperature entanglement and fluctuations, this time
finite-temperature thermodynamic fluctuations (in the form of
the impurity specific heat), at the level of scaling corrections.
As we shall argue below, this provides an experimental inroad
to the study of Kondo screening clouds. The same framework
allows us to extend the Fermi-liquid analysis of Sørensen
et al.8 of the long-distance behavior of the entanglement
entropy generated by a Kondo impurity to the whole range
of non-Fermi-liquid fixed points in the large family of Kondo
systems.

For the Fermi-liquid case, there is an intuitive picture
relating the impurity contribution to the entanglement en-
tropy and the form of the Kondo screening cloud.8 In a

valence-bond basis, the screening cloud can be thought of
as the distribution of singlet bonds between the impurity and
conduction electrons; hence the valence bond entanglement
entropy11 provides the connection. Now, there is no such
intuitive picture for the non-Fermi-liquid case of the more
complex Kondo systems, but the analogy provides a rationale
for regarding the impurity entanglement entropy as a good
description of the screening cloud profile even when the
(partial) screening is carried out by the highly nontrivial objects
that make up the non-Fermi-liquid ground state. Importantly,
our BCFT result which establishes an exact relation between
the impurity contributions to the entanglement and the specific
heat in terms of scaling corrections of the von Neumann
entropy then shows that there is a direct connection between
the long-distance behavior of the screening cloud and an
experimental observable.

von Neumann entropy from BCFT. Entanglement entropy
in a zero-temperature bipartite system is encoded in the von
Neumann entropy. For a critical 1D semi-infinite bipartite sys-
tem at inverse temperature β, the scaling of the von Neumann
entropy S(r) = −Trρ̂(r)ln ρ̂(r) of the reduced density matrix
ρ̂(r) for an interval of length r at the boundary of the system
is given by4,12

S(r) = c

6
ln

[
β

επ
sinh

(
2πr

β

)]
+ ln g + c′ + · · · . (1)

Here c is the central charge, ln g is the boundary entropy,13 ε is
a short-distance cutoff, and c′ is a nonuniversal constant. This
relates the logarithmic scaling in r of the zero-temperature
entanglement entropy to the scaling of the extensive thermo-
dynamic entropy when r/β → ∞. We will now see that there
is a somewhat similar relation also for the scaling corrections
of S(r), denoted by “· · · ” in Eq. (1). These corrections are
governed by the irrelevant operators (in the language of the
renormalization group) in the BCFT that describes the critical
properties of the system, and will have both bulk and boundary
contributions. For quantum impurity systems, the fixed-point
properties can be described by a BCFT where the impurity has
been reduced to a specific boundary condition and boundary
operator content.14 Therefore, we see from Eq. (1) that the
impurity contribution Simp(r) to the von Neumann entropy
S(r) is

Simp(r) = ln g + · · · . (2)
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Now “· · · ” is the boundary contribution to the scaling correc-
tions of S(r), which is governed by the irrelevant boundary
operators {φb} in the theory.

The von Neumann entropy is calculated as S(r) =
limn→1(1 − n)−1ln Trρ̂n(r). When perturbing the BCFT with
an irrelevant boundary operator, H = HBCFT + λ φb, the lead-
ing correction to S(r) is generically of second order in the
scaling field λ and can be written as

δS ∼ λ2

4

∫ β/2

−β/2
dτ1

∫ β/2

−β/2
dτ2

(∣∣ dz
dw

∣∣1−xb

w=τ1
−∣∣ dz

dw

∣∣1−xb

w=τ2

)2

∣∣ β

π
sin[ π

β
(τ1 − τ2)]

∣∣2xb
. (3)

Here |dz/dw| comes from the mapping z �→ w that takes
the n-sheeted Riemann surface Rn in the finite-temperature
geometry (representing Trρ̂n) to the finite-temperature strip
{w = τ + iy | −β/2 � τ � β/2,y � 0} in the complex upper
half plane C+. The cutoff in the integral is given by
|τ1 − τ2| � ε/|dz/dw|w=τ1 . Equation (3), where xb is the
scaling dimension of φb, follows from the analysis in Ref. 15,
generalized to finite temperature.

In the limit r/β → 0, we get |dz/dw| ∝ r+O((r/β)3).
This gives, as expected from the zero-temperature result in
Ref. 15, that Simp = ln g + δSimp, where δSimp is found from
Eq. (3) as

δSimp ∼
{

r2−2xb if 1 < xb < 3/2 ,
r−1ln r if xb = 3/2 ,
r−1 if xb > 3/2 ,

(4)

up to terms O((r/β)3). A marginally irrelevant perturbation
generates a leading correction ∼ (ln 
)−3, while an exactly
marginal perturbation describes new fixed points and hence
changes Simp by a constant. The corrections in Eq. (4) are
all second order in λ; the only operator which gives a
nonvanishing first-order correction is the stress-energy tensor
which gives a correction8 ∼ r−1.

It is also possible to extract the behavior in the limit r/β →
∞ (still at low temperature, i.e., large β, but taking r � β). We
then get that |dz/dw| ∝ β + O(β−1), up to terms O(e−2πr/β ).
Changing the integration variable to u = tan(π |τ1 − τ2|/β)
and expanding the integrand in Eq. (3) in a power series at the
divergence at u = 0 gives

δSimp ∼ λ2β5−4xb

∫ β/2

−β/2
dτ1

∫ ∞

0
du[f1(τ1)u2−2xb

+ [f2(τ1) + βf3(τ1)]u3−2xb + · · · ] , (5)

where fi(τ1) are regular functions. When xb � 3/2, we must
use the short-time cutoff, which in the u variable becomes u �
πε/(β|dz/dw|w=τ1 ) ∼ ε/β2. Then the leading β dependence
goes as δSimp ∼ β5−4xbβ4xb−6 = β−1 when xb > 3/2, and
δSimp ∼ β5−4xb ln β = β−1 ln β when xb = 3/2. When 1 <

xb < 3/2, we see from Eq. (5) that the integral (3) converges.
Hence the leading β dependence comes from the prefactor
β2−2xb arising from |dz/dw| ∝ β. Summarizing, in the limit
r/β → ∞ we get Simp = ln g + δSimp, with

δSimp ∼
⎧⎨
⎩

β2−2xb if 1 < xb < 3/2 ,
β−1ln β if xb = 3/2 ,
β−1 if xb > 3/2 ,

(6)

to O(β−1) in β and O(e−2πr/β ) in r/β.

The results in Eq. (6) bear a close resemblance to the
well-known expressions for the impurity specific heat Cimp at
criticality.16,17 In fact, as Cimp is related to the thermodynamic
impurity entropy STh

imp via the relation Cimp = −β ∂STh
imp/∂β,

they describe the same power law, and one has the leading
behavior

STh
imp = ln g +

⎧⎨
⎩

λ2A1β
2−2xb if 1 < xb < 3/2 ,

λ2A2β
−1ln β if xb = 3/2 ,

λ2A3β
−1 if xb > 3/2 ,

(7)

as β → ∞, where A1, A2, and A3 are constants. Thus
the von Neumann and thermodynamic impurity entropies
have the same form on their leading scaling corrections
in the limit r/β → ∞ at low temperature. However, the
amplitudes of these scaling corrections are different, as the
von Neumann entropy acquires an additional amplitude factor
from the mapping from the Riemann surface, not present in
the thermodynamic entropy.

Impurity entanglement entropy in Kondo systems. At
zero temperature the von Neumann entropy measures the
entanglement between the two parts of the bipartite system,
and the impurity part Simp(r) in Eq. (2) is then referred
to as the impurity entanglement entropy.8 We can therefore
use the zero-temperature results in Eq. (4) to predict the
impurity entanglement entropy in various Kondo impurity
models. They all share the common feature that the only
significant zero-temperature length scale is the Kondo length
ξK ∼ vF /TK , the characteristic length scale at which screening
is supposed to occur (here vF is the Fermi velocity and TK the
Kondo temperature). In particular, the distance dependence
of Simp can only come through r/ξK . Note that when the
models describe two- (three-) dimensional systems the size
r of the block at the boundary will correspond to the radius
of a disk (sphere) centered at the impurity (or the midpoint
between the impurities when they are two). Thus the impu-
rity entanglement entropy measures the impurity-generated
entanglement between the part of the system within radius r

(including the impurity) and the rest of the system. It appears
as a natural measure of the shape of this screening cloud
since it captures the spatial distribution of the entanglement
from the impurity. Compared to other ways of probing Kondo
screening with entanglement,18 the impurity entanglement en-
tropy has the advantage of allowing analytical results based on
BCFT.

The BCFT approach,14 where the model is reduced to one
spatial dimension with the impurity as a special boundary
condition, is only valid in the limit r � ξK . Hence we expect
the BCFT prediction for Simp at zero temperature to describe
the long-distance decay of the Kondo screening cloud. By
our exact analysis above, the leading r dependence of Simp

in Eq. (4) has the same form as the leading β dependence
of Cimp, so the long-distance zero-temperature profile of the
screening cloud is encoded by the impurity specific heat. The
relation to the impurity entanglement entropy is less direct
for the impurity susceptibility, which is governed by the same
irrelevant boundary operator but through coupling to the bulk
spin operator.16 We now illustrate our result for a large class
of Kondo impurity systems.
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The Kondo model. The original Kondo model describes a
band of conduction electrons interacting with a single magnetic
s = 1/2 impurity at the origin:

HK =
∑

	k,α=↑,↓
ε(	k)ψ†α

	k ψ	kα + J 	S ·
∑

α,β=↑,↓
ψ†α(	0)

	σβ
α

2
ψβ(	0) . (8)

At the low-temperature Kondo screening fixed point, ln g = 0,
and the leading irrelevant boundary operator is the stress-
energy tensor T . As found in Ref. 8, adding the boundary per-
turbation δH = −(ξK/2) T (0) to the fixed-point Hamiltonian
HBCFT gives Simp(r) = πξK/(12r) for r � ξK , in agreement
with DMRG results and consistent with a valence-bond
picture.

Breaking particle-hole symmetry introduces the exactly
marginal charge current operator as a perturbation at the fixed
point, only giving a constant shift of Simp(r).

The two-impurity Kondo model. Adding a second spin-1/2
impurity to the Kondo model gives the two-impurity Kondo
model (TIKM),

HTIKM =
∑

	k,α=↑,↓
ε(	k)ψ†α

	k ψ	kα + J [ 	sc(	r1) · 	S1

+ 	sc(	r2) · 	S2 ] + K 	S1 · 	S2 , (9)

where 	sc(	r) = (1/2)
∑

α,β ψα†(	r)	σβ
α ψβ(	r). The BCFT solu-

tion of the model was found in Ref. 19. In short, the model
features an unstable fixed point at K = Kc ∼ TK , where
the system undergoes a quantum phase transition. At this
fixed point ln g = ln

√
2, and the leading irrelevant boundary

operator allowed by symmetry to appear as a perturbation
is L−1ε, the Virasoro first descendant of the ε field, with
scaling dimension xb = 3/2. However, being a Virasoro first
descendant, L−1ε will not give any contribution to the entan-
glement entropy or any finite-temperature properties to any
order in perturbation theory. This follows from the evaluation
of integrals of the type

∫ ∞
−∞ dτ 〈L−1ε〉Rn

= ∫ ∞
−∞ dτ∂τ 〈ε〉Rn

which vanish due to the periodicity of the boundary of the
n-sheeted Riemann surface Rn. The leading correction to
the impurity entanglement entropy therefore comes from the
stress-energy tensor T , precisely as in the single-impurity case.
Thus, adding T as a boundary perturbation to the fixed-point
Hamiltonian HBCFT,

H = HBCFT + a
√

ξKL−1ε(0) − b ξKT (0) , (10)

with a and b dimensionless constants, gives the impurity
entanglement entropy in the limit r � ξK as

Simp(r) = ln
√

2 + πb ξK/(6r) . (11)

Breaking the SU(2) spin-rotational symmetry or the par-
ity symmetry introduces a boundary operator with scaling
dimension19 xb = 3/2. Particle-hole symmetry breaking can
be either relevant or exactly marginal. Simultaneously break-
ing the particle-hole and parity symmetries adds another
xb = 3/2 boundary operator.20

The multichannel Kondo model. The Hamiltonian is ob-
tained by adding a channel index i = 1,2,...,k to the electrons
in Eq. (8), so that the spin-s impurity interacts with k

degenerate bands of conduction electrons. When k > 2s, the
system is governed by an overscreened non-Fermi-liquid

fixed point, corresponding to a boundary entropy21 ln g =
ln {sin[π (2s + 1)/(2 + k)]/ sin[π/(2 + k)]}. The leading ir-
relevant boundary operator has scaling dimension16 xb =
1 + 2/(2 + k), in agreement with the original Bethe ansatz
solution.21 Thus, when k = 2 the distance-dependent part of
Simp(r) falls off as ∼ (ξK/r) ln (r/ξK ). For arbitrary k > 2,
where 1 < xb < 3/2, one gets

Simp(r) = ln g + A (r/ξK )−4/(2+k), (12)

for r � ξK , with A a constant. We see that the more channels
that are added, the more long-range entanglement appears to be
generated from the screening of the impurity by the composite
soliton-like objects formed in the non-Fermi liquid.21 The
screening cloud falls off with an anomalous power law, a result
rather similar to the one obtained by Barzykin and Affleck22

when defining it as the form of the equal-time spin-spin
correlator.

Channel asymmetry is a relevant perturbation,23 whereas
particle-hole symmetry breaking is exactly marginal.16 The
effect of spin-rotational symmetry breaking depends on s and
k;23 however for the special cases where the perturbation is
irrelevant the only difference is a change in the constant A in
Eq. (12).

Generalizing the multichannel Kondo model by extending
the spin symmetry group from SU(2) to SU(N) gives the
multichannel SU(N) Kondo model.24 The leading irrelevant
operator at the overscreened non-Fermi-liquid fixed point now
has scaling dimension xb = 1 + N/(N + k). Hence Simp(r) =
ln g + A (r/ξK )−2N/(N+k) for r � ξK , with A a constant and
ln g depending on the particular representation of SU(N).

The two-impurity, two-channel Kondo model features a con-
tinuous family of non-Fermi-liquid fixed points,25 allowing for
scaling-correction terms in Simp(r) from boundary operators
with scaling dimensions ranging all the way from xb = 1 to
infinity.

The final case we consider is a Kondo impurity in a
Luttinger liquid. At zero temperature ln g = 0,26 but the
leading perturbation typically has 1 < xb < 3/2 (Ref. 17) and
Eq. (4) then predicts that Simp(r) ∼ r2−2xb .

Discussion. We have provided a unified picture for the
impurity entanglement entropy Simp for the large class of
Kondo models in terms of the scaling corrections arising from
the boundary operators of the corresponding BCFT, valid for
r � ξK . When r/β → ∞ the scaling part of the von Neumann
entropy approaches the thermodynamic entropy,4 and it has
been argued that this is expected on general grounds.8 Our
analysis shows that this reasoning can also be applied to the
scaling corrections, but only in the following precise sense:
The impurity von Neumann entropy and thermodynamic
entropy have the same leading power-law dependence of β

at low temperatures, however with different amplitudes. This
connects the exponents for the temperature scaling of the im-
purity specific heat with those for the large-distance scaling of
the zero-temperature impurity entanglement entropy, through
the von Neumann entropy.

The result suggests that the long-distance profile of a zero-
temperature Kondo screening cloud can be read off from the
impurity specific heat at low temperature, an experimentally
accessible observable. For the original single-impurity Kondo
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model, Simp(r) was indeed found8 to follow the same power
law as the impurity specific heat Cimp(β), showing that this
also holds for the first-order correction from the stress-energy
tensor. This is also what we see when considering the
BCFT predictions for a number of more complex Kondo
impurity models, thereby demonstrating the close connection

between Kondo screening, entanglement, and thermodynamics
in quantum impurity systems.
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