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energies, and the resistivity for the two-channel Anderson impurity model. These results are obtained by
exploiting the boundary conformal field theory identified from the Bethe ansatz solution of the model. Using
that solution we can make contact with the parameters of the original Hamiltonian and provide the detailed
crossover between the two integer valence limits. Our results generalize those obtained previously in the
context of the two-channel Kondo model.
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I. INTRODUCTION

Multichannel impurity physics is a well-established route
to non-Fermi-liquid behavior. Its appeal is therefore under-
standable as an essential ingredient in many of the various
theories that try to explain the unusual characteristics of nu-
merous systems ranging from heavy fermions1 to mesoscopic
point contacts.2 In this context, the two-channel Anderson
impurity model occupies a central place. It was first intro-
duced by Cox in an attempt to model the physics of certain
U-based heavy fermions,3 among which the compound
UBe13 is a prime example. Following that line of thought, a
dilute concentration of uranium in a ThBe13 matrix will cor-
respond to a metallic system with a feeble concentration of
two-channel impurity centers. Impurity corrections to the
different transport properties of that system should display
fractional power laws indicative of non-Fermi-liquid behav-
ior. For instance, corrections to the resistivity would display
ÎT dependence at low temperatures4 and should constitute a
particular experimentally accessible observable.

Indeed, transport measurements are good candidates for
experiments, since they can also be performed in mesoscopic
systems for which bulk thermodynamic measurements, pos-
sible for heavy fermions and other materials, are ineffectual.
In this context, the two-channel Anderson model was already
used successfully as the starting point of noncrossing ap-
proximation sNCAd calculations to model the temperature
dependence of the differential conductance of Cu point
contacts.5,6

The two-channel Anderson impurity model7–9 describes
the interaction of three-dimensionals3Dd electrons with a
local impurity carrying both spin and quadrupolar degrees of
freedom. These degrees of freedom correspond to the lowest-
energy configurations of a uranium impurity in charge states
U4+ s5f2d and U3+ s5f3d. Taking into account spin-orbit cou-
pling and crystal-field splitting in a cubic background one

ends up considering the minimal scenario of asquadrupolard
G3 doublet representation of the cubic group as the lowest-
energy multiplet in U4+ and a Kramers doubletG6 as the
lowest-energy configuration in U3+. These levels hybridize
with those electrons from the conduction band effectuating
the transition from one doublet to the other. Starting from the
full electron fieldCsxWd, one carries out an expansion in har-
monics corresponding to cubic symmetry, retaining only
Cassrd which has the appropriate symmetry to couple to the
impurity, with a=± denoting the quadrupolar degrees of
freedom ands= ↑ ,↓ denoting magneticsspind degrees of
freedom.

We then proceed to write the field in terms of 1D right
sleftd moving fieldscRas scLasd, representing the incoming
soutgoingd radial components of the 3D electron fields that
couple to the impurity,7

Cassrd =
i

2Î2pr
fe−ikFrcLassrd − eikFrcRassrdg, s1d

with a “free-electron” boundary conditioncLass0d=cRass0d
imposed at the originr =0.10

The Hamiltonian is then given by

H = Hbulk + Hion + Hhybr, s2d

where

Hbulk =E
0

`

drf:cLas
† srdsi]rdcLassrd:− :cRas

† srdsi]rdcRassrd:g,

s3d

Hion = esfs
† fs + eqbā

†bā, s4d
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Hhybr = VfcLas
† s0dbā

† fs + fs
†bācLass0dg. s5d

The conduction electrons here hybridize with the impurity
via a matrix elementV,11 with the impurity modeled by a
quadrupolarsmagneticd doublet of energyeq sesd, created by
a bosonsfermiond operatorbā

† sfs
†d.12 Strong Coulomb repul-

sion implies single occupancy of the localized levels:fs
† fs

+bā
†bā=1. The free part of the Hamiltonian,Hbulk, defines a

linearized spectrum around the Fermi level. The Fermi ve-
locity is set to unity, with the resulting 1D density of states
r=1/s2pd. Normal ordering is taken with respect to the
filled Fermi sea.

The model in Eq.s2d was recently solved by two of us
using a Bethe ansatz.13 A complete description of spectrum
and thermodynamics was given, and it was found that at low
temperatures the theory is attracted to a line of fixed points
parametrized by the impurity charge valencenc swhere nc
=kfs

† fsl measures the average charge localized at the impu-
rity sited. Near integral charge valencenc.1 snc.0d a mag-
netic squadrupolard moment forms at intermediate tempera-
tures. This moment is then screened by the conduction
electrons as the temperature is lowered, leading to a zero-
temperature entropyS0

imp=kB ln Î2 and impurity specific heat
Cv

imp,T ln T, typical of two-channel Kondo physics. In the
mixed-valence regime one finds the same low-temperature
behavior, but without the formation of a magnetic or quadru-
polar moment at intermediate temperatures.

In previous work we constructed the boundary conformal
field theory sBCFTd, which describes the approach to
criticality.14 The leading scaling operators were identified—
including the exactly marginal operator that generates the
line of fixed points—and all physical scales and BCFT pa-
rameters were determined explicitly via a numerical fit to the
exact solution in Ref. 13. This allowed us to go beyond the
Bethe ansatz approach and derive the critical exponents of
the Fermi edge singularities caused by time-dependent hy-
bridization between conduction electrons and impurity. Our
results challenged those obtained by more conventional, ap-
proximate schemesssee, e.g., Ref. 15d.

In the present work we take the BCFT formulation one
step further and extract the exact space- and time-dependent
single-electron Green’s function of the model. This allows us
to calculate the self-energies of the conduction electrons and
of the impurity, as well as the zero-temperature resistivity
and leading temperature-dependent term.

The analysis is most easily performed by generalizing that
of the multichannel Kondo model in Refs. 16 and 17. In fact,
the very structure of the Green’s function, as well as that of
the leading terms of the resistivity, can be read off directly
from the corresponding result for the two-channel Kondo
model.16,17The only essential new element in the analysis is
how to properly introduce the scales and amplitudes that
determine the influence from the magnetic and quadrupolar
degrees of freedom as one moves away from the integer
valence limits.

In the next section we combine results from Ref. 14 and
Refs. 16 and 17 to obtain the single-electron Green’s func-
tion of the model. In Sec. III we use this result to derive the

self-energy of the impurity, and in Sec. IV we report on the
calculation of the resistivity. Section V contains a summary
and a discussion of our results.

II. GREEN’S FUNCTION

At sufficiently low energiessor large distancesd a quantum
impurity interacting with conformalsi.e., linear dispersiond
electrons can be represented by a conformally invariant
boundary condition—this is the key idea of the BCFT for-
mulation of a quantum impurity problem.18 For the two-
channel Anderson model, this boundary conditionfwhich su-
persedes the trivial “free-electron” boundary condition
cLass0d=cRass0dg, is most easily described via a “gluing
condition” on the charge, spin, and flavor conformal towers
that make up its spectrumsfor details, see Ref. 14d. The
dependence on the new boundary conditionsalias the impu-
rityd is picked up by the time-ordered left-right single-
electron Green’s functions

GLRst;r1,r2d = GRL
* st;r1,r2d ; kcLasst,r1dcRas

† s0,r2dl
s6d

swith t imaginary timed via the one-particleS-matrix

Ss1dsvFd = e2idFCs1dsvFd. s7d

HereCs1dsvFd is the amplitude for a single electron to scatter
elastically off the impurity at the Fermi levelvF, and dF
=dsvFd is the corresponding single-electron scattering phase
shift. At large smeand distances from the boundary,ur1−r2u
@a, with a some characteristic microscopic scale, one finds
that16

GLRst;r1,r2d ,
Ss1dsvFd

t + isr1 + r2d
. s8d

Thus, at the level of the left-right Green’s function, the
boundary condition that emulates the presence of the impu-
rity is coded bySs1dsvFd. In contrast, the large-distance left-
left sLL d and right-right sRRd Green’s functions
Gmmst ; r1,r2d;kcmasst ,r1dcmas

† s0,r2dl with m=L ,R are in-
sensitive to the particular boundary condition imposed:16

GLLst;r1,r2d = GRR
* st;r1,r2d ,

1

t + isr1 − r2d
, ur1 − r2u @ a.

s9d

Turning now to the the 3D electron field Green’s function
Gst ,r1,r2d;kCasst ,r1dCas

† s0,r2dl and expressing it in
terms of the 1D propagators in Eqs.s8d and s9d one obtains

Gst,r1,r2d = e−ikFsr1−r2dGLLst,r1,r2d + eikFsr1−r2dGRRst,r1,r2d

+ e−ikFsr1+r2dGLRst,r1,r2d + eikFsr1+r2dGRLst,r1,r2d.

s10d

Continuing the 1D electron fields analytically to the full line
−`, r ,` fwith cRasst ,rd=cLasst ,−rdg, averaging over
impurity locationssthus restoring translational invarianced,
and exploiting a T-matrix formulation,19 the Fourier-
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transformed Green’s function in Eq.s10d can be cast in the
standard form

Gsvn,kd =
1

ivn − ek − Ssvnd
, s11d

with the self-energySsvnd given by

Ssvnd = − ini
1 − e2idFC1svFd

2pgF
sgnsvnd. s12d

Here ni is the density of a dilute random distribution of
impurities, gF is the 3D “free-electron” density of states
at the Fermi level, and sgnsvnd is the sign function, with
vn=2psn+1/2dkBT, n=0, ±1, ±2, . . ., Matsubara frequen-
cies. In order to tie the self-energySsvnd to the two-channel
Anderson model in Eq. s2d we need to determine
the S-matrix in Eq.s7d that is associated with the hybridiza-
tion interaction in Eq.s5d. The amplitudeCs1dsvFd can
be determined in exact analogy with the two-channel Kondo
problem in Ref. 16. Within the BCFT formalismC1svFd
gets expressed as a certain combination of so-called
“modular S matrices”20

Sj f

j f8 =
1
Î2

sinfps2j f + 1ds2j f8 + 1d/4g, s13d

with structure and allowed values of the quantum numbers
j f , j f8=0,1/2,1determined by the SUs2d2 Kac-Moody sym-
metry of the flavor sector.14 Specifically,

C1svFd =
S1/2

1/2S0
0

S1/2
0 S0

1/2, s14d

and it follows from Eq.s13d that

C1svFd = 0. s15d

Thus, the outgoing scattering state has no single-electron
component after interaction with the impurity. This extreme
non-Fermi-liquid behavior is the same as for the two-channel
spin Kondo model21 snc=1 limit of the two-channel Ander-
son modeld and is not modified as one moves into the mixed
valence regime with ncÞ0,1. As seen from Eq.s7d, the im-
purity valencenc, connected to the phase shiftdF via the
Friedel-Langreth sum rule22

dF =
p

4
nc, s16d

could only influence the scattering if there were a finite
single-electron cross section at the Fermi level. However, as
C1svFd=0 independent ofnc, this does not happen.fNote
that the phase shiftdF is that of an electron with spins and
flavor indexa, hence the unconventional factor of 1/4 in Eq.
s16d.14g

To summarize the analysis thus far: The zero-temperature
single-electron Green’s function is given by Eq.s10d, with

Ssvnd = − ini
1

2pgF
sgnsvnd, s17d

whereni and gF are defined after Eq.s12d. We should here
stress that impurity-impurity interactions have been ne-
glected in Eq.s17d. As discussed in Ref. 16 this type of
analysis is applicable only at temperatures high enough so
that any remnant effects from interimpurity interactions are
washed outsbut low enough so that the theory is critical and
the BCFT formulation remains validd. Also note that the ex-
pressions for the 1D propagators in Eqs.s8d ands9d pick up
corrections whenur1−r2uøa,23 implying that the result in
Eqs. s11d and s17d gets modified when probing boundary
correlations with large momenta.

To obtain the leading finite-temperature and frequency
corrections to Eq.s17d we need to consider the theory
slightly off the line of boundary fixed points. The scaling
HamiltonianHscaling that governs the critical behavior close
to the fixed line was identified in Ref. 14 as

Hscaling= H* + lcJs0d + lsOssds0d + l fOsfds0d

+ subleading terms. s18d

Here H* is the critical Hamiltonian that representsHbulk in
Eq. s2d, subject to the boundary condition that emulates the
impurity termsHion and Hhybr in Eqs. s4d and s5d, respec-
tively. These terms, which break particle-hole symmetry, also
give rise to the exactly marginal termlcJs0d in Eq. s18d, with
Js0d=oa,s :cas

† cass0d: being the charge current at the impu-
rity site and withlc its conjugate scaling field. This is the
operator that generates the line of stable fixed points.Off the
fixed line the termsHion andHhybr allow for additionalirrel-
evant boundary operators to enter the stage. Of these,
lsOssds0d and l fOsfds0d, both of scaling dimensionD=3/2,
are the leading ones. The spin boundary operatorOssds0d is
the same operator that drives the critical behavior in the two-
channel spin Kondo problem and is obtained by contracting
the spin-1 fieldfssds0d with the vector of SUs2d2 raising
operatorsJ−1

ssd :Ossds0d=J−1
ssd ·fssds0d. The flavor boundary op-

eratorl fOsfds0d has the same structure. In obvious notation:
Osfds0d=J−1

sfd ·fsfds0d.
In the case of the two-channelsspind Kondo problem the

flavor operator is effectively suppressed10: Of the two avail-
able energy scales, thebandwidth Dand theKondo tempera-
ture TK fwhereTK sets the scale for the crossover from weak
coupling shigh-temperature phased to strong renormalized
couplingslow-temperature phasedg, only D enters the expres-
sion for the flavor scaling fieldl f. This is so since the Kondo
temperature is dynamically generated in the spin sectorsas
indicated by the infrared divergences in perturbation theoryd
and hence cannot influence the scaling of the flavor degrees
of freedom. On dimensional grounds one concludes thatl f

,Os1/ÎDd, whereasls,Os1/ÎTKd. For a small Kondo
coupling, call it l, TK,D exps−1/ld!D, and the critical
behavior is therefore driven byOssds0d alone. As we showed
in Ref. 14, the picture for the two-channel Anderson model is
more involved. There are heretwo dynamically generated
temperature scalesTs,fsed, both parametrized bye=eq−es
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and thus varying with the position on the fixed line via the
dependence of the impurity valencenc on e.13 The scaling
fields ls,f are parametrized accordingly14:

ls,f =
Bs,f

ÎTs,f

, s19d

with Bs,f dimensionless constants. The precise dependence of
ls,f on e was extracted in Ref. 14 from a fit to the numerical
solution of the thermodynamic Bethe ansatzsTBAd equa-
tions of the model.13 In the magnetic moment regime where
e!m−G ftwo-channelsspind Kondo limitg Ts!Tf and ls
dominates. Ase increasesTs andTf approach each other and
become equal whene=m smaximal mixed valence with no
moment formationd. Continuing along the fixed line, the two
scales trade places, and eventually, at the quadrupolar critical
end pointse@m−Gd one finds thatTs@Tf. It follows that in
the two-channel Anderson modelboth boundary operators
Ossds0d andOsfds0d come into play, with their relative impor-
tance changing continuously as one moves along the fixed
line.

Going back to the scaling Hamiltonian in Eq.s18d, the
effect of the exactly marginal termlcJs0d is easily obtained
via the observation that it samples the local charge at the
impurity site, with the scaling fieldlc=−nc/4 measuring
the impurity valence per spin and flavor degree of freedom.14

By the Friedel-Langreth sum rule in Eq.s16d, the resulting
shift of the charge content of the critical bulk Hamiltonian
H* , Q→Q−nc, shows up as a phase shiftdF=pnc/4 on
the electrons that scatter off the impurity charge potential
at r =0. In other words, cLas→exps−ipnc/4dcLas and
cRas→expsipnc/4dcRas, implying that the left-right propa-
gators GLR=GRL

* get phase shifted by 2dF=pnc/2, as
indicated in Eq.s8d.

To probe the effects from the spin and flavor boundary
operators in Eq.s18d requires a perturbative approach. Pass-
ing to a Lagrangian formalism, the correctiondS to the Eu-
clidean fixed point action due toOsfds0d andOssds0d in Eq.
s18d can be written as

dS= o
k=f,s

lkE
0

b

dt8J−1
skd · fskdst8,0d, s20d

with b=1/kBT. To leading order in a perturbative expansion
this leads to the following correction for the left-right propa-
gator:

dagdsmdGst;r1,r2d = o
k=f,s

lkE
0

b

dt8kcLasst,r1dJ−1
skd · fskd

3st8,0dcRgm
† s0,r2dlT. s21d

The indexT that appears in Eq.s21d refers to the “finite-T
geometry” G+=hw=t+ ir j, connected to the half-plane
C+=hIm z.0j used at zero temperature via the conformal
mappingw=sb /pdarctanszd.

The three-point functions in Eq.s21d are completely de-
termined by conformal invariance up to multiplicative con-
stantsNf andNs sRef. 16d:

dGLRst,r1,r2d = isl fNf + lsNsde2idFSp

b
D7/2

3E
0

b

dt8

S− i sin
p

b
ft + isr1 + r2dgD3/2

Ssin
p

b
st8 − t − ir 1dsin

p

b
st8 + ir 2dD5/2.

s22d

In the nc=0 squadrupolard limit where ls→0 and dF=0,14

the theory is invariant under charge conjugationsparticle-
hole symmetryd. Adapting an argument from Ref. 16 we may
use this property to determine the phase ofNf, and together
with an explicit calculation ofuNfu2 one finds the value

Nf = 3/Î8. s23d

The value ofNs
2 is fixed via Eq.s23d by the vanishing of the

four-point function16

kcLas
† st1 + ir 1dcRasst1 − ir 1dcLgm

† st2 + ir 2dcRgmst2 − ir 2dl

= sNf
2 + Ns

2dsr1r2d1/2 32

9ut1 − t2u3
, s24d

and one concludes that

Ns = − i
3
Î8

, s25d

with the negative sign in Eq.s25d following from the condi-
tion that the expression fordGLR in Eq. s22d collapses to that
for the two-channel Kondo model16 in the nc→1 limit. The
scaling fieldsl f andls are the same as those that parametrize
the thermodynamics and can thus be fitted to the exact TBA
solution of the model14 ssee the next sectiond. With this fit
dGLR in Eq. s22d will be completely specified. Note that by
time reversal invariance,dGRL=dGLR

* .
Turning to the chiral propagators in Eq.s9d, it is easy to

verify that the corrections to these fromdS vanish identi-
cally: dGLLsdGRRd is also given by the integral expression in
Eq. s22d but with r2→−r2sr1→−r1d. All zeros of the de-
nominator are located in the upperslowerd half plane, and the
integration contour can be deformed to Imt→−`s+`d with-
out crossing any singularity; hencedGLL=dGRR=0.

The integral expression fordGLR=dGRL
* in Eq. s22d differs

from that for the two-channelsspind Kondo model in Ref. 16
only by having a prefactorsl f − ilsdeipnc/2 instead of a single
scaling fieldls s;l in Ref. 16d. sIt follows trivially that the
result for the chiral propagators is the same for the two mod-
els.d From this point on we can therefore carry over the
analysis intact from Ref. 16, at the end simply taking
l→ sl f − ilsdeipnc/2. This gives, for the finite-temperature and
frequency self-energy,16
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Ssvnd =
ni sgnsvnd

2pigF
H1 −

3
Î2

sl f − ilsdeisp/2dncS2p

b
D1/2

3 E
0

1

dufubuvnu/2pu−1/2s1 − ud1/2Fsud

− G−2s3/2du−1/2s1 − ud−3/2gJ , s26d

whereFsud is the hypergeometric functionFs3/2,3/2,1;ud.
To summarize this section: to leading order in temperature

and frequency, the exact single-electron Matsubara Green’s
function Gsvn,kd of the two-channel Anderson model for a
dilute distribution of impurities is given by Eq.s10d with the
self-energySsvnd in Eq. s26d. These are bulk-electron quan-
tities; in the next section we make an aside to discuss their
connection with the impurity response.

III. IMPURITY SELF-ENERGY

For the sake of simplicity, we will carry out this discus-
sion at zero temperature. By analytic continuation to real
frequencies,

lim
ivn→v+i0+

Ssvnd = SRsvd, s27d

one obtains from Eq.s26d an integral expression for the re-
tarded electron self-energySRsvd. By taking theT→0 limit
and approximating the integral as done in Ref. 16 one finds
that24

ST=0
R svd =

ni

2pigF
F1 +

12
Îp

sA1 + iA2d

3f1 − i sgnsvdg uvu1/2G , s28d

with

HA1sl f,ls,ncd ; l f cossncp/2d + ls sinsncp/2d,

A2sl f,ls,ncd ; l f sinsncp/2d − ls cossncp/2d.
J

s29d

Writing down the relevant equations of motion, one can
make a connection between the self-energy in Eq.s28d and
the impurity Green’s function.25 Defining the latter one fol-
lowing the same conventions as in Ref. 26, the relation reads

SRsvd = ni
V2

2pgF
Gimp

R . s30d

Parametrizing the impurity Green’s function with a spectral
weight equal to 1/2, a hybridization amplitude14 G;prV2,
and a self-energySimp

R svd, we can extract

Simp
R svd = v − e + iGS1 −

ni

2pigF
fSRsvdg−1D . s31d

The resulting formula for the impurity self-energy inherits
from SRsvd a range of validity for uvu!TK, where TK

;4G /p2e−sp/2dueu/G is the two-channel Kondo temperature.13

In Fig. 1 we show the imaginary part of the retarded im-
purity self-energy as a function of frequencysscaled with the
Kondo temperatured for different values of the energy split-
ting e. Only the curves for positive values of this parameter
are shown in the figure, since for negative values one simply
has to use the relation ImSimp

R sv ,−ed=Im Simp
R s−v ,ed to ob-

tain the corresponding curves. These results are in fair agree-
ment with the ones obtained recently using the numerical
renormalization groupsNRGd method.26 Additionally, notice
that the figure required knowledge ofA1 andA2 as functions
of «; we shall comment on this in the next section.

IV. RESISTIVITY

Given the retarded electron self-energySRsvd, defined by
Eqs.s26d ands27d, one can readily obtain the resistivityrsTd
of the model to leading order in temperature. Adapting the
argument in Appendix C of Ref. 16, the assumption that the
impurity-electron interaction is well described using the two-
channels-wave decomposition in Eq.s1d implies that the
resistivity can be expressed directly in terms of ImSRsvd.
From Eqs.s26d and s27d one obtains

Im SRsvd = −
ni

2pgF
H1 − 3Sp

b
D1/2FA1sl f,ls,ncd

3 E
0

1

duhcosfbvsln ud/2pgu−1/2s1 − ud1/2Fsud

− G−2s3/2du−1/2s1 − ud−3/2j + A2sl f,ls,ncd

3 E
0

1

dusinfbvsln ud/2pgu−1/2s1

− ud1/2FsudGJ , s32d

We have here used the property thatubuvnu/2p sgnsvnd

FIG. 1. Imaginary part of the zero-temperature impurity self-
energy as a function of frequency. Different curves correspond to
different values of the impurity configurational energy splittingsed.
The frequencies are scaled with the Kondo temperatureTK.
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→cosfsbv /2pdln ug− i sinfsbv /2pdln ug under the analytic
continuationivn→v+ i0+.

As shown in Ref. 25 for this class of problems, vertex
corrections to the resistivity involves-wave correlations
which vanish identically. It follows that the Kubo formula for
the resistivity contains only the quasiparticle lifetimet, with
no weighting over large-angle scattering processes. Withtwo
local orbital channelssa= ± d of charge conduction, the Kubo
formula thus reads19

r−1sTd =
4e2

3me
E d3k

s2pd3F−
dnFsekd

dek
Gk2tsekd. s33d

Heree andme are the electron charge and mass, respectively,
nFsekd is the Fermi distribution function, andtsekd is the
lifetime of a quasiparticle of energyek=k2/2me,

tsekd = −
1

2
fIm SRsekdg−1. s34d

Combining Eqs.s32d–s34d, it follows that

r−1sTd =
4psegFvFd2

3ni
H1 + 3Sp

b
D1/2E

−`

` dx

4 cosh2sx/2d

3 FA1sl f,ls,ncdE
0

1

duhcosfxsln ud/2pgu−1/2

3s1 − ud1/2Fsud − G−2s3/2du−1/2s1 − ud−3/2j

+ A2sl f,ls,ncdE
0

1

duhsinfxsln ud/2pgu−1/2

3s1 − ud1/2FsudjGJ , s35d

wherex;ek/kBT. We have here used thatfdnF /dekg in Eq.
s33d rapidly goes to zero away from the Fermi level, allow-
ing us to approximate the momenta that appear in the inte-
gral bykF s=mevFd. sNote that previouslyvF was set to unity.
We still use units where"=1.d Carrying out the integrals
over x and subsequently overu sthis second integral has to
be done numerically, but to machine accuracy the result is
found to be a rational number and expected to be exactd,16

one finally obtains, for the low-temperature resistivity,

rsTd = rs0dF1 + 4Sp

b
D1/2

A1sl f,ls,ncdG , s36d

with

rs0d =
3ni

4psegFvFd2 . s37d

Since bothl f andls on the one hand14 andnc on the other
hand13 are known to be functions ofe, the expression for the
leading low-temperature dependence is related to the original
impurity Hamiltonian via this single parameter.

This behavior is illustrated in Fig. 2. While we have plot-
ted the curves over the full interval 0øTøTK, we should
alert the reader that our results are exact only in the scaling
regime T!TK. The explicit connection betweenl f,s and e

was obtained from a fit of the low-temperature thermody-
namics to the results of the TBA solution.14 But the thermo-
dynamics involves only the squares of the scaling fields and
the sign remains therefore undetermined. However, in the
limit of integer valence we have

lim
e/G→±`

A1„l fsed,lssed,ncsed… = l f,ssed, s38d

and in that limit the model maps onto the weak-coupling
two-channel Kondo modelsJK,J* , with J* the Kondo fixed
point under renormalization to low energiesd for which the
sign of l f,ssed is known to be negativesit is expected to
reverse sign forJK.J*d.16 Since the combined BCFT and
TBA analysis indicates that the scaling fields vary continu-
ously and do not change sign, we conclude that the coeffi-
cientA1 is always negative. Hence, the resistivity is a mono-
tonically decreasing function of temperature for all values of
e. In the case ofnc, the Bethe ansatz solution provides di-
rectly an expression that relates it toe.13

With these considerations the values ofA1,2s«d are com-
pletely determined, which allowed us in the previous section
to plot the impurity self-energy. It is interesting to point out
that a positive sign for the scaling fieldssl f,sd will hamper
the comparison of that plot with the NRG results. Moreover,
a positive sign will spoil the causal properties of the self-
energy and is therefore unphysical for the Anderson model
seven in the mixed-valence regimed.

Away from e<0, we can use Eq.s19d and our results of
Ref. 14 to derive an approximate expression for the resistiv-
ity that highlights its scaling properties,

rsTd/rs0d = 1 −
Î4p

3
fcossncp/2d + sinsncp/2dgÎ T

TK
.

s39d

HereTK=minhTf ,Tsj is the BCFT Kondo scale and the pref-
actors are in correspondence with the precise definition of

FIG. 2. Resistivity vs temperature curves for different values of
the microscopic Hamiltonian parametere. Positive and negative
values ofe fall on top of each other; from left to right the curves
correspond toueu.0.0, 0.5, 0.8, 1.1, 1.4, 1.8, and 2.1. The curves
corresponding to the last two values ofe fall on top of each other in
the scale of the figure, which illustrates the collapse into a universal
curve as the system goes away from mixed valence.
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this scale as given in our previous work. It is important to
remark again that the asymptotic expansion for small tem-
peratures is valid only forT!TK. For consistency, the same
definition of the Kondo scale13 was used for both plots in
Figs. 1 and 2sthe prefactors in the definition are of course
not universal and depend on the particular conventiond.

It is here interesting to discuss the experimentally mea-
sured low-T resistivity of the thoriated UBe13 compound,
mentioned in the Introduction, which shows aÎT behavior
but with a positive coefficient. As discussed in Refs. 4 and
27, this would imply that in thessingle-impurityd Kondo
model framework this system exhibits a strong electron-
impurity coupling sJK.J*d. It was speculated that such a
regime was achievable near mixed valence in the context of
the ssingle-impurityd two-channel Anderson modelssee Ref.
7 for a reviewd. Our results, however, do not support those
ideas. Perhaps, since U1−xThxBe13 with x=0.1 is far from the
dilute limit, lattice effects might play a role in reversing the
sign of that coefficient. While later measurements on the
same compound have confirmed theÎT behavior with a posi-
tive coefficient,28 on the other hand, aÎT scaling of the re-
sistivity with a negative coefficient has been recently ob-
served in a different uranium-based heavy-fermion material
Sc1−xUxPd3 sbut only for large dopings,x<0.35,29 when a
single-impurity description of the low-temperature physics is
not always expectedd.

V. SUMMARY AND DISCUSSION

In a previous article14 we presented the technical details
of the BCFT solution of the two-channel Anderson model

and discussed its asymptotic low-temperature thermodynam-
ics. In that context we were able to make the connection with
the full solution obtained using the thermodynamic Bethe
ansatz formalism and could explicitly match the scaling
fields with the microscopic parameters of the lattice Hamil-
tonian. Here we completed the task by calculating
dynamical- and transport-related quantitiessthe single-
electron Green’s function, the electron and impurity self-
energies, and the resistivityd. Using our previous results from
Ref. 14, these quantities are parametrized directly in terms of
the energy difference between impurity configurations in the
original Hamiltoniansed. We have shown, in particular, how
our analytic expression for the impurity self-energy captures
the low-frequency behavior in agreement with the results of
other nonperturbative techniques like Wilson’s numerical
renormalization group method.26 As we mentioned in the In-
troduction, having reliable access to transport quantities is of
crucial importance for the comparison and interpretation of
experiments that continue to seek indisputable realizations of
multichannel Kondo physics. The work presented here fur-
thers our understanding of two-channel Kondo physics in
mixed-valent scenarios, thus widening the range of possible
candidate systems for experimental realizations.
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