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We show that the single-site entanglement of a generic spin-1/2 fermionic lattice system can be used as a
reliable marker of a finite-order quantum phase transition, given certain provisos. We discuss the information
contained in the single-site entanglement measure, and provide illustrations from the Mott–Hubbard metal-
insulator transitions of the one-dimensional �1D� Hubbard model, and the �1D� Hubbard model with long-
range hopping.
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I. INTRODUCTION

The study of entanglement properties of many-particle
systems has become a subject of intense interest. Much of
the motivation comes from quantum information theory
where entanglement is made the key physical resource for a
variety of information processing tasks �1�. In recent work, it
has been suggested that this resource may be efficiently ex-
tracted from a solid, or from some other many-particle sys-
tem, by scattering particles off the system �2�. Thermody-
namic properties of solids have also been shown to be
crucially influenced by entanglement properties of their mi-
croscopic degrees of freedom �3�. Moreover, a rapidly grow-
ing body of results �4,5� suggests that a properly chosen
measure of entanglement may serve as a precise and conve-
nient marker of a �zero-temperature� quantum phase transi-
tion �QPT� in a many-particle system �4,5�. For spin-1/2 sys-
tems �lattices of localized coupled qubits� a discontinuity
�divergence� in the �derivative of the� ground state concur-
rence has been shown to be associated with a first �second�-
order QPT �6� �where concurrence �7� measures the en-
tanglement of two qubits selected at neighboring sites�. For
itinerant particles, the picture is less clear, as the results here
appear to depend on the choice of model or on the perturba-
tion driving the transition. A case in point is the single-site
entanglement of the one-dimensional �1D� Hubbard model.
This measure, which is given by the von Neumann entropy at
a single lattice site �1�, reaches a maximum at a metal-
insulator transition driven by a change of the on-site interac-
tion �8�. In contrast, the single-site entanglement diverges
when one drives the transition by tuning the chemical poten-
tial �9�.

One should here realize that an onset of nonanalyticity in
a local entanglement measure �10� is indeed expected at a
QPT. By definition, a QPT is a point of nonanalyticity in the
ground state energy of a quantum system �caused by a level
crossing, or, an avoided level crossing in the thermodynamic
limit� �11�. Given that the elements of the reduced density
matrix—upon which any local entanglement measure is
built—are linked to the ground state energy, the defining
nonanalyticity of a QPT will infect also the local entangle-
ment measure �of which single-site entanglement �1�, con-
currence �7�, and negativity �12� are some of the most com-
monly used�. The recent proof that any entanglement

measure can be expanded as a unique functional of the first
derivatives of the ground state energy �with respect to the
parameters that control the QPT� puts this intuition on firm
ground �13�.

The connection between entanglement and QPTs can also
be cast in the language of statistical mechanics, as pointed
out recently by Campos Venuti et al. �14�. As an example,
consider the Hamiltonian density H�g� of a system that un-
dergoes a continuous second-order QPT when changing a
parameter g: H�g�=H0+g�. Differentiating the energy den-
sity ��0 �H�g� ��0� of the ground state ��0� with respect to g,
its singular part Og����0 �� ��0�−regular terms� will be-
have as Og�sgn�g−gc� �g−gc�� as g approaches gc, imply-
ing a divergence of �Og /�g��g−gc��−1at criticality. The sin-
gular term Og enters every reduced density matrix that
contains a site where the operator � is defined, and it follows
that any entanglement measure constructed from such a den-
sity matrix exhibits a singularity with an exponent related to
� �barring accidental cancellations�.

Having established this linkage, one may ask how it can
be exploited for a specific problem. For example, in the case
of a continuous second �or higher� order QPT, is it possible
to “read off” the critical exponent � from the singularity of
the entanglement measure? Conversely, is the information
provided by the singular behavior of a local entanglement
measure already contained in the scaling of observables—as
predicted within the usual statistical mechanics framework?

In this article, we address these questions by studying the
single-site entanglement of a generic fermionic lattice sys-
tem. We do so by constructing and analyzing its explicit
representation using the Hellman–Feynman theorem. We find
that the single-site entanglement measure can be used as re-
liable marker of a finite-order QPT �given certain provisos�
and that it contains unique and useful information about the
transition. The questions raised above will both turn out to
have negative answers. As illustrations, we use our construc-
tion to obtain the single-site entanglement at the Mott–
Hubbard metal-insulator transitions of the 1D Hubbard
model �15�, and the 1D Hubbard model with long-range hop-
ping �16�, exploiting exact results for the ground state prop-
erties of these models. We stress that our analysis can be
easily adapted so as to apply to a system of localized spins,
with no change in the general results. Specifically, the ques-
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tions raised above are answered in the negative also for
coupled qubit �spin-1/2� systems. Our reason for focusing on
fermionic systems is simply that these are less well under-
stood. With our contribution, we hope to dispel some of the
perceived difficulties attached to their treatment.

II. SINGLE-SITE ENTANGLEMENT AND QPTS

Let us first recall that the concept of quantum entangle-
ment of indistinguishable fermions �bosons� suffers from a
certain ambiguity since the accessible state space contains
only antisymmetrized �symmetrized� states and hence lacks a
direct product structure. The simplest way around this prob-
lem is to use an occupation number representation �17�. For
spin-1/2 fermions, one thus takes �n� j = �0� j, �↑ � j, �↓ � j, and
�↑ ↓ � j as local basis states, with j=1,2 , . . . ,L indexing the
corresponding lattice sites. In this way, the product structure
of the state space is manifestly recovered, with the represen-
tation spanned by the 4L basis states �n�1 � �n�2 � ¯ � �n�L.
One may now proceed as usual, and partition the system into
two parts, A and B, with the entanglement �von Neumann�
entropy E of a pure state ��� defined by �1�

E = − Tr��A log2 �A� . �1�

The reduced density matrix �A is calculated from the full
density matrix �= ������ by taking the trace over the local
states belonging to B: �A=TrB���. By choosing A as a single
site �assuming translational invariance� with B the rest of the
system, one obtains the single-site entanglement. One should
note that in the occupation number representation the sub-
systems A and B correspond to fermionic modes �empty
sites, singly occupied sites with spin up or down, doubly
occupied sites� and not to particles. In this sense, the notion
of fermionic �and similarly, bosonic� entanglement is differ-
ent from the textbook example with spatially separated par-
ticles.

Given the occupation number representation, it is straight-
forward to verify that the reduced ground state density ma-
trix � j for a single site j is diagonal, provided that the ground
state ��0� is a superposition of basis states with the same
number of particles and the same total spin. Introducing the
ground state expectation values for a single site to be doubly
occupied �w2�, singly occupied by a fermion with spin-up
�spin-down�, �w↑�↓��, or empty �w0�, and assuming that the
system is translationally invariant, we write:

w2 = ��0�n̂j↑n̂j↓��0� ,

w↑ = ��0�n̂j↑��0� − w2 =
n

2
+ m − w2,

w↓ = ��0�n̂j↓��0� − w2 =
n

2
− m − w2,

w0 = 1 − n + w2, �2�

where in Eq. �2� n̂j�= ĉj�
† ĉj� is the number operator that

samples site j for a fermion of spin �= ↑ ,↓, n= ��0 � n̂j↑

+ n̂j↓ ��0� is the average single site occupation in the ground
state, and m= �1/2���0 � n̂j↑− n̂j↓ ��0� is the ground state mag-
netization per site. It follows that

� j = 	
�=0,↑,↓

w���� j��� j + w2�↑↓� j�↑↓� j . �3�

Combining Eqs. �1�–�3�, the single-site entanglement takes
the form

E = − 
n

2
+ m − w2�log2
n

2
+ m − w2�

− 
n

2
− m − w2�log2
n

2
− m − w2�

− �1 − n + w2�log2�1 − n + w2� − w2log2 w2. �4�

Let us now consider a fermion system with Hamiltonian den-
sity H�g�=H0+g� that exhibits a QPT for some value gc of
g �with � the conjugate operator, and with all other control
parameters kept fixed and absorbed as part of H0�. By defi-
nition, a QPT of k:th order implies a divergence or a discon-
tinuity in the k:th derivative �ke0 /�gk of the ground state
energy density e0= ��0 �H�g� ��0�, with all derivatives of or-
der �k being finite and continuous. Defining Og
����0 �� ��0�—regular terms� �equal to ��e0 /�g—regular
terms� by the Hellman–Feynman theorem�, it follows that
�k−1Og /�gk−1has a divergence or a discontinuity at g=gc.
With these preliminaries, we can now prove the following.

A. Proposition

Consider a spin-1/2 translationally invariant fermionic
system with a Hamiltonian density H�g�=H0+g� that con-
serves particle number and total spin, and where Og
����0 �� ��0�-regular terms� is a linear combination of m, n
and/or w2. It follows that a divergence or a discontinuity in
the �k−1�:st derivative of the single-site entanglement with
respect to g �with all derivatives of order �k−1 being finite
and continuous� signals that the system undergoes a k:th or-
der QPT.

B. Proof

The proof is elementary. Repeated differentiation of Eq.
�4� yields

�k−1E
�gk−1 = − 
 �k−1

�gk−1n

2
+ m − w2��log2
n

2
+ m − w2�

− 
 �k−1

�gk−1n

2
− m − w2��log2
n

2
− m − w2�

+ 
 �k−1

�gk−1 �n − w2��log2�1 − n + w2�

−
�k−1w2

�gk−1 log2�w2�

+ terms containing lower-order derivatives. �5�

By assumption, all derivatives with respect to g of order
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�k−1 are finite and continuous. Any singularity in
�k−1E /�gk−1 must hence reside in terms containing deriva-
tives of order k−1. Since Og is a linear combination of m, n
and w2, the proposition follows.

Several comments are in order. First, note that the con-
straint that Og should be some linear combination of m, n,
and/or w2 is much less restrictive than may first appear to be
the case. In fact, for a generic fermionic QPT caused by a
change of an interaction or an external perturbation that
couples only to single sites, Og is identical to w2 �with the
transition driven by an on-site fermion-fermion interaction,
g�u�, m �with the transition driven by a magnetic field, g
�h�, or n �with the transition driven by a chemical potential,
g���. One may think that the tight link between the scaling
of �k−1E /�gk−1 and that of �k−1Og /�gk−1 would allow for the
critical exponent that controls Og to be immediately ex-
tracted from �k−1E /�gk−1. This is not so, however. As an ex-
ample, take a second-order QPT �k=2� with Og=w2, where
�w2 /�u��u−uc��−1→� as g→gc=uc. By inspection of Eq.
�5�, one then notes that the leading scaling of �E /�g will be
governed by the same exponent � only if m and n are inde-
pendent of w2, or, depend on w2 as a power with exponent
	1. Whether this is the case typically requires that one has
access to an exact solution of the model, and in any event
can only be determined on a case-by-case basis. Turning to
the logarithmic factors in Eq. �5�, one realizes that these will
cause logarithmic divergences if one or several of the occu-
pation parameters w0 ,w↑ ,w↓ ,w2 vanish at the transition
�cf. the parameterization in Eq. �2��. Such logarithmic cor-
rections, multiplying the leading scaling of �k−1E /�gk−1 in-
herited from Og, thus signal a change of the dimension of the
accessible local Hilbert space as the system undergoes the
transition. This is a useful and important property of the
single-site entanglement scaling not shared by the scaling of
Og or its derivatives. One should here note that a spurious
signaling of a k:th order QPT by a divergence in �k−1E /�gk−1

caused by a vanishing occupation parameter is blocked by
the constraint in the proposition that all lower-order deriva-
tives of E are finite. �Although maybe hard to realize, one
may envision a system where one or several local basis states
get excluded when tuning some parameter in the Hamil-
tonian �implying the vanishing of an occupation parameter�
without the occurrence of a QPT.�

Using the diagnostics supplied by our proposition, are we
guaranteed to catch all fermionic QPTs? The answer is nega-
tive. First, the diagnostics obviously fails for a QPT of infi-
nite order �18�, a Berezinski�-Kosterlitz-Thouless �BKT�-
type transition being a case in point �19�. Secondly and more
insidious, a system may exhibit a QPT of finite order, but
with the single-site entanglement and its derivatives still re-
maining regular. This happens if all local basis states �n� j
= �0� j, �↑ � j, �↓ � j, and �↑ ↓ � j become equally populated as one
approaches the transition. As seen from Eq. �5�, the �k−1�:st
derivative terms then vanish identically, killing the signal of
the QPT. The simultaneous vanishing of �E /�g implies that E
has a local extremum at the transition �expected to be a
maximum since in this case all local basis states are equally
represented in the make-up of the many-particle ground
state�. However, one cannot a priori exclude that E is at an
extremum without the occurrence of a QPT. Hence, an ex-

tremum of the single-site entanglement does not necessarily
signal a QPT. Whether a QPT is present or not in this case
requires information beyond that provided by the entangle-
ment measure.

Having exposed the general features of entanglement
scaling at a fermionic QPT, let us look at two examples.

III. CASE STUDIES

Consider first the ordinary 1D Hubbard model

H = − 	
i=1

�=↑,↓

L

�ĉi�
† ĉi+1� + h . c . � + u	

i=1

L

n̂i↑n̂i↓, �6�

with the first term describing hopping of electrons between
neighboring sites, and with the second term an effective on-
site interaction of strength u. At half-filling of the lattice, n
=1, the model exhibits a QPT at u=0, separating a Mott
insulating phase �u
0� from a metallic phase �u�0�. The
ground state energy density becomes nonanalytic at the tran-
sition, but allows for an asymptotic power series expansion
with all derivatives being finite and continuous �20�. The
QPT is thus of infinite order, and can be shown to belong to
the BKT universality class �21�. As found by Gu et al., the
single-site entanglement has a maximum at the transition.
This reflects the equipartition of empty, singly, and doubly
occupied local states when u=0 �non-interacting fermions�.
The transition is thus special on two counts: it is of infinite
order and it supports an equipartition of local states. This
makes it an exceptional example of a fermionic QPT, where
no information can be deduced from the entanglement
measure.

A metal-insulator transition can also be triggered when
u
0 by connecting the system to a particle reservoir and
tuning the chemical potential g��: When n�1, the system
is metallic, but turns into an insulator at the critical point
�c=2−4�0

�J1������1+exp��u /2���−1 where n=1 �15�. The
transition is second order with a divergent charge suscepti-
bility �c=�n /�����−�c�−1/2. As shown in Ref. �9�, the de-
rivative of the critical single-site entanglement for finite u is
precisely given by �c, up to a multiplicative constant:
�E /��=−C�u��c. In the limit u→�, the empty local states
get suppressed at the transition and the scaling of �E /��
picks up a logarithmic correction�9�: �E /��=�c�ln ��−�c �
+const. � / �2 ln 2�. Both behaviors well illustrate our general
discussion above: For finite u the logarithms in Eq. �5� add
up to the u−dependent constant C�u�, whereas in the limit
u→� the entanglement measure detects a change in the di-
mension of the local Hilbert space, signaled by the logarith-
mic correction to the leading scaling.

As a second example, let us consider the 1D Hubbard
model with long-range hopping, introduced by Gebhard and
Ruckenstein �16�:

H = 	
��m=1
�=↑,↓

L

t�mĉ��
† ĉm� + u	

l=1

L

n̂�↑n̂�↓, �7�

with t�m= i�−1��l−m��l−m�−1. The ground state energy density
at half-filling is given by e0= �un−uc�1−n�n� /4
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− �1/ �24uuc����u+uc�3− ��u+uc�2−4uucn�3/2� with uc=2
the critical point �16�. This implies that w2=�e0 /�u has a
discontinuity in its second-order derivative with respect to u
at uc and hence the transition is third order. From Eq. �4�
with n=1, it follows that the single site entanglement can be
written as E=−�1−2w2�log2�1/2−w2�−2w2log2�w2� when
no magnetic field is present �i.e., m=0�, and one immediately
verifies that �2E /�u2 is also discontinuous at the transition
point uc. Since the local basis states do not become equally
populated at uc—in contrast to the u=0 metal-insulator tran-
sition of the ordinary Hubbard model—the single-site en-
tanglement here provides an accurate diagnostics of the tran-
sition.

One can also drive a Mott–Hubbard metal-insulator tran-
sition by tuning the chemical potential when u
uc, in exact
analogy with the ordinary Hubbard model. Expressing n as a
function of �, and applying the Hellman–Feynman theorem
to the ground state energy e0 above, one obtains a disconti-
nuity in �n /�� at �=�c= �22�. Equation �5� immediately
implies that �E /�� is also discontinuous at �=�c, with the
transition being second order. In the limit u→� this discon-
tinuity is multiplied by a logarithmic divergent factor when

�→�c−, reflecting the suppression of empty states in this
case.

IV. SUMMARY

We have shown that a generic finite-order quantum phase
transition in a spin-1/2 fermionic lattice system can be con-
sistently identified and characterized by studying the behav-
ior of the single-site entanglement and its derivatives with
respect to the parameter that controls the transition. Exten-
sions to cases where the transition is driven by an interaction
or a field that couples to pairs or clusters of lattice sites
�such as the extended Hubbard model �23�� is conceptually
straightforward, albeit technically more demanding. We hope
to return to this problem in a future publication.
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