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Measurement is one of the key concepts which discriminates classical and quantum physics. Unlike
classical systems, a measurement on a quantum system typically alters it drastically as a result of wave
function collapse. Here we suggest that this feature can be exploited for inducing quench dynamics in a
many-body system while leaving its Hamiltonian unchanged. Importantly, by doing away with dedicated
macroscopic devices for inducing a quench—using instead the indispensable measurement apparatus
only—the protocol is expected to be easier to implement and more resilient against decoherence. By
way of various case studies, we show that our scheme also has decisive advantages beyond reducing
decoherence—for spectroscopy purposes and probing nonequilibrium scaling of critical and quantum
impurity many-body systems.
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Introduction.—Measurement is a fundamental concept
that discriminates between the classical and quantum
worlds. While in the classical regime measurement is
noninvasive with no effect on the system, in the quantum
domain, however, acquiring information, even through a
local measurement, comes at the cost of an abrupt wave-
function collapse that affects the entire system. The funda-
mental tests for the validity of quantum mechanics, such as
the violation of Bell [1,2] and Legett-Garg [3] inequalities
are based on quantum measurements. Moreover, they are
crucial ingredients of almost all emerging quantum tech-
nologies such as quantum teleportation [4], measurement-
based quantum computation [5], fault-tolerant quantum
computation [6] and spin-chain quantum communication
[7–9].
All quantum protocols consist of preparation, manipu-

lation, and readout of one or more particles. While
preparation and manipulation can be achieved by different
means, the readout is unequivocally accomplished by
measurements. Experimentally, these all rely on macro-
scopic devices which may induce decoherence and increase
the complexity of the process. This raises the following
question: Is it possible to simplify the whole process by
keeping only the indispensable part of the macroscopic
devices, i.e., the measurement apparatus, for the complete
preparation and manipulation of the system?
To answer the question, one should first recall that a key

task of any quantum protocol is to induce the “right” kind of
dynamics on a system. A particularly important class is that
of quench dynamics, where the time evolution is induced in

the system by a sudden change in theHamiltonian. Quantum
quench physics has been the subject of extensive studies
[10,11] addressing fundamental problems such as equili-
bration [12,13] and emergence of highly entangled states
[14] to practical applications such as creating long-distance
entanglement [15]. Experimentally, various features of
quench dynamics have been observed in optical lattices
[16–19], optical tweezers [20], ion-traps [21,22], nuclear
magnetic resonance devices [23], and coupled optical
fibers [24,25].
Here, we show that nonequilibrium dynamics can be

induced by a local measurement, a measurement quench,
keeping the Hamiltonian intact. We introduce several
applications for this effect. Experimentally, a measurement
quench uses the same measurement device that is used for
reading the output signal, thus dispensing with the need for
dedicated devices for inducing dynamics and therefore
reduces decoherence. Note that, due to the wave function
collapse, after a measurement quench the reduced density
matrix of all subsystems changes abruptly. This is very
different from creating excitations via local rotations
[18,19,21] in which only the local reduced density matrix
of the rotated particles changes. Nonetheless, the same
technology that performs local rotations can perform local
measurements as well.
Measurement quench.—The notion of a measurement

quench is most easily introduced by way of example. For
this purpose, let us consider a chain of N qubits interacting
through a many-body Hamiltonian H. The system is
initialized in its ground state jE0i. We then measure the
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magnetization of one of the qubits, say qubit j, in a certain
basis which we here take as the Pauli σx (cf. Fig. 1). The
measurement is encoded by the two projectors

Π↑
j ¼ j↑jih↑jj ⊗ Irest; Π↓

j ¼ j↓jih↓jj ⊗ Irest; ð1Þ

where ↑j and ↓j represent the outcomes of the measure-
ment in the x direction at site j and Irest denotes the identity
operator in the space of all the other qubits. According to
the outcome of the measurement, at time t ¼ 0, the wave
function of the full system collapses to one of the following
quantum states:

jΨμ
j ð0Þi¼Πμ

j jE0i=ðpμ
j Þ1=2; pμ

j ¼hE0jΠμ
j jE0i; μ¼↑;↓:

ð2Þ

Here, pμ
j is the probability of having the outcome μj for the

measurement. Since the new quantum state is no longer an
eigenstate of the Hamiltonian the system starts to evolve as

jΨμ
j ðtÞi¼e−iHtjΨμ

j ð0Þi¼
X
n

e−iEntjEnihEnjΨμ
j ð0Þi; ð3Þ

where En and jEni (for n ¼ 0; 1;…) are the eigenvalues
and the eigenstates of H, respectively. Without loss of
generality, from now on we assume that the outcome of the
measurement is μ ¼ ↑ and drop the symbol μ. The
magnetization of the measured qubit j at any later time t
is then given by mx

jðtÞ ¼ hΨ↑
j ðtÞjσxj jΨ↑

j ðtÞi. It follows from
Eq. (3) that

mx
jðtÞ ¼

X
n;m

e−iðEn−EmÞthEmjσxj jEnihEnjΨ↑
j ð0ÞihΨ↑

j ð0ÞjEmi:

ð4Þ

To readmx
jðtÞ one has to measure qubit j again, which is the

very same process that was used to induce the dynamics.
Application 1: Spectroscopy.—Quantum simulation

[26–28] is one of the most important goals of quantum
technologies. Recently, simulating many-body systems
with more than 50 particles has been possible with both

cold atoms [20] and trapped ions [29]. In fact, a wide range
of spin Hamiltonians, including the long-range Ising model
[30,31] can be simulated in ion traps using either optical
dipole forces [32] or inhomogeneous magnetic fields
[33–35]. Local addressability is also available in these
ion trap technologies [34,36]. Spurred by these advances,
the dynamics of the long-range transverse field Ising chain
has attracted huge interest in both theory [37] and experi-
ment [29]. The model is defined by [38,39]

H ¼ J
X
i≠j

1

ji − jjα σ
x
i σ

x
j þ B

X
i

σzi ; ð5Þ

where σxi and σ
z
i are the Pauli matrices acting on site i, B is a

magnetic field strength, and α determines the range of the
interaction such that α ¼ 0 makes the system fully con-
nected while the limit α → ∞ represents the nearest-
neighbor chain. The exchange coupling is here taken to
be antiferromagnetic, J > 0. Current experimental tech-
niques allow α to be tuned within the interval 0 ≤ α ≤ 3
[40]. Except for the special cases of α ¼ 0 [41,42] and
α → ∞ [43], the Hamiltonian in Eq. (5) is not solvable and
thus the spectrum can only be found for short chains
through exact diagonalization. As shown in Ref. [37],
starting from a product state, the entanglement entropy
grows linearly for short-range interactions (i.e., large α) and
logarithmically for long-range interactions (small α) [37].
As the Hamiltonian (5) commutes with the parity

operator P ¼ Q
N
i¼1 σ

z
i , the ground state has always a

definite parity. In particular, for even N, the ground state
has even parity in which measuring σxj results in either ↑j or
↓j with equal probability. Equation (4) can then be
simplified to

mx
jðtÞ ¼

X
n

cos ½ðEn − E0Þt�jhEnjσxj jE0ij2; ð6Þ

in which the frequencies of the oscillations are determined
only by the energy gaps between the ground state jE0i and
those excited states jEni for which jhEnjσxj jE0ij2 is non-
zero. In Figs. 2(a)–2(b) the local magnetization mx

1ðtÞ is
plotted versus time for α ¼ 0.5 and α ¼ 3, respectively, in a
system of length N ¼ 20, using open boundary conditions.
As the figures show, for the larger α the dynamics
equilibrates after a short oscillation and then revives due
to the finite size of the system, while for the smaller α there
is no hint of equilibration due to more frustration in the
staggered ordering of the spins.
One may compute the Fourier transform of the local

magnetization asMx
jðEÞ ¼ ð1=2πÞ R∞

0 mx
jðtÞe−iEtdt, which

takes the form

Mx
jðEÞ ¼

X
n

jhEnjσxj jE0ij2½δðE − En þ E0Þ

þ δðE − E0 þ EnÞ�=2:

FIG. 1. Measurement quench. A local measurement is per-
formed on one of the qubits of a chain prepared in its ground
state. This causes a collapse to a new state and induces dynamics
in the system.
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In the insets of Figs. 2(a)–2(b) we have plotted Mx
1ðEÞ for

their respective dynamics. As is evident from the figures,
more frequencies are excited for larger α, resulting in the
equilibration of mx

1ðtÞ already on short time scales. The
location of the peaks of Mx

1ðEÞ correspond to the energy
gaps En − E0 and thus Mx

1ðEÞ can be used as an efficient
spectroscopic probe of an unsolvable system. In order to
capture more eigenvalues of the Hamiltonian one can
perform the measurement quench on other sites j ≠ 1 by
which other eigenstates also get excited.
Application 2: Nonequilibrium scaling near a quantum

phase transition.—Scaling is a key feature in many-body
systems near criticality [43]. Maybe the best known
example from out-of-eqilibrium dynamics is the Kibble-
Zurek scaling [44–46], present when a many-body system
is driven through a continuous phase transition at a finite
rate. In a like manner, the asymptotic approach to equi-
librium of a system that is suddenly quenched close to a
quantum critical point is expected to be governed by
equilibrium critical exponents [47]. Scaling in a critical
system that has been subject to a global quench is expected
only after long times [48]. Local Hamiltonian quenches
[49,50] also exhibit power-law scaling with time and
distance from the quench [50,51]. Interestingly, the corre-
sponding static scaling dimensions can be extracted at
intermediate timescales [52,53]. With this as a backdrop,
one may inquire how a local measurement quench gives
rise to scaling of observables.
To find out, let us consider the transverse-field Ising

chain (TFIC). This model, solvable via Jordan-Wigner
transformation, serves as a paradigm for quantum phase
transitions [43]. The Hamiltonian, masked as the limit
α → ∞ in Eq. (5), is

H ¼
XN
i¼1

σxi σ
x
iþ1 þ λ

XN
i¼1

σzi ; ð7Þ

where the dimensionless parameter λ plays the role of B=J
in the Hamiltonian (5), and here, in contrast to the previous
example, periodic boundary conditions are imposed. By
varying λ, the system undergoes a quantum phase transition

at λ ¼ λc ¼ 1, from an antiferromagnetic (λ < λc) to a
paramagnetic (λ > λc) phase. Near the critical point the
correlation length diverges as ξ ∼ jλ − λcj−ν, with the
exponent ν ¼ 1 [43].
By translational invariance it does not matter on which

site j the measurement quench is performed. The well-
defined parity of the TFIC eigenstates implies that mx

jðtÞ
follows the Eq. (2). Unfortunately, the correlation functions
jhEnjσxj jE0ij2 in Eq. (2) cannot be expressed in terms of
a finite number of free fermionic correlation functions in a
periodic chain [54]. This makes it difficult to benefit from a
Jordan-Wigner transformation and instead we resort to
numerical exact diagonalization. The result for mx

jðtÞ is
plotted in Figs. 3(a) and 3(b) for λ ¼ 0.95 and λ ¼ λc ¼ 1,
respectively. The magnetization exhibits persistent small
high-frequency fluctuations on top of a global oscillating
low-frequency signal which decays slowly with time,
suggesting gradual equilibration.
It is worth mentioning that the local magnetization mx

j is
a nonequilibrium quantity and does not serve as an order
parameter for the system. Therefore, it is not clear whether
one can see scaling behavior for mx

j. In fact, one may
consider mx

j as a function of t, N, and ξ where the
dependence on λ has been replaced by ξ using
ξ ∼ jλ − λcj−ν. Scaling in the time evolution of mx

j means
that it is not a function of t, N, and ξ independently, but
instead is parametrized as mx

jðt=N;N=ξÞ. To verify this,
one fixes N=ξ and then plots mx

j as a function of t=N for
various system sizes so that all curves collapse on top of
each other. In order to fix N=ξ one can choose λ for each
system size N such that Njλ − λcjν remains fixed. In
Fig. 3(c) such a data collapse is shown for three different
system sizes. As the figure shows, that happens when ν is
chosen to be ν ¼ 1, i.e., the critical exponent known for the
TFIC. An interesting case is λ ¼ λc for which all system
sizes collapse on each other as in this case Njλ − λcjν
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FIG. 2. Transverse field Ising chain with long-range interaction.
The magnetizationmx

1ðtÞ as a function of time in a chain of length
N ¼ 20 and B=J ¼ 1 for two types of long-range interaction:
(a) α ¼ 0.5; (b) α ¼ 3. The insets show the Fourier transform
Mx

1ðEÞ as function of energy E for the chosen value of α.
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FIG. 3. Magnetization dynamics in the transverse field Ising
chain. Time evolution of the local magnetization after a meas-
urement quench in the Ising model for (a) λ ¼ 0.95, and
(b) λ ¼ λc ¼ 1. Nonequilibrium scaling of the local magnetiza-
tionmx

j versus t=N for (c) jλ − λcj ≃ 1=N and (d) jλ − λcj ¼ 0, for
which all lengths behave in the same way since ξ ∼ N.
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becomes zero. As evident from Figs. 3(c) and 3(d), while
the low-frequency signals show perfect data collapse, this is
not so for the high-frequency fluctuations. This suggests
that the two frequency components of mx

j have distinct
characteristics: (i) the low-frequency part shows universal
scaling behavior and thus exhibits perfect data collapse;
and (ii) the small high-frequency part is nonuniversal and
does not scale. Interestingly, the measurement quench is
very different from the local Hamiltonian quenches at a
defect in a critical TFIC in which the exponents are
nonuniversal and vary with the defect parameter [53].
Application 3: Nonequilibrium scaling in the Kondo

model.—The Kondo model [55–57] serves as a paradigm
for electronic many-body systems where the interaction
with a quantum impurity dynamically generates a length
scale. Taking advantage of the presence of this scale—the
Kondo screening length ξK—allows data from different
systems to be collapsed onto a single curve, similar to a
critical system like the TFIC discussed above. Theoretical
work [58–60], as well as transport measurements on
quantum dots in the Kondo regime [61], show that
universal scaling behavior is maintained in nonequilibrium,
and a Kondo cloud can form as the result of a local quench
between an impurity and an electron gas [62]. Moreover, a
local Hamiltonian quench in a Kondo system may provide
distance-independent entanglement between two distant
impurities [15]. Here we add to the nonequilibrium picture
of the Kondo physics, using a measurement quench.
For this purpose, it is more convenient to use a spin-

chain emulation [63] of the Kondo model, allowing for
efficient computations [64] using the density matrix
renormalization group (DMRG) [65,66]. The spin chain
has the Hamiltonian

H ¼ J0ðJ1σ1 · σ2 þ J2σ1 · σ3Þ þ J1
XN−1

i¼2

σi · σiþ1

þ J2
XN−2

i¼2

σi · σiþ2; ð8Þ

where J1 (J2) is the (next-) nearest neighbor coupling and
the dimensionless parameter J0 represents the impurity
coupling, with the impurity located at site i ¼ 1. By fine
tuning J2=J1 ¼ 0.2412 to the critical point of the spin-
chain dimerization transition [63], the Hamiltonian in
Eq. (8) provides a faithful representation of the spin sector
of the Kondo model [63]. The Kondo screening length ξK
can be identified with the spatial extent of a block of spins
with which the impurity is maximally entangled [64].
Assuming that the number of sites on the chain is even,
the SU(2) symmetry of the model implies that p↑

j ¼ 1=2. A
measurement quench is now performed on the impurity
spin at site j ¼ 1. To compute the subsequent time
evolution, we employ exact diagonalization for short chains
up to N ¼ 20 and time-dependent Runge-Kutta DMRG

simulation for longer chains [67]. Following the same
finite-size scaling procedure as we used for the TFIC, we
obtain the results displayed in Figs. 4(a)–4(b), with mx

1ðtÞ
plotted versus t=N when N=ξK is fixed to N=ξK ¼ 3.4 and
N=ξK ¼ 2, respectively. The value of ξK is found using the
entanglement approach of Ref. [64]. As one can see, there
are two distinct regions: (i) a scaling region which starts
from t ¼ 0 and extends to J1t⋍N=2 over which there is an
almost perfect data collapse; and (ii) a finite-size region
J1t > N=2, over which the data collapse gets distorted due
to reflection of excitations from the boundaries. Note that
the different scaling behaviors seen in the Kondo and TFIC
models is due to the fact that the length scale ξK is
dynamically generated, and its divergence for small J0
does not reflect a quantum phase transition.
It is worth pointing out that despite the success of

DMRG to capture the low-energy sector of a many-body
system, such as the Kondo model, it cannot compete with a
real quantum simulator. First, as entanglement grows, the
DMRG algortihm fails to give an accurate description [68].
Second, even for models where DMRG performs at its best
the time scale to compute the evolution is orders of
magnitudes larger compared to monitoring the same
dynamics on a real many-body system, like a quantum
simulator using cold atom, trapped ions, or photonics. For
such real-time experiments our measurement quench pro-
tocol is expected to come into its own.
Application 4: Detecting the Kondo screening cloud.—

While much is known about Kondo physics [55–57], the
experimental detection of the Kondo screening cloud, of
size ξK , remains a challenge [69]. We here suggest a new
type of protocol for determining ξK , based on a measure-
ment quench. To do so, we consider the Hamiltonian in
Eq. (8) and perform a measurement quench on the spin at
site j. If this site is far from the impurity, outside the Kondo
cloud, then the time evolution of the magnetizationmx

jðtÞ is
not affected by the presence of the impurity on short time
scales. Thus, by comparing the evolution of mx

jðtÞ in the
presence ðJ0 ≠ 1Þ and absence ðJ0 ¼ 1Þ of the impurity, one
expects that there is no difference between the two cases

0 0.2 0.4 0.6 0.8 1

J
1
t / N

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

m
1
x

(a)

N=32, J'=0.70

N=28, J'=0.77

N=24, J'=0.80

0 0.2 0.4 0.6 0.8 1
J
1
t / N

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

m
1
x

(b)

N=32, J'=0.54

N=28, J'=0.56

N=24, J'=0.58
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when the site resides outside the Kondo cloud. Guided by
this, we define an average local magnetization difference as

Δ̄mjðJ0Þ ¼
1

T

Z
T

0

jmx
jðJ0Þ −mx

jðJ0 ¼ 1Þjdt; ð9Þ

where T ¼ 1=J0 is a short time compared to the time
needed for spin excitations to propagate across the chain. In
Fig. 5(a) we plot Δ̄mjðJ0Þ as a function of j for different
values of J0 in a spin chain of length N ¼ 32. As one can
see from the figure, Δ̄mjðJ0Þ decays exponentially when
the site j is far away from the impurity site j ¼ 1. By
considering an exponential fitting function of the form
Δ̄mjðJ0Þ ∼ e−j=ξK to the tail of the data one can extract the
length scale ξK. In Fig. 5(b) we plot ξK thus obtained as a
function of 1=J0. Choosing A ¼ 0.18, one obtains very
good agreement with ξK ∼ eA=J

0
, the expected exponential

scaling for the Kondo screening length [56].
Conclusion.—We have shown that a local measurement

can be harnessed to induce nonequilibrium dynamics in
many-body systems. In contrast to conventional quench
protocols, where the Hamiltonian is manipulated, our
proposal is easier to implement and less prone to
decoherence. Several applications of measurement
quenches have been discussed. They allow for efficient
spectroscopy of nontrivial spin systems, for extracting
nonequilibrium scaling at quantum criticality and in quan-
tum impurity systems, and also for probing the elusive
screening cloud in the Kondo model. Various physical
setups, in which projective measurements have been
realized, can potentially implement our protocol, including
ion traps [29,33,34], optical lattices [19,70–72], Rydberg
atoms [20], and superconducting circuits [73,74].
Importantly, a measurement quench can be performed on
any initial state, including a thermal state and all the
introduced applications remain valid if the temperature is
small enough so that the measurement quench only excites
low-energy eigenstates.
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