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Motivated by proposals to employ RKKY-coupled spins as building blocks in a solid-state
quantum computer, we analyze how the RKKY interaction in a 2D electron gas is
influenced by spin-orbit interactions. Using a two-impurity Kondo model with added
Dresselhaus and Rashba spin-orbit interactions we find that spin-rotational invariance
of the RKKY interaction — essential for a well-controllable two-qubit gate — is restored
when tuning the Rashba coupling to have the same strength as the Dresselhaus coupling.
We also discuss the critical properties of the two-impurity Kondo model in the presence
of spin-orbit interactions, and extract the leading correction to the block entanglement

scaling due to these interactions.
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1. Introduction

The quest for spin-based quantum computation1 has led to a revival in the interest

of the two-impurity Kondo model (TIKM),2 defined by the Hamiltonian

HTIKM = Hkin + J1S1 · σ1 + J2S2 · σ2 +K(R)S1 · S2. (1)

Here S1,2 represent two localized spins of magnitude S = 1/2, separated by a

distance R, and coupled to electronic spin densities σ1,2 via a Kondo interaction

of amplitude J1,2 and to each other via an RKKY interaction of amplitude K(R).

Hkin is the kinetic energy of the conduction electrons. The localized spins may

be realized by two spinful quantum dots in a gated two-dimensional electron gas,

with the RKKY interaction mediated by the conduction electrons in an interjacent

large quantum dot, K(R) ∼ J1J2 cos(R/ε), with ε a microscopic length (Fig. 1).

As shown in an experiment by Craig et al.,3 the RKKY coupling can be controlled

by adjusting the voltage on an external gate. With the two spin states on each dot
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Fig. 1. (Color online) Two spinful quantum dots coupled by an RKKY interaction via spin
exchange with conduction electrons in a 2D central reservoir. The different V are tunneling rates,

related to the Kondo couplings Ji in Eq. (1) by Ji ∼ V 2

A,i/U (i = 1, 2), where U is the Coulomb
blockade energy of the reservoir. With the dots operated in the Coulomb blockade regime, charge
transfer between the dots and the central reservoir are suppressed.

representing a qubit, this suggests a means to emulate a two-qubit gate.4 A key issue

is how robust the RKKY coupling is against competing interactions. In particular,

the lack of inversion symmetry in a quantum well implies the presence of spin-orbit

interactions5 that may modify the simple isotropic RKKY interaction in (1). As the

isotropy of a spin–spin interaction (alias the coupling between qubits) is a highly

desirable feature when designing a two-qubit gate,6 one is faced with the problem

of engineering an isotropic spin-orbit modified RKKY interaction. Is this possible?

This is the question we shall address in the first part of this article.

The model in Eq. (1) is also interesting at a more fundamental level as it is

known to exhibit a quantum phase transition driven by the competition between

the RKKY and Kondo interactions.2 Adding spin-orbit interactions, this leads to

a second question: How do these interactions influence the critical behavior of the

model? In the second part of the paper we show how to arrive at an answer via

boundary conformal field theory (BCFT).7 A fine tuned spin-orbit interaction is

found to produce an irrelevant perturbation of the fixed point Hamiltonian (in the

language of the renormalization group), and we shall uncover how this perturbation

is encoded in corrections to the block entanglement scaling at criticality.

2. RKKY Interaction in the Presence of Spin-Orbit Interactions

Spin-orbit interactions in a quantum well come in two brands, the Dresselhaus

interaction5 due to breaking of the inversion symmetry of the crystal lattice,

HD = β(kxσ
x − kyσ

y) , (2)

and the gate-controllable Rashba interaction5 coming from the two-dimensional

confinement of the electrons,

HR = α(kxσ
y − kyσ

x) . (3)

The amplitude ratio α/β depends on the material as well as the design and the gate

bias of the particular semiconductor heterostructure which supports the quantum

well, with α/β ranging from order unity in a typical GaAs/AlGaAs device to O(103)

for HgTe/CdTe.8 Following Imamura et al.,9 the RKKY interaction in the presence
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of the spin-orbit couplings in (2) and (3) can be calculated to second-order in

perturbation theory as

HRKKY = −J1J2
π

Im

∫ ωF

−∞

dωTr
[

(S1 ·σ)G(R/2, ω+ı0+)(S2 ·σ)G(−R/2, ω+ı0+)
]

,

(4)

with ωF the Fermi energy. Here G(R/2, ω) is the Green’s function of a conduction

electron with single-particle Hamiltonian Hel = Hkin+HD+HR, and with the trace

in (4) taking over its two spin states. By choosing a coordinate system where the

vector RR̂ that joins the two quantum dots is parallel with the x̂-axis, a lengthy

calculation yields10

HRKKY = H0 +Hα +Hβ +Hαβ , (5)

where

H0 = F0S1 · S2 ,

Hα = αF1(S1 × S2)
y + α2F2S

y
1S

y
2 ,

Hβ = βF1(S1 × S2)
x + β2F2S

x
1S

x
2 ,

Hαβ = αβF2(S
x
1S

y
2 + Sy

1S
x
2 ) .

(6)

The functions Fi = Fi(α, β,R), i = 0, 1, 2 are given by rather complicated integrals

which in the the general case must be calculated numerically.

When turning off the spin-orbit interactions in (2) and (3), i.e. with α = β =

0 in (6), one obtains the standard spin-rotational invariant form of the RKKY

interaction in (1), with K(R) = F0. To find out whether there are any finite values

of α and β for which spin-rotational invariance may be recovered, it is useful to

rotate the coordinate system by an angle arctan(α/β)−π/2 around the ẑ-axis. The

spin-orbit modified RKKY interaction then takes the form

HRKKY = KHS1 · S2 +KIsingS
y
1S

y
2 +KDM(S1 × S2)

y , (7)

with KH,KIsing, and KDM parametrized by α, β, J1, J2, and R. The Ising and

Dzyaloshinski–Moriya (DM) terms in (7) can be traced back to a term in the

Green’s function G(R/2, ω) in (4) which contains a factor AR̂, with A a matrix

with elements A11=−A22=β,A12=−A21=−α. In the rotated coordinate system,

one has that AR̂ = α
(

0, (α2 − β2) cos arctan(α/β)
)

and it follows from (7) that the

RKKY interaction becomes manifestly spin-rotational invariant when α = β. Our

result boosts the proposal in Ref. 3 that an RKKY-coupled double-quantum dot

device can be used as a building block of a two-qubit gate, also in the realistic case

with spin-orbit interactions included. Anisotropic terms in a pulsed spin exchange

used in a two-qubit gate are well-known to be a nuisance, as they tend to mix

different spin states, implying a slow-down of the switching time.6 While various

schemes to get around or reduce this problem have been proposed,12,13 the ideal

two-qubit gate is patterned upon an isotropic exchange. As revealed by our results,

this situation should in principle be possible to achieve experimentally in a GaAs
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or InAs quantum well where the Rashba coupling α is of comparable strength to

that of β and can be fine-tuned by an external gate voltage.

Equal strengths of the Rashba and Dresselhaus interactions have been found to

restore also a type of “hidden” SU(2) symmetry in a 2D electron gas, predicted to

produce a persistent spin helix — a helical spin density wave of infinite lifetime.11 It

would be interesting to explore whether there is a connection between this finding

and that of ours for the RKKY interaction. For related work on implications of

equal strengths of Dresselhaus and Rashba couplings, see Refs. 11 and 12.

3. Quantum Criticality with Spin-Orbit Interactions

The results in the previous section are valid only when the direct Kondo interactions

in (1) are dominated by the RKKY term, i.e. when K(R) � TK , where TK

is the energy scale (“Kondo temperature”) below which Kondo screening sets in

Ref. 16. By tuning the gate voltages so that TK becomes larger than K(R), one

passes into a Kondo phase where the two localized spins are completely screened.

When the electrons that mediate the RKKY interaction are separated from those

that participate in the Kondo screening, the system undergoes a quantum phase

transition with a non-Fermi liquid quantum critical point.17 The condition of

electron separation can be realized in the laboratory by using a set-up as in Fig. 2.

With proper gating, the electrons in the central dot are made to mediate an RKKY

interaction only, with the external leads providing for the possible Kondo screening

channels.21 As shown by Affleck et al.,7 an efficient way to characterize the quantum

critical behavior of the system is to use a BCFT approach. Its extension to the case

with Dresselhaus and Rashba interactions included in the external leads meets

with some technical difficulties, however, connected to the fact that there is now

an intertwined sequence of orbital angular modes coupling to the localized spins.

To handle this situation, one needs some powerful scheme, with details still to

be worked out.19 However, when only one type of spin-orbit interaction in the

external leads is present (i.e. Dresselhaus or Rashba, but as before allowing for

Fig. 2. (Color online) The double-quantum dot system with central electron reservoir and
attached leads. The different V are tunneling rates. The dots are operated in the Coulomb blockade
regime, where charge transfer between the reservoir and dots as well as between the leads and

the dots is strongly suppressed. By proper gating, electrons in the reservoir [leads] will mediate
[participate] in the RKKY interaction [Kondo screening] only.
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both types of interactions to be simultaneously present in the central dot), the

BCFT approach still delivers very effectively. For this case the individual spin-orbit

interactions connect only two angular momentum modes to the Kondo coupled

s-wave component of the electron fields, thus simplifying matters dramatically.20

In order to apply the BCFT machinery, it is convenient to first rotate the

localized spin on one of the dots, S2 → S
′

2, followed by the same rotation of

the electron spins in the lead connected to this dot, σ2 → σ
′
2. By a judicious choice

of twist angle θ (for details, see Ref. 9), the full spin-orbit modified TIKM can be

cast on the form

H = Hkin + J1S1 · σ1 + J2S
′

2 · σ′

2 +K⊥
S1 · S′

2 + (Ky −K⊥)Sy
1S

′y
2 , (8)

where K⊥ and Ky are parametrized by KH ,KIsing,KDM and θ, and where, for

simplicity, we have chosen J1 = J2 ≡ J . When Ky = K⊥ we recover the ordinary

TIKM in (1), and for this case the critical behavior is therefore the same for all

twist angles θ. The case where there is no twist, but an Ising anisotropy, Ky 6= K⊥,

is a bit different. Now the SU(2) symmetry of the theory is broken down to U(1).

We know from Ref. 6 that anisotropies in the Kondo interaction do not change the

leading scaling behavior at criticality. Now, whether the symmetry breaking is due

to an anisotropy in the Kondo exchange, or, as in (8), in the RKKY interaction,

is immaterial since the BCFT operator content which governs the critical behavior

depends only on the overall left-over symmetry. One may thus be tempted to

conclude that the renormalization-group fixed point that governs the critical theory

is stable also against an Ising anisotropy in the RKKY interaction. However, this

line of argument would be too fast: Changing the parameters K⊥ and Ky by the

same amount is in fact a relevant perturbation, taking the scaling Hamiltonian away

from the fixed point along an SU(2)-invariant direction. Given the linearized RG

flow around the fixed point, the irrelevant direction is perpendicular to the SU(2)

invariant line, and thus, only by fine-tuning the parameters by lettingK⊥ → K⊥+δ

and Ky → Ky−δ will we stay at the fixed point. Since the fixed points for all values

of the twist θ arise from the same Hamiltonian and should thus be identified, it

follows that the general case with both a twist and an Ising anisotropy is the

same as that with no twist. In other words, the TIKM fixed point is stable under

perturbations of spin-orbit interactions provided that one tunes the parameters

judiciously, K⊥ → K⊥ + δ, Ky → Ky − δ. Else one flows towards one of the

stable fixed points representing the RKKY phase and the Kondo screened phase,

respectively (see Fig. 3).

4. Entanglement at Criticality

When considering proposals for quantum information processing using RKKY-

coupled spins,3 it becomes interesting to quantify the entanglement between the

two spins as measured by the concurrence.22 This was done by Cho and McKenzie23

who also showed that the concurrence vanishes identically at the critical point and



May 13, 2011 8:54 WSPC/147-MPLB S0217984911026796

1088 H. Johannesson, D. F. Mross & E. Eriksson

Kondo screening

RKKY Singlet

�

� �

���� ����

K
y0 ∞−∞

K
⊥

−TK TK

TK

0

∞

�

Fig. 3. (Color online) RG flow of the spin-orbit modified TIKM. The solid dots and the solid
line are known results for the ordinary TIKM with no spin-orbit interactions (Ref. 6). The gray
line, with K⊥ = 0, marks the RG flow of a different model of quantum dots coupled via an Ising
interaction where different behavior is expected (Ref. 18). The dashed flow line separates the
RKKY singlet from the Kondo screened regime. As an artifact of the scale at |K| → ∞, this line
appears curved to coincide with the screened fixed point (K⊥ = −Ky). Note that at both the
RKKY and the Kondo screened fixed point, the direction along the semicircle is irrelevant. We
thus expect there to remain a finite separation (its scale being set by TK) between the relevant
flow towards the Kondo screened fixed point and the dashed flow towards the critical point, as
shown in the enlarged inset. The curvature of the dashed line is not meant to suggest any deeper
knowledge about its properties. However, close to the isotropic (unstable) fixed point, it follows
the direction of irrelevant longitudinal anisotropies.

thus serves as a marker for the quantum phase transition. This result remains valid

in the presence of spin-orbit interactions.10

Another entanglement measure with interesting scaling behavior at a quantum

phase transition is the block entanglement.22 For a system in a pure state and

partitioned into two parts A and B, the block entanglement is encoded by the

von Neumann entropy SA = −Tr ρA log ρA of the reduced density matrix ρA
(with SA = SB). The contribution to SA coming from the impurity spins in

the TIKM Hamiltonian in (1) is given by the boundary entropy sb = log
√
2 at

the nontrivial fixed point.7 Since the critical properties of the spin-orbit modified

TIKM in (8) are controlled by the same fixed point as for the TIKM without

spin-orbit interactions, it follows that the boundary entropy stays the same. To

uncover the presence of the spin-orbit interactions in (2) and (3) one must study

the corrections to sb implied by the enlarged content of RG-irrelevant operators due

to the breaking of SU(2) → U(1) when Ky 6= K⊥. A symmetry analysis suggests

that the boundary operator corresponding to the irrelevant RG flow in Fig. 3 can be

identified as a component of the energy-momentum tensor, with scaling dimension

xb=2. By employing a formalism developed by Cardy and Calabrese for calculating

corrections to the critical von Neumann entropy,24 recently adapted to the case of
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Fig. 4. (Color online) Schematic of the double-quantum dot system with a block A of length
2r � 2ξK � ` (see text).

boundary perturbations,25 we then infer that

sb = log
√
2 +

ξK
r

(

a log

(

r

ξK

)

+ b

)

+ · · · , (9)

where a and b are dimensionless constants, ξK is the Kondo screening length,16 and

where 2r � 2ξK � ` is the length of the block, with ` being the distance between the

dots (see Fig. 4). Higher-order corrections are denoted by “· · ·”. Here the log(r)/r

term is produced by the leading irrelevant boundary operator of dimension xb =

3/2, with the second term in the parenthesis contributed precisely by an xb = 2

operator. It is important to point out that a 1/r-term appears also for the TIKM

in (1) with no spin-orbit interactions, due to the fact that the full energy-momentum

tensor is part of any scaling Hamiltonian. Thus, to leading order, the presence of

the spin-orbit interactions is revealed only by a change of the amplitudes a and b

in Eq. (9).

5. Summary

We have investigated the influence from Dresselhaus and Rashba spin-orbit

interactions on the RKKY coupling between two impurity spins in a 2D electron

gas. By proper gating, the Dresselhaus and Rashba coupling strengths can be made

equal, for which the RKKY interaction is found to become manifest spin-rotational

invariant. As this property is a sine qua non for employing RKKY-coupled spins for

two-qubit gating, our result adds to the viability of the scheme also in the presence

of spin-orbit interactions.

We have also explored how the Dresselhaus and Rashba interactions influence

the quantum critical behavior of the two-impurity Kondo model. By fine-tuning

their coupling strengths the system can be made to stay critical, being governed by

the same fixed point as for the model without spin-orbit interactions. As a result,

the impurity contribution log
√
2 to the block entanglement remains the same, with

the presence of the spin-orbit interactions showing up only in the amplitudes of

the subleading scaling corrections. It would be interesting to widen the search for

spin-orbit effects on quantum impurity critical behavior, for example by including

the occurrence of charge fluctuations (two-impurity Anderson model),26 adding
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more interaction channels (Kondo quartet model),27 or by adding a third impurity

spin (Kondo trimer model).28
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