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A quantum phase transition is generally thought to imprint distinctive characteristics on the non-
equilibrium dynamics of a closed quantum system. Specifically, the Loschmidt echo after a sudden quench
to a quantum critical point—measuring the time dependence of the overlap between initial and time-
evolved states—is expected to exhibit an accelerated relaxation followed by periodic revivals. We here
introduce a new exactly solvable model, the extended Su-Schrieffer-Heeger model, the Loschmidt echo
of which provides a counterexample. A parallell analysis of the quench dynamics of the three-site
spin-interacting XY model allows us to pinpoint the conditions under which a periodic Loschmidt
revival actually appears.
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Taking a quantum system out of equilibrium can be done
in many ways, such as injecting energy through an external
reservoir or applying a driving field. The simplest paradigm
is maybe that of a quantum quench, where a closed system
is pushed out of equilibrium by a sudden change in the
Hamiltonian which controls its time evolution. Studies of
quantum quenches have spawned a large body of results on
equilibration and thermalization [1] (and its breakdown in
integrable systems [2]), on entanglement dynamics [3], and
more [4,5]. In this context, an important task is to identify
nonequilibrium dynamical signatures of a quantum phase
transition (QPT). The problem comes in a variety of shapes,
ranging from the Kibble-Zurek mechanism for defect pro-
duction [6] to the time evolution of correlations in strongly
correlated out-of-equilibrium systems at a QPT [7]. A basic
variant is to ask the question: If a Hamiltonian is suddenly
quenched to a quantum critical point (or its vicinity), is there
any special characteristic of the subsequent dynamics?
To address this question one may invoke the Loschmidt

echo (LE) [8], which measures the overlap between the
initial (prequench) and time-evolved (postquench) state.
Applied to a quantum critical quench—i.e., with the
quench parameter pulled to a quantum critical point—
finite-size case studies reveal that the time dependence of
the LE of several models exhibits a periodic pattern, a
revival structure, formed by brief detachments from its
mean value [9–16], implying revivals also for expectation
values of local observables [17,18]. The amplitudes of
these revivals may decay with time; however, their presence
appears to be independent of the initial state and the size of
the quench [13]. Indeed, the distinctive structure of revivals
of the LE after a quench has been conjectured to be a
faithful witness of quantum criticality [9,10].
In this Letter we challenge the notion that quantum

criticality and LE revival structures are intrinsically linked.

We do this by way of example, introducing a new exactly
solvable model, the extended Su-Schrieffer-Heeger (ESSH)
model, which exhibits several distinct quantum phases with
associated QPTs. The ESSH model serves as a represen-
tative of a large class of quasifree 1D Fermi systems,
and contains as special cases the original SSH model [19],
the Creutz model [20], and the Kitaev chain [21] and its
dimerized version [22]. Moreover, via a Jordan-Wigner
transformation [23], and with suitably chosen parameters,
the ESSH model embodies several generic spin chain
models, including the 1D quantum compass model [24].
Important for the present work, the quench dynamics of
the ESSH model highlights the conditions under which the
LE may show a revival structure. Informed by this, and
by results extracted from another exactly solvable model,
the three-site spin-interacting (TSSI) XY model [25,26], we
come to the conclusion that quantum criticality is neither a
sufficient nor a necessary condition for the LE to exhibit an
observable revival structure. Instead, what matters is that
the quasiparticle modes which control the LE are massless
and have a group velocity vg ≫ L=t, where L is the length
of the system and t is the observation time. Only if these
modes coincide with the quantum critical modes is a revival
structure tied to a QPT. These conditions, which are
general, bring new light on the important issue of how
to read a LE after a quantum quench.
Loschmidt echo.—A quantum quench is a sudden change

in the Hamiltonian Hðθ1Þ of a quantum system, with θ1
denoting the value(s) of the parameter(s) that will be
quenched. The system is initially prepared in an eigenstate
jΨmðθ1Þi to the Hamiltonian Hðθ1Þ. The quench is carried
out at time t ¼ 0, when θ1 is suddenly switched to θ2. The
system then evolves with the quench Hamiltonian Hðθ2Þ
according to jΨmðθ1;θ2;tÞi¼exp½−iHðθ2Þt�jΨmðθ1Þi. In
this case the LE [8], here denoted by Lðθ1; θ2; tÞ, reduces
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to a dynamical version of the ground-state fidelity (return
probability),

Lðθ1; θ2; tÞ ¼ jhΨmðθ1Þj exp½−iHðθ2Þt�jΨmðθ1Þij2; ð1Þ

measuring the distance between the time-evolved state
jΨmðθ1; θ2; tÞi and the initial state jΨmðθ1Þi.
The LE typically decays in a short time Trel (relaxation

time), from unity to some mean value around which it
then fluctuates [27]. Revivals are also visible in the LE
as pronounced deviations from the average value [13].
For quenches to a quantum critical point in a finite system
there is an expectation that the LE relaxation is accelerated
[9–11,15,28–30] and that the revivals are periodic
[9,10,13,14]. Conversely, such behavior has been proposed
as a signature of quantum criticality [9,10]. However, the
matter turns out to be more complex. To see how, we next
introduce the ESSH model and exhibit its quench
dynamics.
Extended Su-Schrieffer-Heeger model.—We define the

Hamiltonian of the ESSH model by

H ¼
XN

n¼1

½−ðwcA†n cBn þ τcA†nþ1c
B
n þ Δe−iθcA†n cB†n

þ ΛeiθcA†nþ1c
B†
n Þ þ μ

2
ðcA†n cAn þ cB†n cBn Þ� þ H:c:; ð2Þ

where A and B are sublattice indices labeling fermion
creation and annihilation operators cA=B†n and cA=Bn , w and τ
are hopping amplitudes, Δ and Λ are superconducting
pairing gaps, �θ are the phases of the pairing terms, and μ
is a chemical potential. Choosing μ ¼ 0 and introducing the
Nambu spinor Γ† ¼ ðcA†k ; cB†k ; cA−k; c

B
−kÞ, the Fourier trans-

formed Hamiltonian can be expressed in Bogoliubov–de
Gennes form [31], H ¼ P

k≥0Γ†HðkÞΓ, with

HðkÞ ¼

0
BBB@

0 pk 0 qk
p�
k 0 −q−k 0

0 −q�−k 0 −p�
−k

q�k 0 −p−k 0

1
CCCA; ð3Þ

where pk ¼−ðwþ τe−ikaÞ and qk ¼ −ðΔe−iθ − Λeiðθ−kaÞÞ.
Here, k ¼ 2mπ=L, m ¼ 0;…; N=2, given periodic boun-
dary conditions, and L ¼ Na, with a the lattice spacing,
taken as unity in arbitrary units.
By diagonalizing HðkÞ one obtains the quasiparticle

Hamiltonian H ¼ P
4
α¼1

P
k ε

α
kγ

α†
k γαk , with γα†k and γαk

linear combinations of the elements in the Nambu
spinor, and with corresponding energy bands ε1k ¼
−ε4k ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akþ

ffiffiffiffiffiffiffiffiffi
a2k−bk

pp
and ε2k ¼ −ε3k ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak−

ffiffiffiffiffiffiffiffiffi
a2k−bk

pp
,

where ak ¼ jqkj2 þ jpkj2 þ jq−kj2 þ jp−kj2 and bk ¼
4ðp�

kp−k − q�kq−kÞðpkp�
−k − qkq�−kÞ. The ground state

jΨ0i is obtained by filling up the negative-energy
quasiparticle states, jΨ0i ¼

Q
kγ

2†
k γ1†k jVi, where jVi is

the Bogoliubov vacuum annihilated by the γk’s (see
Supplemental Material [32]).
One easily verifies that the gap to the first excited state

vanishes for all momenta k when θ ¼ π=2, w ¼ Δ, and
τ ¼ Λ. The ground state here acquires a degeneracy of 2N=2

[enlarged to 2 × 2N=2 at the isotropic point (IP) Δ ¼ Λ]
[32]. It follows that the line θ ¼ π=2 in parameter space is
critical for any ratio Δ=Λ. Its interpretation is most easily
phrased in spin language by connecting the ESSH model to
the general quantum compass model [24,33] via a Jordan-
Wigner transformation [23]. The critical line θ ¼ π=2 is
then seen to define a (nontopological) QPT between two
distinct phases with large short-range spin correlations in
the x and y direction, respectively. As expected [34], this
QPT is signaled by a sharp decay of the ground-state
fidelity Fðθ; θ þ δθÞ ¼ jhΨ0ðθÞjΨ0ðθ0Þij, cf. Fig. (S2) in
Supplemental Material [32].
Loschmidt echo in the ESSH model.—By a rather

lengthy calculation, one can obtain the complete set of
eigenstates of the model, yielding an exact expression for
the LE [32] When the system is initialized in the ground
state jΨ0ðθ1Þi and quenched to the critical line, i.e., with
θ2 ¼ θc ¼ π=2, one obtains

Lðθ1;θc; tÞ¼
Y

0≤k≤π

����1−Aksin2½ε1kðθcÞt�−Bksin2
�
ε1kðθcÞt

2

�����;

ð4Þ

where Ak and Bk measure overlaps between k modes of the
initial ground state, jψ0;kðθ1Þi, and eigenstates jψm;kðθcÞi
of HðθcÞ; cf. Fig. 1 and Ref. [32]. The energies ε1kðθcÞ are
those of the quasiparticles in the lowest filled band in the
ground state of the critical quench Hamiltonian.
In Fig. 2 we have plotted Lðθ1; θ2; tÞ versus Δ and time t

for quenches to the critical line θ2 ¼ θc ¼ π=2 starting

k
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FIG. 1. The amplitudes Ak and Bk in Eq. (4) plotted versus k at
the isotropic point w ¼ Δ ¼ τ ¼ Λ ¼ 1 and away from the
isotropic point w ¼ Δ ¼ 2, τ ¼ Λ ¼ 1.

PRL 118, 015701 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

6 JANUARY 2017

015701-2



from θ1 ¼ 0.45π, for w ¼ Δ, τ ¼ Λ ¼ 1, and N ¼ 40. One
clearly sees a rapid decay of the LE, with periodic revivals
in time when quenching to the IP, Δ ¼ 1. This is in
agreement with several studies of LEs at quantum criticality
[9–16,27–29,35]. However, departing from the IP, taking
Δ ≠ Λ, but remaining at the critical line θc ¼ π=2, a
surprising result occurs: The periodic revivals get wiped
out for sufficiently large anisotropies, with the LE oscillat-
ing randomly around its mean value.
To find out why the LE exhibits a revival structure at or

very close to the IP, but not farther away from the IP, let us
begin by pinpointing the revival periods at the IP, manifest
in Fig. 3(a). Plotting Trev versus N, cf. Fig. 3(b), unveils a
linear scaling,

Trev ¼
Na
K

; ð5Þ

where K has dimension of velocity with value
K ¼ 4.00� 0.03. A numerical spectral analysis suggests
that K ≈ vmax, where vmax ¼ max½∂kε

1
kðθcÞ�, cf. inset,

Fig. 3(b). This result is anticipated from a study of the
spin-1=2 XY model [13], where the LE revival period is
also governed by the maximum quasiparticle group veloc-
ity produced by the critical quench Hamiltonian. However,
Eq. (5), with K ≈ vmax, fails to account for the disappear-
ance of periodic revivals away from the IP. Why is that?
The answer lies in Eq. (4). First, note that a revival

requires that all k modes in Eq. (4) contribute sizably to the
LE, in turn requiring that the oscillating terms are small. An
analysis shows that the oscillation amplitudes Ak and Bk are
indeed small except for Bk when approaching the BZ
boundary (at which Bk takes its maximum), cf. Fig. 1. It

follows that the corresponding modes can contribute
constructively to the LE only at time instances at which
their oscillation terms get suppressed. Thus, we expect that
the most pronounced revivals happen when the vanishing
of the term proportional to Bk¼π is concurrent with the
near vanishing of Bk terms with k close to π. To obtain
the revival period at the IP we thus make the ansatz
ε1k0ðθcÞt=2 ¼ mπ, with m an integer and with k0 the mode
with the largest group velocity in the vicinity of the BZ
boundary. A Taylor expansion to first order, ε1k0−pδkðθcÞ ≈
ε1k0ðθcÞ − ∂kϵ

1
kðθcÞjk0pδk shows that Bk terms of neighbor-

ing k modes are strongly suppressed whenever t is a
multiple of Na=vmax with vmax ¼ ∂kϵ

1
kðθcÞjk0 and (as

before) a ¼ 1. Here, p ≪ N are integers and
δk ¼ 2π=N. This estimate of the revival period agrees
with the numerical result in Eq. (5).
Turning to the anisotropic case Δ ≠ Λ and repeating the

analysis from above immediately reveals why the revival
structure now gets lost. First, as exemplified in Fig. 1, the
Bk amplitudes are here small for all k modes. Thus, the

FIG. 2. The LE versus Δ and time t for quenches to the critical
line θ2 ¼ θc ¼ π=2 starting from θ1 ¼ 0.45π, for w ¼ Δ,
τ ¼ Λ ¼ 1, andN ¼ 40. Inset: The LE versus time t for quenches
to the critical line θc ¼ π=2 starting from θ1 ¼ 0.45π, for
different system sizes N and with w ¼ Δ ¼ 2, τ ¼ Λ ¼ 1.

FIG. 3. (a) LE versus time t, with initial pairing phase θ1 ¼
0.45π and quenching to the critical line θc ¼ π=2, for various
system sizesN at the IP w ¼ Δ ¼ 2, τ ¼ Λ ¼ 2. (b) Scaling of the
revival period Trev with system size N for a quench to the critical
line at the IP. Inset: The derivative of the ground-state energy
modes ϵ1k (group velocity) at the critical line θ ¼ π=2 for isotropic
(red line) and anisotropic (blue hatched line) cases.
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simultaneous suppression of the dominant (but still small)
oscillation terms is not expected to have a significant effect
on the LE. Moreover, as seen in the inset of Fig. 3(b), the
group velocities vk ¼ ∂kϵ

1
kðθcÞ away from the IP are quite

small throughout the k range where Bk is nonvanishing. As
a consequence, with Trev ≈ L=vk¼π (as before obtained by
expanding the quasiparticle energies close to k ¼ π, where
the Bk amplitudes are largest), one would have to wait an
exceedingly long time to see any trace of a weak revival
structure, if at all present.
To understand the origin of the different behaviors of

the LE at the IP and away from the IP, recall from Eq. (4)
that the revivals are controlled by quasiparticles in the
lowest energy band, ε1k. This is so, since the second filled
quasiparticle band in the ground state, ε2k, collapses to zero
and becomes dispersionless at the critical line θc ¼ π=2
[32]. Away from the IP, the ε1k band remains gapped for all k
also at the critical line, thus holding back quasiparticle
excitations from that band. This is different from the critical
line at the IP where the gap closes at the BZ boundary [32].
Since the oscillation amplitudes can be interpreted as
measuring the probabilities of quasiparticle excitations, k
modes at or near the gap-closing points are indeed expected
to yield much larger amplitudes. As follows from our result
for the revival period, if these modes also give rise to a
group velocity vg ≫ L=t, with t the observation time, a
revival structure will ensue. Note that here vg is the group
velocity of quasiparticles at which the oscillation ampli-
tudes peak. While vg happens to be at a global maximum in
the ESSH model at the IP, this property is not expected to
be generic.
Loschmidt echo in the three-site spin-interacting XY

model.—Having established that quantum criticality is not
a sufficient condition for a revival structure in a LE, what
about the converse? Can a LE exhibit a revival structure
without the presence of a QPT?
The answer is yes. A case in point is the LE of a quench

to the hs ¼ 0 line in the J3 − h parameter space of the
three-site spin-interacting XY model [25,26],

HTSSI ¼ −
J
2

XN

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ − hs

XN

j¼1

ð−1Þjσzj

−
J3
4

XN

j¼1

ðσxjσxjþ2 þ σyjσ
y
jþ2Þσzjþ1; ð6Þ

where σx, σy, and σz are the usual Pauli matrices. In
Ref. [36] it was noted that the decay rate of the LE shows an
accelerated decay in such a quench, independent of whether
the quench is critical (J3 ¼ 0) or noncritical (J3 ≠ 0).
In contrast, the LEs of quenches to the critical lines
hs ¼ �J3=2, which define a QPT between an antiferro-
magnetic and type-I spin-liquid phase, display neither
enhanced decays nor revival structures.

Guided by our results for the ESSH model, we resolve
this conundrum by numerically confirming that the absence
of a revival structure for a quench from the antiferromag-
netic phase to the hs ¼ �J3=2 critical lines of the TSSI XY
model is linked to consistently small oscillation amplitudes
in the mode decomposition of the LE. Analogous to the
ESSH model away from the IP, this can be attributed to the
fact that the quasiparticles which control the LE remain
fully gapped as one approaches the QPT. On the contrary,
the revival structures which do appear in the TSSI LEs are
associated with large oscillation terms in the mode decom-
position of the LE, with amplitudes that peak at wave
numbers where nearby quasiparticles have a sizable group
velocity. This, in turn, emulates the scenario for the ESSH
model at the IP, but now for quenches to special parameter
values which do not define a critical point of a QPT. One
should here note that while a QPT may favor large LE
oscillation amplitudes [37] (however, as transpires from our
analysis, only if these are controlled by the quasiparticles
which become massless at the QPT), large amplitudes can
incidentally appear also within a quantum phase if this
phase supports massless excitations. Provided that these
excitations have sizable group velocities, an observable
revival structure may then emerge, as evidenced when
quenching to the noncritical ðJ3 ≠ 0; hs ¼ 0Þ line within
the type-I spin-liquid phase of the TSSI XY model,
cf. Fig. 4.
Summary.—We have shown that the presence of a

quantum phase transition is neither a sufficient nor a
necessary condition for observing a revival structure in
the Loschmidt echo after a quantum quench. Periodic
revivals are preconditioned by a LE controlled by massless
quasiparticle modes with a group velocity vg ≫ L=t, where
L is the length of the system and t is the observation time.
This property may or may not be present at a quantum
critical point. The suppression of a critical revival structure
is strikingly illustrated away from the isotropic quantum
critical point in the extended Su-Schrieffer-Heeger model,

FIG. 4. The LE of the TSSI XY model versus time t at the
noncritical point where J3 ¼ 4 and hs ¼ 0.
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introduced in this Letter. Here, the revivals are found to be
controlled by quasiparticle states which remain gapped at
the anisotropic quantum phase transition, implying small
oscillation amplitudes in the mode decomposition of
the LE. Our findings may call for a revisit of earlier results
on revival structures and quantum criticality, and should
encourage efforts to identify more reliable nonequilibrium
markers of quantum criticality.
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