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Abstract. We investigate the corrections to scaling of the Rényi entropies of
a region of size � at the end of a semi-infinite one-dimensional system described
by a conformal field theory when the corrections come from irrelevant boundary
operators. The corrections from irrelevant bulk operators with scaling dimension
x have been studied by Cardy and Calabrese (2010), and they found not only the
expected corrections of the form �4−2x but also unusual corrections that could
not have been anticipated from standard finite-size scaling. However, for the
case of perturbations from irrelevant boundary operators we find that the only
corrections that can occur to leading order are of the form �2−2xb for boundary
operators with scaling dimension xb < 3/2, and �−1 when xb > 3/2. When xb =
3/2 they are of the form �−1 log �. A marginally irrelevant boundary perturbation
will give leading corrections going as (log �)−3. No unusual corrections occur when
perturbing with a boundary operator.

Keywords: conformal field theory (theory), Kondo effect (theory), spin chains,
ladders and planes (theory), entanglement in extended quantum systems (theory)

ArXiv ePrint: 1011.0448

c©2011 IOP Publishing Ltd and SISSA 1742-5468/11/P02008+9$33.00

mailto:erik.eriksson@physics.gu.se
mailto:henrik.johannesson@physics.gu.se
http://stacks.iop.org/JSTAT/2011/P02008
http://dx.doi.org/10.1088/1742-5468/2011/02/P02008
http://arxiv.org/abs/1011.0448


J.S
tat.M

ech.
(2011)

P
02008

Corrections to scaling in entanglement entropy from boundary perturbations

Contents

1. Introduction 2

2. Scaling corrections from bulk operators: a brief review 3

3. Scaling corrections from irrelevant boundary operators 4

4. Scaling corrections from marginal boundary operators 7

5. Conclusions 8

Acknowledgments 8

References 9

1. Introduction

The block entanglement of a quantum system has been found to be a powerful tool for
characterizing the scaling behavior near a quantum critical point [1]. For a system in a
pure state and with the Hilbert space partitioned into a direct product H = HA ⊗ HB

(with A and B the corresponding two parts of the system), the block entanglement is
encoded by the von Neumann entropy SA = −Tr ρA log ρA of the reduced density matrix
ρA, with SA = SB. The most interesting case is in one dimension. For an infinite system
with an interval A of length � the asymptotic behavior of the von Neumann entropy is
given by [2]

SA ∼ c

3
log

�

ε
+ c′1 (1)

near the critical point. Here c is the central charge of the underlying conformal field
theory. The constant ε is an arbitrary cutoff scale, with c′1 also being a non-universal
number. As a way to characterize the full entanglement spectrum one may introduce an
additional parameter n, with n a positive real number, and define the Rényi entropies

S
(n)
A =

1

1 − n
log Tr ρn

A, (2)

with limn→1 S
(n)
A = SA. As expected from finite-size scaling theory, the critical scaling

S
(n)
A ∼ (c/6)(1 + n−1) log(�/ε) of the Rényi entropies exhibits O(�4−2x) corrections [3].

Here x > 2 is the scaling dimension of the leading irrelevant operator (with ‘irrelevant’
being understood in the sense of the renormalization group). As shown in [3], there can
also be unusual n-dependent corrections of O(�−2x/n) and O(�2−x−x/n), where, in the first
case, x may in fact be less than 2, corresponding to a scaling correction produced by a
relevant operator. These unusual corrections often come with an oscillating prefactor,
which however vanishes when n → 1 in all known cases [4, 5]. For a semi-infinite system,
with a conformally invariant boundary condition (CIBC), operators in the bulk may
produce additional unusual scaling corrections �−x/n to the Rényi entropies, on top of the
ordinary O(�2−x) corrections with x > 2 predicted by finite-size scaling [3]. In contrast to
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the case of an infinite system, the oscillating prefactor that multiplies the leading unusual
�−x/n-correction does not vanish in the limit n → 1. This unexpected feature was first
observed in numerical work in [6], and recently derived analytically for the case of the
XX-chain with open boundary conditions [7].

In this paper we inquire about the scaling corrections to the critical Rényi entropies
of a semi-infinite one-dimensional system which are generated by irrelevant boundary
operators. Recall that boundary operators arise in the operator product expansion
(OPE) of a chiral operator with its mirror image across the boundary. More precisely,
given a boundary conformal field theory (BCFT) defined on the complex half-plane
{z = τ + iy | y ≥ 0} with a CIBC at y = 0, the OPE of a chiral operator φ(τ, y)
with its mirror image φ(τ,−y) reads [8, 9]

φ(τ, y)φ(τ,−y) ∼
∑

j

Cφ,j

(2y)2xφ−xj
φj(τ), y → 0. (3)

Here xφ is the scaling dimension of φ, and φj are boundary operators of dimension xj .
Nonzero values of the expansion coefficients Cφ,j select those boundary operators which are
consistent with the particular CIBC imposed at y = 0. Knowing the boundary operator
content associated with a system allows for a complete characterization of its boundary
critical behavior, i.e. those terms in the critical scaling of observables contributed by
the presence of the boundary. For a quantum theory, where τ is a Euclidean time, this
allows for identifying the long-time (a.k.a. low-energy) asymptotic critical behavior of
the system close to the boundary. BCFT has a manifold of applications, spanning from
open-string theory (D branes) [11] to the study of quantum quenches [12]. A particularly
important class of applications is that of a quantum impurity interacting with an electron
liquid, where at low energies the impurity can be traded for a CIBC at the site of the
impurity [10]. The increase of the block entanglement at quantum criticality due to the
presence of the impurity is a universal number (boundary entropy) which characterizes the
type of boundary critical behavior. However, for a finite block there will always be additive
corrections to the boundary entropy coming from irrelevant bulk and boundary operators.
These corrections are expected to reveal features about quantum impurity phenomena
which are otherwise difficult to access, the extent and character of the enigmatic ‘screening
cloud’ being a case in point [13].

2. Scaling corrections from bulk operators: a brief review

Consider a one-dimensional system with a boundary at y = 0 that is described by a
BCFT. Let subsystem A be the region 0 ≤ y ≤ � and B the rest of the system, y > �.
As shown by Calabrese and Cardy [1, 2], Tr ρn

A (which enters the definition of the Rényi
entropies in equation (2)) can be viewed as a path integral ZRn on an n-sheeted Riemann
surface Rn with a boundary, and with proper normalization. Then

S
(n)
A =

1

1 − n
log

ZRn

Zn
= − β

1 − n
(FRn − nF ), (4)

where F = −β−1 log Z is the free energy, FRn = −β−1 log ZRn and β is the inverse
temperature. For an unperturbed BCFT, ZRn/Zn can be calculated as a one-point
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function on the half-plane C+ of a twist field Φn inserted at the branch point z = i� [2]

ZRn

Zn
= 〈Φn(i�)〉C+ = cn

(
2�

ε

)−c(n−1/n)/12

, (5)

where ε is the short-distance cutoff. This leads to

S
(n)
A =

c

12

(
1 +

1

n

)
log

2�

ε
+ sA + c′n, (6)

where sA = log gA is the boundary entropy and c′n are non-universal constants [2, 14]. The
well-known result for the critical block entanglement on a semi-infinite line,

SA =
c

6
log

2�

ε
+ sA + c′, (7)

is obtained simply by letting n → 1+ in equation (6).
The corrections to this scaling behavior from irrelevant bulk operators were recently

studied by Cardy and Calabrese [3]. Such a perturbation with a bulk operator Φ(z) having
a scaling dimension x > 2 gives an action

S = SCFT + λ

∫
d2z Φ(z), (8)

where λ is a coupling constant. The corrections to the free energies are given by the
perturbation series

FRn = FCFT
Rn

−
∞∑

N=1

(−λ)N

N !

∫

Rn

d2z1 · · ·
∫

Rn

d2zN 〈Φ(z1) · · ·Φ(zN )〉Rn , (9)

over the Riemann surface Rn, and

F = FCFT −
∞∑

N=1

(−λ)N

N !

∫

C+

d2w1 · · ·
∫

C+

d2wN〈Φ(w1) · · ·Φ(wN)〉C+ , (10)

over the ordinary complex half-plane C+. When the boundary conditions are such that
〈Φ(w)〉C+ 	= 0 they found that the first-order correction to FRn − nF is of the form �2−x.
However, for n > x/(x − 2) they also found the appearance of the unusual n-dependent
correction �−x/n, that comes from the singularity at the branch point. For an infinite
system without a boundary, the corrections take the forms �4−2x and �−2x/n.

3. Scaling corrections from irrelevant boundary operators

We now wish to study the case when the perturbations come from irrelevant operators
on the boundary. In doing so, we can follow the same procedure as Cardy and Calabrese
in [3]. However, when perturbing with a boundary operator the surface integral of the
perturbing field in the action (8) will be replaced by a line integral on the boundary. As
we shall see, this will prevent the appearance of unusual n-dependent corrections. In fact,
this is anticipated since n-dependent exponents only arise from the region at the branch
point, which is located away from the boundary. Nevertheless, there are still results for
the boundary case that do not follow from standard finite-size scaling analysis.
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Thus, consider a BCFT on the upper half y ≥ 0 of the complex plane z = τ + iy, so
that τ is the boundary coordinate at y = 0. The n-sheeted Riemann surface Rn is then
obtained by sewing together n copies of this half-plane along 0 ≤ y < � at τ = 0. To
evaluate the correlation functions on Rn for a chiral operator φ(z) with scaling dimension
xb, we need to use the transformation property

〈φ(z1) · · ·φ(zN)〉Rn =

N∏

j=1

∣∣∣∣
dz

dw

∣∣∣∣
−xb

w=wj

〈φ(w1) · · ·φ(wN)〉C+ , (11)

where the map z 
→ w from Rn to the upper half-plane C+ is given by

w = −i
((z − i�)/(z + i�))1/n + 1

((z − i�)/(z + i�))1/n − 1
. (12)

This gives

dz

dw
= −4n�

((w − i)/(w + i))n

(1 + w2)[((w − i)/(w + i))n − 1]2
. (13)

Naturally, the mapping (12) takes the boundary of Rn to the boundary of C+. Since w is
real on the boundary we see from (13) that |dz/dw|−xb is analytic on the boundary, as the
only singularity is at w = i, i.e. when z is at the branch point z = i�. In particular,
note that the point |z| → ∞ gives a divergence in |dz/dw| which only means that
|dz/dw|−xb → 0.

Now we can use this to study the scaling corrections of S
(n)
A ∝ (FRn − nF ) when

adding a boundary perturbation,

S = SCFT + λ

∫
dτ φb(τ), (14)

where φb is an irrelevant operator with scaling dimension xb > 1 on the boundary y = 0.
We will assume the boundary conditions to be such that 〈φb(τ)〉 = 0. This is natural

if we demand conformal boundary conditions. Then the first-order correction vanishes.
An important exception is when the perturbing boundary operator is the stress-energy
tensor, a case that was treated in [15]. Since this operator has a non-vanishing expectation

value on Rn it will give rise to a first-order correction to S
(n)
A , which was found to have

the form �−1. We therefore consider the second-order corrections to FRn and F , denoted
δ2FRn and δ2F respectively. They are given by

δ2FRn = −λ2

2β

∫
dτ ′

1

∫
dτ ′

2〈φb(τ
′
1)φb(τ

′
2)〉Rn (15)

and

δ2F = −λ2

2β

∫
dτ1

∫
dτ2〈φb(τ1)φb(τ2)〉C+ , (16)
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respectively, where τ ′
1, τ ′

2 are boundary coordinates on Rn and τ1 = w(τ ′
1), τ2 = w(τ ′

2) are
boundary coordinates on C+. From equation (11), we get

δ2FRn = −λ2

2β

∫
dτ ′

1

∫
dτ ′

2

∣∣∣∣
dz

dw

∣∣∣∣
−xb

z=τ ′
1

∣∣∣∣
dz

dw

∣∣∣∣
−xb

z=τ ′
2

〈φb(w(τ ′
1))φb(w(τ ′

2))〉C+

= −λ2

2β

∫
dτ1

∫
dτ2

∣∣∣∣
dz

dw

∣∣∣∣
1−xb

w=τ1

∣∣∣∣
dz

dw

∣∣∣∣
1−xb

w=τ2

〈φb(τ1)φb(τ2)〉C+ . (17)

We can now use the fact that δ2FRn − nδ2F only depends on the ratio �/ε, where ε is the
short-distance cutoff of the theory, to extract its �-dependence. Since the action (14) is
dimensionless, the coupling constant λ goes as λ ∼ εxb−1. Thus λ2 ∼ ε2xb−2, and since
dz/dw ∝ � the integral in equation (17) includes an overall factor of (�/ε)2−2xb . However,
there can also appear powers of �/ε coming from the need to regularize divergences in the
integrals.

In order to compare the two integrals in δ2FRn − nδ2F it is convenient to rewrite
nδ2F in the same form as δ2FRn :

nδ2F = −λ2

2β
n

∫
dτ1

∫
dτ2

1

|τ1 − τ2|2xb

= −λ2

2β
n

∫
dτ1

∫ ∞

ε

d|τ1 − τ2| 1

|τ1 − τ2|2xb

=
λ2

2β
n

∫
dτ1

ε1−2xb

1 − 2xb

.

Rewriting this as an integral over the boundary of Rn, one gets

nδ2F =
λ2

2β

∫
dτ ′

1

ε1−2xb

1 − 2xb

=
λ2

2β

∫
dτ1

∣∣∣∣
dz

dw

∣∣∣∣
w=τ1

ε1−2xb

1 − 2xb

(18)

and then going back to writing this as a double integral over τ1 and τ2 gives

nδ2F = −λ2

2β

∫
dτ1

∫

|τ1−τ2|≥ε/|(dz/dw)w=τ1 |
dτ2

∣∣∣∣
dz

dw

∣∣∣∣
2−2xb

w=τ1

1

|τ1 − τ2|2xb
. (19)

As ε → 0, we have

|(dz/dw)w=τ1||τ1 − τ2| ≥ ε ⇔ |τ ′
1 − τ ′

2| ≥ ε, (20)

so that δ2FRn − nδ2F can be written as a single integral

δ2FRn − nδ2F = −λ2

2β

∫
dτ1

∫
dτ2

|dz/dw|1−xb

w=τ1
|dz/dw|1−xb

w=τ2
− |dz/dw|2−2xb

w=τ1

|τ1 − τ2|2xb

=
λ2

4β

∫
dτ1

∫
dτ2

(|dz/dw|1−xb

w=τ1
− |dz/dw|1−xb

w=τ2

)2

|τ1 − τ2|2xb
, (21)

with the cutoff |(dz/dw)w=τ1||τ1 − τ2| ≥ ε. It follows from equation (13) that |dz/dw|1−xb

is analytic everywhere except at w = ±i. In [3], where the integrals are over C+, this
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singularity at the branch point was an important ingredient in the analysis. But when we
now consider a perturbing operator on the boundary, the only divergence in the integrand
in (21) comes when τ1 = τ2. Expanding |dz/dw|1−xb ≡ f(w) around w = τ2 gives

δ2FRn − nδ2F =
λ2

4β

∫
dτ1

∫
dτ2

(f ′(τ2)(τ1 − τ2) + (1/2)f ′′(τ2)(τ1 − τ2)
2 + · · ·)2

|τ1 − τ2|2xb

=
λ2

4β

∫
dτ1

∫
dτ2 [ (f ′(τ2))

2|τ1 − τ2|2−2xb

+ f ′(τ2)f
′′(τ2)(τ1 − τ2)|τ1 − τ2|2−2xb + · · ·]. (22)

From this it follows that the leading divergence of the double integral in (21) goes as
ε3−2xb , i.e. it converges when xb < 3/2. Then no regularization is needed, and the only
�-dependence comes from dz/dw ∝ �. Thus, when xb < 3/2

δ2FRn − nδ2F ∼ (�/ε)2−2xb , (23)

and consequently the leading corrections δ2S
(n)
A to the Rényi entropies are of the form

δ2S
(n)
A ∼ �2−2xb . (24)

On the other hand, when xb > 3/2, the cutoff in the integral (21) must be kept, so that

δ2FRn − nδ2F ∼ (�/ε)2−2xb(�/ε)2xb−3 = (�/ε)−1, (25)

and then δ2S
(n)
A ∼ �−1 for all xb > 3/2. Note that this is of the same form as the first-order

correction from the stress-energy tensor.
When xb = 3/2, it follows from equation (22) that the integral (21) diverges

logarithmically, hence

δ2S
(n)
A ∼ �−1 log �. (26)

4. Scaling corrections from marginal boundary operators

When perturbing with a marginal boundary operator one cannot simply put xb = 1
in equation (21) and conclude that the second-order corrections to scaling of the Rényi
entropies vanish, since |dz/dw| diverges when |z| → ∞. However, it can be checked that
there is no need to regularize the integral because of this. We therefore conclude that the
second-order corrections will be �-independent when xb = 1.

Instead of going to the higher-order integrals in the perturbation series of FRn − nF
to find the leading �-dependence of the corrections we will make use of the g-theorem [16],
analogously to how Cardy and Calabrese [3] use the c-theorem in the marginal bulk case.

The boundary entropy sA of equation (6) is governed by the ‘gradient formula’ of
Friedan and Konechny [17] which in our case takes the simple form

∂sA

∂λ
= −β(λ), (27)

where β is the renormalization group beta function given by [18]

−β(λ) = �
dλ

d�
= (1 − xb)λ − πbλ2 + O(λ3). (28)
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In the marginally irrelevant case, i.e. with xb = 1 and λ/b > 0, this gives

�
dλ

d�
= −πbλ2 + O(λ3), (29)

with the asymptotic large-� solution given by

λ(�) ∼ 1

πb log(�/ε)
. (30)

Now, as equation (27) becomes ∂sA/∂λ = −πbλ2 + O(λ3) when xb = 1, we have

sA = const. − πb

3
λ3 + O(λ4) ∼ log gA − 1

3π2b2 log3(�/ε)
. (31)

Thus the leading correction to the Rényi entropies goes as (log �)−3.

5. Conclusions

The result that the leading second-order corrections to the Rényi entropies S
(n)
A are of the

form �2−2xb when perturbing with an irrelevant boundary operator with scaling dimension
xb < 3/2 holds regardless of the value of n. This is the result anticipated from standard
finite-size scaling, but for xb ≥ 3/2 there is a deviation from this form. When xb > 3/2
the leading corrections will be of the same form as those from the stress-energy tensor, i.e.
�−1. When xb = 3/2 there is also a multiplicative logarithmic contribution to the leading
correction which then goes as �−1 log �. A marginally irrelevant boundary perturbation
gives a correction ∼(log �)−3. Thus there are no unusual n-dependent corrections to scaling
of the Rényi entropies from boundary operators, as opposed to bulk perturbations where
unusual corrections to scaling can occur. These unusual corrections originate from the
part of the surface integral where the bulk operator approaches the branch point created
by the Riemann surface construction [3]. However, when the perturbing field is on the
boundary it never comes close to this singularity.

In [15] it was found that the first-order correction from the stress-energy tensor on
the boundary is ∼�−1. It should be noted that this operator is generically present, and
gives a correction to the entanglement entropy of the same form as that from a boundary
operator with scaling dimension xb > 3/2.

We also note that the leading corrections of the form �2−2xb from a boundary
perturbation are similar to what one can get when perturbing with a bulk operator in the
presence of a boundary. In [3] it was found that this can give corrections of the form �2−x,
where x is the bulk scaling dimension, but also unusual corrections which can dominate.
This is therefore a very different situation compared to having the perturbing field on the
boundary.
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