
Chapter 3
Entanglement Content of Many-Body
States via Concurrence, Negativity
and Schmidt Gap

Sougato Bose, Abolfazl Bayat, Henrik Johannesson and Pasquale Sodano

Abstract Quantum entanglement is nearly ubiquitous in equilibrium and non-
equilibrium many-body states. Although it has been largely studied through the
von Neumann entropy of a subsystem, which quantifies the entanglement between
two complementary parts of a many-body system, this is not necessarily the only
way. Here we review how some other measures can be fruitful in characterizing
the entanglement content of many-body states. For example, we can look at the
entangement between two individual spins through the concurrence or between two
non-complementary, but in principle large, parts of a many-body system through the
negativity. Alternatively, a quantity inspired through entanglement studies, but not
itself a measure of entanglement, namely the Schmidt gap, can be effective as an
order parameter for phase transitions in which only the entanglement structure of a
many-body system changes. We exemplify using equilibrium states of short-range
and impurity models and their quantum phase transitions.
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3.1 Quantum Entanglement and Its Quantification

An example of an entangled state of two spin-1/2 systems (two qubits) with states
|0〉 and |1〉 is

|ψ−〉 = 1√
2
(|0〉|1〉 − |1〉|0〉) (3.1)

which can never be written down as a pure product of states of the individual systems
such as in the form |χ〉|φ〉. A general separable (not entangled) state of two systems
A and B is one given by the equation

ρAB =
∑

i

Pi |ψ〉〈ψ |A ⊗ |φ〉〈φ|B . (3.2)

Any state which is not of the above form is called an entangled state.
Entanglement is a huge area of quantum information science, with several reviews

such as [1]. It is a quantifiable, as well as a measurable entity. Simply stating,
the “harder” it is to approximate a state as a probability distribution over prod-
ucts of pure states, the “higher” is its entanglement. For example, for the case
of two qubits, the state |ψ−〉 is the most entangled, whose amount is generally
set to unity, while a product state of the form |χ〉|φ〉 or mixed states of the form
p|χ1〉〈χ1|A ⊗ |φ1〉〈φ1|B + (1 − p)|χ2〉〈χ2|A ⊗ |φ2〉〈φ2|B have zero entanglement.

Quantification of entanglement has been accomplished in several ways. The cru-
cial property for an entanglement measure to satisfy is that it cannot be increased
between two systems held by distant parties Alice and Bob if they are solely using
local operations and classical communications (LOCC). The first measure of entan-
glement to be introduced was the von Neumann entropy of entanglement [2]. It
applies to the entanglement of two systems of arbitrary dimensions (such as when
each system is a multi-qubit system), but only for pure states. This is computed by
first computing the reduced density matrix ρA of system A from the state ρAB of
the total system using the procedure ρA = TrB(ρAB), where TrB( ) denotes partial
tracing over system B. The entanglement of the two systems A and B in the pure
state ρAB is then given by the von Neumann entropy [2]

S = −Tr{ρA log2 ρA}, (3.3)

which in terms of the eigenvalues ηi of ρA, is S = −∑
i ηi log2 ηi . This measure

has been studied and computed for a vast majority of (pure) ground states quantum
many-body systems when they are divided into two complementary parts [3]. We
will thus not concentrate on the von Neumann entropy in this article.

Here, wewould rather concentrate on applying thosemeasures of entanglement to
condensed matter systems which are less common. They give entanglement between
two non-complementary parts of a many body systems—such as well separated
blocks of spins or pairs of individual spins. For the case of two qubits (e.g. spin-1/2
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systems) in a mixed state, given by a density matrix ρ, its entanglement can be
computed [4]. The procedure is to first compute the matrix

ρ̃AB = σy ⊗ σyρ
∗
ABσy ⊗ σy (3.4)

where the complex conjugate ρ∗ of ρ is taken in the basis |00〉, |01〉, |10〉, |11〉. Then
the entanglement can be quantified by a number called concurrence E given by [4]

E = max{0, λ1 − λ2 − λ3 − λ4}, (3.5)

where λi s are the square roots of the eigenvalues of ρρ̃ in decreasing order.
However, at times you may have two larger dimensional systems in a mixed state

and want to compute their entanglement—for example, for two non-complementary
blocks of spins. Then it is best to use another measure of entanglement termed the
negativity. The reduced density operators ρAB carry the information on the entan-
glement between the blocks A and B. As ρAB is a mixed state, the block entropy
is inappropriate as a measure of the entanglement. We have to use instead the neg-
ativity [5, 6] N ≡ (

∑
i |ai | − 1) where |ai | denote the modulus of the eigenval-

ues of the partial transpose (ρAB)TA of ρAB with respect to the subsystem A, i.e.,
〈wA

i wB
j |ρTS

AB |wA
k wB

l 〉 = 〈wA
k wB

j |ρAB |wA
i wB

l 〉 [1]. {|wS〉} and {|wE 〉} are the orthog-
onal basis states of A and B respectively, chosen by the DMRG procedure. This is a
widely used genuine measure of quantum correlations (entanglement monotone [7])
and provides a bound to the fidelity of teleportation with a single copy of the state [8].

Moreover, we will be using another measure, which, although, is not a measure of
entanglement, it does indicate, in the broadest coarse grained way, the entanglement
present between two complementary halves of a pure state system. This is called
the Schmidt gap. We cut the system in two parts, A and B, and write the Schmidt
decomposition of a pure state, say the ground state |GS〉, as

|GS〉 =
∑

k

√
λk |Ak〉 ⊗ |Bk〉, λk ≥ 0, (3.6)

with mutually orthogonal Schmidt basis states |Ak〉 and |Bk〉. The density matrix of
each part is diagonal in the Schmidt basis,

ρα =
∑

k

λk |αk〉〈αk |, α = A, B. (3.7)

with the eigenvalues λ1 ≥ λ2 ≥ ... in descending order forming the entanglement
spectrum (frequently defined as {− ln λi }i=1,2,... in the literature). Then the Schmidt
gap is defined as ΔS =λ1−λ2 − where λ1 and λ2 are the two largest eigenvalues of
the reduced ground state density matrix as defined above.
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3.2 Concurrence Between Two Spins of a Many-Body
System

As an illustration, we will first study a model of an open ended chain of four spin-1/2
particles coupled through a nearest neighbor isotropic Heisenberg interaction, so that
the Hamiltonian is

H =
3∑

i=1

σ i .σ i+1 (3.8)

The ground state of this chain

|GS〉 =
(√

2

3
|ψ−〉|ψ−〉 − 0.1494(|00〉|11〉 − |01〉|01〉 − |10〉|10〉 + |11〉|00〉

)

(3.9)
is manifestly an entangled state (just looking at the form of the state is enough to spot
that) and for a long time condensed matter physicists have known that the ground
states of such systems are indeed entangled. What is more important, though, is
the “amount” of entanglement between two spins of the system. This had not been
computed till the advent of quantum information. In order to do this, we first obtain
the reduced density matrix ρi j of the spins i and j . From the expression of |GS〉,
it is clear that ρ12 for example, is a mixed state with a significant proportion (2/3)
of the maximally entangled state |ψ−〉. The entanglement between spins i and j
is computed as the concurrence E from the formula given in Sect. 3.1. However,
it is worth mentioning here that because of certain symmetries of the Heisenberg
model, the concurrence E reduces to a very simple formula and one need not involve
all elements of the reduced density matrix ρi j for the calculation of concurrence.
Note that all the states involved in the expression for |GS〉 have the same number of
zeros. This is a consequence of the commutation of H with

∑
i σ

i
z and holds for all

eigenstates of H, and consequently also for their mixtures such as thermal states. It
is then easy for the reader to verify (I leave it as an exercise here) that the density
matrix ρi j cannot have any off diagonal terms (or coherence) between spaces with
different values of σ i

z + σ
j
z . In the standard basis |00〉, |01〉, |10〉, |11〉, ρi j will thus

be of the form ⎛

⎜⎜⎝

x 0 0 0
0 y1 z 0
0 z∗ y2 0
0 0 0 w

⎞

⎟⎟⎠

For such a simple form of ρi j , the concurrence is given by the simple formula E =
2max{0, |z| − √

xw}.
The concurrence between spins 1 and 2 is found to be 0.866, which is quite

high (the highest possible value, for a maximally entangled state, being 1). These
are nearest neighbors. On the other hand, no entanglement exists between 2 and 3,
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Fig. 3.1 A plot of the entanglement between two spins interacting via exchange in a magnetic
field as quantified by their concurrence. It shows that entanglement ca persist at finite temperatures,
and can even increase due to heating when the system is under an applied magnetic field. This
latter case, while counter-intuitive, can be qualitatively understood as the ordering tendency of an
external magnetic field competing with the fluctuations of the temperature to give rise to a finite
entanglement

though they are nearest neighbors. The entanglement pattern of the chain is dimerized
because of its open ends and there is no entanglement between any of the non-nearest
neighbor spins (such as 1 and 3 or 1 and 4). Interestingly, the entanglement between
two spins as quantified by concurrence can persist even in systems in a thermal
state ρ(T ) = e−H/kT /Z for a system described by a Hamiltonian H at non-zero
temperatures (thermal entanglement) and moreover, given a can also be tuned by
a magnetic field. With respect to the simplest rudimentary case, namely, two spins
coupled by an exchange interaction and placed in an external magnetic field,

H =
N∑

i=1

(Bσ i
z + Jσ i .σ i+1) (3.10)

where σ i = (σ i
x , σ

i
y, σ

i
z ) in which σ i

x/y/z are the Pauli matrices for the i th spin (we
assumecyclic boundary conditions 1 + N = 1),with J > 0 (antiferromagnetic inter-
actions), the entanglement is shown as a function of the magnetic field and temper-
ature in Fig. 3.1 which is taken from [9]. Reference [9], which was the first study of
entanglement between individual spins of a spin chain in its natural (thermal/ground)
state, also described the entanglement between spins of longer spin chains. Subse-
quently, the variation of such entanglement was also studied across quantum phase
transitions [10]—when the ground state of certain quantum many-body systems
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undergo a sudden “qualitative” change due to the variation of a parameter of the
Hamiltonian. Speaking very roughly and qualitatively, the ground state near a quan-
tum phase transition is a highly entangled state because of a competition between
different ordering tendencies of different terms of a Hamiltonian. On either side of
the transition different tendencies win and impose their order, while at the transition
neither can win and only an entangled state can be the lowest energy state. This com-
petition between different ordering tendencies was shown to be captured in terms of
the entanglement between two spins i and j , usually nearest and next nearest neigh-
bors, by a peak of the entanglement near the point of a quantum phase transition
[11, 12].

3.3 Entanglement Negativity in a Many-Body System: Case
Study with the Kondo Model

In the context of spin chains, entanglement negativity was first studied in simulta-
neous papers [13, 14]. For critical ground states which have no built-in scale, it was
found to be scale invariant in the sense that it only depended on the ratio μ = x/L
of the separation x of two noncomplementary blocks of spins in a spin chain, and
the length of the blocks L (length of both the blocks are taken to be equal here). This
is shown in Fig. 3.2. A combination of an exponential and a power-law dependence
of the entanglement in the ratio μ was found numerically in these papers [13], while
subsequently the exponential dependence has also been analytically proved [15].
Entanglement negativity can also be used for quantification of multipartite entangle-
ment in many-body systems which also shows scaling behavior near quantum phase
transition [16]. Here we will next concentrate on how the entanglement negativity
can be used to extract the Kondo cloud in a spin chain emulation of the Kondo model
as discussed in [17].

The simplest Kondo model [18] describes a single impurity spin interacting with
the conduction electrons in a metal; the ground state is a highly nontrivial many
body state in which the impurity spin is screened by conduction electrons in a large
orbital of size ξ , termed as the Kondo cloud. Many physical observables vary on the
characteristic length scale ξ , which is a well defined function of the Kondo coupling
[18]. Determining the spatial extent of the Kondo cloud has been so far a challeng-
ing problem repeatedly addressed by various means [19, 21, 22]. This includes an
investigation which introduces a quantity called “impurity entanglement entropy”
which, however, is not a bonafide measure of entanglement [19, 20]. Kondo systems
are expected to have a more exotic form of entanglement than the widely studied
spin-spin and complementary block entanglements. Indeed, in Kondo systems, the
impurity spin is expected to be mostly entangled with only a specific block of the
whole system. This is, of course, merely an intuition which needs to be quantitatively
verified with a genuine measure of entanglement: this is indeed a task that negativity
can accomplish as we will elucidate in this section following [17].
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Fig. 3.2 The figure shows the dependence of the entanglement between two blocks of spins in a
spin chain as quantified by the entanglement negativity. The entanglement is depicted as a function
of the ratio μ = L/x of each block L and their separation x

It is known [23] that universal low energy long distance physics of this Kondo
model arises also in a spin chain when a magnetic impurity is coupled to the end of
a gapless Heisenberg anti-ferromagnetic J1 − J2 spin 1/2 chain, where J1 (J2) is the
(next) nearest neighbor coupling. This is described by the Hamiltonian

H = J ′(σ1.σ2 + J2σ1.σ3) +
N−1∑

i=2

σi .σi+1 + J2

N−2∑

i=2

σi .σi+2, (3.11)

where the nearest neighbor coupling J1 has been normalized to 1, σi = (σ x
i , σ

y
i , σ z

i )

is a vector of Pauli operators at site i , N is the total length of the chain. The impurity
spin, located at one end of the chain, is accounted for by weaker couplings J ′ to the
rest of the system. When J2 exceeds a critical value, the spin chain enters a gapped
dimerized regime and its relation to the Kondo model breaks down. Namely, for
0 ≤ J2 ≤ J c

2 = 0.2412, the spin system is gapless and it supports a Kondo regime
[19, 20]. For J2 > J c

2 , the system enters the gapped dimer regime, where the ground
state takes a dimerised form (Fig. 3.3).

To study the entanglement of the ground state can be accomplished using DMRG
as described in [17]. We determine the size of the block A when the entanglement
between the impurity and block B is almost zero; by this procedure we measure
an Entanglement Healing Length (EHL) L∗, i.e. the length of the block A which is
maximally entangled with the impurity. We show that, in the gapless Kondo regime,
EHL scales with the strength of the impurity coupling just as the Kondo screening
length, ξ , does. Thus, in the gapless regime of the Kondo spin chain, our approach
yields a method to detect the Kondo screening length [19, 21, 22] based on a true
measure of entanglement. In addition, we find that entanglement in the Kondo regime
is essentially unchanged if one rescales all the length scales with the EHL L∗.
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(a)

(b)

Fig. 3.3 (Color online) aKondo Spin chain with next nearest neighbor Heisenberg interaction with
one impurity at one end. b The chain is divided into three parts, an impurity, a block A and a block
B. Entanglement is computed between the impurity and block B
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Fig. 3.4 (Color online) a L∗ versus 1/
√
J ′ for both Kondo (J2 = 0) and dimer regime

(J2 = 0.42). b Entanglement versus L/N for fixed N/L∗ = 4 when J2 = 0. c Entangle-
ment versus L/N for fixed N/L∗ = 4 at the critical point J2 = J c2 . d Entanglement versus
L/N for fixed N/L∗ = 4 in the dimer regime (J2 = 0.42)
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We find that there is an EHL L∗ so that, for L > L∗, the entanglement between the
impurity and block B is almost zero: L∗ provides us with an estimate of the distance
for which the impurity is mostly entangled with the spins contained in block A. For
large chains (N > 200) in the Kondo regime, one finds that L∗ is almost independent
of N and depends only on J ′. In the Kondo regime, i.e. for J2 < J c

2 , L
∗ depends on J ′

just as the Kondo screening length ξ does [19, 20]; for small J ′, L∗ ∝ eα/
√
J ′
, where

α is a constant. We plot L∗ as a function of 1/
√
J ′ in Fig. 3.4a. In a semilogarithmic

scale, the straight line plot exhibited in the Kondo regime (J2 = 0) shows that L∗
may be regarded as the Kondo screening length. Moreover, the nonlinearity of the
same plot in the dimer regime (J2 = 0.42), especially for small J ′, shows that, here,
no exponential dependence on 1/

√
J ′ holds.

We observe also a remarkable scaling of negativity in the Kondo regime. This
scaling may be regarded as yet another independent evidence of the fact that L∗ is
indeed the Kondo length ξ . In general, the entanglement E between the impurity and
block B is a function of the three independent variables, J ′, L and N which, due to
the one to one correspondence between J ′ and L∗, can be written as E(L∗, L , N ).
We find that, in the Kondo regime, E = E(N/L∗, L/N ). To illustrate this, we fix
the ratio N/L∗ and plot the entanglement in terms of L/N for different values of J ′
(or equivalently L∗) for J2 = 0 (Fig. 3.4b) and for J2 = J c

2 (Fig. 3.4c). The complete
coincidence of the two plots in Figs. 3.4b and c shows that, in the Kondo regime,
the spin chain can be scaled in size without essentially affecting the entanglement as
long as L∗ is also scaled. In the dimer regime the entanglement stays a function of
three independent variables, i.e. E = E(L∗, L , N ), and, as shown in Fig. 3.4d, the
entanglement does not scale with L∗. In our approach, the Entanglement Healing
Length L∗ may be evaluated in both the Kondo and the dimer regime: the scaling
behavior, as well as the dependence of L∗ on J ′, discriminates then between the very
different entanglement properties exhibited by the spin chain Kondo model as J2
crosses J c

2 .
We defined L∗ such that there is no entanglement between the impurity and block

B when block A is made of L∗ spins. Conventional wisdom based on previous
renormalization group analysis suggests that, in both regimes, the impurity and the
block A of length L∗ form a pure entangled state, while block B is also in a pure state.
This is indeed approximately true in the dimer regime (exactly true for J2 = 0.5)
but it turns out to be dramatically different in the Kondo regime. To check this, [17]
also computed the von Neumann entropy of the block B when block A has L∗ spins
and found it to be non zero. Thus, the blocks A and B are necessarily entangled
in the Kondo regime as there is no entanglement between the impurity and B. In
fact, after a distance L∗, the impurity is “screened” i.e, the block B feels as if it is
part of a conventional gapless chain and has a diverging von Neumann entropy. The
Kondo cloud is maximally entangled with the impurity as well as being significantly
entangled with block B. Based on the above, a simple ansatz for the ground state
|GS〉 in the Kondo regime is provided by

|GS〉 =
∑

i

αi
| ↑〉|L↑

i (J
′)〉 − | ↓〉|L↓

i (J
′)〉√

2
⊗ |Ri (J

′)〉, (3.12)
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where αi are constants, {|L↑
i (J

′)〉, |L↓
i (J

′)〉} and {|Ri (J ′)〉} are sets of orthogonal
states on the cloud and the remaining system, respectively. At the fixed point J ′ → 0
all spins except the impurity are included in |L↑

i (J
′)〉 and |L↓

i (J
′)〉. At J ′ → 1, very

few spins are contained in |L↑
i (J

′)〉 and |L↓
i (J

′)〉 while {|Ri (J ′)〉} represents most
of the chain.

The above exercise illustrates the efficacy of Negativity as a mixed state entangle-
ment measure to capture emergent structures in many-body states such as the Kondo
cloud, and use that to infer variational representations of the states.

3.4 Schmidt Gap for Signalling Quantum Criticality: Case
Study with an Impurity Phase Transition

We now move to studying another quantity, the Schmidt gap, as defined in Sect. 3.1,
which, although not a bonafide measure of entanglement, is an indicator of the same.
It is extremely useful as an indicator of quantum phase transitions which do not have
a local order parameter, such as generic impurity quantum phase transitions in which
it is only the entanglement structure of the ground state which is re-arranged as one
crosses the critical point.

As case studywe again turn to aKondomodel, but nowwith two localized spin-1/2
impurities, coupled to the spins of the conduction electrons by an antiferromagnetic
Kondo interaction and to each other via aRuderman–Kittel–Kasuya–Yosida (RKKY)
interaction. This is the two-impurity Kondomodel [25], a theoretical workhorse in the
study of impurity quantum phase transitions.When theKondo interaction dominates,
the electron spins screen the impurity spins (similar to the screening of a single spin-
1/2 impurity in the ordinary Kondo model), while in the opposite limit the two
impurity spins form a local singlet. The crossover between the two regimes sharpens
into a quantum phase transition when each impurity is connected to its own distinct
reservoir of conduction electrons [26]. The resulting “non-Fermi liquid” response
of transport and thermodynamic observables has attracted much attention, with the
first experiment reported in 2015 [27]. The lack of an easily identifiable local order
parameter which exhibits scaling at the phase transition has triggered a search for
alternativemarkers of the transition, the Schmidt gap being one viable candidate [28].

For a numerical computation of the Schmidt gap, using a Density Matrix Renor-
malization Group (DMRG) approach, it is convenient to first map the spin sector
of the two-impurity Kondo model onto a spin chain, similar to what was done in
the previous section for the ordinary Kondo model. One thus obtains a Hamiltonian
H = ∑

m=L ,R Hm + HI , where

Hm = J ′
m

(
J1σ

m
1 ·σm

2 + J2σ
m
1 ·σm

3

) + J1

Nm−1∑

i=2

σm
i ·σm

i+1 + J2

Nm−2∑

i=2

σm
i ·σm

i+2, (3.13)

HI = J1Kσ L
1 ·σ R

1 .
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Fig. 3.5 a Schmidt gap as a function of the RKKY coupling K for different system sizes. b The
derivative of the Schmidt gap with respect to the RKKY coupling K which shows non-analytic
behavior as the system size increases. The figures are taken from [28]

Herem = L , R labels two chains, denoted “left” and “right” respectively,withσm
i the

vector of Pauli matrices at site i in chain m, and with J1 (J2) nearest- (next-nearest-)
neighbor spin-exchange amplitudes. The parameters J ′

L > 0 and J ′
R > 0 play the

role of antiferromagnetic Kondo couplings, with K the RKKY coupling between the
impurity spins σ L

1 and σ R
1 . The total number of sites is thus N = NL + NR . Similar

to the spin chain representation of the ordinary Kondo model, the ratio J2/J1 is fine
tuned to the dimerization point (J2/J1)c = 0.2412 of the spin chain [29], in this way
killing off logarithmic corrections to the numerical finite-size data. In Fig. 3.5a we
plot the Schmidt gap ΔS (cf. Sect. 1) as a function of the RKKY coupling K when
the system is cut across the bond between the two impurities. In other words, we
regard the left (or right) chain as a subsystem of the full composite chain. As seen in
the figure, the order-parameter-like profile of ΔS becomes sharper as the size N of
the chain increases, suggesting that ΔS drops to zero at some critical value, K = Kc

in the thermodynamic limit. The interpretation of Kc as a critical point is evidenced
by the sharp cusp of ∂ΔS/∂K at Kc as seen in Fig. 3.5b, with the cusp serving as a
finite-size precursor of a critical non-analyticity in Δ′

S in the thermodynamic limit.
Moreover, as shown in [28], by monitoring how the cusps move as functions of the
Kondo coupling J ′, one finds, for sufficiently large systems, an almost perfect fit
to the known exponential scaling of the quantum critical point Kc ∼exp(−α/J ′) of
the two-impurity Kondo model (with α a positive constant) [30]. It may be worth
pointing out that cuts taken far away from the impurities yield Schmidt gaps which
depend only weakly on the RKKY coupling, as expected from the local character of
the transition [28]. Such cuts are thus less useful for spotting an impurity quantum
phase transition.

A finite-size scaling analysis, with the Ansatz

ΔS = N−β/ν fΔS (|K − Kc|N 1/ν), (3.14)
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gives further support for using the Schmidt gap ΔS as a stand-in for a conventional
order parameter. Here fΔS is a scaling function, with β and δ the critical exponents
governing the scaling of ΔS and the crossover scale ξ [31] at the critical point:
ΔS ∼ |K − Kc|β and ξ ∼ |K − Kc|−ν respectively. The choice β = 0.2 ± 0.05 and
ν = 2 ± 0.1 yields a near-perfect data collapse when plotting Nβ/νΔS as a function
of |K − Kc|N 1/ν for different N and different impurity couplings J ′ [28]. The value
ν =2 agrees with results from conformal field theory [32].

To summarize, DMRG data on the two-impurity Kondo model strongly suggests
that the Schmidt gap faithfully captures its critical behavior. It is important to note that
while the Schmidt gap is a nonlocal quantity, it can be represented as a superposition
of n-point spin correlation functions, and therefore, in principle, be measured. To
carry this out in an experiment clearly remains a challenge for the future. In the
meantime, it would be interesting to attempt a characterization of impurity quantum
phase transitions for other models using the Schmidt gap.

3.5 Entanglement Negativity as a Measurable Entity

In fact, the measure of negativity that we have used in large part of this article to
quantify the entanglement, is also a measurable entity and one can accomplish it as
long as one has the experimental access to several replicas of a system. In this section
we show how to estimate logarithmic negativity using experimentally measurable
quantities.

Logarithmic Negativity: For a generic mixed state, logarithmic negativity [5–8]
is an entanglement measure. As logarithmic negativity does not rely on usual opti-
mization over Hilbert space, needed in other entanglement measures, is computable
efficiently. For a generic mixed state ρAB which explain the quantum state of two
subsystems A and B the logarithmic negativity is defined as It is defined as:

E = log2

∣∣∣ρTA
AB

∣∣∣ = log2

∣∣∣ρTB
AB

∣∣∣ = log2
∑

k

|λk | (3.15)

with | · | the trace norm, ρTX
AB the partial transpose with respect to subsystem X , and

{λk} the eigenvalues of ρ
TX
AB . Because of the non-trivial dependence of E on ρAB ,

there is no state-independent observable that can measure it—generally demanding
full state tomography. The {λk} are the roots of the characteristic polynomial, P(λ) =
det(λ − ρ

TB
AB) = ∑

n cnλ
n , where each cn is a polynomial function of the partially

transposed moments:
μm = Tr [(ρTB

AB)m] =
∑

k

λm
k . (3.16)

This means that, {μm} contains full information about the spectrum {λk}. Interest-
ingly, even though partially transposed density matrices are generically unphysical,
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Fig. 3.6 Schematics: Example measurement set-up for the moments, μm = Tr [(ρTB
AB)m ], here for

m = 3, from which one can extract the logarithmic negativity E between A and B. The generic
mixedness of ρAB could arise from entanglement with environmentC . Here the subsystems contain
NA, NB and NC particles respectively. The scheme involves three copies of the original system,
and two counter propagating sets of measurements on A and B, ordered by the shown numbers,
with direction depicted by the filled arrows

measurement of theirmoments is possible. In fact, there area fewproposals in the liter-
ature for computing the themomentsμm usingm copies of the system. This includes,
replica techniques [15] proposed for conformal field theory models, exploiting con-
trolled swap operators between the copies [33, 34] and counter propagating swap
measurements [35]. In the following, we provide a brief review of how to measure
the moments based on the scheme of [35].

Measuring the Moments of ρ
TB
AB: Here, we show that any moment can be mea-

sured using only SWAP-operators between the individual constituents of them copies
of the state ρAB , namely ρ⊗m

AB = ⊗m
c=1 ρAc Bc . This general set-up is shown in Fig. 3.6,

where the mixedness of ρAB arises from possible entanglement with a third system
C , such that ρAB = TrC |ΨABC 〉〈ΨABC |with |ΨABC 〉 being a pure tripartite state. The
first step is to write the matrix power as an expectation of a permutation operator on
the partially transposed copies:

μm = Tr [(
m⊗

c=1

ρ
TBc
Ac Bc

)Pm]

= Tr [(
m⊗

c=1

ρAc Bc)(P
m)TB ] , (3.17)

where Pm is any linear combination of cyclic permutation operators of order m and
the second line makes use of the identity Tr(ρTB

ABO) = Tr(ρABOTB ), valid for any
operator O . A schematic of the equality in (3.17) for m = 3 is shown in Fig. 3.6. For
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spin lattices, our choice of Pm to measure the moments μm results to the following
steps in practice:

1. prepare m copies of the state ρAB ;
2. sequentially measure a ‘forward’ sequence of adjacent swaps, Sc,c+1

A between
neighbouring copies of system A from c = 1 to m − 1;

3. sequentially measure a ‘backward’ sequence of adjacent swaps, Sc,c−1
B between

neighbouring copies of system B from c = m to 2;
4. repeat these steps in order to yield an expectation value.

This procedure is also depicted for m = 3 in Fig. 3.6. For each m ≤ 2 we require
O(NA + NB) measurements. This is in stark contrast to tomography, which gener-
ically for qubit systems requires 22(NA+NB ) measurement settings. It is also worth
emphasizing the difference between this procedure and other operational methods
for measuring Renyi entropies [36–38]. First of all, Renyi entropies only quantify
entanglement for pure states, and cannot be used in the more general mixed state
scenario. Secondly, while for entropies the operations are only performed on a single
subsystem, here, one performs both ‘forward’ and ‘backward’ operations on two
subsystems at once, as explained above.

Estimating the logarithmic negativity from the moments of μm: To estimate
the logarithmic negativity, a precise knowledge of all λk is not required. Since − 1

2 ≤
λk ≤ 1 for all k [39] and

∑
k λk = 1, generically, the magnitude of the moments

quickly decreases with m, with the first few carrying the most information. This is
crucial to help computing the logarithmic negativity with measuring only very few
moments. One approach using only the even moments has been proposed in the
quantum field theory literature [15] by exploiting numerical extrapolation. However,
this method neglects the odd moments and generally requires a large number of
moments and thus copies. In [35], it has been shown that the moments required,
{μm : m ≤ M}, to accurately estimate the entanglement can number as fewasM = 3.
This is achieved by avoiding reconstruction of the spectrum or state and instead
employing machine learning to directly map moments to logarithmic negativity.
Note that μ0 is simply the dimension of the systems Hilbert space, while μ1 = 1 in
all cases. Additionally, it can be easily shown that μ2 is equal to the purity of the
state = Tr [ρ2

AB], and as such, M ≥ 3 is needed to extract any information about E .
Therefore, using M = 3 copies is optimal in terms of resources.

Machine Learning Entanglement: Machine learning is as a key tool for mod-
eling an unknown non-linear map between sets of data. In the supervised machine
learning setup, one trains a model with a set of known inputs and their corresponding
outputs. Once trained, the model can then be used to predict the unknown output of
new input data. We follow the machine learning algorithm of the [35] for estimating
the logarithmic negativity from the information contained in the moments, μm . The
moments μm are taken as the input and the logarithmic negativity E as the output for
training a deep neural networks [40, 41]. Training is performed by taking a large set
of states for which μm and E can be computed on a classical computer. This model
can then be used to predict E from a set of experimentally measured moments.



3 Entanglement Content of Many-Body States … 105

Training the neural network with random states: From an entanglement per-
spective, relevant states in condensed matter physics can be classified as either area-
law, or volume-law. In the first case, the entanglement of a subsystem A with the
rest is proportional to the number of qubits along their boundary. In the second,
this entanglement is instead proportional to NA, the number of qubits in A. Area-law
states arise as low energy eigenstates of local gapped Hamiltonians, with logarithmic
corrections in critical systems. Volume-law states however, are associated with the
eigenstates found in the mid-spectrum, and as such arise in non-equilibrium dynam-
ics. In order to train a neural network, a set of suitable training states, including both
volume and area law quantum states, are required for which both the moments and
logarithmic negativities are known. To encompass both area- and volume-law states,
we consider two classes of states |ΨABS〉: (i) randomgeneric pure states (R-GPS), e.g.
sampled from theHaarmeasure, which typically have volume-law entanglement [42,
43]; (ii) random matrix product states (R-MPS) with fixed bond dimension, which
satisfy an area-law by construction [44]. In order to generate a training set with a
wide range of entanglement features, subsystem sizes, and mixedness, we perform
the following procedure:

1. For a fixed number of qubits N , take either a R-GPS, or R-MPS with bond
dimension D.

2. Take different tri-partitions such that N = NA + NB + NC , and for each calculate
μm and E for ρAB .

3. Repeat for different random instances, while separately varying N and D.

Fig. 3.7 Machine learning entanglement.Estimated logarithmic negativityEML
M , using amachine

learning versus actual logarithmic negativity E , for the same set of random states described in the
main text. Training and prediction is performed using the moments μm generated from: a M = 3
copies; b M = 10 copies. The respective insets show the distribution of error, EML

M − E . The figure
is taken from the [35]
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To check the performance of the neural network, we take the set of random states
and split it in two, one half for training the neural network model, and the other
as ‘unseen’ test data. In Fig. 3.7a we plot the machine learning model’s predictions,
EML
M , for the test data, using onlyM = 3 copies, in which a high degree of accuracy is

achieved. In the inset of Fig. 3.7a, we plot a histogram of the errors EML
M − E , which

displays a very sharp peak at zero error with standard deviation ∼ 0.09 A further
improvement, particularly in outliers, is achieved by increasing the number of copies
M to 10, see Fig. 3.7b, where the error standard deviation decreases to ∼ 0.07.
Regardless, the machine learning method is already very accurate for extracting
entanglement using only three copies.

3.6 Conclusions

We have reviewed here the study of entanglement in many-body systems from an
angle which is slightly different from the bulk of the literature. Most of the lit-
erature has concentrated on the entanglement between two complementary blocks
in a many-body system or a quantum field theory. On the other hand, if we were
to examine entanglement between two non-complementary parts of a system, this
strategy will not work—in those cases concurrence and, for arbitrary dimensional
systems, negativity, has to be employed. We have exemplified that study with exam-
ples: thermal entanglement and evidencing the Kondo cloud as an “entanglement
cloud” around the impurity spin. We have also presented a strategy of how negativity
can actually be measured in a many-body system using replicas in the laboratory, and
how machine-learning can be used to make this more efficient. On a different vein,
we have also exemplified how the Schmidt gap, which is not an entanglement mea-
sure, but a somewhat broad-brush indicator of entanglement, can be used to identify
impurity quantum phase transitions.
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