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PACS 71.10.Pm – Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid,
etc.)

PACS 73.21.-b – Electron states and collective excitations in multilayers, quantum wells, meso-
scopic, and nanoscale systems

PACS 73.23.Hk – Coulomb blockade; single-electron tunneling

Abstract – We propose a design for a one-dimensional quantum box device where the charge
fluctuations are described by an anisotropic two-channel Kondo model. The device consists of a
quantum box in the Coulomb blockade regime, weakly coupled to a quantum wire by a single-
mode point contact. The electron correlations in the wire produce strong backscattering at the
contact, significantly increasing the Kondo temperature as compared to the case of non-interacting
electrons. By employing boundary conformal field theory techniques we show that the differential
capacitance of the box exhibits manifest two-channel Kondo scaling with temperature and gate
voltage, uncontaminated by the one-dimensional electron correlations. We discuss the prospect to
experimentally access the Kondo regime with this type of device.
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The study of the Kondo effect has been at the forefront
of condensed matter research ever since its inception
forty years ago [1]. While the simplest case studied by
Kondo —a spin-(1/2) impurity coupled to a single band
of conduction electrons— is by now well understood, a
number of variations of the original problem continue to
challenge the experimentalist as well as the theorist.
A particularly intriguing question is how to realize the

(overscreened) two-channel Kondo effect in an experi-
ment. Ideally, two-channel Kondo physics emerges when
there are two competing channels in which the conduction
electrons can screen a spin-(1/2) impurity. As a result,
the impurity spin becomes overscreened below some char-
acteristic temperature TK , and various thermodynamic
and transport properties show non-Fermi liquid (NFL)
behavior [2–4]. Being the simplest example of NFL behav-
ior driven by a localized degree of freedom, the model
that encapsulates the effect —the two-channel Kondo
model [5]— has attracted enormous interest. Many exper-
imental realizations have been suggested over the years,
including a proposal for a quantum dot device where a
small spinful dot (the “impurity”) is coupled to two screen-
ing channels defined by a pair of conducting leads and a
larger dot [6]. A major challenge is how to control that the
couplings to the two channels are identical —as required

for the two-channel Kondo effect to appear— and also,
how to make sure that there is no channel mixing from
cotunneling of electrons (which would immediately destroy
the effect). It was recently reported that the required level
of control may in fact be achieved in the laboratory, and
some experimental data in support of two-channel Kondo
physics was presented [7].
A different approach is to search for realizations of

two-channel Kondo physics in systems where the chan-
nel symmetry and independence are robustly protected
by some conservation law. A case in point is a quantum
box (a large semiconducting quantum dot or a metallic
grain) weakly connected by a point contact to a conduct-
ing lead. As shown by Matveev [8], near a degeneracy point
of the average charge of the box the charge fluctuations can
be modeled by an anisotropic two-channel Kondo Hamil-
tonian. The two available charge states in the box (corre-
sponding to n− 1 and n electrons) take the role of the
two spin states of the impurity, while the physical spin of
the conduction electrons provides for the two independent
channels. In the absence of a magnetic field, this guaran-
tees that the channel symmetry is robust. Unfortunately,
the Kondo temperature TK of this device is very small,
TK ∼ECe−1/2tν , EC being the single-electron charging
energy of the box, and t the tunneling rate through the
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Fig. 1: Schematic picture of the proposed setup. A 1D quantum
box side-coupled to a quantum wire via a point contact.

contact. Trying to increase TK by increasing EC requires
that the box is made smaller, which in turn threatens
to kill the effect since TK must still be larger than the
level spacing in the box. Whereas great progress has been
achieved in high-precision charge measurements [9], and
fingerprints of two-channel Kondo charge fluctuations may
have been identified in the capacitance of a semiconduct-
ing quantum box connected to a lead [10], the difficulties to
satisfy the conflicting constraints above make it unlikely
that a fully developed effect can be observed in such a
device [11].
In this letter we consider a novel design for a quantum

box device with an enhanced Kondo temperature, allowing
for a possible experimental entry to two-channel Kondo
physics. Our scheme, inspired by that of Matveev [8], adds
to several recent proposals for realizing the two-channel
Kondo effect in a nanoscale structure [12–22]. With our
effort we also wish to address an issue that has been
notably absent from the discussion of this problem: the
possible influence from dynamic electron interactions on a
two-channel charge Kondo effect.
Our design, which is most easily implemented in a gated

semiconductor heterostructure or cleaved edge overgrowth
structure [23], is sketched in fig. 1: a one-dimensional (1D)
quantum box is side-coupled to a quantum wire via a low-
transmission single-mode point contact, putting the box in
the Coulomb blockade regime. The box is biased by a gate
voltage V , initially tuned to a value where the charging
energy for n− 1 and n electrons is the same (degeneracy
point): V =−ne/2CΣ with n an odd integer, e the electron
charge, and CΣ the capacitance of the box. The box should
be made sufficiently large so that its level spacing ∆ is
much smaller than any other energy scale in the problem,
allowing for the discrete levels to be represented by a
quasi-continuum.
Introducing second-quantized operators akµα for elec-

trons in the wire (α= 0) and the box (α= 1) with
momentum k and spin µ=↑, ↓, we model the setup by the
Hamiltonian

H =H0+HI +HC +HT , (1)

where

H0 =
∑

k,µ,α

εka
†
kµαakµα,

HI =
1

2

∑

α,α′
µ,µ′

∑

k,k′,q

Vαα′(q)a
†
k+q µαa

†
k′−q µ′α′ak′µ′α′akµα ,

HC =
Q2

2CΣ
+V Q ,

HT = t
∑

k,k′,µ

(a†kµ0ak′µ1+H.c.).

The term HC encodes the charging energy of the box with
Q the surplus charge with respect to the zero-bias Fermi
level, while HT governs the tunneling through the point
contact, t being a constant tunneling matrix element.
By construction we have split the electron interaction
into two pieces: The mean-field capacitive part HC that
is effective only in the finite box (assuming that the
charging energy of the wire can be neglected), and a part
HI which builds dynamic electron correlations into the
model1. HI is most easily specified in the relevant low-
energy limit where all scattering processes are confined
to the neighborhood of the Fermi points ±kF . Assuming
that the electron density is incommensurate with the lat-
tice of the underlying substrate, the allowed low-energy
processes can be classified into dispersive, forward and
backward scattering (with the latter taking place only
inside the wire or box since there is no exchange of wire
and box electrons away from the point contact). Passing
to a continuum description and decomposing the electron
fields Ψµα(x)∼

∫
dkeikxakµα in left- and right-moving

parts, ψ−µα(x) and ψ+µα(x), respectively, these processes
can be conveniently expressed using the currents

J± = shϑ :ψ
†
±µαψ±µα: +chϑ :ψ

†
∓µαψ∓µα: ,

J
[µ]
± =

1

2
:ψ†±µασµµ′ψ±µ′α: , (2)

J
[α]
± =

1

2
:ψ†±µασαα′ψ±µα′ : .

The normal ordering is taken w.r.t. the filled Dirac sea
(obtained after linearizing the spectrum around ±kF ), σ
is the vector of Pauli matrices, and the indices α,α′,σ,σ′

are summed over. The parameter ϑ is given by 2ϑ=
arctanh(3g/(vF +3g)), with vF the Fermi velocity and
with g the strength of the screened Coulomb interaction,
here approximated by its dominating component at zero-
momentum transfer. For simplicity we take this interaction
to be the same between wire and box (∼ V01(q)) as in the
wire and the box (∼ V00(q) = V11(q)): V01(0) = V00(0)≡ g.
In a real device one expects that V01(0)<V00(0). However,
as will be seen below, the value of the ratio V01(0)/V00(0)
at most influences subleading corrections to the charge
fluctuations in the box, and for the purpose of extracting

1For simplicity, in H0 and HI we take the length of the box to
be equal to that of the wire, putting all finite-size effects into HC .
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the leading behavior we may put it to unity, yielding a
more transparent formalism. Given the currents in (2)
we can now cast the low-energy limit of H0+HI in the
form [24]

H0+HI =
1

2π

∑

"=±
η=α,µ

∫
dx
(vc
8
:J#(x)J#(x):

+
v[η]
4
:J [η]# (x) ·J

[η]
# (x):

)
, (3)

with vc = vF (1+6g/vF )1/2, v[µ] = v[α] = vF − g. We have
here removed two marginally irrelevant interactions,
including an unphysical exchange process between wire
and dot electrons away from the point contact2. The U (1)
charge, SU(2)2 spin and SU(2)2 pseudospin currents

J#, J
[µ]
# and J

[α]
# , respectively, are decoupled in (3), and

one recognizes H0+HI as the Hamiltonian for a spinful
Luttinger liquid (written in “Sugawara form” [24]) with
an extra pseudospin channel. Having thus coded the
dynamic part of the theory we turn to its effect on the
charge fluctuations in the box.
In the vicinity of the degeneracy point and with kBT &

e2/2CΣ, only the Q= 0 and Q= e states are accessible
and higher charge states can be removed from the theory.
Following Matveev [8], the resulting two-level system
HC +HT in (1) can then be mapped onto an anisotropic
two-channel Kondo interaction HK :

HK =
J⊥
2

ψ†#µα(0)σ
j
αα′ψ#′µα′(0)S

j −hSz . (4)

Here S is a pseudospin-(1/2) operator that implements
the constraint on the allowed charge states in the box.
The coupling J⊥ and the field h are given by J⊥ = 2t
and h= eu, respectively, with u a small voltage bias away
from the degeneracy point. Note that all indices in (4),
(', '′ =±;α,α′ = 0, 1;µ, µ′ =↑, ↓, j = x, y), are summed
over. To complete the mapping to a Kondo pseudospin
formulation one makes use of the fact that 〈Q(u)〉=
e[1/2−〈Sz〉(h, J⊥)], implying that the differential capaci-
tance c(u, T ) of the box gets modeled by an impurity
pseudospin susceptibility χimp(h, T )≡−(1/e2)∂〈Q〉/∂u=
c(u, T ). Having translated the original problem into Kondo
language, the task has thus become that of calculating
the susceptibility of a pesudospin-(1/2) impurity (eq. (4))
coupled to a two-channel Luttinger liquid H0+HI
(eq. (3)), with the two channels provided by the physical
spin of the electrons.
It is important to realize that the backscattering of

electrons off the impurity in (4) is due to the side-
coupling of the box to the wire, see fig. 1. As it turns
out, it is precisely this novel feature that yields the
desired properties of our setup. As shown by Le Hur,
the amplitude for two-channel electron impurity backscat-
tering renormalizes to a strong-coupling fixed point as

2The excluded interactions can be written in terms of SU(4)1
Kac-Moody currents as Hexcl =−2gJAL JAR (A= 1, . . . , 15), where
Hexcl is marginally irrelevant for g > 0.

the temperature is lowered [25]. This is in exact anal-
ogy with the single-channel Kondo problem in a Luttinger
liquid, where this effect was first noted [26]. The flow to
strong coupling produces a crossover from an exponen-
tially suppressed Kondo temperature TK ∼Ece−1/2tν for
g& J⊥ to a power law TK ∼EC(2tν)2/(1−Kc) for g) J⊥,
with Kc the Luttinger liquid charge parameter. Exploit-
ing the crossover formula from ref. [26], with input para-
meters chosen for a GaAs-based device [27] and taking
tν ! 0.2, one finds that while TK in the non-interacting
limit (Kc = 1) is comparable to or below the level spac-
ing in the box, TK becomes almost an order of magnitude
larger as Kc approaches 0.6 (which is easily reached in
a low-density quantum wire [28]). Although the tempera-
ture window that opens is probably too narrow for a full-
fledged two-channel Kondo scaling to develop, it should
at least allow for a controlled experimental study of its
transient behavior. Using a metallic quantum wire/box
with its much larger effective electron mass would stretch
the window by another order of magnitude (provided that
the electron density is suppressed by proper gating of
the device). We here point to the recent observation that
electron shell effects can stabilize arbitrarily long metallic
quantum wires, making the fabrication of a metallic device
a viable and realistic prospect [29].
Suppose that the limitations set by current

semiconductor-based technology can indeed be over-
come, allowing for the capacitance to be measured in the
critical region T & TK using a metallic device. Would a
logarithmic scaling with temperature and gate voltage
emerge —as predicted for non-interacting electrons [8]—
or will the strong dynamic electron correlations in the
wire and the box cause a new type of behavior? In the
case of spin polarized electrons it has been shown that 1D
correlations strongly influence charge fluctuations [30],
and one may anticipate a similar outcome also in the
present case. To find out, we have employed the tools of
boundary conformal field theory (BCFT) [31], building on
an earlier approach to the isotropic two-channel Kondo
effect in a Luttinger liquid [32]. The required analysis
closely follows that presented in ref. [32], and we here
only sketch the key ideas together with the results.
Let us first recall that the fixed point of the isotropic

two-channel Kondo effect in a Luttinger liquid corre-
sponds to a particular selection rule for quantum numbers
of the BCFT embedding ⊗i=1,2[U(1)⊗SU(2)2⊗SU(2)2]i
implied by the Hamiltonian in (3) [32]. Here the U (1)
factor represents charge, while the SU(2)2 factors repre-
sent spin and pseudospin, with i= 1, 2 corresponding to
left and right moving fields. The Kondo interaction couples
left and right movers, and therefore the symmetries above
are broken down to their diagonal subgroups. For the
charge sector this implies that any U (1) operator with
dimension

∆c=
1

4
n2e±2θ+N ; n,N ∈N, (5)
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is allowed [32]. Factorizing the diagonal subgroups in
the spin and pseudospin sectors amounts to a coset
construction at the level of conformal towers. The two
SU(2)2 towers in the spin and pseudospin sectors are
decomposed into SU(2)4 and a coset which is generated by
the N = 1 superconformal algebra (SCA) of central charge
c= 1: SU(2)2⊗SU(2)2 = SU(2)4⊗ SCA. Primary states
of the spin (pseudospin) SU(2)4 sectors have conformal
dimensions j(j+1)/6 with j ∈ {0, 1/2, 1, 3/2, 2}. The SCA
in turn is divided into two sectors: the Ramond (R) and
Neveu-Schwartz (NS) algebras with primary dimensions
{1/24, 1/16, 3/8, 9/16} and {0, 1/16, 1/6, 1}, respectively.
In addition, the grade of a generic state is integer in the
R sector, whereas it is half-integer in the NS sector. The
effect of the Kondo coupling is encoded by the leading
irrelevant boundary operators [4] (which are products of
operators from charge, spin, pseudospin and SCA sectors)
with possible scaling dimensions

∆=∆c+
∑

j=s, p

(∆jSU (2)4 +∆
j
SCA), (6)

where

∆s/pSU(2)4 =
j(j+1)

6
+N, j = 0,

1

2
, 1,
3

2
, 2; (7)

∆s/pSCA =

{
0,
1

16
,
1

6
, 1

}
+
N

2
,

{
1

24
,
1

16
,
3

8
,
9

16

}
+N, (8)

with N ∈N. Valid boundary operators i) must respect
all symmetries of the theory and ii) must not violate
the known critical scaling of observables in the non-
interacting limit g→ 0. The criterion i) restricts the choice
of operators in each conformal sector, while the criterion ii)
defines the rules for combination of operators in different
sectors to obtain the full boundary operators.
Given the above construction and criteria it is in

principle straightforward to pinpoint the effect from
the exchange anisotropy (broken pseudospin rotational
symmetry) and the magnetic field (broken time-reversal
symmetry) in (4). In contrast to the SU(2)4 invariant case
above where only operators that transform as singlets are
allowed, more operators now appear in the pseudospin
sector. By inspection we find that the only relevant
operator produced is the j = 1 primary field φz, with
conformal dimension ∆φz = 1/3. This operator is present
only if pseudospin rotational and time-reversal symme-
tries are simultaneously broken. In the limit of vanishing
magnetic field the anisotropy is irrelevant, implying
that the magnetic field is a relevant perturbation, as
for the two-channel Kondo model for non-interacting
electrons [33].
There are two more operators appearing because of the

broken pseudospin symmetry: the first descendant Jz of
the j = 0 identity operator, and the j = 2 primary field
φzz, both being exactly marginal of dimension ∆= 1.
Both operators may be combined with others from charge,

spin, and SCA sectors to form new composite opera-
tors provided that these respect the constraints i) and ii)
above. For the isotropic problem the leading behavior of
the impurity susceptibility χ(T, h) is driven by the same
operator (of dimension ∆= 3/2) as for non-interacting
electrons, giving rise to a logarithmic divergence as T → 0
or h→ 0 [32]. In our construction the boundary operator
driving the behavior is a combination of the first descen-
dant of the pseudospin j = 1 SU(2)4 conformal tower with
the ∆= 1/6 NS field. To explore whether a faster diver-
gence may result from any of the new composite operators
generated from the broken pseudospin symmetry, we have
to identify those of scaling dimension ∆< 3/2 (since they
may produce more leading contributions) and then test
them against criteria i) and ii) above.
We can here identify two distinct classes of possible

boundary operators. The first class contains operators
with dimensions ∆< 3/2, which do not depend on the
Luttinger liquid interaction parameter Kc (thus contain-
ing the identity operator from the charge sector) and
hence they should be present in the non-interacting limit
as well. Since these contributions do not vanish in the
non-interacting limit, the constraint ii) implies that
the operators from this class are not present in the theory.
The second class contains operators with dimensions
∆(Kc)< 3/2, which depend on the Luttinger liquid
interaction parameter Kc (thus containing non-trivial
operators from the charge sector). A straightforward
calculation, using the method described in ref. [32],
reveals that the contributions to the observables from
these operators do not vanish in the non-interacting limit.
Thus, again using constraint ii), we conclude that these
operators should also not be included in the theory.
It follows that the leading behavior of the differential

capacitance c(T, u) of our proposed setup exhibits the
same logarithmic scaling as in the two-channel Kondo
effect for non-interacting electrons,

c(T, u= 0) =A ln

(
TK
T

)
+ · · · , T & TK (9)

and

c(T = 0, u) =B ln

(
TH
eu

)
+ · · · , eu& TH (10)

but with significantly larger Kondo temperatures TK and
TH ≈ TK . Here A and B are constants, and “. . .” indicate
subleading terms. These subleading terms —produced by
more irrelevant operators than those identified above—
may turn out to be interaction dependent. To determine
their scaling dimensions, however, requires a cumbersome
analysis, beyond the scope of the present letter. It is
here interesting to compare with the single-channel case
where already the leading scaling behavior depends on the
strength of the electron-electron interaction [30].
In conclusion, we have shown that charge fluctuations

close to a degeneracy point of a 1D Coulomb blockaded
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quantum box side-coupled to a quantum wire exhibit
logarithmic two-channel Kondo divergences with temper-
ature T (voltage u) for T & TK (eu& TH). This leading
behavior is not modified by the strong 1D electron
correlations in the wire and the box (with possible
interaction-dependent contributions at most showing up
in subleading terms). The Kondo temperature TK (or TH
in the case of voltage scaling) can be significantly larger
compared to a device with non-interacting electrons.
While design constraints for a semiconductor implemen-
tation probably only allow for crossover effects to be
observed, the fabrication of a metallic device should yield
access to the full two-channel charge Kondo effect.
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[28] Häusler W., Kecke L. and MacDonald A. H., Phys.

Rev. B, 65 (2002) 085104.
[29] For a review, see Bürki J. and Stafford C. A., Appl.

Phys. A, 81 (2005) 1519.
[30] Kakashvili P. and Johannesson H., Phys. Rev. Lett.,

91 (2003) 186403.
[31] For a review, see Di Francesco P., Mathieu P. and
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