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Decoherence from spin environments: Loschmidt echo and quasiparticle excitations
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We revisit the problem of decoherence of a qubit centrally coupled to an interacting spin environment, here
modeled by a quantum compass chain or an extended XY model in a staggered magnetic field. These two models
both support distinct spin-liquid phases, adding a new element to the problem. By analyzing their Loschmidt
echoes when perturbed by the qubit we find that a fast decoherence of the qubit is conditioned on the presence
of propagating quasiparticles which couple to it. Differently from expectations based on earlier works on central
spin models, our result implies that the closeness of an environment to a quantum phase transition is neither a
sufficient nor a necessary condition for an accelerated decoherence rate of a qubit.
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I. INTRODUCTION

Progress in experiments on cold atoms trapped in optical
lattices has made possible studies of interacting quantum
many-particle systems at an unprecedented level of control
[1]. A problem that may soon be amenable to experimental
probes is that of decoherence induced by an environment
which is close to a quantum phase transition (QPT) [2].
Decoherence refers to the process where the entanglement
between a system and its environment makes the system give
up quantum information, turning its pure state, when isolated,
into a mixed state. The loss of coherence lies at the heart
of the measurement problem [3] and that of understanding the
“quantum-to-classical” transition [4], and also presents a major
challenge for realizing quantum information protocols [5].

Starting with the work of Dobrovitski et al. [6], there
have been a number of studies modeling decoherence due
to an interacting zero-temperature spin environment [7–15].
An important contribution was made by Quan et al. [16] who
addressed the role of quantum criticality of the environment.
Inspired by the Hepp-Coleman model [17,18], Quan et al.
introduced a central spin model where a qubit, or two-level
system, is coupled to all spins of a surrounding environment,
here taken to be an Ising chain in a transverse magnetic
field. Other works soon followed, based on the same type of
setup, but with an XY chain [19] representing the interacting
spin environment. The conclusion drawn from these and
similar investigations is that the qubit state decoheres faster
when the environment approaches a QPT [16,19–26]. The
high sensitivity of the ground state of the environment to
a perturbation from the qubit when close to a QPT is here
believed to be the reason why the time evolution of the
entanglement, and by that, the decoherence rate of the qubit,
gets accelerated.

A very useful conceptual tool for exploring this circle of
problems is that of the Loschmidt echo [27] which provides a
measure of the stiffness of the environment to the perturbation
from the qubit. The Loschmidt echo in a central spin model
coincides with the square of the decoherence factor of the
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qubit, being proportional to the rate of decoherence. Thus, a
study of the Loschmidt echo allows for a detailed analysis
of the decoherence process. As a case in point, Quan et al.
[16] referred to the fast initial decay of the Loschmidt echo
exactly at the critical point of the transverse field Ising chain
to argue that the decoherence of a qubit is accelerated by the
criticality of its environment. Further, Haikka et al. [25] relied
on the observation of the monotonic short-time decay of the
Loschmidt echo for the same setup to argue that the reduced
dynamics of the qubit for this case is purely Markovian [28].
This would mean that the critical point blocks any backflow of
information from the environment into the qubit at short initial
times, a flow otherwise expected from the typical appearance
of revivals in a Loschmidt echo for a finite system over larger
time scales.

Motivated by the prospect of future experiments that may
probe the connection between decoherence and quantum
criticality, we have revisited the problem of qubit decoherence
in an interacting spin environment. However, our aim has
not been to propose or analyze a particular experimental
arrangement. Rather, we wish to examine the very notion that
the closeness of an environment to a QPT is intrinsically linked
to an accelerated decoherence rate of the system to which it
couples. Like others before us we shall take advantage of a
central spin model, allowing for a transparent analysis, but
now using a generalized quantum compass chain (QCC) [29]
and an extended XY model in a staggered magnetic field [30]
as environmental models.

The QCC [29] incorporates a family of one-dimensional
(1D) compass models [31–36] which serve as “stripped-down”
versions of the more familiar compass models defined for
spins on two- or three-dimensional lattices. The common
denominator is the structure of their Hamiltonians, being built
from directional competing Ising-like interactions between
neighboring spin components, with different components
interacting on different bonds of the lattice [37]. The QCC
exhibits a QPT between two disordered phases with different
short-range spin correlations, occurring when the Ising-like
interactions are fine tuned to become isotropic [29]. The
extended XY model that we shall also consider as a description
of a possible spin environment is typified by the presence of
three-site XY spin interactions [30]. This model also exhibits

2469-9950/2017/96(22)/224302(12) 224302-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.224302


R. JAFARI AND HENRIK JOHANNESSON PHYSICAL REVIEW B 96, 224302 (2017)

distinct ground state phases, but of a different character from
the QCC, accessible by tuning the spin couplings and/or a
uniform or staggered magnetic field.

Both models feature spectra with structures that add a level
of complexity beyond that of the simpler models hitherto
considered in the literature. In particular, the presence of
distinct spin-liquid phases separated by QPTs brings a new
element to the problem. This property, together with the fact
that the models are exactly solvable, is the reason why we have
selected them for our study. By a detailed analysis, based on
the exact solution of the respective model [29,30], we arrive
at the conclusion that the notion of an intrinsic connection
between quantum phase transitions and strong decoherence
misses out on the very mechanism which drives an accelerated
decoherence rate: What matters is not the presence of a
quantum phase transition per se, but instead the availability of
propagating quasiparticles which couple to the qubit via a back
action (as signaled by their having an impact on the Loschmidt
echo). Such quasiparticles may indeed be expected to appear
at a QPT, but as our case study of the QCC reveals, this is
not necessarily so. As transpires when taking the extended XY
model as the environmental model, quasiparticles of this type
may instead appear in a stable massless phase away from a
QPT. These results bring new light on how to understand the
enhanced decoherence experienced by systems coupled to an
interacting environment.

The paper is organized as follows: In the next section we
define the central spin model with the QCC as environment,
and we also provide some background material. In Sec. III we
diagonalize the QCC Hamiltonian to obtain its spectrum and
eigenstates, and from this, we construct exact expressions for
the Loschmidt echo. Numerical case studies of the Loschmidt
echo point to the crucial role of quasiparticle excitations in the
decoherence process, and to this we add supporting evidence
by a theoretical analysis. This section is divided into two
parts, treating the QCC without and with a magnetic field,
respectively. In Sec. IV we carry out essentially the same
type of analysis as in Sec. III, but now with the extended
XY model in a transverse field as the environmental model.
Section V, finally, contains a brief summary and discussion.
Some technical details are placed in the Appendix.

II. DECOHERENCE OF A QUBIT COUPLED
TO A QUANTUM COMPASS CHAIN

Following the original proposal by Quan et al. [16] for
modeling the decoherence of a qubit coupled to an interacting
spin environment, we consider a composite system in a
factorized pure state at time t = 0,

|ψ(0)〉 = |φq(0)〉 ⊗ |φenv(0)〉. (1)

Here |φq(0)〉 = cg|g〉 + ce|e〉, with |cg|2 + |ce|2 = 1, is the
qubit state, while |φ(0)env〉 is the ground state of the environ-
ment when isolated. We take the environment to be an N -site
QCC in a transverse field h, with Hamiltonian [29]

Henv =
N/2∑
n=1

[
Joσ̃

+
2n−1σ̃

+
2n + Jeσ̃

−
2nσ̃

−
2n+1 − h

(
σ z

2n−1 + σ z
2n

)]
,

(2)

satisfying periodic boundary conditions. The exchange cou-
plings Jo and Je are defined on “odd” (2n − 1,2n) and “even”
(2n,2n + 1) lattice bonds, respectively, and σ̃±

2i are pseudospin
operators constructed as linear combinations of the Pauli
matrices σx and σy, σ̃±

i = cos θ σ x
i ± sin θ σ

y

i .
Denoting the energy difference between the ground state |g〉

and the excited state |e〉 of the qubit by ωe, its free Hamiltonian
can be written

Hq = ωe|e〉〈e|. (3)

The qubit is assumed to couple with equal strength δ to all
pseudospins,

Hint = −δ|e〉〈e|
N∑

n=1

σ z
n , (4)

with δ � ωe, making the full Hamiltonian

H = Henv + Hq + Hint (5)

belong to the class of central spin models first conceived by
Gaudin [38]. The new element in our setup is that we have
substituted the QCC in (2) for the time-honored use of the
quantum Ising [16] or XY [19] chains. While the problem by
this becomes rather more complex, we shall find that it is still
amenable to an exact analysis.

Noting that [Hq,Hint] = 0, it is easy to verify that the time
evolution of the composite state in Eq. (1) splits into two terms:

|ψ(t)〉 = cg|g〉 ⊗ exp(−iHenvt) |φenv(0)〉
+ e−iωet ce|e〉 ⊗ exp

(−iH (δ)
envt

) |φenv(0)〉. (6)

The first term evolves with the unperturbed Hamiltonian of the
environment, Henv, while in the second term the state of the
environment evolves with

H (δ)
env = Henv + V (δ)

env, (7)

where V (δ)
env = −δ

∑N
n=1 σ z

n is an effective potential from the
coupling to the qubit, leading to a redefinition of the magnetic
field, h → h + δ. As expected from the vanishing of the
commutator [Hq,Hint], the form of the time evolution in (6)
manifests a pure decoherence of the qubit, with no exchange
of energy with the environment.

Tracing out the states of the environment, the time-evolved
reduced density matrix of the qubit can be written as

ρq(t) = |cg|2|g〉〈g| + |ce|2|e〉〈e| + e−iωet c∗
gceν(t)|e〉〈g|

+ eiωet cgc
∗
e ν

∗(t)|g〉〈e|, (8)

where the decoherence factor ν(t)—quantifying how the qubit
state decoheres with time—takes the form

ν(t) = 〈φenv(0)| exp
(
iH (δ)

envt
)

exp(−iHenvt)|φenv(0)〉, (9)

given our assumption that the initial state of the environment is
pure, ρenv(0) = |φenv(0)〉〈φenv(0)|. The absolute square of the
decoherence factor ν(t) equals the Loschmidt echo (LE) of the
environment,

L(t) = |ν(t)|2
= |〈φenv(0)| exp

(
iH (δ)

envt
)

exp(−iHenvt)|φenv(0)〉|2. (10)

As expressed by this equation, an LE [27] quantifies the overlap
between two states at time t evolved from the same initial state
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but with different Hamiltonians, the one differing from the
other by a small perturbation. As such it provides a measure of
the robustness of the time evolution of a system when subject
to small perturbations. The simple relation between ν(t) and
L(t) in Eq. (10) formalizes our intuition that an environment
whose time evolution is highly sensitive to a perturbation
will also be highly effective—by a back action—in causing
decoherence of the very system which is responsible for
the perturbation, in our case the qubit. Specifically, Eqs. (8)
and (10) show that the qubit gets maximally entangled with
the environment when L(t) → 0, with a complete loss of
coherence. More formally, consider the purity of the qubit,
P (t) = Trq[ρ2

q (t)]. A straightforward calculation reveals that
P (t) = 1 − 2|cgce|2[1 − L(t)], from which one again reads off
the imprint of the Loschmidt echo on the qubit decoherence. It
is worth pointing out that by choosing the initial environmental
state |φenv(0)〉 as an eigenstate of the unperturbed Hamiltonian
Henv, the LE in Eq. (10) codifies a quantum quench [39] with
the perturbed Hamiltonian H (δ)

env as the quench Hamiltonian.
In the following we shall identify the conditions under

which the decay of the Loschmidt echo of the QCC is at
its largest, favoring a fast decoherence of the qubit state with
a resultant “quantum-to-classical” transition.

III. LOSCHMIDT ECHO OF THE QUANTUM
COMPASS CHAIN

A. Preliminaries

To calculate the LE we should first diagonalize the environ-
ment Hamiltonian. For this purpose we use the Jordan-Wigner
transformation

σ+
n = (

σx
n + iσy

n

)/
2 =

n−1∏
m=1

(−σ z
m

)
c†n,

σ−
n = (

σx
n − iσy

n

)/
2 =

n−1∏
m=1

cn

(−σ z
m

)
, (11)

σ z
n = 2c†ncn − 1,

to map the Hamiltonian of the QCC, Henv in (2), onto a free
fermion model [29]. The transformation is exact, allowing us
to write

Henv =
N/2∑
n=1

[Joc
†
2nc2n−1 + Jec

†
2n+1c2n + Joe

−iθ c
†
2n−1c

†
2n

+ Jee
iθ c

†
2nc

†
2n+1 + h(c†2n−1c2n−1 + c

†
2nc2n) + H.c.].

(12)

Next we partition the fermionic chain into diatomic unit
cells (labeled by n = 0,1,2, . . . ,N/2) and introduce two
independent fermions at each cell, cA

n ≡ c2n and cB
n ≡ c2n+1.

Inserting these operators and their adjoints into Eq. (12) and
Fourier transforming, one obtains

Henv =
∑

k

[
Jk(θ )cA†

k c
B†
−k + Lkc

A†
k cB

k

+h
(
c
A†
k cA

k + c
B†
k cB

k

) + H.c.
]
, (13)

where Jk(θ ) ≡ Joe
iθ − Jee

i(k−θ), Lk ≡ Jo + Jee
ik , with 0 �

θ � π . Having imposed periodic boundary conditions on the
original QCC Hamiltonian in (2), its fermionic counterpart
in (13) is defined with antiperiodic boundary conditions,
c
A/B

N+1 = −c
A/B

1 , for which k = ±2π (2n + 1)/N with n =
0,1, . . . , N/4 − 1. To simplify notation, from now on we
suppress the dependence on the parameter θ .

By bringing in the Nambu spinor �† = (cA†
k c

B†
k cA

−k cB
−k),

Henv in (13) can be expressed in Bogoliubov–de Gennes form
as Henv = ∑

k>0 �†H (k)�, with

H (k) =

⎛
⎜⎜⎝

−2h Lk 0 Jk

L∗
k −2h −J−k 0

0 −J ∗
−k 2h −L∗

−k

J ∗
k 0 −L−k 2h

⎞
⎟⎟⎠. (14)

The Bloch matrix H (k) is easily diagonalized, yielding
the quasiparticle form of the QCC Hamiltonian, Henv =∑4

α=1

∑
k ε

(α)
k γ

(α)†
k γ

(α)
k , where γ

(α)†
k and γ

(α)
k are linear combi-

nations of the electron operators in the Nambu spinor with re-

spective energy dispersions ε
(1)
k = −ε

(4)
k = −

√
ak +

√
a2

k − bk

and ε
(2)
k = −ε

(3)
k = −

√
ak −

√
a2

k − bk , where ak = 8h2 +
|Jk|2 + |Lk|2 + |J−k|2 + |L−k|2 and bk = 4[(4h2 − |Lk|2)2 +
4h2(J 2

k + J 2
−k) + J 2

k J 2
−k − J ∗

k J−kL
2
k − JkJ

∗
−kL

2
−k]. Note that

the Bloch matrix H (δ)(k) (and the corresponding quasiparticle
dispersions) of the perturbed QCC Hamiltonian H (δ)

env is
obtained from H (k) by simply replacing h by h + δ.

The QCC ground state |ψ0〉 is realized by filling up the
negative-energy quasiparticle states, |ψ0〉 = ∏

k γ
(1)†
k γ

(2)†
k |0〉,

where |0〉 is the Bogoliubov vacuum annihilated by the
γk’s [36]. While excited states can be similarly obtained,
their construction becomes quite cumbersome within the
Bogoliubov–de Gennes formalism. An alternative approach
was pioneered by Sun [40]. One here takes off from the
observation that the QCC Hamiltonian can be written as a
sum of commuting Hamiltonians Hk , obtained by grouping
together terms in (13) with opposite signs of k,

Hk = Jkc
A†
k c

B†
−k + Lkc

A†
k cB

k + J−kc
A†
−kc

B†
k

+L−kc
A†
−kc

B
−k + h

(
c
q†
k c

q

k + c
q†
−kc

q

−k

) + H.c., (15)

with q = A,B summed over. In the same way as above, the
effective potential from the qubit can be included by simply
replacing h by h + δ in (15). Since Hk conserves the number
parity (even or odd number of electrons), it is sufficient to con-
sider the even-parity subspace of the Hilbert space, spanned by

|ϕ1,k〉 = |0〉, |ϕ2,k〉 = c
A†
k c

A†
−k|0〉, |ϕ3,k〉 = c

A†
k c

B†
−k|0〉,

|ϕ4,k〉 = c
A†
−kc

B†
k |0〉, |ϕ5,k〉 = c

A†
k c

B†
−k|0〉, |ϕ6,k〉 = c

A†
k c

B†
k |0〉,

|ϕ7,k〉 = c
A†
−kc

B†
−k|0〉, |ϕ8,k〉 = c

A†
k c

A†
−kc

B†
k c

B†
−k|0〉. (16)

Given this basis, the eigenstates |ψm,k〉 of Hk can be written
as |ψm,k〉 = ∑8

j=1 v
(j )
m,k|ϕj,k〉, where v

(j )
m,k with j = 1, . . . ,8

and m = 0, . . . ,7 are functions of Je,Jo,h,θ , and k. A
straightforward calculation reveals that there is a fourfold-
degenerate zero-energy level below (above) which there are
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FIG. 1. Three-dimensional plots of the LE in Eq. (10) as a function of time t and spin-component mixing angle θ , with Jo = 1, h = 0, δ =
0.01, N = 400, and (a) Je = 1, (b) Je = 1.2, (c) Je = 2.

two bands with negative (positive) energies ε0,k = (−ε7,k) =
ε

(1)
k + ε

(2)
k and ε1,k = (−ε6,k) = ε

(1)
k − ε

(2)
k , respectively, with

ε
(1)
k and ε

(2)
k the quasiparticle energies defined after Eq. (14).

Before plunging ahead with the calculation of the LE—
equipped with the results derived above—let us briefly review
some pertinent facts about the QCC model. In the absence of
a magnetic field, the model enjoys a Z2 symmetry when θ =
θc = π/2 for which the model is critical [29]. Here a quantum
phase transition (QPT) takes place between two gapped spin-
liquid phases—each characterized by large short-range spin
correlations in the x and y direction, respectively—for param-
eter values where the model exhibits maximum frustration of
interactions. On the critical line θc = π/2 in (θ,Je/Jo) space,
the ground state has a macroscopic degeneracy of 2N/4 when
Jo 	= Je, which gets enlarged to 2 × 2N/4 at the isotropic point
(IP) Jo = Je. Away from the IP a gap of size |Je − Jo| opens at
the zone boundaries k = ±π , explaining the lower degeneracy
in this case. Adding a magnetic field h, the massive degeneracy
of the ground state collapses to a twofold degeneracy at the
critical values hc = ± cos(θ )

√
JoJe [29].

B. Loschmidt echo: Zero magnetic field

To obtain an expression for the LE L(t) in (10) that is prac-
tical for computations, we first make a mode decomposition
of the QCC ground state |φenv〉,

|φenv〉 =
∏

0�k�π

|ψ0,k〉, (17)

using that |ψ0,k〉 is the lowest-energy eigenstate of Hk in
(15). Introducing a notation for the LE and the eigenstates
of Hk where the presence (or absence) of magnetic field h

and/or perturbing potential ∼δ is made explicit, L(h + δ,t)
and |ψm,k(h + δ)〉, respectively, the LE in (10) can then be
decomposed as

L(δ,t) =
∏

0�k�π

Lk(δ,t), (18)

Lk(δ,t) =
∣∣∣∣ 1

N0,k(0)
〈ψ0,k(0)|e−iH

(δ)
envt |ψ0,k(0)〉

∣∣∣∣
2

=
∣∣∣∣ 1

N0,k(0)

7∑
m=0

e−iε
(δ)
m,k t

Nm,k(δ)
|〈ψm,k(δ)|ψ0,k(0)〉|2

∣∣∣∣
2

, (19)

where Nm,k(h + δ) = [
∑8

j=1 |vj

m,k(h + δ)|2]1/2 is the normal-

ization factor of the eigenstate |ψm,k(h + δ)〉, and ε
(δ)
m,k is

the eigenvalue of Hk [with h replaced by h + δ in (15)]
corresponding to |ψm,k(δ)〉.

A straightforward calculation shows that Lk(δ,t) can be
expressed as

Lk(δ,t) = ∣∣1 − A0,k sin2
{[

ε
(1)
k (δ) + ε

(2)
k (δ)

]
t
}

−B0,k sin2
{[

ε
(1)
k (δ) + ε

(2)
k (δ)

]
t/2

}
−A1,k sin2

{[
ε

(1)
k (δ) − ε

(2)
k (δ)

]
t
}

−B1,k sin2
{[

ε
(1)
k (δ) − ε

(2)
k (δ)

]
t/2

}
−Ck sin2 [

ε
(2)
k (δ)t

] − Dk sin2 [
ε

(1)
k (δ)t

]∣∣. (20)

Here A0,k,B0,k,A1,k,B1,k,Ck , and Dk are products
of linear combinations of the state overlaps Fm,k =
|〈ψm,k(δ)|ψ0,k(0)〉|2 (m = 0, . . . ,7) (for details, see the
Appendix), with ε

(α)
k (δ) (α = 1,2) being energies of

the quasiparticles filling up the ground state of H (δ)
env.

The second filled quasiparticle band in the ground state
becomes dispersionless along the critical line θc = π/2, with
ε

(2)
k = 0. For this case the LE reduces to the simple form

Lk(δ,t) =
∣∣∣∣1 − Ac,k sin2 [

ε
(1)
k (δ)t

] − Bc,k sin2

[
ε

(1)
k (δ)t

2

]∣∣∣∣,
(21)

with Ac,k = A0,k + A1,k + Dk and Bc,k = B0,k + B1,k .
Having obtained explicit formulas for the LE in (20)

and (21), we are now ready to numerically probe some
representative cases. Choosing δ = 0.01, the behavior of
L(δ,t) versus t and θ/π at the isotropic point (IP) Je = Jo

is displayed in Fig. 1(a) for a chain with 400 unit cells. It is
seen from the figure that the LE decays fast at the critical point
θc = π/2 of the unperturbed QCC Hamiltonian. However, the
decay of the LE is even faster slightly off the unperturbed
critical point, where the LE exhibits two subvalleys. An
analysis reveals that the extra valleys occur at the critical points
θc = arccos(±δ/

√
JeJo) of the perturbed QCC Hamiltonian

H (δ)
env. Thus, the criticality of the perturbed and the unperturbed

environmental Hamiltonians is here the common feature linked
to an accelerated decay of the LE. While many numerical
studies suggest that criticality of an environment enhances the
decay of the LE [16,19–26], to the best of our knowledge our
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t0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

θ/π=0.5000
θ/π=0.4968

LE

(c)(b)(a)

FIG. 2. Oscillation amplitude (a) B0,k and (b) Ck in the mode decomposition, Eq. (20), of the LE as function of crystal momentum k

and spin-component mixing angle θ at the isotropic pointJo = Je = 1, with qubit-environment coupling δ = 0.01, and with h = 0,N = 400.
(c) Time evolution of the LE, Eq. (10), for the same set of parameter values at θ = 0.5000 π (critical point of the unperturbed QCC) and
θ = 0.4968 π (critical point of the perturbed QCC).

result is the first that explicitly displays an enhanced decay
both at the unperturbed and perturbed critical point of a model
environment.

Let us now study the LE away from the IP (Je 	= Jo).
The case Jo = 1.0,Je = 1.2, with (as before) δ = 0.01 and
N = 400, is plotted in Fig. 1(b). Similar to the case of the
IP, the decay of the LE is again seen to be at its maximum
at the critical points of the perturbed Hamiltonian [θc =
arccos(±δ/

√
JeJo)]. Different from the IP, however, the decay

of the LE at the critical point of the unperturbed Hamiltonian
(θc = π/2) shows no enhancement but fluctuates around a
constant value close to unity. This challenges the common
notion that a critical environment always leads to a fast decay
of the LE [16], and by that, a fast decoherence of the system
that couples to it [19]. Notably, increasing the length of the
chain or the observation time does not change this conclusion.

What is the reason for this unexpected result? To find out,
let us first go back to Eqs. (18), (19), and (20) and try to
understand, from a mathematical point of view, how these
equations control the decay of the LE.

Since the maximum value of any k mode Lk(δ,t) is unity,
it is clear from Eq. (18) that it is sufficient that only a few of
the modes take on very small values in order for the LE to get
suppressed. As manifest in Eq. (20), the actual contribution
from a given k mode to the LE is controlled by its oscillation
terms, with a small/large value of an oscillation term implying a
large/small contribution. An analysis reveals that all oscillation
amplitudes A0,k, B0,k, A1,k, B1,k, Ck , and Dk , are small at the
IP critical point θc = π/2, except for B0,k when approaching
one of the Brillouin zone boundaries k = ±π at which B0,k

reaches a sharp maximum [Fig. 2(a)]. It follows from Eq. (21)
that the corresponding modes in the immediate neighborhood
of a zone boundary will contribute constructively/destructively
over time intervals where sin2[ε(1)

k (δ)t] is small/large. Thus,
by the periodicity of the sine function, the LE is expected to
exhibit periodic revivals, signaling a non-Markovian reduced
dynamics of the qubit with a backflow of information from
the environment [25]. This expectation is well confirmed
numerically; cf. Fig. 2(c).

It is actually instructive to unearth the revival period from
Eq. (20), explaining why Fig. 1(a) suggests a monotonic
decay of the LE for θc = π/2 at the IP, while, in fact, as
revealed by the blue graph in Fig. 2(c), it exhibits a stable
and distinct revival structure when going to larger time scales.

Following Ref. [41], we make the ansatz ε1
k=π (θc) t/2 = mπ ,

with m an integer and with k = π the mode with the largest
oscillation amplitude (B0,k at the BZ boundary). Taylor-
expanding ε1

π−pδk(θc) ≈ ε1
π (θc) − ∂kε

1
k (θc)|π pδk, one realizes

that B0,k terms of nearby k modes are strongly suppressed
when t is a multiple of Na/vg , with vg = ∂kε

1
k (θc)|π the group

velocity of the corresponding quasiparticle and a = 1 the size
of the unit cell, implying a revival time Trev ≈ N/vg . Here
p � N are integers and δk = 2π/N . Putting in numbers, one
obtains Trev = 122 (in arbitrary units), in excellent agreement
with Fig. 2(c), however not visible on the shorter time scale of
Fig. 1(a).

Focusing now on the accelerated decay of the LE at the
IP critical points θc = arccos(±δ/

√
JeJo) of the perturbed

Hamiltonian H (δ)
env [cf. the subvalleys in Fig. 1(a) and the red

graph in Fig. 2(c)], an analysis of Eq. (20) shows that it is
caused by the oscillation term ∼Ck . As illustrated in Fig. 2(b)
for δ = 0.01 and Jo = Je = 1.0, Ck peaks to large values at
θc = arccos(±δ/

√
JeJo) for all k. (For a cross-sectional view

at k = 0, see Fig. 4.) This is to be contrasted to the structure
of B0,k away from θc = π/2, being broad and shallow; cf.
Fig. 2(a). The revival time of the LE is now controlled by
the group velocity of the quasiparticles which occupy the ε2

k

band [corresponding to the Ck amplitude; cf. Eq. (20)]. Since
this band is almost flat at θc = arccos(±δ/

√
JeJo) with δ small

and JeJo = 1 [see Fig. 6(a)], the quasiparticle group velocity is
exceedingly small: vg ∼ 10−7 (in arbitrary units) for δ = 0.01.
Considering the time scale of Fig. 2(c), the revival time which
ensues, Trev ≈ N/vg ∼ 106, is far too large for the revivals
to be picked up in this figure. Instead, the rapid decay and
subsequent vanishing of the LE depicted by the red graph in
this figure suggests a Markovian dynamics of the qubit. This
is similar to a central spin model with the transverse field Ising
chain as the environment where the critical point has been
found to support a purely Markovian dynamics over short
initial times [25]. It is important to point out, however, that our
analysis does predict that a (non-Markovian) revival structure
will appear if waiting sufficiently long, signaling a backflow
of information from the environment to the qubit at very large
times. Admittedly, these revivals appear only on extremely
large time scales at which a central spin model may no longer
be a realistic model for capturing a decoherence process.

Turning, finally, to the behavior of the LE away from the IP,
the oscillation amplitudes B0,k and Ck are plotted respectively
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t

θ/π=0.5000
θ/π=0.4970

LE

(c)(b)(a)

FIG. 3. Oscillation amplitude (a) B0,k and (b) Ck in the mode decomposition, Eq. (20), of the LE as function of crystal momentum k and
spin-component mixing angle θ away from the isotropic point, Jo = 1 and Je = 1.2, with qubit-environment coupling δ = 0.01, and with
h = 0,N = 400. (c) Time evolution of the LE for the same set of parameter values for θ = 0.5000 π (critical point of the unperturbed QCC)
and θc = 0.4970 π (critical point of the perturbed QCC).

in Figs. 3(a) and 3(b) for Jo = 1,Je = 1.2. As one can see, B0,k

is small for all values of θ and results in the LE oscillating
randomly around a mean value close to unity at θc = π/2
[Figs. 1(b) and 1(c) and Fig. 3(c)]. However, Ck is still large
at θc = arccos(±δ/

√
JeJo) of the perturbed theory (cf. Fig. 4),

causing a fast decay of the LE at the critical points of the
perturbed QCC Hamiltonian [Fig. 3(c)].

Before concluding this part of our discussion, let us
numerically corroborate the expectation that by increasing the
strength of the coupling δ between the environment and the
qubit, the decay of the LE will become faster and broader. This
is strikingly illustrated for the IP in Fig. 5(a), having increased
δ by one order of magnitude to δ = 0.1. The amplitudes of
the corresponding dominating oscillation terms in the mode
decomposition of the LE are depicted in Figs. 5(b) and 5(c) for
all values of θ : By making the coupling δ larger the oscillation
amplitudes increase and broaden, resulting in a significantly
faster decay of the LE over a large parameter interval.

To understand the physics behind the different behaviors of
the LE at the IP (Je = Jo) and away from the IP (Je 	= Jo), let
us recall that the oscillation amplitudes in (20) are made up
of products of state overlaps Fm,k = |〈ψm,k(δ)|ψ0,k(0)〉|2 (m =
0, . . . ,7). Knowing that |ψm,k(0)〉 is an eigenstate of Hk in (15),
implying that 〈ψm,k(0)|ψ0,k(0)〉 = δm0 (up to a normalization
factor), one may be tempted to argue that 〈ψm,k(δ)|ψ0,k(0)〉
must be very small for all m 	= 0 since δ is a small perturbation.
If this were the case, however, all oscillation amplitudes in

θ/π
0.45 0.475 0.5 0.525 0.55
0

0.2

0.4

0.6

0.8

1

Ck

Jo=1, Je=1.0

Jo=1, Je=1.2

FIG. 4. Cross sections of Figs. 2(b) (blue) and 3(b) (red) showing
Ck versus θ at k = 0.

(20) would be vanishingly small for any k, resulting in a
nondecaying LE with a value close to unity. This, as we
have seen, is not the case. The argument goes wrong by
the assumption that a small perturbation can only cause a
small change of a state overlap. However, a state where
quasiparticles may easily be excited by a small perturbation,
such as at a critical point, can dramatically change character
when perturbed and lead to sizable overlaps 〈ψm,k(δ)|ψ0,k(0)〉.
Specifically, if |ψm,k(0)〉 with m 	= 0 is an eigenstate of
the unperturbed Hamiltonian Hk close to criticality [with
h = 0 in (15)], a perturbation |ψm,k(0)〉 → |ψm,k(δ)〉 may
restructure the state dramatically, allowing for a finite overlap
with |ψ0,k(0)〉. Likewise, if |ψ0,k(δ)〉 is an eigenstate of the
perturbed Hamiltonian close to its critical point [with h = δ

in (15)], |ψ0,k(0)〉 may feature a very different structure with a
finite overlap with |ψm,k(δ)〉 also for m 	= 0. This explains
why criticality of the unperturbed (θc = π/2) as well as
the perturbed [θc = arccos(±δ/

√
JeJo)] QCC Hamiltonian

enhances the decay of the LE at the IP, making precise the
expectation that the decoherence of the qubit is strongest at
a critical point where the environment is most susceptible
to a perturbation. Which one of the critical points will be
most effective in suppressing a LE will depend on details
of the model considered, such as the particular state overlaps
which enter into a given oscillation amplitude of the LE modes
Lk(δ,t). In the present case, with the QCC as the environment,
the decays of the LE at the IP perturbed critical points are at
a maximum, followed by extremely slow revivals. Still, also
the IP unperturbed critical point is quite effective in causing
an initial suppression of the LE, however with fast subsequent
revivals.

If we try to explain our findings away from the IP along
the lines above, we are faced with an apparent conundrum.
While the LE still decays at the critical point of the perturbed
QCC Hamiltonian, it equilibrates around a value close to unity
when at the critical point of the unperturbed theory. Why is
that? Why is the critical point of the unperturbed theory now
ineffective in suppressing the LE?

The answer can be found by inspecting the quasiparticle
spectrum, Fig. 6. Panel (a) shows the unperturbed QCC
spectrum at the IP, where the ε

(1)
k band (which, together with the

ε
(2)
k band, is completely filled in the QCC ground state) is seen

to be degenerate with the other bands at k = π and θc = π/2,
thus favoring quasiparticle excitations in the neighborhood of
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FIG. 5. (a) Time evolution of the LE in Eq. (10) at the isotropic point Jo = Je = 1 for δ = 0.1,h = 0, and N = 400. The oscillation
amplitude (b) B0,k , and (c) Ck in the mode decomposition of the LE, Eq. (20), as a function of k and θ for the same parameter values.

k = π . This, as we have argued, explains why one of the IP
oscillation amplitudes in the LE modes, B0,k as it turns out,
becomes large at k = π . Now look at panel (b) of Fig. 6, which
displays the spectrum away from the IP, with Je/Jo = 1.2.
Here a gap has opened up at k = π , separating the ε

(1)
k band

from that of ε
(2)
k , thus holding back quasiparticle excitations

and, as a consequence, dampening the oscillation amplitudes
in the LE modes. [For cross-sectional views of the spectra
in Figs. 6(a) and 6(b) at k = π , see Figs. 7(a) and 7(b),
respectively.] The filled ε

(2)
k band is still degenerate with the

next higher band for all k at θc = π/2. However, as evident
from Fig. 3(a), the possibility of quasiparticle excitations from
this band does not compensate for the loss of excitations from
the ε

(1)
k band: the B0,k amplitude is now strongly suppressed.

It is here important to note that the ε
(2)
k band is dispersionless

for all k at θc = π/2. Thus, the quasiparticles from this band
cannot contribute significantly to the time-dependent parts of
the oscillation terms at the IP for small δ and hence cannot
influence the revival structure of the LE.

Different from the scenario at the critical point of the
unperturbed QCC Hamiltonian, the LE at the critical point of
the perturbed theory, θc = arccos(±δ/

√
JeJo), is controlled by

the ε
(2)
k band and the mode oscillation amplitude Ck , at the IP

[Fig. 2(b)] as well as away from the IP [Fig. 3(b)]. In both cases
the ε

(2)
k band of the unperturbed QCC Hamiltonian is gapless

at k = 0, [cf. Figs. 6(a) and 6(b), respectively, with cross
sections in Figs. 4(c) and 4(d)], making quasiparticles easy
to excite. For small δ, when the two unperturbed critical points
are close to π/2, the gap to excitations away from k = 0 is
extremely small, still allowing for an avalanche of quasiparticle
excitations with a concurrent dramatic restructuring of the
eigenstates. This is the reason for the almost constant and
large value of the Ck amplitude across the halved Brillouin

zone in Figs. 2(b) and 3(b). As we have already discussed, the
fact that the controlling ε

(2)
k band is almost flat for all k close

to π/2 explains why the decay of the LE at the critical points
of the perturbed QCC Hamiltonian appears to be monotonic:
the group velocity vg of the quasiparticles is very small,
resulting in exceedingly large revival periods, also for small
finite systems. The essential role of the quasiparticles and their
excitations in driving the behavior of the Loschmidt echo—and
the associated decoherence of the coupled qubit—should now
be clear. As detailed above, the quasiparticles play a double
role. First, their excitations may restructure the unperturbed
eigenstates of Hk in (15) substantially when prevalent, making
possible large state overlaps and, by that, large oscillation
amplitudes in the mode decomposition of the LE. Second,
the curvature of the quasiparticle bands determines the revival
structure of the LE. A large/small curvature with a resulting
large/small group velocity vg of the quasiparticles will set
the time scale on which the qubit dynamics appears to be
Markovian.

C. Loschmidt echo: Finite magnetic field

The unperturbed QCC in a magnetic field h exhibits a
critical line hc = ± cos(θ )

√
JoJe parameterized by θ,Jo, and

Je [29]. Choosing Jo = 1, Je = 2, θ = π/4, δ = 0.01, and
N = 400, we have plotted the corresponding LE versus h

and t in Fig. 8(a). As expected, the LE shows a single
dip at the critical field hc = 1. This result is generic: With
θ,Je, and Jo fixed, the LE suffers an enhanced decay only
at the corresponding critical field of the QCC Hamiltonian,
be it unperturbed [hc = ± cos(θ )

√
JoJe] or perturbed [hc =

δ ± cos(θ )
√

JoJe]. In both cases the revival time of the LE is
controlled by the group velocity of the quasiparticles in the ε

(2)
k

band of the perturbed Hamiltonian. The magnetic field bends

(a) (b) (c)

FIG. 6. Bogoliubov–de Gennes quasiparticle spectrum ±ε
1,2
k (0) for the unperturbed QCC, Eq. (2), at (a) the isotropic point Jo = Je =

1,h = 0, (b) the anisotropic point Jo = 1,Je = 1.2,h = 0, and (c) the isotropic point Jo = Je = 1, h = 0.5.
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FIG. 7. Cross section of (a) Fig. 6(a) at k = π ; (b) Fig. 6(b) at k = π ; (c) Fig. 6(a) at k = 0; (d) Fig. 6(b) at k = 0.

this band [cf. Fig. 6(c)], and as a result the group velocities can
be significantly larger than in the case when the field is zero.
Moreover, numerical computations show that all oscillation
amplitudes are very small in parameter space except Ck which
takes a large value at the critical field in the center of the
Brillouin zone [Fig. 8(b)]. Putting these facts together, we
expect that the time evolution of the LE manifests distinct
decays and revivals at the critical field. This is verified in
Fig. 8(c) where the LE has been plotted versus time for hc = 1
(unperturbed QCC, blue curve) and for hc = 1 − δ (perturbed
QCC, red curve). In both cases, the LE indeed exhibits
deep valleys and high peaks, however with different revival
periods.

IV. DECOHERENCE OF A QUBIT IN AN
EXTENDED-XY-MODEL ENVIRONMENT

In this section we investigate the decoherence of a qubit em-
bedded in an environment described by the one-dimensional
extended XY model with a transverse staggered magnetic field
[30]. While much of the methodology can be carried over
from Secs. II and III, replacing the quantum compass chain by
the extended XY model will provide a complementary vista,
adding to the picture of qubit decoherence in an interacting
spin environment.

Imposing periodic boundary conditions, and assuming that
the coupling to the qubit contains both a uniform (∼δ)
and a staggered [∼(−1)nδs] component, the Hamiltonian of
the composite system takes the form H = Henv + Hq + Hint,

where

Henv = −1

2

N∑
n=1

[
J

2

(
σx

n σ x
n+1 + σy

n σ
y

n+1

)

+ J3

4

(
σx

n σ x
n+2 + σy

n σ
y

n+2

)
σ z

n+1 + (−1)nhsσ
z
n

]
,

Hq = ωe|e〉〈e|, Hint = −1

2
[δ + (−1)nδs |e〉〈e|]

N∑
n=1

σ z
n .

(22)

We have here used the same tags for the Hamiltonians as in
Sec. II, with Henv and Hq denoting the decoupled Hamiltonian
of the environment and the qubit, respectively, and with Hint

the Hamiltonian of the qubit-environment interaction. Here N

counts the number of sites on the one-dimensional lattice,
hs is the magnitude of the staggered transverse magnetic
field, and J and J3 are exchange couplings between spins on
nearest-neighbor and next-nearest-neighbor sites, respectively.
For simplicity we here consider the XX limit of the model, with
identical couplings in the x and y directions.

As in Sec. II we assume that the qubit is initially
disentangled from the environment. In other words, the state
|ψ(0)〉 of the composite system at time t = 0 is given by
|ψ(0)〉 = |φq(0)〉 ⊗ |φenv(0)〉, with the normalized qubit state
|φq(0)〉 = cg|g〉 + ce|e〉 a superposition of the ground state |g〉
and excited state |e〉, and where |φenv(0)〉 is the initial state of
the environment. With U (t) = exp(−iH t) the time-evolution

(a)
(b)

t
0 400 800 1200

0

0.2

0.4

0.6

0.8

1

h =1

h=1

LE

(c)

+ δ

FIG. 8. (a) Three-dimensional plot of the LE in Eq. (10) as function of time t and magnetic field h. (b) The oscillation amplitude Ck in
the mode decomposition of the LE, Eq. (20), as function of crystal momentum k and magnetic field h. (c) The LE as function of time t at the
critical point of the unperturbed (perturbed) QCC with magnetic field h = 1 (h = 1 − δ). The Hamiltonian parameters in all three panels are
set to Jo = 1,Je = 2, θ/π = 1/4, δ = 0.01, and N = 400.
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operator, the time-evolved composite state can be written as

|ψ(t)〉 = cg|g〉 ⊗ exp(−iHenvt)|φenv(0)〉 + exp(−iωet)ce|e〉
⊗ exp

( − iH (δ,δs )
env t

)|φenv(0)〉, (23)

using that [Hq,Henv] = [Hq,Hint] = 0. Here

H (δ,δs )
env = Henv + Venv(δ,δs) (24)

is the perturbed Hamiltonian of the environment, with
Venv(δ,δs) = − 1

2 [δ + (−1)nδs]
∑N

n=1 σ z
n the effective potential

from the interaction with the qubit. Note that the perturbed
Hamiltonian H (δ,δs )

env describes the extended XY model in a
staggered transverse magnetic field hs + δs , with an added
uniform transverse field δ.

In order to investigate the decoherence process induced
by the environment, we follow the same route as in Sec. II.
Equation (23) implies that the reduced density matrix of the
qubit takes the form

ρq = Trenv|ψ(t)〉〈ψ(t)| = c2
g|g〉〈g| + c2

e |e〉〈e|
+ e−iωet c∗

gceν(t)|e〉〈g| + eiωet cgc
∗
e ν

∗(t)|g〉〈e|, (25)

with ν(t) = 〈φenv(0)| exp(iH (δ,δs )
env t) exp(−iHenvt)|φenv(0)〉 the

decoherence factor, implying the LE L = |ν(t)|2 [16,42].
Thus, as in our analysis of the QCC-induced decoherence
of the qubit in Sec. III, the problem boils down to computing
the LE of the environment, now described by the extended XY
model in a staggered magnetic field, perturbed by the qubit.

V. LOSCHMIDT ECHO OF THE EXTENDED XY MODEL

A. Preliminaries

To derive a closed form of the LE we must first diagonalize
the unperturbed as well as the perturbed environmental
Hamiltonian. In fact, it is sufficient to diagonalize the perturbed
Hamiltonian in (24), H (δ,δs )

env , since it reduces to the unperturbed
one, Henv in (22), by setting δ = δs = 0. As a first step we again
exploit the Jordan-Wigner transformation (11), and map H (δ,δs )

env
onto a free fermion model,

H (δ,δs )
env = −1

2

N∑
n=1

[
J (c†ncn+1 + c

†
n+1cn)

+ J3

2
(c†ncn+2 + c

†
n+2cn)

+ [δ + (−1)n(hs + δs)](2c†ncn − 1)

]
. (26)

By introducing two independent fermions at each unit cell
of the lattice, cA

n ≡ c2n−1 and cB
n ≡ c2n, and performing a

Fourier transformation, one obtains

H (δ,δs )
env =

∑
k

[
εA(k)cA†

k cA
k + εB(k)cB†

k cB
k

+ εAB(k)
(
c
A†
k cB

k + c
B†
k cA

k

)]
, (27)

where

εA(k) = J3

2
cos(k) − δ + (hs + δs), (28)

εB(k) = J3

2
cos(k) − δ − (hs + δs), (29)

εAB(k) = −J cos(k/2), (30)

and k = 4πn/N with −N/4 � n � N/4 [43]. Using the
Bogoliubov-type transformation

cA
k = cos

(
θ

(δs )
k /2

)
αk + sin

(
θ

(δs )
k /2

)
βk,

cB
k = − sin

(
θ

(δs )
k /2

)
αk + cos

(
θ

(δs )
k /2

)
βk,

where

θ
(δs )
k = − arctan[J cos(k/2)/(hs + δs)],

we can finally write the Hamiltonian on diagonal form,
H (δ,δs )

env = ∑
k[εα

k (δ,δs)α
†
kαk + ε

β

k (δ,δs)β
†
kβk], with

εα
k (δ,δs) = (J3/2) cos(k) − δ −

√
(hs + δs)2 + J 2 cos2(k/2),

ε
β

k (δ,δs) = (J3/2) cos(k) − δ +
√

(hs + δs)2 + J 2 cos2(k/2).

The corresponding quasiparticle eigenstates are given by

α
(δ,δs )†
k |V 〉 = cos

(
θ

(δs )
k /2

)
c
A†
k |0〉 − sin

(
θ

(δs )
k /2

)
c
B†
k |0〉,

β
(δ,δs )†
k |V 〉 = sin

(
θ

(δs )
k /2

)
c
A†
k |0〉 + cos

(
θ

(δs )
k /2

)
c
B†
k |0〉,

where |V 〉 and |0〉 are vacuum states of the quasiparticle and
fermion, respectively. Notably, the quasiparticle operators of
the unperturbed Hamiltonian, (α(0)

k ,β
(0)
k ), can be expressed on

closed form as a linear combination of those of the perturbed
Hamiltonian, (α(δ,δs )

k ,β
(δ,δs )
k ),

α
(0)
k = cos(ηk)α(δ,δs )

k − sin(ηk)β(δ,δs )
k ,

β
(0)
k = sin(ηk)α(δ,δs )

k + cos(ηk)β(δ,δs )
k ,

where 2ηk = θ
(0)
k − θ

(δs )
k . It follows that eigenstates of the

unperturbed Hamiltonian can be written in terms of the
eigenstates of the perturbed Hamiltonian as

α
(0)†
k |V 〉 = cos(ηk)α(δ,δs )†

k |V 〉 − sin(ηk)β(δ,δs )†
k |V 〉, (31)

β
(0)†
k |V 〉 = sin(ηk)α(δ,δs )†

k |V 〉 + cos(ηk)β(δ,δs )†
k |V 〉. (32)

The relations in Eqs. (31) and (32) will turn out to be useful
when calculating the LE (next subsection). But before turning
to that task, let us briefly summarize what is known about the
phase diagram of the (unperturbed) extended XY model in a
transverse magnetic field.

The problem has been investigated comprehensively in
Ref. [30], revealing three phases: one long-range-ordered
antiferromagnetic phase and two distinct spin-liquid phases,
denoted spin liquid (I) and spin liquid (II), respectively.
The QPT between the antiferromagnetic phase and spin
liquid (I) is a gapped-to-gapless transition which occurs
at critical staggered fields hc1

s = ±J3/2. The system is in
the antiferromagnetic phase for |hs | � J3/2 where εα

k (0) ≤ 0
and ε

β

k (0) > 0 for all k modes, and accordingly the ground
state |GAFM〉 takes the form |GAFM〉 ∼ ∏

k α
(0)†
k |V 〉 with

energy EAFM = ∑
k εα

k (0). When
√

J 2
3 /4 − 1 < |hs | < J3/2,

the system enters spin-liquid phase (I) where again εα
k (0) ≤ 0

for all k modes, but now with ε
β

k (0) also being negative
for some k modes. Thus, the spin liquid (I) ground state
takes the form |G(I)〉 ∼ ∏

k,k′ α
(0)†
k β

(0)†
k′ |V 〉, with k′ indexing

those β modes which have negative energies. At the critical
points hc2

s = ±
√
J 2

3 /4 − 1, a gapless-gapless QPT takes place
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FIG. 9. (a) Three-dimensional plot of the LE in Eq. (35) as function of time t and staggered magnetic field hs for J = 1, J3 = 4, δs = 0.01,
and N = 1200. (b) The oscillation amplitude Ak in the mode decomposition of the LE, Eq. (36), as function of crystal momentum k and
staggered magnetic field hs , with the same parameter values as in (a). (c) The LE, Eq. (35), for different system sizes N versus time t for
J3 = 4, hs = 0.0, and δs = 0.1.

between the spin liquid (I) and (II) phases, with a concurrent
change of the Fermi surface topology [30]. In spin-liquid phase
(II), with |hs | �

√
J 2

3 /4 − 1, both εα
k (0) and ε

β

k (0) have positive
and negative branches, resulting in four Fermi points, two
from each branch. Consequently, the spin liquid (II) ground
state can be written as |G(II)〉 ∼ ∏

k,k′ α
(0)†
k β

(0)†
k′ |V 〉, with k and

k′ indexing the negative-energy α and β modes, respectively.

B. Loschmidt echo: Quantum-classical transitions
at noncritical points

We now turn to the calculation of the LE. To be specific we
may assume that the environment is initially prepared in the
antiferromagnetic ground state, with parameters chosen to put
it close to the phase transition to the spin-liquid phase (I),

|φenv(0)〉 =
∏

−π�k�π

α
(0)†
k |V 〉. (33)

This choice of initial environmental state allows us to probe
the LE at criticality by using H (δ,δs )

env to do a quantum quench
to one of the critical points hc1

s = ±J3/2. To explore the full
spin liquid (I) phase away from criticality one instead chooses
the ground state

|φenv(0)〉 =
∏
k,k′

α
(0)†
k β

(0)†
k′ |V 〉, (34)

with −π � k � π and ε
β

k (0) � 0, as the initial environmental
state. Injecting Eqs. (31) and (32) into (33) or (34) and using
the expression for the LE,

L(t) = |〈φenv(0)| exp
(
iH (δ,δs )

env t
)

exp(−iHenvt)|φenv(0)〉|2,
(35)

it is straightforward to show that in both cases the LE reduces
to the form

L(t) =
∏

−π�k�π

∣∣∣∣1 − Ak sin2

(
�εkt

2

)∣∣∣∣, (36)

where

Ak = sin2(2ηk),

�εk = 2
√

(hs + δs)2 + J 2 cos2(k/2). (37)

By inspection, neither Ak nor �εk depend on δ. It follows from
(36) that in the case when the qubit-environment interaction
only contains a uniform coupling ∼δ, with δs = 0,L(t) = 1
independently of the strength of δ. As an upshot, the state of
a qubit embedded in a spin environment here described by
an extended XY model in a transverse staggered magnetic
field does not decohere as long as the staggered interac-
tion component vanishes, regardless of the strength of the
uniform qubit-environment interaction. This result, similarly
uncovered for a central spin model with the qubit coupled to
an ordinary XY chain [19], may suggest practical strategies
for protecting qubits in applications for quantum information
technologies.

In Fig. 9(a) we have plotted the LE of the environment
perturbed by the qubit with a staggered interaction ∼δs = 0.01
as a function of staggered magnetic field hs and time t . As
seen in the figure, the LE displays neither enhanced decays nor
revival structures at the critical points hc1

s = ±2 or hc2
s = ±√

3
of the environment as opposed to what is reported in previous
works [16,19]. Instead it shows an accelerated decay at hs = 0.

The point hs = 0, while being a critical point of the extended
XY model in the absence of a three-site spin interaction [i.e.,
with J3 = 0 in (22)], is noncritical for any nonzero value of
J3. But how can the LE exhibit an accelerated decay at a
noncritical value of the staggered field? And why does the LE
not exhibit an accelerated decay when the staggered field is
critical?

To answer these questions we emulate our analysis from
Sec. III. A numerical check confirms that the absence of an
accelerated decay of the LE along the critical lines hs = ±J3/2
comes about because of the small values of the oscillation
amplitudes Ak in (36) for all k. In exact analogy to the
critical QCC away from the IP, the smallness of the Ak

amplitudes is a consequence of the fact that the quasiparticles
which control the LE remain gapped at criticality. On the
contrary, the accelerated decays of the LE which are manifest
in both environmental models—the QCC and the extended XY
model—are correlated with large oscillation amplitudes in the
LE mode decompositions, Eqs. (18) and (36), respectively.
As we have seen, large oscillation amplitudes are favored
by the presence of easily excited quasiparticles. Importantly,
not only may a quantum phase transition not favor LE-
controlling quasiparticle excitations, but such excitations may
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instead appear within a stable phase, such as the type-I
spin-liquid phase of the extended XY model. This can be
confirmed numerically. In Fig. 9(b) we display the oscillation
amplitude Ak versus k and hs , with Hamiltonian parameters
J3 = 4, δs = 0.01, and N = 1200. It is clearly seen that Ak

vanishes everywhere except in the neighborhood of hs = 0
at the Brillouin boundary zone boundary where the extended
XY model becomes massless, with propagating quasiparticles
[30]. In Fig. 9(c) we have computed the time dependence of
the LE for different system sizes, verifying that the LE revivals
get attenuated, with longer periods, as the system gets larger.

VI. SUMMARY

Based on two case studies of a qubit coupled to an
interacting spin environment—with the environment modeled
by a quantum compass chain or an extended XY model
in a transverse staggered magnetic field—we arrive at the
conclusion that the presence of a quantum phase transition
is neither a sufficient nor a necessary condition for an
accelerated decoherence rate of the qubit. By examining how
the eigenstates of the models imprint the Loschmidt echo—and
by that the decay rate of the qubit—we find that what does
matter is the availability of propagating quasiparticles which
couple to the qubit via a back action (as signaled by their
having an impact on the Loschmidt echo). While a quantum
phase transition generically supports massless excitations, our
case study of the QCC reveals that these excitations may
not necessarily couple to the qubit, and therefore do not
influence its decoherence rate. This observation invalidates
the conventional view that the closeness of an environment to
a quantum phase transition is inherently linked to an enhanced
decoherence of a system embedded in it. Taking the extended
XY model as environmental model, the quasiparticles in one
of its spin-liquid phases are found to couple to the qubit. This
provides an example that a stable massless phase can act as
a source of accelerated decoherence. Our findings may prove

useful when developing strategies to reduce decoherence in
quantum devices with interacting qubits.
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APPENDIX

The amplitudes in the mode decomposition of the
Loschmidt echo, Eq. (20), depend on the state overlaps
Fm,k = |〈ψm,k(δ)|ψ0,k(0)〉|2 (m = 0, . . . ,7) as

A0,k = 4F0,kF7,k,

B0,k = 4(F2,k + F3,k + F4,k + F5,k)(F0,k + F7,k),

A1,k = 4F1,kF6,k,

B1,k = 4(F2,k + F3,k + F4,k + F5,k)(F1,k + F6,k),

Ck = 4(F0,kF1,k + F6,kF7,k),

Dk = 4(F0,kF6,k + F1,kF7,k).

Here |ψm,k(δ)〉 are eigenstates of the Hamiltonian Hk in
Eq. (15) with h = δ.

At the critical line θc = π/2 in (θ,Je/Jo) space, the LE
reduces to the simple form

L(θ1,θc,t) =
∏

0�k�π

∣∣∣∣1−Ak sin2
[
ε1
k (δ)t

] − Bk sin2

(
ε1
k (δ)t

2

)∣∣∣∣,

where Ak = 4(F0,k + F1,k)(F6,k + F7,k) and Bk = 4(F0,k +
F1,k + F6,k + F7,k)(F2,k + F3,k + F4,k + F5,k), and where
ε1
k (δ) are energies of the quasiparticles that fill up the lowest

band of H (δ)
env in Eq. (7).
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