
Summary lecture V

Lindhard equation describes the screening of the Coulomb
interaction due to the presence of many particles

In the static and long-wavelength limit we find 

Besides a continuum of electron-hole excitations, there is a collective 
oscillation of the entire electron plasma with the characteristic plasma 
frequency
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Learning outcomes lecture VI

Describe the formation of excitons (bound-electron hole pairs) and 
calculate the excitonic binding energy

Recognize the importance of the statistical operator 

Sketch the derivation of Bloch equations and discuss their contributions

Explain the many-particle hierarchy problem and how it can be solved



III. Electron-electron interaction
1. Coulomb interaction
2. Second quantization
3. Jellium & Hubbard models
4. Hartree-Fock approximation
5. Screening
6. Plasmons
7. Excitons

Chapter III



7.  Excitons

Coulomb-induced formation of electron-hole 
pairs (excitons) in semiconductors

Assume a 2-band system (λ = c, v) with a band gap
Egap = Δ focusing on interband Coulomb interaction

with the effective mass energy for the conduction and valence band

Excitons

Δ



7.  Excitons

In ground state, all valence band states are occupied, while the conduction 
band is empty

with the ground state energy

Excited state is build by a linear combination of all possibilities to generate 
an electron-hole pair

Coefficients          are determined by solving the Schrödinger equation

Ground and excited state



7.  Excitons

Neglecting the interaction, i.e. V=0, we obtain as solution

i.e. the lowest excited state lies Δ above the ground state energy E0

Including the interaction V, the excited state lies lower

This eigenvalue equation for the coefficients           corresponds to the 
two-particle Schrödinger equation

i.e. electron-hole pairs behave like two free particles with effective masses

Excited state



7.  Excitons

Schrödinger equation reads in relative and center-of-mass coordinates

with  

Separation ansatz (like in hydrogen problem)                                                                

with fn(r) as eigen functions of an effective hydrogen problem

Eigen energies

Excitonic binding energy



7.  Excitons

Formation of Coulomb-bound excitons as new quasi-particle with lower 
energy compared to the ground state of free electron-hole excitations

with the excitonic binding energy

that is determined by the

effective mass μ and the dielectric screening constant εbg describing the 
screening of the Coulomb potential through the surrounding medium

Wannier excitons: spatially extended excitons with a large Bohr radius

Frenkel excitons: spatially localized excitons with a small Bohr radius

Excitonic binding energy



IV. Density matrix theory

1. Statistical operator

2. Semiconductor Bloch equations

3. Boltzmann scattering equation

Chapter IV



1.  Statistical operator

Statistical operator (density matrix) characterizes quantum systems in a 
mixed state (statistical ensemble of many quantum states)

with                        and 
corresponding to the probability to find the 
system in the state 

In a pure state, the statistical operator reads
since here 

The statistic operator has been expressed in its eigen basis with

Statistical operator is self-adjoint

Statistical operator



1.  Statistical operator

In a pure state, the expectation value of quantum mechanical observables 
is given by expressing a quantum mechanical average 

In a mixed state, there is an additional statistic averaging that is 
expressed by the statistical operator

Mixed and pure states can be easily distinguished: while the trace of the 
statistical operator is 1, the trace of ρ2 is different for pure and mixed states

for pure states and                           for mixed states

Statistical operator



2.  Semiconductor Bloch equations

We have already introduced the occupation number operator
that we now statistically average to describe a mixed state

In the limiting case of one-particle systems, the diagonal elements of the
statistical operator (density matrix ) correspond to the carrier occupation 
probability 

Non-diagonal elements of the density matrix correspond to microscopic 
polarization being a measure for the carrier transition probability

Density matrix elements



2.  Semiconductor Bloch equations

Semiconductor Bloch equations present a coupled system of differential 
equations for microscopic quantities:

Microscopic quantities

Microscopic polarization

Occupation probability

Phonon occupation

Photon occupation
Temporal evolution is determined by 
Heisenberg equation of motion



The required band structure and matrix elements are calculated with 
nearest-neighbor tight-binding wave functions

with relevant atomic orbital 
functions                        

Hamilton operator

free-particle    carrier-light interaction carrier-carrier interaction

2.  Semiconductor Bloch equations



Band structure of graphene

2. Semiconductor Bloch equations

Electronic band structure of 
graphene reads

with σc = -1 and σv = +1

Graphene has a linear and gapless electronic band structure around 
Dirac points (K, K’ points) in the Brillouine zone (semi-metal)

with the Fermi velocity υF



Optical matrix element determines the
strength of electron-light coupling including optical selection rules

Analytic expression obtained in nearest- neighbor TB approximation

Electron-light coupling is strongly anisotropic
around the Dirac points

It shows maxima at M points and vanishes at
the Г point of the Brillouin zone (selection rule)

Optical matrix element of graphene

2. Semiconductor Bloch equations



The Coulomb matrix element

reads in nearest-neighbor TB approximation

with TB-coefficients

Coulomb processes with large momentum transfer
are strongly suppressed (decay scales with 1/q13 )

Coulomb interaction prefers parallel 
intraband scattering along the Dirac cone

Coulomb matrix element

momentum 
conservation

2. Semiconductor Bloch equations



Hamilton operator H is known        derivation of Bloch equations                     
applying the Heisenberg equation 

Single-particle quantities
couple to two-particle quantities through
Coulomb interaction system of coupled equations is not closed

Equations of motion

2. Semiconductor Bloch equations



Correlation expansion

Many-particle interaction leads to a hierarchy problem
(system of equations is not closed)

Solution by applying the correlation expansion and systematic truncation
Example: Hartree-Fock factorization (single-particle quantities only)

closed system of equations (already sufficient for description of excitons)

2. Semiconductor Bloch equations



Coupled system of differential equations on Hartree-Fock level

Interaction-free contribution (kinetic energy) leads to an oscillation of
the microscopic polarization pk(t)

Graphene Bloch equations

2. Semiconductor Bloch equations



Coupled system of differential equations on Hartree-Fock level

Electron-light coupling is determined by the Rabi frequency 
giving rise to a non-equilibrium distribution of 

electrons after optical excitation

Graphene Bloch equations

2. Semiconductor Bloch equations



Coupled system of differential equations on Hartree-Fock level

Electron-electron interaction leads to renormalization of energy 
and Rabi frequency (excitons!) 

as well as to dephasing of the polarization γk

Graphene Bloch equations

2. Semiconductor Bloch equations



Optical excitation with a laser pulse with an excitation energy of 1.5 eV

Frequency of the oscillation of the microscopic polarization changes 
due to the Coulomb interaction

Microscopic polarization

2. Semiconductor Bloch equations



Optical excitation with a laser pulse with an excitation energy of 1.5 eV

We generate a non-equilibrium carrier distribution around the 
excitation energy (corresponding momentum k0 = 1.25 nm-1)

Optical excitation

2. Semiconductor Bloch equations

Non-equilibrium 
carrier distribution

Fermi distribution



Generation of an anisotropic non-equilibrium carrier distribution

Maximal occupation perpendicular to polarization of excitation pulse 
(90o) due to the anisotropy of the optical matrix element

Carrier dynamics needs to be modelled by extending Bloch equations 
beyond the Hartree-Fock approximation (Boltzmann equation)

Anisotropic carrier distribution

2. Semiconductor Bloch equations

0o

90
o



Summary lecture VI

Excitonic binding energy reads

with the reduced mass

and the dielectric background constant

Statistical operator (density matrix) characterizes 
quantum systems in a mixed state

and builds the expectation value of observables

To tackle the many-particle-induced hierarchy problem, we perform the 
correlation expansion followed by a systematic truncation resulting in
semiconductor Bloch equations on Hartree-Fock level

Δ



Learning outcomes lecture VI

Describe the formation of excitons (bound-electron hole pairs) and 
calculate the excitonic binding energy

Recognize the importance of the statistical operator 

Sketch the derivation of Bloch equations and discuss their contributions

Explain the many-particle hierarchy problem and how it can be solved
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