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Abstract

Voltage measurements using the ac Josephson effect and electrical resis-
tance measurements using the quantum Hall effect are capable of very high
precision, despite the relatively poor control of details of the devices. Such
measurements rely on topological quantum numbers, which, unlike symmetry-
based quantum numbers, are insensitive to deviations of the system from
ideality. The circulation in superfluid *He, flux quantization in superconduc-
tors and quantized Hall conductance are all examples of topological quantum
numbers, but only the last two are known to be very precise. Vinen’s early
measurement of quantized circulation was based on measurement of the re-
sulting Magnus force, and we (Ping Ao, Qian Niu and I) have recently shown
that the strength of the Magnus force can itself be determined by an argument

that shares common features with topological arguments.

I. SYMMETRY-BASED AND TOPOLOGICAL QUANTUM NUMBERS.

The quantum numbers with which we are most familiar are related to the algebra of
symmetry operations. From Noether’s theorem we know that a symmetry in classical dy-
namics leads to a conserved quantity, and for a compact symmetry group this translates in
quantum mechanics to sets of discrete eigenvalues for the operator. The relations between

rotational symmetry, conservation of angular momentum, and the algebraic structure of the



angular momentum operators are things that most of us have taught in various classes. We
also know that where the symmetry is broken, as it is when a magnetic field is applied to
the atom or when the atom is embedded in a solid, the quantum numbers are immediately
mixed with one another, and may no longer be identifiable with certainty. Other examples
of such symmetry-based quantum numbers are isospin, parity, and the labels which occur
in the nonrelativistic theory of hydrogen-like atoms, based on representations of the group
O(4). In all these cases a broken symmetry leads to mixing of the quantum numbers.
Topological quantum numbers are very different. There is strong experimental evidence
that the quantum numbers can be determined with very high precision, and that they are
insensitive to imperfections of the apparatus used to measure them. The Josephson voltage-
frequency relation [1,2], which depends on the precise quantization of magnetic flux in a
superconducting ring, is so precise that it has superseded and corrected earlier secondary
standards of voltage, yet on a microscopic scale a Josephson junction appears as an irregular
insulating barrier between two superconductors. Despite this, two differently constructed
junctions made from different materials are found to be consistent to parts in 1017 [3,4].
Similarly, a quantum Hall bar provides a resistance standard far more reproducible than
earlier standard resistances, and differently constructed quantum Hall devices agree to within
a few parts in 10'° [5], but quantum Hall devices have geometrical parameters that depend
on gates laid down with imperfect control at some distance from the interface where the

two-dimensional electron layer occurs.

II. SUPERFLUIDS AND SUPERCONDUCTORS.

The argument for quantized circulation in a neutral superfluid was given in a rather
cryptic form by Onsager [6]. A superfluid such as superfluid *He is characterized by a

condensate wave function



which is a single valued function of position r, a one-particle wave function shared by all, or

at least a finite proportion, of the particles in the system. The superfluid velocity is given

by
v, = hgradS/m , (2)

where m is the atomic mass. The phase S need not be single valued, but it can change by
a multiple of 27 on a closed path that goes round either some obstacle, such as a solid wire
running across the container, or when it goes round some mathematical line singularity on
which the order parameter vanishes. The circulation of the superfluid velocity round such a

path is given by

fvs-dr:zj{gradS-dr:ni, (3)
m

m

where n is the winding number of the phase of the order parameter around the obstacle
or line singularity. The superfluid circulation is therefore quantized in units of h/m. This
winding number is the simplest example of a topological quantum number.

Vinen [7] measured the circulation of superfluid round a wire by running a thin stretched
wire down the axis of a cylindrical container of liquid helium, which was set into rotation
before being cooled from the normal state to the superfluid state. The Magnus force on the
wire split the nominally degenerate modes of vibration of the wire into two (ideally) circularly
polarized components, and the frequency shifts measured the strength of the Magnus force,
and so gave the magnitude of the circulation round the wire.

One might think that the quantum number n for the circulation round the wire simply
corresponds to the angular momentum per helium atom, and that would be the case for an
ideal system, but in fact the wire was very far from having a uniform circular cross-section.
Not only were the normal modes not in fact degenerate, but scanning electron microscopy
of the wires revealed a surface that looked more like a particularly rugged piece of mountain
terrain than a smooth cylinder. The fact that quantization was observed illustrates the

insensitivity of such topological quantum numbers to details of the geometry. The precision



of the quantization shown by the experiment was only about 3%, and later experiments have
only improved on this by about one order of magnitude [8].
For a superconductor, a superfluid in which the mobile particles are charged, the current
density is given by
i=~(Lgraas + 2y ()
m m
where a factor of 2¢ has been put in front of the vector potential A to allow for the fact that
U represents the condensate wave function for pairs of electrons. The Meissner effect ensures
that the current density falls off exponentially into the interior of the superconductor. In

this interior region where the current density vanishes, eq. (4) gives

j{A-dr:—;j{gradS-dr:ni. (5)
e

2¢

Since the integral of the vector potential round a ring gives the flux enclosed by the ring,
this relation shows that the flux trapped by a superconductor is equal to n times h/2e,
where again n is the winding number of the phase of the condensate wave function. The
path enclosing quantized flux has to be in a region free of current density, and it may
either surround regions in which there is no superconducting material, where the flux is
concentrated, or, for a type Il superconductor in a weak magnetic field, it may surround
flux lines where the superconducting order parameter has singularities.

Flux quantization was originally predicted by London [9], but without the factor of 2
in the denominator. The correct form given by the BCS theory was given by Byers and
Yang [10], and by Brenig [11]. Although the earliest measurements of flux quantization
were not precise, subsequent developments with the Josephson effect have shown that flux
is indeed quantized with very high precision, under circumstances in which the geometry is
very irregular.

The high precision of flux quantization in superconductors contrasts strongly with the
relatively poor precision with which the quantization of circulation in neutral superfluids

has been checked. This is not just because it is easier to detect a small change in magnetic
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flux than it is to compare circulation in different superfluid containers, although that is true.
For the superconductors the relation between the topological invariant, the winding number,
and the physical quantity, the trapped flux, is subject to corrections which are exponentially
small, such as the penetration of the magnetic field into the superconductor which is governed
by the London equation. For the neutral superfluid the connection between the topological
invariant and the measured quantity has corrections which are powers of physical dimensions,
rather than exponentials, because the governing equations have the structure of the Laplace

equation instead of the London equation.

III. QUANTUM HALL EFFECT.

The discovery of the quantum Hall effect was particularly dramatic because not only
was 1t unpredicted by theory, but the first publication showed that the ratio of current to
voltage was an integer with a precision of the order of 1 part in 10° [12]. The fact that
the quantized Hall conductance is a topological quantum number was implicit in Laughlin’s
explanation of the effect [13], and was made explicit in later papers [14-17].

Laughlin’s argument can be regarded as a generalization of Bloch’s famous theorem that
for a loop of conductor threaded by a magnetic flux ® the free energy is a periodic function
of @, and that the current F/J® is periodic with period h/e and has zero average. For the
quantum Hall effect the loop is replaced by an annular region of two-dimensional conductor,
with a solenoid passing through the hole in the middle to carry some flux which can be
changed without changing the magnetic field in the conducting region. If the magnetic field
has such a strength that the Fermi energy lies in a gap between the energies of the mobile
states that characterize the Landau levels it is possible to maintain different electrochemical
potentials u; and p, on the two edges of the annulus, since the longitudinal conductance is
close to zero, and very little current flows between the two edges. One imagines these elec-
trochemical potentials maintained by contact with two reservoirs of electrons. Under these

circumstances, change of the flux ® by h/e restores the ring to its original quasiequilibrium



state, except that there are trivial gauge changes of the electron wave functions by the factor

expl—i(e/h) / SA(r) - dr] . (6)

However, there may also be n electrons transtered from one reservoir to the other, changing
the free energy of the system by n(p, — pi) = nedV, where 6V is the voltage difference
between the two edges. At the same time, the change in flux generates a voltage d®/dt
round the annulus, and this does work [Jd® = Jh/e, where J is the average current

around the annulus. The equality of the work done and the change in free energy then gives
nedV = Jh/e , (7)

so that the ratio of current to voltage is quantized in multiples of €*/h.

For the fractional quantum Hall effect Gefen and I have argued that there is a broken
symmetry, so that the change of flux by one quantum unit A/e does not restore the orig-
inal quasiequilibrium state, but that a change gh/e must be made in the flux to restore
the original state [18], where ¢ is the denominator of the fraction. From this point of view
the quantized Hall conductance can be regarded as the ratio of two winding numbers, the
denominator related to the change in the winding number of the electron wave functions
round the annulus, and the numerator related to the number of electrons that are cranked
from one edge to the other as a consequence. As with the quantization of flux in a super-
conductor, one expects to be able to make corrections to the quantized value exponentially
small, because corrections come from such processes as direct tunneling of electrons from
one edge to the other, excitation of free quasiparticles to modify the current, and deviations
of the current J from its average value J. These should be exponentially small if the width
of the annulus is sufficiently large, the temperature is sufficiently low, the Fermi energy is
sufficiently far from the Landau levels, and the length of the edges is sufficiently large.

In fact, of course, precise measurements of the quantum Hall effect are not made in this
geometry of an annulus. The alternative approach due to Avron and Seiler [15] and to Niu

et al. [16], in which the Hall conductance is represented as a Chern number,
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can be translated more readily into the situation that exists in a Hall bar. Here a, 3 are
gauge parameters defined across the current leads and voltage leads respectively, and @ is

the wave function of the Hall system.

IV. MAGNUS FORCE IN NEUTRAL SUPERFLUIDS.

Vinen’s experiment to measure the quantized circulation in superfluid *He [7] relies on
a generalization of the classical Magnus formula for the transverse force on a vortex, or an
object around which the fluid circulates, moving relative to the fluid. The same method has
recently been used to measure quantized circulation in the B phase of superfluid *He [19]. A
standard way of deriving this Magnus force in classical hydrodynamics is to consider a fixed
vortex, around which the circulation is k, with fluid flowing past it with velocity vg, and
then consider the momentum balance on a cylinder of very large radius whose axis coincides
with the vortex. The forces on this cylinder are the force holding the vortex in position and
the force due to the Bernoulli pressure on the outside of the cylinder, which is perpendicular
to the axis of the cylinder and to vp, and has magnitude pkvgr/2 per unit length. The
momentum density in the cylinder is constant under these steady state conditions, so the
net force on the cylinder must equal the momentum flux out of the cylinder, which again
has magnitude pkvgr/2 per unit length, but is oppositely directed to the force due to the

Bernoulli pressure. The total force per unit length is therefore
FM = p/ifl X (VV — VF) R (9)

where £ = ¢ v - dr is the circulation of the fluid round the vortex, whose direction is given
by the unit vector n, and I have used the Galilean invariance of the system to include the
possibility of the vortex itself moving with velocity vy.

In the case of a superfluid there are some questions about how this formula generalizes

to the two-fluid dynamics which is believed to describe superfluid *He, and more that arise



when systems of fermions are considered. The simplest generalization says that only the
superfluid component participates in the rotational motion around the vortex, so the fluid
density p should be replaced by the superfluid density pg, while the fluid velocity vy should
be replaced by the superfluid velocity v,. There are at least four questions that have been

raised about this way of doing things:
1. Should the total fluid density p be used or the superfluid density p;?

2. lordanskii [20] showed that phonons (or rotons) flowing past a vortex are scattered
asymmetrically, so that they produce a transverse force which depends on the normal

fluid density p,. Is this an extra force that must be included, and how big is it?

3. Kopnin and Salomaa [21] and Volovik [22] have argued that in a fermion superfluid
there are gapless states in the vortex core, and these will lead to a term proportional

to £ X (Vvy — v,,) that may almost completely cancel the usual Magnus force.

4. Can these ideas be generalized to a charged superfluid (superconductor), where the

London screening leads to disappearance of the circulating current at large distances?

The form of the transverse force quoted by Donnelly [23] is

Fi = wnx [p(vv = Vo) + (pn = o) (Vv = Va)] (10)

The term proportional to p, gives the lordanskii force, and the term in o comes from phonon
scattering.

The Magnus force is a nondissipative force that is linear in the vortex velocity, so it
corresponds to a term in the Lagrangian that is linear both in velocity and position. Such a
term gives rise to a term in the action that is path-dependent, but is independent of the speed
at which the path is traversed. In quantum mechanics this gives rise to a path-dependent
phase, and this is just what is known as a Berry phase [24], as was observed by Haldane
and Wu [25]. An interesting aspect of this, which we developed some years ago [26], is that

at zero temperature, for a process in which the vortex moves from some initial path and



eventually returns to it, this leads to a Berry phase equal to 27 times the number of atoms
that the surface traced out by the vortex encloses. If eq. (10) is correct, this is reduced by a
factor ps/p at nonzero temperatures, and this is a quantity whose significance as a quantum
number is less obvious.

We have recently given a first principles derivation of the expression for the Magnus
force on a quantized vortex [27]. For the sake of simplicity I describe here a two-dimensional
superfluid, but the generalization to three dimensions is straightforward. We consider a
single isolated vortex in an otherwise uniform homogeneous superfluid film. This is a state
with broken symmetry, since the vortex can be anywhere in the system, but a pinning force
can be introduced by adding a potential >, V(r; — ro). Any repulsive potential will serve
to localize the vortex, since the particle density is lower at the vortex core, but the pinning
potential should be strong enough to prevent escape of the vortex by thermal fluctuations or
by quantum tunneling. The position ry of the pinning center can be a function of time. In
our paper we calculate the average force exerted by the particles on the pinning center when
the pinning center is moving with constant velocity vy, using the instantaneous eigenstates
of the system with fixed pinning potential as a basis. It is perhaps more satisfactory to give
the pinning center an exponential acceleration, by taking its coordinates to be

:1;0:1%/( 1), ye=0. (11)

To lowest order in the vortex velocity this gives
F=Y/, <q;

here the W, are the instantaneous eigenstates with energies F, and occupation probabilities

th'P,
H——r7r—Fvy- h.c.
VO Ea —H—i’yvv Vo—l— C

\Ila> ; (12)

fa» Pa 1s the projection operator off the eigenstate o, and V is the gradient with respect to
the position of the pinning center. Since VoH is the commutator of the operator V, with
H, the commutator cancels the energy denominator, in the limit v — 0, and eq. (12) can

be rewritten as

ov,,
8:1;0

oV, 0V,
ayo a?Jo

ov,,
8:1;0 ’

F=—ih x vy 3 ful( (13)




where n is the unit vector normal to the plane. This expression is the familiar form of the
integrand that defines a Berry phase [24].

Because of the translation invariance of the system, the operator Vy is equivalent to
—>; Vi, and eq. (13) can therefore be written in terms of the total momentum operators P
of the particles in the system, in the form

¢

F =
h

0 X vy > fol(Ws |[Po, Pyl Ws) (14)

The expectation value of the commutator that appears here can be written as the curl of

the momentum density, and so Stokes’ theorem can be used to write the result as

F = %ﬁ < vy 7{ dr - [(V = V')t 1)) o . (15)
where the integral is taken over any path which goes round the vortex at a sufficiently large
distance from it. In the equilibrium state of the superfluid with a single stationary vortex
only the superfluid component contributes to this integral, since the interaction between the
phonons (or rotons) leads to a normal fluid viscosity which prevents the normal fluid from

sharing the circulation of the superfluid. This integral therefore leads to the form
F = p,sn X vy, (16)

which only agrees with the form quoted in eq. (10), under the boundary conditions v, =
v, = 0 which we have used, if the parameter o is equal to p,. This form seems to fit the
data on the effect of temperature in the vibrating wire experiments [7,28], but there is some
uncertainty in the interpretation of this data in the presence of the strong damping that
occurs at higher temperatures.

A different argument by Wexler [29] has shown that the coefficient of —v; in the transverse
force, is also ps, which, from Galilean invariance, leaves no room for a transverse force
proportional to the normal fluid velocity v,.

These results answer the first and third question which I listed at the beginning of this

section. The coefficient of vy x kn in the transverse force is the superfluid density, not
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the total fluid density. Our derivation would appear to be valid for a fermion superfluid of
the BCS type, so there does not seem to be any special contribution from the vortex core
states to this force. Indeed, experimental measurement of the Magnus force exerted by the
B phase of superfluid *He shows the usual form at very low temperatures [19]. Stone [30] has
analysed the arguments for such a contribution, and does not find the effect in the absence of
an explicit mechanism for transferring momentum from the core to the background [21,22].

Although the Magnus force does not appear as a topological quantity in this argument,
the expectation value of the commutator of two components of momentum is related to the
kind of quantity that appears in the topological expression for the Hall conductance.
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