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This is an introductory review of the physics of topological quantum matter with cold atoms. Topolog-
ical quantum phases, originally discovered and investigated in condensed matter physics, have recently

been explored in a range of different systems, which produced both fascinating physics findings and

exciting opportunities for applications. Among the physical systems that have been considered to
realize and probe these intriguing phases, ultracold atoms become promising platforms due to their

high flexibility and controllability. Quantum simulation of topological phases with cold atomic gases
is a rapidly evolving field, and recent theoretical and experimental developments reveal that some toy

models originally proposed in condensed matter physics have been realized with this artificial quan-

tum system. The purpose of this article is to introduce these developments. The article begins with a
tutorial review of topological invariants and the methods to control parameters in the Hamiltonians

of neutral atoms. Next, topological quantum phases in optical lattices are introduced in some detail,

especially several celebrated models, such as the Su-Schrieffer-Heeger model, the Hofstadter-Harper
model, the Haldane model and the Kane-Mele model. The theoretical proposals and experimental

implementations of these models are discussed. Notably, many of these models cannot be directly re-

alized in conventional solid-state experiments. The newly developed methods for probing the intrinsic
properties of the topological phases in cold atom systems are also reviewed. Finally, some topological

phases with cold atoms in the continuum and in the presence of interactions are discussed, and an

outlook on future work is given.
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1. Introduction

Topology is an important mathematical discipline, starting its prosperity in the early part
of the twentieth century. It is concerned with the properties of space that are preserved
under continuous deformations, such as stretching, crumpling, and bending, but not
tearing or gluing. Topological methods have recently played increasingly important roles
in physics, and it is now difficult to think of an area of physics where topology does not
apply. In early development in this field, Paul Dirac used topological concepts to show
that there are magnetic monopole solutions to Maxwell’s equations [1], and Sir Roger
Penrose also used topological methods to show that singularities are a generic feature of
gravitational collapse [2]. However, it was not until the 1970’s that topology really came
to prominence in physics, and that was thanks to its introduction into gauge theories
and condensed matter physics.

What we now know as “topological quantum states” of condensed matter may go back
to the Su-Schrieffer-Heeger model for conducting polymers with topological solitons in
the 1970’s [3–5] and were encountered around 1980 [6], with the experimental discovery
of the integer [7] and fractional [8] quantum Hall effects (QHE) in the two-dimensional
(2D) electron systems, as well as the theoretical discovery of the entangled gapped spin-
liquid states in quantum integer-spin chains [9]. Until then, phases of matter have been
largely classified based on symmetries and symmetries breaking known as the Landau
paradigm. The discovery of the “quantum topological matter” made it clear that the
paradigm based on symmetries is insufficient, as the quantum Hall phases do not break
any symmetry and would seem “trivial” from the symmetry standpoint.

A topological phase is an exotic form of matter characterized by non-local properties
rather than local order parameters. An early milestone was the discovery by David Thou-
less and collaborators in 1982 of a remarkable formula [Thouless-Kohmoto-Nightingale-
den Nijs (TKNN) formula] for QHE [10], which was soon recognized by Barry Simon as
the first Chern invariant for the mathematically termed U(1) fiber bundles in topology
[11] with an essential connection to the geometric phase discovered by Michael Berry [12].
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The identification of the TKNN formula as a topological invariant marked the beginning
of the recognition that topology would play an important role in classifying quantum
states. The TKNN result was originally obtained for the band structure of electrons in
uniform magnetic fields. In 1988, F. D. M. Haldane realized that the necessary condi-
tion for a QHE was not a magnetic field, but broken time-reversal invariance [13]. He
investigated a graphene-like tight-binding toy model (now called the Haldane model)
with next-nearest-neighbor hopping and averaged zero magnetic field, constructing the
first model for the QHE without Landau levels. The QHE without Landau levels is now
known as the quantum anomalous Hall effect or Chern insulator, and is the first topo-
logical insulator discovered, although it is one with a broken time reversal symmetry
(TRS). D. J. Thouless, J. M. Kostrlitz, and F. D. M. Haldane were awarded the 2016
Nobel Prize in physics “for theoretical discoveries of topological phase transitions and
topological phases of matter”.

Another major development in this field is the discovery of topological insulators with
TRS in 2-4 dimensions [14, 15]. S.-C. Zhang and J. Hu predicated a kind of four-
dimensional QHE, which is characterized by the second Chern number [16]. It is the
first topological insulator with TRS predicted and only recently was experimentally real-
ized with ultracold atoms [17]. C. Kane and E. Mele [18, 19] theoretically combined two
conjugate copies of the Haldane model, one for spin-up electrons for which the valence
band has Chern number ±1 and one for spin-down electrons where the valence band has
the opposite Chern number ∓1. Since the total Chern number of the band vanishes, there
is no QHE. However, they discovered that so long as the TRS is unbroken, the system
has a previously unexpected Z2 topological invariant related to Kramers degeneracy. In-
dependently, B. A. Bernevig, T. L. Hughes, and S.-C. Zhang [20] predicted the quantum
spin Hall effect [21] in quantum well structures of HgCdTe, which is known as a state
of 2D topological insulators, paving the way to its experimental discovery [22]. The 3D
generalization of this Z2 invariant was independently and simultaneously predicted in
2007 by three groups [6], which led to the experimental discovery of the 3D time rever-
sal invariant topological insulators. The discovery of topological insulators signaled the
start of a wider search for topological phases of matter, and this continues to be fertile
ground. Since topological quantum numbers are fairly insensitive to local imperfections
and perturbations, topological protection offers fascinating possibilities for applications
in quantum technology.

Besides topological insulators, topological phases are generalized to topological
(semi)metals, such as Weyl and Dirac semimetals in 3D solids [23, 24], and new topolog-
ical materials are being discovered and developed at an impressive rate, the possibilities
for creating and probing exotic topological phases would be greatly enhanced if these
phases could be realized in systems that are easily tuned. Ultracold atoms with their
flexibility could provide such a platform. In particular, some idealized model Hamiltoni-
ans for topological quantum matter, which are unrealistic in other quantum systems, can
be realized with ultracold atoms in optical lattices (OLs). Below, we briefly summarize
the toolbox that has been developed to create and probe topological quantum matter
with cold atoms.

i) The lattice structure of a single-particle energy band in a solid is fundamental for
some topological quantum phases. For instance, both the topological insulators proposed
by Handane and Kane and Mele exist in a honeycomb lattice, while spin liquid states favor
a Kagome lattice. Ultracold atoms can be trapped in the potential minima formed by the
laser beams. By changing the angles, wavelengths and polizations of the laser beams, one
can create different lattice geometries. OLs with various geometric structures, such as
square/cubic, triangular, honeycomb, and Kagome lattice, and superlattice structures,
have been experimentally realized (see the review on engineering novel OLs [25]). In
addition, OLs provide convenient ways to control various factors in cold atoms such as
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the strength of interatomic interactions, the band structures, the spin composition, and
the levels of disorder more easily than in real crystals.

ii) A necessary condition for the QHE or topological insulators with broken TRS is a
magnetic field (flux). Although atomic gases are neutral particles, artificial gauge fields
can be realized for them [26, 27]. Therefore, one can use atomic gases to simulate charged
quantum particles, such as electrons in external electromagnetic fields. Artificial magnetic
fields for atomic gases have been implemented through several ways: rotating an isotropic
2D harmonic trap, generating a space-dependent geometric phase by dressing the atom-
light interaction, and suitably shaking an OL. Importantly, the methods based on the
atom-light interaction and shaking lattices are well-suited for implementing an artificial
gauge field in an OL. Artificial gauge fields, combined with OLs, lead to the realization of
several celebrated toy models proposed but unrealistic in condensed matter physics. For
instance, the Haldane model [28] and the Hofstadter model [29, 30] have been directly
realized for the first time with ultracold gases.

iii) Spin-orbit coupling (SOC) is a basic ingredient for a Z2 topological insulator with
TRS. It can also be realized by a non-Abelian geometric phase due to the atom-laser
interaction. To simulate an SOC of spin-1/2 particles, one can use a configuration where
two atomic dressed states form a degenerate manifold at every point in the laser field.
When an atom prepared in a state in the manifold slowly moves along a closed trajectory,
a non-Abelian geometric phase is accumulated in the wave function, and an SOC is gen-
erated if the non-Abelian geometric phase is space dependent. Recently, one-dimensional
(1D) and 2D SOCs for bosonic and fermionic atoms have been experimentally created
in the continuum or OLs [31–36], which are the first step towards the simulation of a
topological insulator with TRS.

iv) The concept of synthetic dimensions offers an additional advantage for the exper-
imental exploration of topological states in cold gases. One kind of synthetic dimension
consists of interpreting a set of addressable internal states of an atom, e.g. Zeeman sub-
levels of a hyperfine state as fictitious lattice sites; this defines an extra spatial dimen-
sion coined synthetic dimension. Therefore, driving transitions between different internal
states corresponds to inducing hopping processes along the synthetic dimension. In turn,
loading atoms into a real N-dimensional spatial OL potentially allows one to simulate
systems of N + 1 spatial dimensions. Synthetic dimensions were recently realized in 1D
OLs for investigating the chiral edge states in the 2D QHE [37–39]. Notably a dynamical
version of the 4D QHE [16, 40, 41] has been experimentally achieved with cold atoms in
a 2D optical superlattice with two synthetic dimensions [17].

v) Besides the possibility of engineering single particle Hamiltonians, there are sev-
eral methods to flexibly tune complex many-body interactions in cold atoms. Strong
correlation plays important roles for some typical topological quantum matter, such as
fractional quantum Hall states and spin liquids. More recently, there has been intense
interest in the possibility of realizing fractional quantum Hall states in lattice systems:
the fractional Chern insulators. The tunability of atomic on-site interactions [42] or long-
range dipole-dipole interactions in ultracold dipolar gases [43, 44] opens up the possibility
of realizing various new topological states with strong correlations, including fractional
anyonic statistics, an unambiguous signature of topological phases.

vi) Compared with condensed-matter systems, ultracold atoms allow detailed studies
of the relation between dynamics and topology as the timescales are experimentally easier
to access. For example, time-dependent OLs constitute a powerful tool for engineering
atomic gases with topological properties. Recently, the identification of non-equilibrium
signatures of topology in the dynamics of such systems has been reported by using
time- and momentum-resolved full state tomography for spin-polarized fermionic atoms
in driven OLs [45–47]. These results pave the way for a deeper understanding of the
connection between topological phases and non-equilibrium dynamics.
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vii) Another remarkable advantage for studying topological phases with cold atoms
is that the topological invariants can be directly detected in this system. For example,
the Chern number has been directly detected by measuring the quantized center-of-
mass response [48]. It can also be observed through the Berry-curvature-reconstruction
scheme [45, 46] or by measuring the spin polarization of an atomic cloud at highly-
symmetric points of the Brillouin zone (BZ) [36]. Furthermore, nontrivial edge states
can be visualized in real space since the high-resolution addressing techniques offer the
possibility of directly loading atoms into the edge states and cold atoms can be visualized
by imaging the atomic cloud in-situ. Momentum distributions and band populations can
also be obtained through time-of-flight imaging and band-mapping, respectively.

In this review, we take a closer look at the merger of two fields: topological quantum
matter as discussed in condensed matter physics and ultracold atoms. Both are active
fields of research with a large amount of literature. For readers interested in more special-
ized reviews of quantum simulation with ultracold atoms, we recommend review articles
[26, 27, 49–59]. For readers interested in more dedicated reviews on topological phases
in condensed matter, we recommend Refs. [14, 15, 23, 24, 60, 61]. The aim of this re-
view is to satisfy the needs of both newcomers and experts in this interdisciplinary field.
To cater to the needs of newcomers, we devote Sec. 2 to a tutorial-style introduction to
topological invariants commonly used in condensed matter physics, and the more general
introductions are put in the Appendix A. In Sec. 3, we describe how the Hamiltonians
can be fully engineered in cold atom systems. A reader new to condensed matter physics
or ultracold atomic physics would find these two sections beneficial. In Sec. 4, our em-
phasis is on recent theoretical and experimental developments on how to realize various
topological states (models) or phenomena in different OL systems. In Sec. 5, we introduce
the developed methods for probing topological invariants and other intrinsic properties
of the topological phases in cold atom systems. In Sec. 6 and Sec. 7, we move beyond
single-particle physics of Bloch bands in lattice systems to describe some quantum matter
in the continuum and interacting many-body phases that have topologically nontrivial
properties. Finally, an outlook on future work and a brief conclusion are given.

2. Topological invariants in momentum space

The purpose of this section is to briefly introduce various topological invariants referenced
in the following sections. The more general introduction of topological invariants with
the derivations of many formulas in this section are put in the Appendix A.

2.1 Gauge fields in momentum space

We denote the momentum-space Hamiltonian of an insulator as H(k) with k in the first
Brillouin zone (BZ), and assume finite number of bands, namely H(k) is a (M + N)-
dimensional matrix at each k, where M and N are numbers of conduction and valence
bands, respectively. At each k, H(k) can be diagonalized and the conduction and valence
eigenpairs are (E+,a, |+,k, a〉) and (E−,b, |−,k, b〉), respectively, with a = 1, · · · ,M and
b = 1, · · · , N . At each k, valence states |−,k, b〉 span an N dimensional vector space
and these vector space spread smoothly over the whole BZ. We can define the Berry
connection (gauge potential) as

Aµb,b′(k) = 〈−,k, b| ∂
∂kµ
|−,k, b′〉 (1)
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with µ = 1, 2, · · · , d labeling momentum coordinates. Accordingly, the Berry curvature
(gauge field strength) is given by

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]. (2)

To have a basic idea of the Berry connection and curvature in momentum space, we
take a general two-band model as an example. The Hamiltonian reads

H2b(k) = d(k) · σ, (3)

where σi with i = 1, 2, 3 are the Pauli matrices. Strictly speaking, the term ε(k)12

should also be added into Eq. (3). But it is ignored here because it is irrelevant to
the topology of the band structure, noticing that it only shifts the energy spectrum
and does not affect eigenstates. As the spectrum is given by E±(k) = ±|d(k)|, for
insulator |d(k)| is not equal to zero for all k. The valence eigenstates can be represented
by |−,k〉 = e−iσ3φ(k)/2e−iσ2θ(k)/2| ↓〉, where θ(k) and φ(k) are the standard spherical

coordinates of d̂(k) ≡ d(k)/|d(k)|, and | ↓〉 is the negative eigenstate of σ3. The Berry
connection can be straightforwardly derived as

Aµ(k) =
i

2
cosθ(k) ∂µφ(k). (4)

Under the U(1) gauge transformation |−,k〉 → eiϕ(k)|−,k〉, the Berry connection Aµ(k)
is transformed to be Aµ(k)+ i∂kµϕ(k). But the Berry curvature is invariant under gauge

transformations, and is given from Eq. (2) by Fµν(k) = − i
2sinθ(k)[∂µθ(k)∂νφ(k) −

∂νθ(k)∂µφ(k)], which can be recast in terms of d̂(k) as

Fµν(k) =
1

2i
d̂ · (∂µd̂× ∂νd̂). (5)

2.2 Quantized Zak phase

The simplest example of topological invariant in momentum space is the so-called quan-
tized Zak phase. The Zak phase is a Berry’s phase picked up by a particle moving across
a 1D BZ [62]. For a given Bloch wave ψk(x) with quasimomentum k, the Zak phase can
be conveniently expressed through the cell-periodic Bloch function uk(x) = e−ikxψk(x):

γ = i

∫ G/2

−G/2
Akdk, (6)

where the gauge potential in Eq. (1) is given by Ak = 〈uk|∂k|uk〉 and G = 2π/a is the
reciprocal lattice vector and a is the lattice period. As i∂k in Eq. (6) is the position
operator, physically γa/(2π) is just the center of the Wannier function corresponding to
uk(x). Accordingly, it is noticed that the Zak phase γ, Eq. (6), is well defined module
2π, because a shift of the lattice origin by d, which corresponds to uk(x) → eikduk(x),
changes Eq. (6) by 2πd/a. So the Zak phase γ can be any real number mod 2π, and
therefore is not a topological invariant. However, certain symmetries can quantize it into
integers in units of π. The quantization of Eq. (6) was first discussed in 1D band theory
by Zak taking into account the inversion symmetry [62]. In order to preserve the inversion
symmetry, the wanner-function center has to be either concentrated at lattice sites or at
the midpoints of lattice sites.
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A paradigmatic 1D model with the topological invariant being the Zak phase is pro-
vided by the Su-Schrieffer-Heeger model of polyacetylene [3], which exhibits two topolog-
ically distinct phases. A unit cell in this model has two sites with sublattice symmetry,
which quantizes the Zak phase. Accordingly the cell-periodic wave function uk can be
viewed as a two-component spinor uk = (αk, βk), and the Zak phase, Eq. (6), in units of

π takes an simple form νZ = (i/π)
∫ G/2
−G/2(α∗k∂kαk + β∗k∂kβk)dk.

2.3 Chern numbers

The second example of the topological invariants in momentum space is the famous
Chern number, which can be formulated for any even-dimensional spaces. For 2n di-
mensions, the corresponding Chern number is called the nth Chern number, and the
corresponding integrand is called the nth Chern character. We first introduce the first
Chern number (conventionally called Chern number), which appears in 2D momentum
space k = (kx, ky). The BZ forms a torus T2 and the Chern number for a 2D insulator
is given as

C =
i

2π

∫
T2

d2k trFxy. (7)

Noticing that the trace over the commutator in Eq. (2) vanishes, we find that the Chern
number essentially comes from the Abelian connection aµ = trAµ, which is just the sum of
the Abelian Berry connection of all valence bands, namely, that aj =

∑
α〈k, α|∂/∂kj |k, α〉

with α labeling the valence bands. Accordingly the Chern number of Eq. (7) can be
rewritten in terms of the Abelian connection as

C =
i

2π

∫ ∫
BZ

fxy(k)dkxdky, fxy(k) =
∂ay(k)

∂kx
− ∂ax(k)

∂ky
, (8)

The Chern number of Eq. (7) is also called the Thouless-Kohmoto-Nightingale-den Nijs
(TKNN) invariant, which was shown to be the transverse conductance in units of e2/h
using the Kubo formula, and therefore is the topological invariant to characterize the
integer quantum Hall effect [10]. A nonvanishing transverse conductance requires the
TRS breaking, which is consistent with Eq. (7), since iF is odd under TRS. For the
two-band model of Eq. (3), the Chern number can be expressed explicitly by

C =
1

4π

∫ ∫
BZ

d̂ · (∂kxd̂× ∂ky d̂)dkxdky, (9)

which can be derived by directly substituting Eq. (5) into Eq. (8).
If n = 2, the second Chern number for a 4D insulator is given by

C2 = − 1

32π2

∫
T4

d4k εµνλσtrFµνFλσ. (10)

For more than one valence bands, the second Chern number, Eq. (10), cannot be ex-
pressed in terms of the Abelian Berry connection aµ(k), which is in contrast to the first
Chern number, and therefore is essentially non-Abelian. It was predicted that the second
Chern number C2 can be used to characterize a quantum Hall effect in 4D space [16],
which was realized in a recent experiment with ultracold atoms loaded in an optical lattice
with synthetic dimensions [17]. Furthermore, in contrast to that all systems with TRS
have vanishing first Chern number, the second Chern number of Eq. (10) can preserve
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TRS, namely, that there exist nontrivial time-reversal-invariant 4D Chern insulators. In
addition, the meaning of the second Chern number for electromagnetic response can be
found in Refs. [63, 64].

Let us consider isolated gap-closing points in a (2n + 1)D BZ, where the Berry con-
nection is not well-defined. Although the Berry connection is singular at any gap-closing
point, a (2n)D sphere S2n can be chosen to enclose it, restricted on which the spectrum
is gapped with the well-defined Berry connection. Accordingly the Chern number can be
calculated on the S2n, and is referred to as the monopole charge of the singular point.
For monopoles in 3D space, the monopole charge can be calculated by the Abelian Berry
connection aµ = trAµ, and therefore are termed as Abelian monopoles. For instance the
Weyl points described by the Hamiltonian HW (k) = ±k · σ can be interpreted as unit
Abelian monopoles in momentum space for the respective Abelian gauge field of valence
band restricted on S2 surrounding the origin. The monopole charges defined in higher
dimensions are introduced in the Appendix.

2.4 Spin Chern number and Z2 topological invariants

We further consider particles with spin-1/2 (or pseudo-spin-1/2) in 2D momentum space.
If the U(1) spin-rotation symmetry to any specific direction (denoted as z-direction here)
is preserved, the corresponding spin polarization s =↑, ↓ is a good quantum number, and
therefore the notation |k, α〉 of valence bands used above should be refined as |k, α, s〉.
Then each spin s can be individually assigned a Chern number Cs as that of Eq. (8),
which is the sum of the Chern numbers of all valence bands with the corresponding
spin s and naturally integer valued. As a topological insulator it is now characterized by
two topological indices, the usual Chern number C and the spin Chern number Cs [65],
respectively given by

C = C↑ + C↓, Cs = (C↑ − C↓)/2. (11)

Provided TRS is preserved (thus C = 0) as well as the U(1) spin-rotation symmetry, the
spin Chern number Cs is also integer valued. In this case Cs can be used to characterized
the quantum spin Hall effect [65].

Notably, the U(1) spin-rotation symmetry can usually be broken by generic spin-orbital
couplings and therefore is not a good symmetry, but TRS is still preserved in the absence
of magnetic field. In the general situation with only TRS, the spin Chern number Cs is
no longer well-defined and should be replaced by a Z2 topological invariant for character-
izing the 2D topological insulators with TRS [19–21], which was first proposed by Kane
and Mele in Ref. [18]. The Z2 topological invariants proposed there can be generalized
to characterize 3D time-reversal-invariant topological insulators. These Z2 topological
invariants are briefly introduced in the Appendix A.

2.5 The Hopf invariant

There is a kind of topological insulator restricted in both two bands and three dimensions.
For a two-band insulator, the Hamiltonian (3) at each k can be topologically regarded

as a point d̂(k) on a unit sphere S2, and thereby it gives a mapping from the 3D BZ
to S2. Because of the homotopy group π3(S2) ∼= Z, there exist (strong) 3D two-band
topological insulators with Z classification, which is termed the Hopf insulators [66]. The
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corresponding topological invariant is called the Hopf invariant [66, 67], and is given by

νH = − 1

4π2

∫
T3

d3k εµνλAµ∂νAλ, (12)

whereAµ = 〈−,k|∂kµ |−,k〉 is the Berry connection of the valence band defined in Eq. (1).

3. Engineering the Hamiltonian of atoms

For particles of mass m and index i, charge q and magnetic moment µB, in an electro-
magnetic field described by the vector potential A = (Ax, Ay, Az) and scalar potential
V (r), the Hamiltonian is given by

H =
∑
i

[
1

2m
(pi − qA)2 + V (ri)− µB ·B(ri)

]
+ Uint, (13)

where pi = −i~∇i is the momentum operator, B is the magnetic field, and Uint is the
Hamiltonian caused by the interaction between particles. One of the great advantages
of ultracold atomic systems is that, all terms in the Hamiltonian (13) are tunable in
experiments, and thus many exotic quantum phases, including various topological phases
addressed latter in this review, can be realized. In this section, we first briefly review the
methods to modify the mean kinetic energy 〈p2

i 〉/2m related to the temperature and the
interaction Uint, and then address more detailed the approaches to engineer the so-called
artificial gauge fields for neutral atoms (the vector potential A, the scalar potential V (ri),
and the effective Zeeman field B(ri)), which are fundamentally important in creating
various exotic topological phases.

3.1 Laser cooling

The mean kinetic energy of the atoms 〈p2
i 〉/2m is mainly determined by the temperature

of the atomic cloud and can be controlled by laser cooling, which refers to a number of
techniques in which atomic samples are cooled down to near absolute zero. Laser cooling
techniques rely on the fact that when an atom absorbs and re-emits a photon its mo-
mentum changes. For an ensemble of particles, their temperature is proportional to the
variance in their velocities. That is, more homogeneous velocities among particles cor-
responds to a lower temperature. Laser cooling techniques combine atomic spectroscopy
with the mechanical effect of light to compress the velocity distribution of an ensemble of
particles, thereby cooling the particles. A Nobel prize was awarded to three physicists, S.
Chu, C. N. Cohen-Tannoudji, and W. D. Phillips, for their achievements of laser cooling
of atoms in 1997.

The first proposal of laser cooling by Hänsch and Schawlow in 1974 [68] was based upon
Doppler cooling in a two-level atom. It was suggested that the Doppler effect due to the
thermal motion of atoms could be exploited to make them absorb laser light at a different
rate depending on whether they moved away from or toward the laser. Consider an atom
irradiated by counterpropagating laser beams that are tuned to the low frequency side of
atomic resonance. The beam counterpropagating with the atom will be Doppler shifted
towards resonance, thus increasing the probability of photon absorption. The beam co-
propagating with the atom will be frequency-shifted away from resonance, so there will
be a net absorption of photons opposing the motion of the atom. The net momentum kick
felt by the atom could then be used to slow itself down. By surrounding the atom with
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three pairs of counter-propagating beams along the x, y and z axes, one can generate a
drag force opposing the velocity of the atom. The term ”optical molasses” was coined to
describe this situation.

When this simple principle was finally applied in the early 1980s, it immediately led
to low temperatures only a few hundreds of micro-Kelvins above absolute zero. As an
example, the mean velocity of a 87Rb atomic gas in temperature of 100 mK is about
0.17 m/s, which is much slower than the velocity of several hundred meters per second
at room temperature. Ultracold atoms also turned out to be an ideal raw material for
the realization of magnetic traps for neutral atoms. Held in place by magnetic dipole
forces, such atomic gases can then be evaporatively cooled by successively lowering the
trap depth, thus letting the most energetic atoms escape and allowing the remaining
ones to rethermalize. In this way, the fundamental limitations of laser cooling due to
photon scattering can be overcome and the temperature as low as a few nano-Kelvins
can be reached. The mean velocity of a 87Rb atomic gas in temperature of 1 nK is about
5.3× 10−4 m/s.

3.2 Effective interactions

The term Uint in Eq. (13) is induced by interatomic interactions and can be manipulated
with a powerful method called the Feshbach resonance (for a review, see Ref. [42]). The
fundamental result for the atom-atom scattering is that under appropriate conditions,
the effective interaction potential Uint(r = ri−rj) of two atoms (particle indices i and j)
of reduced mass mr can be replaced by a delta function of strength 2π~2as/mr, where
as is the low-energy s-wave scattering length. As for two similar particles with mass m,
the commonly quoted form of the effective interaction is

Uint(r) =
4πas~2

m
δ(r). (14)

Alternative, it can be understood in the following way: the mean interaction energy of
the many-body system is given by the expression

〈Eint〉 =
1

2

4πas~2

m

∑
ij

|Ψ(rij → 0)|2, (15)

where Ψ is the many-body wave function and the notation rij → 0 means that the
separation rij of the two atoms, while large compared to as, is small compared to any
other characteristic length (e.g., thermal de Broglie wavelength, interparticle spacing,
etc). The conditions necessary for the validity of Eq. (15) in the time-independent case are
the following: First, the orbital angular momentum l 6= 0 scattering must be negligible.
Second, the existence of the limit rij → 0 implies the condition kcas � 1, where kc is the
characteristic wave-vector scale of the many-body wave function Ψ (for a very general
argument, see Ref. [69]).

The scattering length as can be manipulated by a Feshbach resonance [42]. It oc-
curs when the bound molecular state in the closed channel energetically approaches the
scattering state in the open channel. Then even weak coupling can lead to strong mix-
ing between the two channels. The energy difference can be controlled via a magnetic
field when the corresponding magnetic moments are different. This leads to a magnet-
ically tuned Feshbach resonance. The magnetic tuning method is the common way to
achieve resonant coupling and it has found numerous applications. A magnetically tuned
Feshbach resonance without inelastic two-body channels can be described by a simple
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expression, introduced by Moerdijk et al. [70], for the s-wave scattering length as as a
function of the magnetic field strength B,

as(B) = a0

(
1− ∆rw

B −B0

)
. (16)

The background scattering length a0 represents the off resonant value. The parameter
B0 denotes the resonance position, where the scattering length diverges (as → ±∞),
and the parameter ∆rw is the resonance width. Note that both a0 and ∆rw can be
positive or negative, thus the interaction energy Uint can be positive or negative and
even infinity by just controlling the magnetic field strength B. Alternatively, resonant
coupling can be achieved by optical methods, leading to optical Feshbach resonances
with many conceptual similarities to the magnetically tuned case. Such resonances are
promising for cases where magnetically tunable resonances are absent.

3.3 Dipole potentials and optical lattices

The dipole potentials. The potentials V (r) in Eq. (13) can be manipulated with the laser
beams. As for the topological band structures reviewed in this paper, we are particularly
interested in OLs formed by the light-atom interactions. OLs and other optical traps
work on the principle of the ac Stark shift. In order to understand the origin of light-
induced atomic forces and their applications in laser cooling and trapping it is instructive
to consider an atom oscillating in an electric field. When an atom is subjected to a laser
field, the electric field E induces a dipole moment pd in the atom as the protons and sur-
rounding electrons are pulled in opposite directions. The dipole moment is proportional
to the applied field, pd = α(ω)E, where the complex polarizability of the atoms α(ω)
is a function of the laser light’s angular frequency ω. The potential felt by the atoms is
equivalent to the ac Stark shift and is defined as

V (r) = −1

2
〈pd ·E〉 = −1

2
α(ω)〈E2(t)〉, (17)

where the angular brackets 〈·〉 indicate a time average in one cycle.
For a two-level atomic system, away from resonance and with negligible excited state

saturation, the dipole potential can be derived semiclassically. To perform such a calcu-
lation, the polarizability is obtained by using Lorentzs model of an electron bound to an
atom with an oscillation frequency equal to the optical transition angular frequency ω0.
The natural line width has a Lorentzian profile as the Fourier transform of an exponen-
tial decay is a Lorentzian. Then the dipole potential calculated by the two-level model
is given as

V (r) = −3πc2Γ

2ω3
0

(
1

ω0 − ω
+

1

ω0 + ω

)
I(r), (18)

where Γ is the natural line width of the excited state and has a Lorentzian profile, and
I(r) = ε0c|E(r)|2/2 is the laser intensity at the position r. For small detuning ∆d = ω−ω0

and ω/ω0 ≈ 1, the rotating wave approximation can be made and the 1/(ω0 + ω) term
in Eq. (18) can be ignored. Under such an assumption, the scale of the dipole potential
V (r) ∝ I(r)/∆d. Therefore, a blue-detuned laser (i.e., the frequency of the light field is
larger than the atomic transition frequency (∆d > 0)) will produce a positive AC-stark
shift. The resulting dipole potential will be such that its gradient, which results in a force
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on the atom, points in the direction of decreasing field. On the other hand, an atom will
be attracted to the red-detuned (∆d < 0) regions of high intensity.

Optical lattices. A stable optical trap can be realized by simply focusing a laser beam
along the z direction to a waist of size w under the red-detuned condition. If the cross
section of the laser beam is a Gaussian form, with w0 and zR = w2

0π/λ being the spot
(waist) and Rayleigh lengths, respectively, the resulting dipole potential is given as

V (r, z) = V0 exp

(
− 2r2

w2
0

√
1 + (z/zR)2

)
, (19)

where the trap depth V0 = Ip/∆d with Ip being the peak intensity of the beam. Expanding
this expression at the waist z = 0 around r = 0, we obtain that in the harmonic ap-
proximation the radial trap frequency in such a potential is given by ω⊥ =

√
2V0/m/w0.

Besides this radial trapping force, there is also a longitudinal force acting on the atoms.
However, this force is much less than the radial one owing to the much larger length scale
given by the Rayleith length zR. To confine the atoms tightly in all spatial directions,
one can use several crossed dipole traps or superpose an additional magnetic trap.

The possibility to create dipole potentials proportional to the laser intensity allows
for the creation of OL potentials from standing light waves [71], as artificial crystals of
light to trap ultracold atoms. As an example, we first address how to realize a 1D lattice
created by two counterpropagating laser beams with wave vectors kL and −kL. We
consider two identical laser beams of peak intensity Ip and make them counterpropagate
in such a way that their cross sections completely overlap. In addition, we also arrange
their polarizations to be parallel. In this case, the two beams can create an interference
pattern, with a distance λL/2 (λL = 2π/kL and kL = |kL|) between two maxima or
minima of the resulting light intensity. Therefore, the potential seen by the atoms is
simply given by

Vlat(x) = V0cos2(πx/d), (20)

where the lattice spacing d = λL/2 and V0 is the lattice depth.
Note that mimicking solid-state crystals with an OL has the great advantage that,

in general, the two obvious parameters in Eq.(20), the lattice depth V0 and the lattice
spacing d can be easily controlled by changing the laser fields. Rather than directly cal-
culating the lattice depth V0 from the atomic polarizability in Eq. (17), one typically

uses the saturation intensity I0 of the transition and obtains V0 = η~Γ Γ
∆
Ip
I0

, where the
prefactor η of the order unit depends on the level structure of the atom in question
through the Clebsh-Gordan coefficients of the various possible transitions between sub-
levels. Thus, the lattice depth V0 is proportional to the laser intensity Ip, which can be
easily controlled by using an acousto-optic modulator. This device allows for a precise
and fast (less than a microsecond) control of the lattice beam intensity and introduces a
frequency shift of the laser light of tens of MHz. Typically, the lattice depth is measured
in units of the recoil energy ER = π2~/(2md2), and often the dimensionless parameter
s = V0/ER is used. It corresponds to the kinetic energy required to localize a particle on
the length of a lattice constant d. Recoil energies are of the order of several kilohertz,
roughly corresponding to microkelvin or several picoelectron volts. The lattice depth can
take values of up to hundreds of recoil energies. On the other hand, the lattice spacing
d = λL/2 between two adjacent wells of a lattice can be enhanced by making the two
counterpropagating beams intersect at an angle θ < π. Assuming that the polarizations
of the two beams are perpendicular to the plane spanned by them, this will give rise to
a periodic potential with lattice constant d(θ) = d/cos(θ/2) ≥ d.
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In experiments, a 1D OL can be created in several ways. The simplest way is to take a
linearly polarized laser beam and retro-reflect it with a high-quality mirror. If the retro-
reflected beam is replaced by a second phase-coherent laser beam, which can be obtained
by dividing a laser beam in two with a polarized beam splitter, we can introduce a
frequency shift δνL between the two lattice beams. The periodic lattice potential will now
no longer be stationary but move at a velocity vlat = δνLd. If the frequency difference is
varied at a rate δν̇L, the lattice potential will be accelerated with alat = δν̇Ld. Therefore,
there will be a force F = malat = mδν̇Ld, acting on the atoms in the rest frame of the
lattice. We shall see latter that this gives a powerful tool for manipulating the atoms in
an OL.

A superlattice or disordered lattice can be realized with two pairs of counterpropa-
gating beams. We consider two counterpropagating beams, where the polarizations are
perpendicular and the wave vectors are kL1 and kL2 , respectively. In this case, each pair
can form a lattice which is similar to that of Eq. (20), and the resulting total potential
is then given by

Vlat(x) = s1ER1cos2(πx/d1) + s2ER2cos2(πx/d2), (21)

where dj = π/kLj (j = 1, 2), and s1 and s2 measure the height of the lattices in units of
the recoil energies. A superlattice with the period pq is created when the ratio d1/d2 =
p/q (with p, q being integers) is a rational number. For instance, a dimerized lattice
with two sites per unit cell is realized when d1/d2 = 1/2, which is the famous Su-
Schrieffer-Heeger model with a topological band structure (see Sec. 4.1.1). On the other
hand, a disordered lattice can be formed when the ratio d1/d2 is an irrational number.
Especially, when s2 � s1 the disordering lattice has the only effect to scramble the
energies, which are nonperiodically modulated at the length scale of the beating between
the two lattices (2/λL1 − 2/λL2 )−1 with λLj = 2π/kLj . Theoretical and experimental works
have demonstrated that in finite-sized systems this quasi-periodic potential can mimic a
truly random potential and allow the observation of a band gap [72, 73]. Alternatively,
for a system of ultracold atoms in a lattice one can introduce controllable disorders by
using laser speckles [74].

By combining standing waves in different directions or by creating more complex in-
terference patterns, one can create various 2D and 3D lattice structures. To create a 2D
lattice potential for example, one can use two orthogonal sets of counter propagating
laser beams. In this case the lattice potential has the form

Vlat(x, y) =V0[cos2(kLx) + cos2(kLy) + 2ε1 · ε2cosφcos(kLx)cos(kLy)], (22)

where ε1 and ε2 are polarization vectors of the counter propagating set and φ is the
relative phase between them. In derivation of this equation, we have assumed that the two
pairs of laser beams have the same wave vector magnitude kL and the same laser density
Ip. A simple square lattice can be created by choosing orthogonal polarizations between
the standing waves. In this case the interference term vanishes and the resulting potential
is just the sum of two superimposed 1D lattice potentials. Even if the polarization of the
two pair of beams is the same, they can be made independent by detuning the common
frequency of one pair of beams from that the other. A more general class of 2D lattices
can be created from the interference of three laser beams [25, 75–77], which in general
yield non-separable lattices. Such lattices can provide better control over the number of
nearest-neighbor sites and allow for the exploration of richer topological physics, such
as the honeycomb lattices for the Haldane model or Kane-Mele model. Moreover, 3D
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lattices can be created with more laser beams. For example, a simple cubic lattice

Vlat(x, y, z) = V0[cos2(kLx) + cos2(kLy) + cos2(kLz)]

can be formed with three orthogonal sets of counter propagating laser beams when they
have the same wave vector magnitude kL and the same laser density Ip, but have orthog-
onal polarizations.

The tight-binding Hamiltonian. A useful tool to describe the particles in OLs is the
tight-binding approximation. It deals with cases in which the overlap between localized
Wannier functions at different sites is enough to require corrections to the picture of
isolated particles but not too much as to render the picture of localized wave functions
completely irrelevant. In this regime, one can only take into account overlap between
Wannier functions in nearest neighbor sites as a very good approximation. Wannier
functions are a set of orthonormalized wave functions that fully describes particles in
a band that are maximally localized at the lattice sites. They can form a useful basis
to describe the dynamics of interacting atoms in a lattice. Furthermore, if initially the
atoms are prepared in the lowest band, the dynamics can be restricted to remain in this
band. In the absence of the gauge potential and Zeeman field, the Hamiltonian in Eq.
(13) for the interacting particles in OLs is given by

H = − ~2

2m

∑
i

∇2
i + Vlat(x) + V (x) + Uint, (23)

where Vlat(x) is the periodic lattice potential, and V (x) denotes any additional slowly-
varying external potential that might be present (such as a harmonic confinement used
to trap the atoms). In the grand canonical ensemble, the second-quantized Hamiltonian
reads

H2 =

∫
Ψ†(x)

[
~2

2m
∇2 + Vlat(x) + V (x) + Uint − µ

]
Ψ(x)dx, (24)

where Ψ†(x) is the bosonic or fermionic field operator that creates an atom at the position
x, and µ is the chemical potential and acts as a Lagrange multiplier to the mean number
of atoms in the grand canonical ensemble.

We first consider the noninteracting situation. For sufficiently deep lattice potentials,
the atomic field operators can be expanded in terms of localized Wannier functions.
Assuming that the vibrational energy splitting between bands is the largest energy scale
of the system, atoms can be loaded only in the lowest band, where they will reside under
controlled conditions. Then one can restrict the basis to include only lowest band Wannier
functions w0(x), i.e., Ψ(x) =

∑
j ajw0(x− xj), where aj is the annihilation operator at

site j which obeys bosonic or fermonic canonical commutation relations. The sum is taken
over the total number of lattice sites. If Ψ(x) in this form is inserted in Eq. (24), and only
the tunneling processes between nearest neighbor sites are kept (Next-nearest-neighbor
tunneling amplitudes are typically two orders of magnitude smaller than nearest-neighbor
ones and they can be neglected.), one obtains the single-particle Hamiltonian

H = −
∑
〈i,j〉

Jija
†
iaj +

∑
j

(Vj − µ)a†jaj , (25)

where Vj = V (xj) and the notation 〈i, j〉 restricts the sum to nearest-neighbor sites. Jij
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is the tunneling matrix element between the nearest neighboring lattice sites i and j

Jij = −
∫
dxw∗0(x− xi)

[
− ~2

2m
∇2 + Vlat(x)

]
w0(x− xi+1), (26)

Equation (25) is a general noninteracting tight-binding Hamiltonian for atoms in OLs.
The Hubbard models. For interacting atoms in an OL, the Hubbard model can be con-

sidered an improvement on the single-particle tight-binding model [50, 78]. The Hubbard
model was originally proposed in 1963 to describe electrons in solids and has since been
the focus of particular interest as a model for high-temperature superconductivity. The
particles can either be fermions, as in Hubbard’s original work and named the (Fermi-)
Hubbard model, or bosons, which is referred to as the Bose-Hubbard model. For strong
interactions, it can give behaviors qualitatively different from those of the single-particle
model and correctly predict the existence of the so-called Mott insulators, which are
prevented from becoming conductive by the strong repulsion between the particles. The
Hubbard model is a good approximation for particles in a periodic potential at suffi-
ciently low temperatures where all the particles are in the lowest Bloch band, as long as
any long-range interactions between the particles can be ignored. If interactions between
particles on different sites of the lattice are included, the model is often referred to as
the “extended Hubbard model”.

The simplest nontrivial model that describes interacting bosons in a periodic potential
is the Bose-Hubbard Hamiltonian. It can be derived from Eq. (25) with the additional
interacting term Uint. In the grand canonical ensemble and assuming the interactions are
dominated by s-wave interactions, i.e., Uint = 2πas~2

m |Ψ(x)|2, the Bose-Hubbard Hamil-
tonian is given by [79],

HBH = −J
∑
〈i,j〉

b†ibj +
∑
j

(Vj − µ)b†jbj +
U

2

∑
j

b†jb
†
jbjbj , (27)

where U = (4πas~2/m)
∫
|w0(x)|4dx accounts for interatomic interactions and measures

the strength of the repulsion of two atoms on the same lattice site. To express that
the atoms are bosons, the notation of the annihilation operator in Eq. (27) is explicitly
denoted as bj . While the parameter J decreases exponentially with lattice depth V0, U

increases as a power law of V
D/4

0 , where D is the dimensionality of the lattice. The Bose-
Hubbard model has been used to describe many different systems in solid-state physics,
such as short correlation length superconductors, Josephson arrays, critical behaviors of
4He and, recently, cold atoms in OLs. The Bose-Hubbard Hamiltonian exhibits a quantum
phase transition from a superfluid to a Mott insulator state [80]. Its phase diagram has
been intensively studied via analytical and numerical approaches with many different
techniques and experimentally confirmed using ultracold atomic systems in 1D, 2D, and
3D lattice geometries [50, 78].

The ultracold atomic system also provides an almost ideal experimental realization of
the originally proposed Fermi-Hubbard model with highly tunable parameters [81]. To
simulate the spin-1/2 electrons in condensed matter physics, we may need two-component
Fermi gas trapped in OLs. The Fermi-Hubbard Hamiltonian then takes the form

HFH = −J
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U

N∑
i=1

ni,↑ni,↓ +
∑
j

εjnj . (28)

Here the annihilation operator for spin σ on j-th site is denoted as cj,σ, and nj,σ = c†j,σcj,σ
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is the spin-density operator, with the total density operator nj = nj,↑ + nj,↓. The last
term takes account of the additional confinement V (x) of the atom trap, which is usually
harmonic, with εj the corresponding energy offset on the j-th lattice site.

Experimentally, the tunnel amplitude in the Hubbard models is controlled by the
intensity of the standing laser waves. This allows for a variation of the dimensionality of
the system and enables tuning of the kinetic energy. The energy width of the lowest band
is W = 4JD. Due to the low kinetic energy of the atoms, two atoms of different spins
usually interact via s-wave scattering and the coupling constant is given by g = 4πas/m.
With this, the Hubbard interaction U can be tuned to negative or positive values by
exploiting Feshbach resonances. However, a single component Fermi gas is effectively
noninteracting because Pauli’s principle does not allow s-wave collisions of even parity.

3.4 Artificial magnetic fields and spin-orbit couplings

A magnetic field plays a crucial role in topological quantum matter with broken TRS,
whereas an SOC is a basic ingredient for those having TRS. Atoms are, however, electri-
cally neutral; therefore, it is highly desirable to make them behave as charged particles in
an electromagnetic field. This capability has been explored and demonstrated in a series
of publications, including several nice review papers [26, 27, 51, 54–56]. In this section
we describe three typical methods (geometric gauge potentials, laser-assisted tunneling
and periodically driven OLs) to generate artificial magnetic fields and SOCs for ultracold
neutral atoms.

3.4.1 Geometric gauge potentials

When a quantum particle with internal structure moves adiabatically in a closed path,
Mead [82] and Berry [12] discovered that a geometric phase, in addition to the usual
dynamic phase, is accumulated on the wave function of the particle. This geometric
phase is a generalization of Aharonov-Bohm phase [83] that a charged particle moving
in a magnetic field acquires. Therefore, an artificial magnetic field can emerge in cold
atom systems when the atomic center-of-mass motion is coupled to its internal degrees of
freedom through laser-atom interaction. Based on this geometric phase approach, Refs.
[84–88] proposed setups for systematically engineering vector potentials associated with
a non-zero artificial magnetic field for quantum degenerate gases, and they have been
experimentally realized for both bosonic [89, 90] and fermionic atoms [91]. When the local
atomic internal states dressed by the laser fields have degeneracies, effective non-Abelian
gauge potentials can be formed [92–96], manifesting as artificial SOCs in Bose-Einstein
condensations [97–101] or degenerate Fermi gases [102, 103]. The artificial SOCs have
been experimentally realized by several groups [31–35, 104–107], and they lead to an
atomic spin Hall effect [84, 108], which has been experimentally demonstrated [104].

To understand these artificial gauge fields, we consider the adiabatic motion of neutral
atoms with N internal levels in stationary laser fields. The full Hamiltonian of the atoms
reads

H =
p2

2m
+ V (r) +HAL (29)

where HAL represents the laser-atom interaction. HAL depends on the position of the
atoms and is a N × N matrix in the representation of the internal energy levels |j〉. In
addition, the potential V (r) is assumed to be diagonal in the internal states |j〉 with

the form V (r) =
∑N

j=1 Vj(r)|j〉〈j|. In this case, the full quantum state of the atoms

(including both the internal and the motional degrees of freedom) can then be expanded
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to |Φ(r)〉 =
∑N

j=1 φj(r)|j〉.
We may discuss the problem in the representation of the dressed states |χn〉 that are

eigenvectors of the Hamiltonian HAL, that is, HAL |χn〉 = εn|χn〉. Then the dressed
states |χ〉 = (|χ1〉, |χ2〉, · · · , |χN 〉)> (with > denoting the transposition) are related to
the original internal states |j〉 with the relation |χ〉 = U(|1〉, |2〉, · · · , |N〉)>, where the
transform matrix U is a unitary operator. In the new basis |χ〉, the full quantum state
of the atom |Φ(r)〉 is written as |Φ(r)〉 =

∑
j ψj(r)|χj(r)〉, where the wave functions

|Ψ〉 = (|ψ1〉, |ψ2〉, · · · , |ψN 〉)> obey the Schrödinger equation i~ ∂
∂t |Ψ〉 = Heff|Ψ〉, with the

effective Hamiltonian Heff = UHU † taking the following form:

Heff =
1

2m
(−i~∇−A)2 + εIN + Ṽ (r). (30)

Here A = i~U∇U †, Ṽ (r) = UV (r)U †, ε = (ε1, ε2, · · · , εN )>, and IN is the N ×N unit
matrix [84, 92, 109]. In the derivation we have used the operator identity UP2U † =(
−i~∇− i~U∇U †

)2
because of ∇(U †U) = 0. From Eq. (30), one can see that in the

dressed basis the atoms can be considered as moving in an induced (artificial) vector
potential A and a scalar potential Ṽ (r), where the potential A is usually called the
Mead-Berry vector potential [12, 82]. They come from the spatial dependence of the
atomic dressed states with the elements

Amn = i~〈χm(r)|∇χn(r)〉, Ṽmn = 〈χm(r)|V (r)|χn(r)〉. (31)

Abelian gauge potential. An Abelian U(1) gauge potential is induced for each dressed
states provided that the off-diagonal elements of the matrices A and Ṽ are much smaller
than the energy difference between any pair of the dressed states, which implies that
the eigenstates must be non-degenerate. In this case an adiabatic approximation can be
applied which is equivalent to neglecting the transitions between the specific dressed state
|χn〉 and the remaining |χl〉 with n 6= l. Therefore, atoms in the dressed state |χn〉 evolve
according to a separately effective Hamiltonian Hn. We project the full Hamiltonian in
Eq. (30) to the specific state |χn〉 and obtain an effective Hamiltonian given by

Hn =
1

2m
(−i~∇−An)2 + εn + Ṽn + Ṽ ′n, (32)

where An = Amnδnn, Ṽn = Ṽmnδnn and Ṽ ′n = 1
2m

∑N
l 6=n An,l ·Al,n. So an Abelian gauge

potential U(1) is induced for the neutral atoms.
Non-Abelian gauge potential. A non-Abelian gauge potential introduced by Wilczek and

Zee [109] can also be induced in this way if there are degenerate (or nearly degenerate)
dressed states [92]. In this case the adiabatic approximation fails and then the off-diagonal
couplings between the degenerate dressed states can no longer be ignored. Assume that
the first q atomic dressed states among the total N states are degenerate, and these levels
are well separated from the remaining N − q states, we neglect the transitions from the
first q atomic dressed states to the remaining states. In this way, we can project the full
Hamiltonian onto this subspace. Under this condition, the wave function in the subspace
Ψ̃ = (ψ1, . . . , ψq)

> is again governed by the Schrödinger equation i~ ∂
∂tΨ̃ = H̃effΨ̃, where

the effective Hamiltonian reads

H̃eff =
1

2m
(−i~∇−A)2 + εIq + Ṽ + Ṽ ′. (33)

Here the matrices A, εIq, and Ṽ are the truncated q × q matrices in Eq. (30). The
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projection of the term A2 in Eq. (30) to the q dimensional subspace cannot entirely be
expressed in terms of the truncated matrix A. This gives rise to an additional scalar
potential Ṽ ′ which is also a q × q matrix,

Ṽ ′n,j =
1

2m

N∑
l=q+1

An,l ·Al,j =
~2

2m

(
〈∇χn|∇χj〉+

q∑
k=1

〈χn|∇χk〉〈χk|∇χj〉

)
(34)

with n, j ∈ (1, . . . , q). Since the adiabatic states |χ1〉 . . . |χq〉 are degenerate, any basis
generated by a local unitary transformation U(r) within the subspace is equivalent. The
corresponding local basis change as Ψ̃→ U(r)Ψ̃, which leads to a transformation of the
potentials according to

A→ U(r)AU †(r)− i~ [∇U(r)]U †(r), Ṽ → U(r)Ṽ U †(r). (35)

These transformation rules show the gauge character of the potentials A and Ṽ . The
vector potential A is related to a curvature (an effective “magnetic” field) B as:

Bi =
1

2
εiklFkl, Fkl = ∂kAl − ∂lAk −

i

~
[Ak, Al]. (36)

Note that the term 1
2εikl[Ak, Al] = (A ×A)i does not vanish in general, since the com-

ponents of A do not necessarily commute. This term reflects the non-Abelian character
of the gauge potentials. The generalized “magnetic” field transforms under local rota-
tions of the degenerate dressed basis as B→ U(r)BU †(r). Thus, as expected, B is a true
gauge field. In the following, we employ this general scheme to create laser-induced gauge
potentials for ultracold atoms using two typical laser-atom interacting configurations.

Spin-dependent gauge potentials in three-level Λ-type atoms. We first take an atomic gas
with each atom having a Λ-type level configuration as an example to illustrate the above
idea [84–86]. As shown in Fig. 1(a), the ground states |1〉 and |2〉 are coupled to an excited
state |0〉 through spatially varying laser fields, with the corresponding Rabi frequencies Ω1

and Ω2, respectively. We assume off-resonant couplings for the single-photon transitions
with the same large detuning ∆d. In this case the atom-laser interaction Hamiltonian
HAL in the basis {|1〉, |2〉, |0〉} is given by

HAL =

0 0 Ω1

0 0 Ω2

Ω∗1 Ω∗2 ∆d

 . (37)

We may parameterize the Rabi frequencies through Ω1 = Ωsinθeiϕ and Ω2 = Ωcosθ,
with Ω =

√
|Ω1|2 + |Ω2|2 (θ and ϕ are in general spatially varying). We are interested in

the subspace spanned by the two lowest dressed states {|χ1〉, |χ2〉} (called respectively
the dark and the bright states). This gives an effective spin-1/2 system, and in the spin
language we also denote |χ↑〉 ≡ |χ1〉 and |χ↓〉 ≡ |χ2〉. In the case of a large detuning
(∆d � Ω), both states |χ↑〉 and |χ↓〉 have negligible contribution from the initial excited
state |0〉, so they are stable under atomic spontaneous emission. Furthermore, we assume
the adiabatic condition, which requires that the off-diagonal elements of the matrices
Ã and Ṽ are much smaller than the eigenenergy differences |λi − λj | (i, j = 1, 2, 0)
of the states |χi〉. This gives the quantitative condition ∆D � Ω2/∆d, where ∆D =
cos2θ|v · ∇(tan θeiϕ)| (v is the typical velocity of the atom) represents the two-photon
Doppler detuning [85]. Under this adiabatic condition, the effective Hamiltonian for the
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Figure 1. (Color online) Schematic of atom-laser interactions for artificial gauge potentials. (a) Three-level Λ-type
atoms interacting with laser beams characterized by the Rabi frequencies Ω1 and Ω2 through the Raman-type
coupling with a large single-photon detuning ∆d. (b) The configuration of the Raman laser beams for a spin Hall
effect. (c) and (d) Atoms with tripod-level configuration interacting with three laser beams characterized by the
Rabi frequencies Ω1, Ω2, and Ω3.

wave function Ψ in the subspace spanned by {|χ↑〉, |χ↓〉} is [84]

Heff =

(
H↑ 0
0 H↓

)
, (38)

where Hσ = 1
2m(−i~∇−Aσ)2+Vσ(r) (σ =↑, ↓). The gauge potentials Aσ can be obtained

as A↑ = −A↓ = −~sin2θ∇ϕ, and the related gauge field

Bσ = ∇×Aσ = −ησ~sin(2θ)∇θ ×∇ϕ, (39)

where η↑ = −η↓ = 1. We obtain precisely a spin-dependent gauge field that is critical for
the spin Hall effect. A typical scheme to generate atomic spin Hall effect is shown in Fig
1(b), which was demonstrated experimentally in Ref. [104].

Spin-orbit couplings in a tripod configuration. The second example we address is an
SU(2) non-Abelian gauge field created in a tripod-level configuration [93–96]. Consider
the adiabatic motion of atoms in x-y plane with each having a tripod-level structure in
a laser field as shown in Fig. 1(c) and (d). The atoms in three lower levels |1〉, |2〉 and
|3〉 are coupled with an excited level |0〉 through three laser beams characterized by the
Rabi frequencies Ω1 = Ωsinθe−iκx/

√
2, Ω2 = Ωsinθeiκx/

√
2, and Ω3 = Ωcosθe−iκy, re-

spectively, where Ω =
√
|Ω1|2 + |Ω2|2 + |Ω3|2 is the total Rabi frequency and the mixing

angle θ defines the relative intensity. The atom-laser interaction Hamiltonian HAL in the
interaction representation reads

HAL = −~
3∑
j=1

Ωj |0〉〈j|+ H.c.. (40)

Diagonalizing this Hamiltonian yields two degenerate dark states with zero energy as well
as two bright states separated from the dark states by the energies±~Ω. If Ω is sufficiently
large compared to the two-photon detuning due to the laser mismatch and/or Doppler
shift, the adiabatic approximation is justified and one can safely study only the internal
states of an atom evolving within the dark state manifold. In this case, the non-Abelian
gauge potential A in the present configuration of the light field can be obtained as

A = ~κ
(

ey −excosθ
−excosθ eycos2θ

)
. (41)
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Furthermore, let the mixing angle θ = θ0 with cosθ0 =
√

2−1, such that sin2θ0 = 2cosθ0.
Thus, the vector potential takes a symmetric form A = ~κ′(−exσx + eyσz) + ~κ0eyI2,

where κ′ = κcosθ0 and κ0 = κ(1 − cosθ0). Using a unitary transformation H̃ ′ = U †H̃U
with U = exp(−iκ0y) exp

(
−iπ4σx

)
, one obtains the Hamiltonian for the atomic motion

H =
1

2m
[(px + ~κ′σx)2 + (py + ~κ′σy)2] + V. (42)

This Hamiltonian provides a coupling between the atomic center-of-mass motion and the
internal pseudospin degrees of freedom, thus giving rise to an effective SOC.

However, the two degenerate dark states in this tripod configuration are not the lowest-
energy states, so the atoms may quickly decay out of the dark states due to collisions and
other relaxation processes. This problem may be solved by using the blue-detuned lasers
[110] or a closed loop Raman coupling configuration [111]. Furthermore, the combination
of an SOC and an effective perpendicular Zeeman field is required for the emergence of
topological superfluid. To this end, five or two additional laser beams superposing into the
above tripod configuration were proposed [103, 112]. However, locking the phases of these
laser beams is challenging in experiments. It was thus proposed and then experimentally
demonstrated that controlling polarizations of the Raman lasers is sufficient to generate
simultaneously an effective SOC and a perpendicular Zeeman field for atoms [35, 113].

3.4.2 Laser-assisted tunneling
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Figure 2. (Color online) Scheme for realizing artificial magnetic fields based on laser-assisted tunneling [114].
Open (closed) circles denote atoms in state |g〉 (|e〉). (a) Hopping in the y-direction Jy is the same for particles in
states |e〉 and |g〉, while the x-direction hopping is laser-assisted. (b) Laser-assisted tunneling along the x-direction.
Adjacent sites are set off by an energy ∆. The laser Ω1 is resonant for transitions |g〉 and |e〉 while Ω2 is resonant
for transitions |e〉 and |g〉 due to the offset of the lattice sites. The atoms hopping around one plaquette get phase
shifts of 2πα due to the created artificial magnetic fields.

Laser-induced tunneling was the first method proposed to generate artificial magnetic
fields in OLs [114], and it was used to experimentally realize the Hofstadter-Harper model
[48]. Furthermore, this method was further proposed to simulate artificial SOCs in OLs
[115–117], and was implemented very recently in an experiment realizing artificial 2D
SOC in a Raman OL [36]. In this section we illustrate the basic idea of laser-induced
tunneling, following the original proposal in Ref. [114]. We then introduce recent devel-
opments in Sec. 4.

Consider a gas of atoms trapped in a 3D OL created by standing wave laser fields, which
generates a potential for the atoms V (r) = V0xsin2(kx) + V0ysin

2(ky) + V0zsin
2(kz) with

k = 2π/λ being the wave vector of the light. We assume the lattice to trap atoms in
two different internal hyperfine states |e〉 and |g〉 and the depth of the lattice in the x−
and z−directions to be so large that hopping in these directions due to kinetic energy
is prohibited. Furthermore, we assume that adjusting the polarization of the lasers that
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confine the particles in the x-direction allows us to place the potential well trapping atoms
in the different internal states at distances λ/4 with respect to each other, as shown in
Fig. 2(a). Therefore, the resulting 2D lattice has a lattice constant (disregarding the
internal state) in the x-direction of ax = λ/4 and in the y-direction of ay = λ/2. We
focus on one layer of the OL in the xy-plane since in the following, there will neither be
hopping nor interactions between different layers. The dynamics of atoms occupying the
lowest Bloch band of this OL can be described by the Hamiltonian

Hl =
∑
n,m

Jy(a
†
n,man,m−1 + h.c.) +

∑
n∈even,m

ωega
†
n,man,m,

where Jy is the hopping strength for particles to tunnel between adjacent sites along
the y-direction. The energy difference between the two hyperfine states is ωeg > 0 and

the operators an,m (a†n,m) are destruction (creation) operators for atoms in the lowest
motional band located at the site xn,m = (xn, ym), where xn = nλ/4 and ym = mλ/2.

In addition, there is an energy offset of ∆ between two adjacent sites in the x-direction,
as shown in Fig. 2(b). This can be achieved by accelerating the OL along the x-axis
with a constant acceleration aacc, which induces an additional potential energy term
Hacc = Maaccx with M being the mass of the atoms. Alternatively, if both of the internal
atomic states |e〉 and |g〉 have the same static polarizability µ an inhomogeneous static
electric field of the form E(x) = δEx, where δE is the slope of the electric field in the x-
direction, can be applied to the OL, which leads to a potential energy termHacc = µpδEx.
We keep this additional potential energy small compared to the OL potential and treat

Hacc as a perturbation. In second quantization this yields Hacc = ∆
∑

n,m na
†
n,man,m,

where ∆ = µpδEλ/4 in the case of an inhomogeneous electric field and ∆ = Maaccλ/4
when the lattice is accelerated. The condition for this perturbation treatment to be valid
is δ << νx with νx = 4

√
ERV0x being the trapping frequency of the OL in the x-direction.

Here ER = k2/2M is the recoil energy.
Finally, the laser-induced tunneling can be activated along the x-direction by coupling

two internal states |g〉 and |e〉 with two additional lasers forming Raman transitions.
The Raman beams consist of two running plane waves chosen to give space-dependent
Rabi frequencies of the form Ω1,2 = Ωe±iqy, where Ω denotes the magnitude of the Rabi
frequencies, and ±∆ is the detuning. We assume the lasers not to excite any transitions
to higher-lying Bloch bands with detuning of the order of ∆, i.e. Ω� ∆� νx. Then the
lasers Ω1(2) will only drive transitions n−1↔ n if n is even (odd) and we can neglect any
influence of the nonresonant transitions. Then one can find the following Hamiltonian
describing the effect of the Raman lasers

HAL =
∑
n,m

(γn,ma
†
n,man−1,m + h.c.)−

∑
n,m

∆a†n,man,m.

Here the matrix elements γnm can be written as

γn,m =
1

2
e2iπαmΩΓy(α)Γx,

where α = qλ/4π, and the matrix elements

Γx =

∫
dxw?(x)w(x− λ/4), Γy(α) =

∫
dyw?(y)cos(4παm)w(y),

with w(r) = w(x)w(y)w(z) being the Wannier function. To achieve a symmetric Hamil-
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tonian, we assume hopping amplitudes Jx = ΩΓxΓy/2 = Jy = J , and thus the total
Hamiltonian describing the configuration is given by

Hα = J
∑
n,m

(
e2iπαma†n,man+1,m + a†n,man,m+1 + h.c.

)
.

This Hamiltonian Hα is equivalent to the Hamiltonian for electrons with charge e moving
on a lattice in an external magnetic field B = 2πα/Acelle, where Acell is the area of one
elementary cell.

3.4.3 Periodically driven systems

Driving cold-atom systems periodically in time is a powerful method to engineer effective
magnetic fields or SOCs, and thus can trigger topological quantum phases. For instance,
the OL shaking method has been used to experimentally realize the Hofstadter model
[29, 30, 118]. Modulating a honeycomb OL also led to the experimental realization of the
Haldane model [28].

We first describe two simple examples to illustrate the basic concept of creating arti-
ficial gauge fields with the periodically driven method. In the first example we consider
ultracold atoms trapped in a 1D shaken bichromatic OL [119]. This lattice is generated
by the superposition of two shaken OLs. The single-particle Hamiltonian of an atom in
this 1D shaken lattice system reads

Hs =
p2
x

2m
+ V1sin2[k1(x− x1(t))] + V2sin2[k2(x− x2(t) + φ)], (43)

where Vi, ki = 2π/λi, and λi (i = 1, 2) are the lattice depth, laser wave vector and
wavelength, respectively; and φ is the phase of the second laser, xi(t) = bsin(ωt) is the
periodic time-dependent lattice shaking. Here we assume that the two lattices experience
the same shaking amplitude b and frequency ω. Experimentally, a shaking sinusoidal
lattice can be realized through a modulation of the driving frequency and by changing
the relative phase of the acousto-optic modulators. The tunneling between neighboring
sites decreases exponentially with the intensity of the lasers creating the lattice, whereas
the shape of the wavepacket (the Wannier functions) has a much weaker dependence.
Therefore, by varying the laser intensity, one can rapidly vary the tunneling. With a
unitary rotation, the Hamiltonian is transferred to a new frame x→ x+ bsin(ωt)

Hr =
(px −Ax)2

2m
+ V1sin2(k1x) + V2sin2(k2x+ φ), (44)

with a shaking-induced vector potential Ax = mωcos(ωt) [119].
The second example is the topological phases of a 2D honeycomb lattice proposed by

Haldane [13], which can also be realized with the method of shaking lattices [28, 120].
We consider the following time-dependent lattice potential

V (x, y, t) = −VXcos2[kr(x+ bcosωt) + θ/2]− VXcos2[kr(x+ bcosωt)] (45)

−VY cos2[kr(y + bsinωt)]− 2α
√
VXVY cos[kr(x+ bcosωt)]cos[kr(y + bsinωt)],

which leads to a honeycomb lattice realized by the ETH group when b = 0 [77]. Here θ
controls the energy offset between two sublattices A and B in the honeycomb lattice. The
b 6= 0 case describes a shaking lattice in both x and y directions with a phase difference
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π/2. Similar to the 1D case, transferring into the moving frame x → x + bcos(ωt) and
y → y + bsin(ωt), one obtains a Hamiltonian with time-dependent vector potential term

H(t) =
1

2m
[p−A(t)] + V (x, y), (46)

where Ax(t) = mωbsin(ωt) and Ay(t) = −mωbcos(ωt) [120]. It is equivalent to a
Hamiltonian that describes a particle in an ac electrical field in the 2D plane E(t) =
mω2b(cos(ωt), sin(ωt)). The phase diagram in this Hamiltonian has been calculated in
Ref. [120], and it shows a similar phase diagram with that of the Haldane model [13]; i.e.,
it contains topological trivial and nontrivial phases characterized by a Chern number.
This shaking lattice method has been experimentally used to realize the Haldane model
[28], as addressed in detail in Sec. 4.2.3.

After addressing the basic ideas, we now turn to some general frameworks that de-
scribe periodically driven quantum systems. A general theoretical treatment of periodi-
cally driven quantum systems is based on the Floquet theory. For a periodically driven
Hamiltonian H(t) with period τ , its Floquet operator F̂o is defined as

F̂o ≡ U(τi + τ, τi) = T exp

[
−i
∫ τ+τi

τi

H(t)dt

]
, (47)

where τi is the initial time, and T denotes the required time-ordered integral as the
Hamiltonian at different times do not necessarily commute. The eigenvalue and eigen-
states of the Floquet F̂o are given by

F̂o|ϕn〉 = e−iεnτ |ϕn〉, (48)

where εn ∈ (−π/τ, π/τ) is the quasi-energy. A general method to explore the topological
phases, which is free from any further approximation, is to numerically evaluate Floquet
operator F̂o according to Eq. (47) and determine its eigenvalues and eigenfunctions from
Eq. (48). If a periodically driven system exhibits nontrivial topology, there must be in-gap
quasi-energies εn and their corresponding wave functions ϕ are spatially well localized at
the edge of the system [120].

A physically more transparent method is introducing a time-independent effective
Hamiltonian Heff via the Floquet operator [120, 121]

U(τf , τi) = e−iK(τf )e−iτHeff eiK(τi), (49)

where we impose that (1) Heff is a time-independent operator, (2) K(t) is a time-periodic
operator K(t + τ) = K(t) with zero average over one period, and (3) Heff does not
dependent on the starting time τi, which can be realized by transferring all undesired
terms into the kick operator K(τi). Similarly, Heff does not depend on the final time τf .
Equation (49) shows that the initial (final) phase of the Hamiltonian at time τi (τf ) may
have an important impact on the dynamics. However, the topological phenomena in the
periodically driven systems can be connected to those in equilibrium systems described by
the effective Hamiltonian Heff. Consider a static system described by a Hamiltonian H0

that is driven by a time-periodic modulation V (t), whose period τ = 2π/ω is assumed
to be much smaller compared to any characteristic time scale in the problem. In this
high-frequency regime, one can obtain the effective Hamiltonian by using a perturbation
expansion.
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We consider a time-periodic Hamiltonian H(t) = H0 + V (t) with

V (t) =

∞∑
j=1

[V (j)eijωt + V (−j)e−ijωt]

between times τi and τf , with the period of the driving τ = 2π/ω. The time-dependent
potential has been explicitly expanded with its Fourier’s form. By using a perturbation
expansion in powers of 1/ω, one can obtain [121]

Heff = H0 +
1

ω

∞∑
j=1

{1

j
[V (j), V (−j)]

+
1

2ω2
([[V (j), H0], V (−j)] + [[V (−j), H0], V (j)]}+O(τ3), (50)

K(t) =

∫ t

V (t′)dt′ + (τ2). (51)

In Eq. (50), the second-order terms that mix different harmonics have been omitted.
To understand the emergence of topological nontrivial phases, we usually write the

Hamiltonian into momentum space. As for two-band systems, the general Hamiltonian in
momentum space k can be rewritten as Heff = B(k)·σ. By using this kind of perturbation
expansion, one can obtain the explicit expressions of B(k) for the models described in
Eqs. (43) and (45) [119, 120], which shows that the nontrivial topological phases can be
induced in the periodically driven OLs.

The perturbation expression in Eq. (50) can also be used in the derivation of the
effective Hamiltonian for the general situation where a pulse sequence is characterized
by the repeated N -step sequence

γN = {H0 + V1, H0 + V2, · · · , H0 + VN}, (52)

where the Vm’s are arbitrary operators [121]. For simplicity, we assume that the duration

of each step is τ/N , and we further impose that
∑N

m=1 Vm = 0. The Hamiltonian γN can
be expanded in terms of the harmonics H(t) = H0 +

∑
j 6=0 Vje

ijωt, where

Vj =
1

2πi

N∑
m=1

1

j
e−i2πjm/N (eij(2π/N) − 1)Vm.

By applying Eqs. (50) and (51), one can derive the effective Hamiltonian and the initial-
kick operator as

Heff = H0 +
2πi

N3ω

N∑
m<n=2

Cm,n[Vm, Vn] +
π2(N − 1)2

6N4ω2

N∑
m=1

[[Vm, H0], Vm]

+
π2

6N4ω2

N∑
m<N=2

Dm,n ([[Vm, H0], Vn] + [[Vn, H0], Vm]) +O(1/ω3), (53)

K(0) =
2π

N2ω

N∑
m=1

mVm +O(1/ω2), (54)
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where Cm,n = N/2 + m − n and Dm,n = 1 + N2 − 6N(n −m) + 6(n −m)2. The above
equations show that the initial kick K(0) depends on the way the pulse sequence starts,
whereas the effective Hamiltonian Heff is independent of this choice: redefining the oper-
ators Vm → Vm+j with an integer j results in a change in K(0) but leaves Heff invariant.
The expressions are useful for engineering effective Hamiltonians with artificial gauge
fields. In view of this fact, we illustrate the case N = 4 in the following.

Consider the following four-step sequence:

γ4 = {H0 + L1, H0 + L2, H0 − L1, H0 − L2}, (55)

we obtain

Heff = H0 +
iπ

8ω
[L1, L2] +

π2

48ω2
([[L1, H0], L1] + [[L2, H0], L2]) +O(1/ω3), (56)

K(0) = − π

4ω
(L1 + L2) +O(1/ω2). (57)

We first consider atoms moving in a two-dimensional free space, such that H0 = (p2
x +

p2
y)/2m. We drive the system with a pulse sequence (55) with the operator

L1 = (p2
x − p2

y)/2m, L2 = κxy.

The corresponding effective Hamiltonian is given by Eq. (56), which yields, up to the
second order (1/ω2)

Heff =
1

2m
[(px −Ax)2 + (py −Ay)2] +

mω2
h

2
(x2 + y2),

where A = (Ax, Ay) = (−mΩy,mΩx) with Ω = πκ/(8mω) and ωh =
√

5/3Ω. It
corresponds to the realization of a perpendicular and uniform artificial magnetic field
B = 2mΩez = πκ/(4ω)ez. An early version of this scheme for artificial magnetic fields
was proposed to realize fractional QHE with bosonic atoms in OLs [122].

The similar four-step sequence can also be used to generate SOCs. Considering the
operators H0 = (p2

x + p2
y) and

L1 = (p2
x − p2

y), L2 = κ(xσx − yσy).

The time evolution of the driven system is characterized by the effective Hamiltonian

Heff =
p2
x + p2

y

2m
+ λR(σxpx + σypy) + ΩSOLzσz +O(1/ω3), (58)

where λR = πκ/(8mω) and ΩSO = −(8m/3)λ2
R. The term HR = λRp · σ is the Rashba

SOC, and HLσ = ΩSOLzσz is the so-called ”intrinsic” or ”helical” SOC, which is respon-
sible for the quantum spin Hall effect in topological insulators. The combination of these
two terms appears in the Kane-Mele model (see Sec. 4.2.4).
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4. Topological quantum matter in optical lattices

In the previous section, we introduced the techniques for engineering the Hamiltonian of
cold atoms, specially the techniques of creating artificial magnetic fields and SOCs. The
use of these techniques in OLs has led to the realization and characterization of some
topological states for cold atoms. Compared with conventional solid-state systems, cold
atoms offer an ideal platform with great controllability to study topological models. For
instance, the laser fields that couple hyperfine states of atoms can be used to synthesize
effective physical fields, such as gauge fields, SOCs, and Zeeman fields. The forms and
strengths of those synthetic fields are tunable as they are determined by the atom-laser
coupling configurations. The structure of an OL can be designed via several counter-
propagating lasers to realize various unconventional lattice potentials, which include the
double-well superlattices, honeycomb lattices, spin-dependent lattices, and so on.

This section systematically discusses some important lattice models with topological
quantities originally introduced in condensed matter theories and describes their pro-
posed schemes as well as current implementation methods. The topological bands and
phenomena in these models can be created and detected with cold atoms in OLs. These
lattice models range from 1D to 3D and even higher-dimension geometries, which can be
implemented with OLs of various geometric structures. These systems mainly focus on
energy bands in the absence of interactions, and hence the topological phenomena ad-
dressed here correspond to the single-particle physics. Some advances in their extension
to the interacting regime will also be briefly discussed.

This section is divided into five parts. In the first, we describe some basic topological
models with nontrivial bands realized in 1D OLs, which include the famous Su-Schrieffer-
Heeger (SSH) model and its implementation for topological pumping. In the second part
we discuss the physics of Dirac fermions, the topological properties of the Hofstadter
model, Haldane model and Kane-Mele model, and their experimental realization and
detection in 2D OLs. Some typical 3D topological insulating states of Z2 or Z types and
topological gapless (semimetal) states with emergent Dirac or Weyl fermions in 3D OLs
are presented in the third part. The last two parts are respectively devoted to topological
states in higher dimensions with the newly developed synthetic dimension technique and
unconventional topological quasi-particles with higher pseudospins for cold atoms in OLs,
both of which are currently absent or extremely challenging to realize in condensed matter
systems.

4.1 One-dimension

4.1.1 Su-Schrieffer-Heeger model and Rice-Mele model

The SSH model [3, 4] for polyacetylene is the simplest 1D model of band topology in
condensed matter physics. Such a model describes the polyacetylene with free fermions
moving in a 1D chain with dimerized tunneling amplitudes. The essence of the SSH model
is manifested by two topological characters. The first character is the nontrivial Zak
phase that describes distinct topological phases in 1D lattice systems with zero-energy
edge modes in a finite chain with open boundaries. The second one is the topological
solitons with fractional particle numbers, which emerge on the domain walls in the lattice
potential to separate two dimerization structures. The physics of such a dimerized lattice
with two sites per unit cell is captured by the SSH Hamiltonian

HSSH = −
∑
n

(Ja†nbn + J ′a†nbn−1 + h.c.), (59)
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where J and J ′ denote the modulated hopping amplitudes, and a†n(b†n) are the creation
operators for a particle on the sublattice site an(bn) in the nth lattice cell, as shown in
Fig. 3(a). Written in momentum space, the Hamiltonian (59) takes the form HSSH =∑

k Ψ†kHSSH(k)Ψk with Ψ†k =
(
a†k, b

†
k

)
and

HSSH(k) = −[J + J ′cos(ka)]σx − J ′sin(ka)σy, (60)

where a denotes the lattice spacing. Consequently, there are two bands with the energy
dispersion E± = ±

√
[J + J ′cos(ka)]2 + [J ′sin(ka)]2.

It can be found that HSSH(k) possesses the chiral symmetry σzHSSH(k)σz = −HSSH(k)

and the TRS T̂HSSH(k)T̂−1 = HSSH(−k), where T̂ = K̂ with K̂ being the complex
conjugate operator. Note that the chiral symmetry here is a sublattice symmetry and
requires that hoppings only exist between two sublattices. The chiral symmetry gives rise
to an additional particle-hole (charge-conjugation) symmetry because for any eigenstate
|uE〉 with energy E there exists a corresponding eigenstate |u−E〉 = σz|uE〉 with energy
−E. Thus, the SSH model is classified in the BDI class of topological insulators [123].
It is known that the SSH model has two topologically distinct phases with different
dimerization configurations, D1 for J > J ′ and D2 for J < J ′, separated by a topological
phase transition point at J = J ′. The topological features can be characterized by the
Zak phase [62]

ϕZak = i

∫ G/2

−G/2
〈u±(k)|∂k|u±(k)〉dk, (61)

where G = 2π/d is the reciprocal lattice vector with d = 2a and |u±(k)〉 denote the
Bloch wave functions of the higher (+) and lower (−) bands. The Zak phase in each
lattice configuration is a gauge dependent quantity depending on the choice of origin
of the unit cell. For our choice, the Zak phase ϕZak = 0 for D1 and there is no edge
state, yielding a trivial insulating phase. For D2, ϕZak = π and the system hosts two
degenerate zero-energy edge states, yielding a gapped topologically nontrivial phase. The
difference between the Zak phases for the two dimerization configurations is well defined
as δϕZak = π, which is gauge invariant and thus can be used to identify the different
topological characters of the Bloch bands. In the topologically nontrivial phase, there
are two degenerate zero-energy modes respectively localized at two edges of the system
under the open boundary condition.

Another topological feature in the SSH model is that a kink (anti-kink) domain be-
tween the two dimerization configurations gives rise to an undegenerate, isolated soli-
ton (anti-soliton) state on the domain, which is a zero-energy mid-gap state. Due to
the particle-hole ambiguity of the energy spectrum, the zero mode takes the fractional
fermion number N = 1

2 (N = −1
2) when this mode is occupied (unoccupied). The soliton

state is topologically protected in the sense that it is impossible to remove it without
closing the bulk energy gap, which is due to the fact that it is on an interface between
topologically distinct phases. Historically, such topological solitons with fractional parti-
cle numbers were first found in a 1D modified Dirac equation in the context of the field
theory by Jackiw and Rebbi [124] (see Sec. 6.1), and the SSH model provides the first
physical demonstration of this remarkable phenomenon in lattice systems.

The SSH model was generalized to describe the linearly conjugated diatomic polymers
with the Rice-Mele Hamiltonian [126]

HRM = −
∑
n

(Ja†nbn + J ′a†nbn−1 + h.c) + ∆
∑
n

(a†nan − b†nbn), (62)
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Figure 3. (Color online) (a) Schematic illustration of the 1D optical superlattice for realizing the SSH model
(∆ = 0) and the Rice-Mele model (∆ 6= 0) in the experiment [125]. The yellow box denotes the unit cell containing
two sites with staggered hopping strengths (J and J ′) and tunable energy offset (2∆). (b) Schematic illustration
of experimental three-step sequence of measuring the Zak phase difference δϕZak, based on a combination of
spin-dependent Bloch oscillation (B.O.) and Ramsey interferometry [125]. The preparation and state evolution of
the atomic gas in a superposition of two spin-states with opposite magnetic moment (brown and green balls) are
described in the text.

where ∆ is the energy offset between neighboring lattice sites. For a heteropolar dimer
configuration with ∆ 6= 0, the particle-hole symmetry (and chiral symmetry) in the
original SSH model is broken. Consequently, the Zak phase is fractional in units of π and
depends on the energy offset ∆. Strictly, the Rice-Mele model is not topological in the
theory of topological classification with symmetry [61]. However, one can investigate the
existence of edge modes to determine which configuration has nontrivial properties in this
case, noting that the two edge modes in the topological phase are no longer degenerate
when ∆ 6= 0. If there is a domain wall in the Rice-Mele model, where a Dirac Hamiltonian
emerges in the continuum limit as the generalized Jackiw-Rebbi model (see Sec. 6.1), the
unpaired soliton state in general has non-zero energy and carries an irrational particle
number [126–128]. The Rice-Mele/SSH model with band topology (geometry) provides a
paradigmatic system for studying topological quantum pumps [129–131] (see Sec. 4.1.2).

Compared with conventional solid-state materials, cold atom systems offer a perfectly
clean platform with high controllability to study topological states of matter. The first
scheme to simulate the SSH/Rice-Mele model along this direction was proposed to en-
gineer the spatial profiles of the hopping amplitudes for cold atoms in a 1D optical
superlattice in such a way that an optically induced defect as the domain wall carries
fractional particle numbers in the lattice [132–134]. In the proposed system, a two-species
gas of fermionic atoms is trapped in a state-dependent OL, where the internal states are
denoted by | ↑〉 and | ↓〉. The two atomic species experience different optical potentials
that are shifted relative to each other by λ/4, where λ is the wavelength of light of
the confining OL. Such a state-dependent OL is achieved when the laser beam is blue
detuned from the internal transition of the atoms in | ↑〉 and red detuned by the same
amount from the internal transition of the atoms in | ↓〉. When the lattice is sufficiently
deep, each site is assumed to support one mode function that is weakly coupled to two
nearest-neighbor sites, such that the hopping of the atoms between adjacent lattice sites
only occurs as a result of driving by coherent electromagnetic fields. The coupling could
be a far-off-resonant optical Raman transition via an intermediate atomic level. In this
way, the required dimerized OL with the alternating hopping for atoms can be realized by
using coupling lasers of proper two-photon Rabi frequency. Since the laser phase directly
modulates the hopping configuration, when there is a jump in one particular lattice site in
the laser phase, it will generate a domain wall to separate the D1 and D2 configurations
[132]. The topological soliton states in the domain wall in this OL system are tunable via
the atom-laser coupling parameters. A similar proposal based on a 1D spin-dependent
OL for synthesizing SSH/Rice-Mele models with fully tunable parameters in the absence
of domains was also presented in Ref.[135].

Creation and measurement of the fractionalized soliton modes in the domain walls
are experimentally challenging. It was suggested that the fractional particle number
could be detected via far-off-resonant light scattering in the atomic gases trapped in
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(a) (b)

Figure 4. (Color online) Determination of the Zak phase. (a) The atom number in the two spin states N↑,↓ is
measured following the sequence and the fraction of atoms in the |↑〉 spin state n↑ = N↑/(N↑ +N↓) is plotted as
a function of the phase of the final microwave π/2-pulse. The difference in the phases of the two Ramsey fringes
yields the Zak phase difference δϕZak. Blue (black) circles correspond to the fringe in which the dimerization was
(not) swapped. (b) Measured relative phases for 14 identical experimental runs (left), which give an average value
of δϕZak = 0.97(2)π. The corresponding histogram is shown on the right with a binning of 0.05π. Reprinted by
permission from Macmillan Publishers Ltd: Atala et al.[125], copyright c© (2013).

OLs [133, 134]. By measuring the intensity of the scattered light, one can detect the
fractional expectation value of the atom number and its fluctuations. It was recently
demonstrated that the fractional particle number in the SSH/Rice-Mele model can be
simulated in the momentum-time parameter space in terms of Berry curvature without a
spatial domain wall [136]. In the simulation, a hopping modulation is adiabatically tuned
to form a kink-type configuration, and the induced current plays the role of an analogous
soliton distributing in the time domain. Thus the mimicked fractional particle number is
expressed by the particle transport and can be detected from the center-of-mass motion
of an atomic cloud. Two feasible experimental setups of OLs for realizing the required
SSH Hamiltonian with tunable parameters and time-varying hopping modulation were
presented in Ref. [136].

Other schemes for creating 1D topological bands and soliton/edge states have recently
been proposed by using cold atoms trapped in double-well OLs. The authors in Ref.
[137] considered a single species of fermionic atoms occupying an sp orbital ladder of
the two wells, where the staggered hopping pattern for realizing the topological phase
naturally arises. In the noninteracting limit, the sp orbital ladder naturally reproduces
the SSH model with a quantized Zak phase and fractionalized zero-energy edge states.
The stability of the topological phase against atomic interactions and the emergence of
topological flat bands of edge modes in the presence of inter-ladder coupling were also
discussed [137]. It was shown that an atomic gas of attractively interacting fermions in a
1D periodically shaken OL can give rise to the emergent Rice-Mele model with controlled
domain walls, which comes from the density-wave ground state [138]. By using cold atoms
in a spin-dependent optical double-well lattice, one may realize a two-leg generalized
SSH model with glide reflection symmetry [139], which is topologically characterized by
Wilson lines and automatical fractionalization without producing domains in the lattice
due to the interplay between the glide symmetry and atomic repulsive interactions.

The SSH/Rice-Mele model described by the Hamiltonian (62) with the tunable en-
ergy offset ∆ has already been experimentally realized with a Bose-Einstein condensate
(BEC) of 87Rb trapped in a 1D optical superlattice [125]. The superlattice potential
shown in Fig. 3(a) is created by superimposing two standing optical waves of short- and
long-wavelengths differing by a factor of two (λl = 2λs = 1534nm), which leads to the
total lattice potential V (x) = Vlsin

2(kLx + φ/2) + Vssin
2(2kLx + π/2), where kL is the

wave vector of the short wavelength trapping lasers, and V1 and Vs are the corresponding
strengths of the two standing waves. The lattice potential can be controlled by varying
the laser intensity of long-wavelength standing-wave lasers to make the system well de-
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scribed by the SSH/Rice-Mele Hamiltonian in the tight-binding regime. Phase control
between the two standing wave fields enables one to fully control φ for tuning the atomic
hopping. This makes the OL into the D1 or D2 configuration with ease. In the experi-
ment, switching between φ = 0 and φ = π was used to rapidly access the two different
dimerized configurations with ∆ = 0, whereas a tunable energy offset ∆ 6= 0 was also
introduced by tuning φ slightly away from these symmetry points.

Moreover, the Zak phase δϕZak characterizing the topological Bloch bands was de-
tected, even though the atoms used in the experiment are bosons. A three-step sequence
shown in Fig. 3(b) was employed, which is based on a combination of spin-dependent
Bloch oscillations and Ramsey interferometry [125]. The first step is to start with an
atomic condensate in the state | ↓, k = 0〉 and bring it into a coherent superposition
state 1/

√
2(| ↑, k = 0〉 + | ↓, k = 0〉) using a microwave π/2-pulse. Here σ =↑, ↓ denotes

two spin states of the atoms with opposite magnetic moment and k is the central mo-
mentum of the condensate. Then a magnetic field gradient is applied to create a constant
force in opposite directions for the two spin components, leading to spin-dependent Bloch
oscillations. In this process, the atomic wavepacket evolves into the coherent superpo-
sition state 1/

√
2(| ↑, k〉 + eiδϕ| ↓,−k〉). When the two states reach the band edge, the

differential phase between them is given by δϕ = ϕZak+δϕZeeman, where δϕZeeman denotes
the Zeeman phase difference induced by the magnetic field. For the TRS Hamiltonian
here, the dynamical phase acquired during the adiabatic evolution is equal for the two
spin states and thus cancels in the total phase difference. The second step is to eliminate
the Zeeman phase difference by applying a spin-echo π-pulse and switching dimerization
configurations following the first step. For atoms located at the band edge k = ±G/2,
this non-adiabatic dimerization switch induces a transition to the upper band of the
SSH/Rice-Mele model. The sequence is finally completed by letting the spin components
further evolve in the upper band until they return to the band center k = 0. At this point,
a final π/2-pulse with phase ϕMW is applied in order to make the two spin components
interfere and read out their relative phase δϕZak through the resulting Ramsey fringe.
Experimental results for the two Ramsey fringes obtained with and without dimeriza-
tion swapping during the state evolution are shown in Fig. 4(a), and the obtained phase
differences are shown in Fig. 4(b), together with the corresponding histogram. Thus, the
Zak phase difference between the two dimerized configurations was determined to be
δϕZak = 0.97(2)π, which agrees well with theoretical prediction of the topological Bloch
bands in the SSH model. This method was used to further study the dependence of the
Zak phase on the offset energy δϕZak(∆), which corresponds to the Rice-Mele model with
the fractional Zak phase. This work establishes a general approach for probing the topo-
logical invariant in topological Bloch bands in OLs. The measurement technique can be
extended to more complicated topological models, such as detecting the Chern numbers
of the Hofstadter model and the Haldane model [28, 48], and the π Berry flux associated
with a Dirac point in 2D OL systems [140].

After measuring the bulk topological index in the SSH model, cold atom experiments
have begun to probe topological boundary states at the intersection of two different
topological phases. Recently, two different approaches for synthesizing and observing
topological soliton states in the SSH model using BECs in 1D OLs were experimentally
developed [141, 142]. In the first experiment [141], the authors used a 1D OL for cold
rubidium atoms with a spatially chirped amplitude to create a domain wall and then
directly observed the soliton state by optical real-space imaging of atoms confined at
the interface. The lattice potential is realized using a rubidium atomic three level con-
figuration with two ground states of different spin projections and one excited state. To
achieve a topological interface, two four-photon potentials V1(x) and V2(x) with opposite
spatial variation of the Raman coupling are superimposed, as shown in Fig. 5(a). This
gives rise to a 1D lattice potential V (x) = V1(x) + V2(x) ≈ 2a · xcos(4kLx), creating a
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Figure 5. (Color online) Realizing the interface and probing the topological bound state from temporal evolution
of atomic clouds. (a) The 1D OL with spatially varying lattice depth from the amplitude-chirped lattice potentials
V1,2(x), which increases (decreases) along x for positive (negative) values of the Raman detuning. (b) Measured
spatial variation of band ordering. Relative atomic population transferred into the upper (green circles) and
lower (blue squares) band on loading from an initial state with an atomic cloud centered at position x0. Series
of absorption images for a relative phase of the initially prepared atomic wavepacket of (c) ϕ = +π/2 and (d)
ϕ = −π/2 for different holding times in the lattice. For ϕ = +π/2, trapping of atoms in the topological edge state
was observed, while for ϕ = −π/2, the cloud splits up. Reprinted with permission from Leder et al. [141].

zero crossing at x = 0, where kL = 2π/λ with λ being the wavelength of the laser beams.
For x > 0 (x < 0) the maxima (minima) of the potential are located at integer multiples
of λ/4, This phase change is reflected in the inversion of ordering bands, which cannot
be transformed into each other by continuous deformation without closing the gap. For
such a situation a non-degenerate topologically protected bound state localized around
x = 0, where the bands intersect, is expected in the SSH model. The dynamics of atoms
in such a structure near the band crossing is described by the Dirac Hamiltonian with a
spatially dependent effective mass (the Jackiw-Rebbi model) in the continuum limit with
good accuracy, as the width of the topological bound state is two orders of magnitude
larger than the lattice spacing [141]. To verify the band inversion on sign change of x, the
adiabatically expanded atomic cloud centered at different lateral positions x0 along the
lattice beam axis was transferred to the state φi(x) = 1√

2
φx(x − x0)(e2ikx + e−2ikx) via

two simultaneously performed Bragg pulses. The band populations following activation
of the lattice were determined. For x < 0, loading is enhanced in the lower band, while
for x > 0 most atoms are transferred into the upper band, and near x = 0 the curves
cross, as shown in Fig. 5(b). This experimentally verifies the spatial variation of the band
structure and the exhibition of a topological interface at x = 0. Next in the experiments,
the atoms were loaded into the interface and the topological bound state was observed
via an initial state φi(x) = 1√

2
φx(x)(e2ikx + e−iϕe−2ikx) with ϕ = π/2. The atomic

wavepacket was centered at x = 0, after which the lattice beams were activated and a
series of atomic absorption images were recorded after a variable holding time in Fig.
5(c). This shows that the atomic cloud remains trapped at the expected position of the
topological bound state. On the other hand, for a phase of ϕ = −π/2, no such trapping
in the bound state was observed, as shown in Fig. 5(d). As expected, there is no overlap
with the topological bound state when the initially prepared atomic wavepacket is π out
of phase, such that the wavepacket is split into two spatially diverging paths. Further
evidence for the successful population of the topological bound state was obtained from
the phase (ϕ) dependence and the dependence of the initial atomic momentum width on
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Figure 6. (Color online) Adiabatic preparation of the topological bound state in the momentum-space lattice.
(a) Time sequence of the smooth ramp of the weak tunneling links (blue), holding the strong (red) links fixed. (b)
Simulated (top) and averaged experimental (bottom) absorption images for an adiabatically loaded edge-defect
lattice. (c) Same as (b), but for an adiabatically loaded central-defect lattice. (d) Decay length of the atomic
distribution on even sites of the edge-defect lattice vs. δJfinal/J . The dashed line represents the results of a
numerical simulation of the experimental sequence. Reprinted with permission from Meier et al.[142].

loading efficiency.
In another experiment [142], a momentum-space lattice was used to simulate the hard-

wall boundaries in the SSH model and the simulated topological bound state was then
observed by site-resolved detection of the populations in the lattice. The physics of the
SSH lattice model was emulated by using the controlled evolution of momentum-space
distributions of cold atomic gases [143, 144]. Controlled coupling between discrete free-
particle momentum states is achieved through stimulated two-photon Bragg transitions,
driven by counterpropagating laser fields detuned far from atomic resonance. The lasers
coherently coupled 21 discrete atomic momentum states in the experiment [142], creating
a ”momentum-space lattice” of states in which atomic population may reside [see, e.g.,
Figs. 6(b,c)]. The momentum states are characterized by site indices n and momenta
pn = 2n~kL. The coupling between these states is fully controlled through 20 distinct
two-photon Bragg diffraction processes, allowing simulation of 1D tight-binding models
with local control of all site energies and tunneling terms. This enables one to create the
hard-wall boundaries and lattice defects in the SSH model. The authors then directly
probed the topological bound states in the SSH model simulated in such an OL through
quench dynamics, phase-sensitive injection, and adiabatic preparation. The first detection
method is to abruptly expose the condensate atoms initially localized at only a single
lattice site and observe the ensuing quench dynamics with single-site resolution. When
population was injected onto a defect site, a large overlap with the topological bound
state was found, resulting in a relative lack of dynamics as compared to injection at any
other lattice site. The second method is to probe the inherent sensitivity of the bound
state to a controlled relative phase of initialized states, following a Hamiltonian quench.
It was observed that the dynamics is nearly absent when the phase matches that of the
bound state, while defect-site population is immediately reduced when the phase does
not match. Lastly, the topological mid-gap bound state was directly probed through a
quantum annealing procedure. The bound eigenstate was initially prepared in the fully
dimerized limit of the time-dependent SSH Hamiltonian [142]

HSSH(t) = −
∑
n∈odd

(J + δJfinal)(c
†
n+1cn + h.c.)−

∑
n∈even

Jeven(t)(c†n+1cn + h.c.) , (63)

with only the odd tunneling links present at a strength Jodd = J + δJfinal. Atomic
population was injected at the decoupled zeroth site, identically overlapping with the
mid-gap state. Next, the tunneling on the even links was slowly increased from zero to
J−δJfinal, as depicted by the smooth ramp in Fig. 6(a). For adiabatic ramping, the atomic
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wavefunctions should follow the eigenstate ofHSSH(t). This adiabatic preparation method
was performed for a lattice with the defect on the left edge and at its center, as shown in
Fig. 6(b) and 6(c), respectively. As known in the SSH model, the amplitude of the mid-
gap state wavefunction is largest at the defect site and decays exponentially into the bulk.
The decay length ξ (in units of the spacing between lattice sites) should scale roughly
as the inverse of the energy gap. Thus, highly localized mid-gap states for δJfinal/J ∼ 1
(dimerized limit) and full delocalization over all 21 sites for δJfinal/J � 1 (uniform limit)
are expected. By tuning the normalized tunneling imbalance in the experiment, one can
achieve a direct exploration of the mid-gap state’s localization decay length as a function
of δJfinal/J , as shown in Fig. 6(d). The technique of creating momentum-space lattices
with direct and full control of tunneling configuration demonstrated in this work has
been extended to create 2D artificial flux lattices for cold atoms [145].

4.1.2 Topological pumping

Quantum pumping as originally proposed by Thouless [129] entails the transport of
charge in a 1D periodic potential through an adiabatic cyclic evolution of the underlying
Hamiltonian. In contrast to classical pumping, the transported charge is quantized and
purely determined by the topology of the pump cycle, which is related to the Chern
number. Topological pumping can be generalized to interacting systems [130], and is
robust against moderate perturbations and finite-size effects.

Topological Thouless pumping is closely related to the modern theory of polarization.
Consider a lattice site at x = R in a 1D periodic lattice, with the Bloch function of the
lowest band |ψk〉 = eikx|uk〉, the corresponding Wannier function is given by

|R〉 =
1√
N

π/d∑
k=−π/d

e−ikR|ψk〉 =

√
d

L

π/d∑
k=−π/d

eik(x−R)|uk〉, (64)

where N = L/d is the number of unit cells in the system with L being the system length
and d being the lattice constant. The expected shift of the Wannier center from the
lattice site R at time t is denoted by the polarization

P (t) = 〈R(t)|x−R|R(t)〉 =
d

L

π/d∑
−π/d

〈uk(t)|i∂k|uk(t)〉 = d

∫ π/d

−π/d

dk

2π
Ak(k, t). (65)

Here Ak(k, t) = i〈uk(t)|∂k|uk(t)〉 is the Berry connection, and its integration over the
first BZ is the Zak phase in Eq. (61). The spatial shift of the Wannier function after
one pumping cycle at t = T can be represented by the change of the polarization ∆P =∫ T

0 dt∂P∂t , which can be obtained by using Stokes’s formula as

∆P =
d

2π

∫ π/d

−π/d
dk

∫ T

0
dt [∂tAk(k, t)− ∂kAt(k, t)] . (66)

Such an integral over two parameters corresponds to a topological invariant, i.e., the first
Chern number C in a k-t BZ:

C =
1

2π

∫ π/d

−π/d
dk

∫ T

0
dtF(k, t), (67)

with F(k, t) = ∂tAk(k, t) − ∂kAt(k, t) as the Berry curvature. Thus the shift of the
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Figure 7. (Color online) Topological pumping in the Rice-Mele OL. (a) A pump cycle sketched in δJ-∆ space
with schematic of the pumping sequence. The pink shaded packet indicates the wave function of a particular atom
initially localized at the unit cell. The wave function shifts to right as the pumping proceeds and moves the atom
to the next unit cell after one pump cycle. (b) Results of four typical topological/trivial pumping (characterized
by the Chern number C = ±1, 0) with schematic pumping sequences in the δJ-∆ plane shown in (c-f) and the
winding number νw of each trajectory around the origin. (c) Charge pumped during a simple Rice-Mele pumping;
(d) topologically nontrivial pumping; (e) topologically trivial pumping; and (f) negative sweep pumping. Reprinted
by permission from Macmillan Publishers Ltd: Nakajima et al.[146], copyright c© (2016).

Wannier center after one pumping cycle is quantized in units of the lattice constant of a
unit cell: ∆P = Cd. This indicates that the transported particle in the adiabatic cyclic
evolution is quantized and related to topological Bloch bands. The SSH/RM model can
serve as a pictorial model for implementing the topological pumping [131].

Although topological charge pumping was first proposed more than thirty years ago, it
has not yet been directly realized in condensed matter experiments. With ultracold atoms
in tunable optical superlattices, the implementation of topological pumping has been ex-
tensively discussed [119, 136, 147–155]. In the context of the SSH/Rice-Mele model, it
was theoretically demonstrated that the quantized particle pumping characterized by the
non-zero Chern number can be realized in the cold atom systems [119, 136, 148], which is
robust with respect to some perturbations in realistic experiments, such as nonzero tem-
perature and the effects of finite sizes, non-adiabatic evolutions and trapping potentials.
Moreover, as an extension of Thouless pumping, the topological pumping of interact-
ing bosoinc and fermionic atoms trapped in OLs for specific models was also studied
[147, 149, 151–153, 156]. For example, in the strongly interacting region, the bosonic
atoms share the same transport properties as non-interacting fermions with quantized
transport [147, 156]. Due to the degeneracy of the many-body ground states of the inter-
acting bosons or fermions, the so-called topological fractional pumping (fractional values
of the pumped particle) related to the many-body Chern number can be realized at
certain fractional fillings [149, 151–153].

Recently, topological pumping has been realized in two experiments [146, 157] with
ultracold fermionic and bosonic atoms in 1D optical superlattices, respectively. In the
experiment in Ref. [146], an ultracold Fermi gas of ytterbium atoms 171Yb was loaded
into a dynamically controlled optical superlattice, occupying the lowest energy band.
The superlattice is formed by superimposing a long lattice VL and a short lattice VS
with periodicity difference by a factor of two, and its time-dependent potential takes the
form

V (x, t) = −VS(t)cos2

(
2πx

d

)
− VL(t)cos2

(πx
d
− φ(t)

)
, (68)

where φ is the phase difference between the two lattices. By slowly sweeping φ over time,
the lattice potential returns to its initial configuration whenever φ changes by π, thus
completing a pumping cycle. The ability to tune all parameters of the lattice potential
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independently in a dynamic way offers the opportunity to realize various pumping pro-
tocols. In the absence of a static short lattice, V (x, t) describes the simple sliding lattice
that Thouless originally proposed [129]. In addition to this term, the double well lat-
tice shown in Fig. 7 is realized, which can be described by the tight-binding Rice-Mele
Hamiltonian in Eq. (62) for the alternating pumping. Figure 7 shows the schematics of
the continuous pumping protocol as a closed trajectory in the δJ-∆ parameter plane,
where δJ ≡ (J − J ′)/2 is the modulation of the dimerization configurations. By sweep-
ing the phase linearly in time φ(t) = πt/T , one can periodically modulate the hopping
amplitudes and on-site energies. In the experiment, topological pumping was detected
as a shift of the center-of-mass of the atomic cloud measured with in situ imaging and
the first Chern number C of the pumping procedure was extracted from the average
shift of the center-of-mass per pumping cycle, which is consistent with the ideal value
C = 0,±1. The topological nature of the pumping was revealed by the pumping trajec-
tories’ clear dependence on the topology in parameter space (denoted by the winding
number νw) as to whether or not a trajectory encloses the degenerate point. Pumping
in the sliding lattice was demonstrated to be topologically equivalent to the continuous
Rice-Mele pumping because of the same Chern numbers of the first band, which can be
connected by a smooth crossover without closing the gap to the second band. It was also
verified that the topological pumping indeed works in the quantum regime by varying
the pumping speed and the temperature in the experiment [146].

In another experiment [157], the authors realized the topological pumping with ultra-
cold bosonic atoms 87Rb forming a Mott insulator in a similar dynamically controlled
optical superlattice. Due to the large on-site interaction, each atom is localized on an
individual double well, resulting in homogeneous delocalization over the entire first BZ.
By taking in situ images of the atomic cloud in the lattice, they also observed a quantized
deflection per pump cycle. The genuine quantum nature of the pumps was revealed by a
counterintuitive reversed deflection of particles in the first excited band and a controlled
topological transition in higher bands when tuning the superlattice parameters.

Also with bosonic atoms, a quantum geometric pump for a BEC in the lowest Bloch
band of a tunable bipartite magnetic lattice was realized [158]. In contrast to the topolog-
ical pumping yielding quantized pumping set by the global topological properties of the
filled bands, the geometric pumping for a BEC occupying just a single crystal momen-
tum state exhibits non-quantized particle pumping set by local geometrical properties
of the band structure. For each pump cycle, a non-quantized overall displacement and
a temporal modulation of the atomic wave packet’s position in each unit cell (i.e., the
polarization) were observed [158].

These cold atom systems can be extended to implement more complex quantum pump-
ing schemes, including spin degrees of freedom and in higher dimensions [159]. Analogous
to Thouless pumping, topological pumping for spins without a net transport of charge
may be constructed by imposing the TRS [160]. A spin pump with spin conservation can
be composed of two independent pumps, where up and down spins have inverted Berry
curvature and are transported in opposite directions. Spin pumps could serve as spin
current sources for spintronic applications.

In a recent experiment [159], quantum spin pumping was implemented with ultracold
bosonic atoms in two hyperfine states in a spin-dependent dynamically controlled optical
superlattice, where each spin component is localized to a Mott insulator with negligible
interspin interaction. In addition, the two spin components are coupled via spin-isotropic
on-site interactions. For strong interactions U � J (tunneling J is suppressed) and unit
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(b)(a)

Figure 8. (Color online) Spin pumping in a spin chain of cold atoms. (a) A spin pump cycle in parameter space
(green) of spin-dependent tilt ∆ and exchange coupling dimerization δJex. The path can be parametrized by the
angle φ, acting as the pump parameter. The insets in the quadrants show the local mapping of globally tilted
double wells to the corresponding local superlattice tilts with the black rectangles indicating the decoupled double
wells. Between φ = 0 and π, |↑〉 and |↓〉 spins exchange their position, which can be observed by site-resolved band
mapping images detecting the spin occupation on the left (L) and right (R) sites. (b) Center-of-mass position of
up (red) and down (blue) spins as a function of φ. Different absorption images of both sequences for |↑〉 and |↓〉
spins are shown on the right side. The solid lines depict the calculated motion of a localized spin for the ideal
case (light gray) and for a reduced ground state occupation and a pump efficiency per half pump cycle that was
determined independently through a band mapping sequence (gray). Reprinted with permission from Schweizer
et al. [159]. Copyright c© (2016) by the American Physical Society.

filling, the system can be described by a 1D spin chain [159]:

HSP = −1

4

∑
n

[Jex + (−1)nδJex]
(
S+
n S
−
n+1 + h.c.

)
+

∆

2

∑
n

(−1)nSzn (69)

with spin-dependent tilt ∆ and alternating exchange coupling 1
2 (Jex ± δJex). For large

tilts ∆� 1
2 (Jex + δJex) the many-body ground state forms an antiferromagnetic ordered

spins, while for strong exchange coupling 1
2 (Jex + δJex) � ∆ dimerized entangled pairs

are favored. Varying δJex and ∆ during the pump cycle modulates (δJex,∆) in the
interacting 1D spin chain and encircles the degeneracy point, as shown in Fig. 8(a). After
a full cycle, the two spin components move by a lattice site in opposite directions. This
leads to a quantized spin transport described by the Z2 invariant as in the topologically
equivalent case of independent spins [160]. Such a spin pump can be regarded as a
dynamical version of the quantum spin Hall effect, where the parameter φ (the phase of
the superlattice) is an additional dimension in a generalized 2D momentum space. The
atomic spin current was measured and the net spin transport was further verified through
in situ measurements of the spin-dependent center-of-mass displacement, as shown in Fig.
8(b).

4.1.3 1D AIII class topological insulators

The topological or trivial character of a 1D insulator is completely determined by the
presence or absence of chiral symmetry [61, 123, 161]. There are two distinct classes of
1D topological insulators, as chiral symmetry is the composition of time-reversal and
charge-conjugation (particle-hole) symmetries. The first class is invariant under both the
two symmetries and is called the BDI symmetry class represented by the SSH model.
The second one is the AIII class with broken time-reversal and charge-conjugation sym-
metries, which still lacks experimental realization in condensed matter materials. The
topology of the AIII class phase is quantified by an integer winding number. Recently,
several works have been presented to study the 1D AIII class topological insulator using
cold fermionic atoms in OLs [162–165].

A simple dimerized lattice model for realizing the AIII class topological insulator was
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Figure 9. (Color online) Proposed optical Raman lattice for realizing the Hamiltonian (71). (a) Cold fermions
trapped in 1D optical lattice with internal three-level Λ-type configuration coupled to radiation. (b) Energy spectra
with open boundary condition in the topological (∆ = 0) and trivial (∆ = 3Js) phases. The SO coupled hopping
Jso = 0.4Js. Reprinted with permission from Liu et al.[162]. Copyright c© (2013) by the American Physical Society.

proposed in Ref. [163]. The Hamiltonian is given by

HAIII = −
∑
n

(
Ja†nbn + J ′eiθa†nbn−1 + h.c.

)
, (70)

which is a generalization of the SSH model by introducing an acquired complex phase
factor eiθ (θ is a phase difference between the inter-cell and extra-cell hoppings) when
particles tunnel from one unit cell to the next. It is worth noting that for open boundary
conditions, the Hamiltonian HAIII in Eq. 70 is equivalent to HSSH in Eq. 59 through the

gauge transformations, (a†n, b
†
n) → e−inθ(a†n, b

†
n). However, under the periodic boundary

conditions, it is equivalent to the SSH model in a ring of N lattice sites threaded by a
magnetic flux φ = Nθ. Therefore, under the periodic boundary conditions, this Hamilto-
nian still corresponds to the SSH model for θ = 0, while in the presence of this extra phase
θ 6= 0, π (and Nθ 6= 2mπ with m an integer), the model enters the AIII symmetry class.
This model can be realized with spinless cold atoms by combining a 1D optical super-
lattice with the Raman assisted tunneling [163]. The Bloch Hamiltonian in this model is
given byHAIII(k) = − [J + J ′cos(k − θ)]σx−J ′sin(k−θ)σy, which exhibits chiral symme-
try for any value of θ since σzHAIII(k)σz = −HAIII(k). For θ 6= 0, π, it is not time reversal
symmetric and thereby not charge-conjugation symmetric because H∗AIII(−k) 6= HAIII(k)
and no 2× 2 unitary transformation U such that UH∗AIII(−k)U † = HAIII(k) in this case.

Another proposed model of 1D AIII class topological insulator is using spin-orbit-
coupled fermionic atoms in an optical Raman lattice [162]. The atoms with the inter-
nal three-level Λ-type configuration are coupled through the transitions |g↑〉, |g↓〉 → |e〉
driven by the laser fields with Rabi-frequencies Ω1(x) = Ω0sin(k0x/2) and Ω2(x) =
Ω0cos(k0x/2), as shown in Fig. 9(a). In the presence of a large one-photon detuning
|∆d| � Ω0 and a small two-photon detuning 2|∆| � Ω0 for the transitions, the system

Hamiltonian reads H = H0 +H1, with H0 =
∑

σ=↑,↓
[ p2x

2m + Vσ(x)
]
|gσ〉〈gσ|+ 2~∆|g↓〉〈g↓|,

and H1 = ~∆d|e〉〈e| − ~
(
Ω1|e〉〈g↑| + Ω2|e〉〈g↓| + H.c.

)
. Here the potentials V↑,↓(x) =

−V0sin2(k0x) form a 1D spin-independent OL. For |∆d| � Ω0, the lasers Ω1,2 induce a
two-photon Raman transition between |g↑〉 and |g↓〉. The effect of the small two-photon
detuning is equivalent to a tunable Zeeman field along z axis Γz = ~∆. Eliminating the
excited state by |e〉 ≈ 1

∆(Ω∗1|g↑〉+ Ω∗2|g↓〉) yields the effective Hamiltonian

Heff =
p2
x

2m
+
∑
σ=↑,↓

[
Vσ(x) + Γzσz

]
|gσ〉〈gσ|−

[
M(x)|g↑〉〈g↓|+ H.c.

]
, (71)

where M(x) = M0sin(k0x) with M0 = ~Ω2
0/2∆d represents a transverse Zeeman field
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induced by the Raman process. In the tight-binding regime, the system Hamiltonian can
be recast into [162]

H̃AIII = −Js
∑
<i,j>

(c†i↑cj↑− c
†
i↓cj↓) +

∑
j

Γz(nj↑−nj↓) +
∑
j

Jso(c†j↑cj+1↓− c†j↑cj−1↓) + H.c..

(72)

Here time reversal and charge conjugation operators are respectively defined by T̂ = iK̂σy
with K̂ being the complex conjugation, and Ĉ : (cσ, c

†
σ) 7−→ (σz)σσ′(c

†
σ′ , cσ′). The topo-

logical phase in this free-fermion system belongs to the chiral AIII class because while
both T̂ and Ĉ are broken in H̃AIII, the chiral symmetry, defined as their product, is re-
served since (ĈT̂ )H̃AIII(ĈT̂ )−1 = H̃AIII, with (ĈT̂ )2 = 1. In particular, this Hamiltonian
describes a 1D topological insulator for |Γz| < 2Js with two mid-gap zero edge modes and
otherwise a trivial insulator, with the bulk gap Eg = min{|2Js − |Γz||, 2|Jso|}, as shown
in Fig. 9(b). It was shown that the zero edge modes in this 1D AIII topological insulator
are spin polarized, with left and right edge spins polarized to opposite directions and
forming a topological spin qubit of cold atoms [162]. A similar Raman lattice scheme
was proposed to simulate symmetry-protected topological states using alkaline-earth-like
atoms [164]. The interaction-driven topological phase transition for interacting fermionic
atoms and a Z4 reduction of the 1D AIII class was also studied [162, 164].

A recent experiment [165] was reported to realize the 1D symmetry-protected topolog-
ical state with cold fermionic atoms of 173Yb in the optical Raman lattice. The exper-
imental setup is similar as that proposed in Ref. [162], except that the potential forms
a spin-dependent lattice with spin-dependent hopping strengths that explicitly break
the locally defined chiral symmetry. In this case, the topological phase is protected by
a magnetic group symmetry (defined as the product of time-reversal and mirror sym-
metries) and a nonlocal chiral symmetry. The topology of the cold atom system was
measured via Bloch states at symmetric momenta and the spin dynamics after a quench
between trivial and topological phases [165]. This work may open the way to explore the
symmetry-protected topological states with ultracold atoms, including the chiral AIII
class by considering spin-independent rather than spin-dependent OLs. Further general-
ization of this study to higher dimensional systems or interacting regimes also offers the
simulation of quantum phases beyond natural conditions in solid-state materials.

4.1.4 Creutz ladder model

Initially introduced in the context of lattice gauge theory, the Creutz model [166] has
gained a foothold in condensed matter physics as a versatile model to study fractional-
ization, Dirac fermions, and topological phases [167]. The model describes free fermions
hopping on a two-leg ladder pierced by a π magnetic flux. The Creutz ladder shown in
Fig. 10(a) is described by the following Hamiltonian

HCL =
1

2

∑
n

[
Ωc†nσxcn + c†n+1(iJ0σz − J1σx)cn

]
+ H.c., (73)

where n is the site index containing up and down legs as the spin basis for the Pauli matri-
ces, with the particle annihilation operators cn = (cnu, cnd). The fermions can jump from
one site to the nearest-neighboring site within the same leg with a complex amplitude
±iJ0, i.e., gaining or losing a Peierls phase π/2. The fermions can hop between sites with
amplitude J1 while flipping between the legs, mimicking an SOC, and also horizontally
along the legs with amplitude Ω, mimicking a Zeeman field along x axis. The correspond-
ing Bloch Hamiltonian is given by HCL(k) = J0sinkσz + (w − J1cosk)σx. Consequently,
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Figure 10. (Color online) (a) The Creutz ladder with up and down legs. Each lattice site encompasses a vertical
bond with two leg states, containing an on-site coupling Ω and a leg-conserving hopping ±iJ0 and a leg-flip
hopping −J1, respectively. (b) Energy dispersion of the Creutz ladder model with gapped Dirac cones at k = 0
and π for Ω 6= ±J1. The 1D Dirac points exhibit when Ω = ±J1.

there are two bands with the energy dispersion E± = ±
√

(J0sink)2 + (Ω− J1cosk)2, as
shown in Fig. 10(b). For periodic boundary conditions, the bands display a pair of mas-
sive Dirac fermions with different Wilson masses m0 = J1−Ω at k = 0 and mπ = J1 + Ω
at k = π. When J1 = Ω (J1 = −Ω), the system is gapless with a Dirac cone at momentum
k = 0 (k = π). When both J1 and Ω vanish, the system exhibits two Dirac cones.

The Creutz ladder model is classified in the BDI class of topological insulators since
the Hamiltonian has the particle-hole symmetry σzH∗CL(k)σz = −HCL(−k), the TRS
σxH∗CL(k)σx = HCL(−k), and a chiral symmetry represented by σy with {HCL(k), σy} =
0. Therefore, the Creutz ladder is in the same symmetry class as the SSH model, ex-
hibiting nontrivial band topology and edge states. In the SSH model, there are only two
phases with different dimerization configurations. In the Creutz ladder model of fully
gapped insulators, there are three phases distinguished by their bulk band topology as
characterized by the Zak phase for all values of the parameters (J1,Ω): a trivial insu-
lator with ϕZak = 0 when |J1/Ω| < 1, two nontrivial insulators with ϕZak = π when
|J1/Ω| < 1 and J1 > 0, and with ϕZak = −π when |J1/Ω| < 1 and J1 < 0. Equivalently,
the band topology can be characterized by the winding number νw defined from the com-
plex phase of the Bloch vectors: νw = 1

2

[
sgn(Ω + J1)− sgn(Ω− J1)

]
. In the topologically

nontrivial phase there are two zero-energy bound states at the edges of the ladder with
half fractional particle numbers.

Several recent works proposed schemes to realize and study the topological properties
of the Creutz ladder model with cold atoms [155, 168–173]. The general scheme of using
cold atoms with artificial SOCs in a ladder-like OL under a synthetic magnetic field was
suggested for simulation of the Creutz ladder [168]. The experimental setups capable of
implementing the tunable Creutz ladder model were proposed in Refs. [155, 170, 172].
Several protocols that can be used to extract the topological properties in the Creutz
model from atomic density and momentum distribution measurements as well as topolog-
ical quantum pumping were presented [155, 169, 170]. By engineering a quantum walk
with cold atoms, one can observe the topological phases and the bound states in the
Creutz model [171]. By adding an energy imbalance between the two legs of the ladder,
the symmetry class of the topological insulator changes from BDI to AIII [172]. More-
over, the interaction-induced topological phase transition in the presence of interatomic
interactions in the optical Creutz ladder were investigated [170, 172]. A topological insu-
lating phase protected by the inversion symmetry was found in a three-leg ladder model
[173]. Notably, the realization of an optical two-leg ladder for ultracold bosonic atoms ex-
posed to a uniform artificial magnetic field created by laser-assisted tunnelling has been
experimentally achieved [174]. In the experiment, the atomic current on either leg of the
ladder and the momentum distribution were observed for demonstrating chiral Meissner-
like edge currents. Very recently, an experimental realization of a three-leg chiral ladder
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Figure 11. (Color online) Energy spectrum of the Aubry-André-Harper model as a function of the phase φ for

(a) α = 1/3, V = J = 1; and (b) α = (
√

5 + 1)/2, V = 0.5, J = 1 under the open boundary condition in a lattice
of site L = 98. The density distribution of two typical in-gap edge states (red dotted lines) is depicted.

with ultracold fermionic atoms was reported [175], where the legs were formed by the
orbital states of a 1D optical lattice and the complex inter-leg links were generated by
the orbital-changing Raman transitions.

4.1.5 Aubry-André-Harper model

Recently, the topological properties of 1D quasiperiodic lattices have been theoretically
and experimentally revealed in the context of cold atoms and photonic quasicrystals
[176, 177]. The system exhibits topological edge states and nontrivial Chern numbers,
equivalent to those of 2D quantum Hall systems on periodic lattices. The tight-binding
Hamiltonian of the 1D quasiperiodic lattices takes the form:

HAAH = −J
∑
n

(c†ncn+1 + H.c.) +
∑
n

Vnc
†
ncn, (74)

where Vn = V cos(2παn + φ) is the spatially modulated on-site potential with V being
the strength, φ being the tunable modulation phase, and α controlling the periodicity
of the modulation. When α is rational (irrational), the modulation is commensurate
(incommensurate). Alternatively, the system Hamiltonian can be rewritten as

HAAHψn = −J(ψn+1 + ψn−1) + V cos(2παn+ φ)ψn, (75)

where ψn is the wave function at site n. Historically, this model is known as the Aubry-
André model [178] or Harper model [179].

Figure 11 shows the energy spectrum of the Aubry-André-Harper model as a function
of the modulation phase φ for a finite lattice of the length L under the open boundary
condition. In the commensurate potential (α = 1/3), the spectrum changes periodically as
φ varies from 0 to 2π. The position of the edge states in the gaps also varies continuously
with the change of φ, which is localized either on the left or on the right boundary of
the system. In the incommensurate potential (α = (

√
5 + 1)/2), the spectrum is broken

into a fractal set of bands; however, the in-gap edge states also exhibit and sweep across
the gaps.

Due to the bulk-edge correspondence, the in-gap edge states are generally associated
with the topologically nontrivial bulk bands. It was revealed that the topological prop-
erties in the 1D quasiperiodic lattices are assigned nontrivial Chern numbers in a 2D
quantum Hall system [176, 177]. Specifically, the Aubry-André-Harper model is con-
nected to the Hofstadter model (see Sec. 4.2.2), which describes electrons hopping on
a 2D square lattice in a perpendicular magnetic field, with the eigenvalue problem de-
scribed by the Harper equation: −Jx(ψn−1 + ψn+1)− 2Jycos(2παn− ky)ψn = E(ky)ψn,

41



April 3, 2019 Advances in Physics Manuscript˙AIP˙Final˙20190401

where Jx (Jy) is the hopping amplitude along the x (y) direction. By substitutions of
J → Jx, V → −2Jy, and φ→ −ky, the current 1D problem can be mapped to the lattice
version of the 2D integer QHE problem. Adiabatically varying φ from 0 to 2π for each
Bloch band forms an effective 2D manifold of Hamiltonian H(k, φ) in the k-φ parameter
space, where the first Chern number can be defined.

For cold atoms, the Aubry-André-Harper model has been experimentally realized in 1D
optical superlattices for studying localization phenomena [73, 180]. In the experiments,
the quasiperiodic lattices were created using a primary 1D OL V1 and an additional
weak lattice V2, with the wave numbers k1 and k2, respectively. For deep potentials, the
atomic system is governed by the tight-binding Hamiltonian H = H1 + H2, with H1 =

−J
∑

n(c†n+1cn + c†n−1cn) from the primary lattice, and H2 = V2
∑

n c
†
ncncos(2παn+ φ)

from the interference of the perturbation lattice, where V2 ∼ J � V1, α = k2/k1, and φ
is the tunable relative phase. It was suggested that the energy spectrum and the Chern
numbers can be revealed by observing the density profile of trapped fermionic atoms [176],
which display plateaus with their positions uniquely determined by varying the parameter
α of the optical superlattices. Another method to create and study quasiperiodic OLs
underlying all quasicrystals by the abstract cut-and-project construction was recently
proposed [181].

It was shown that the commensurate off-diagonal Aubry-André-Harper model is topo-
logically nontrivial in the gapless regime and supports zero-energy edge modes [182],
which is attributed to the topological properties of the 1D Majorana chain of Z2 class.
By generalizing the spinless Aubry-André-Harper model to a spinfull version, which can
be realized with spin-1/2 atoms in a spin-dependent quasiperiodic OL, one can realize the
Z2 topological insulators and the topological spin pumping [183]. The phases of ultracold
spin-1/2 bosons with SOCs in the quasiperiodic optical lattice were also studied [184]. In
the presence of the pairings or interactions, the topological superconducting phase with
Majorana end modes [185–187], the fractional topological phases connecting to the 2D
fractional QHE [188], and the topological Bose-Mott insulators [189] in the quasiperiodic
lattices have been theoretically investigated.

4.2 Two-dimension

4.2.1 Graphene-like physics and Dirac fermions

The graphene material, formed with a single layer of carbon atoms arranged in a honey-
comb lattice with its low-energy quasipaticles described by the massless Dirac equation
[190], has recently attracted strong interest in condensed-matter physics. The crystal
structure of graphene, as shown in Fig. 12(a), consists of sublattices A (solid) and B
(open). Its energy spectrum is shown in Fig. 12 (b), where two inequivalent points de-
noted as K and K′ are Dirac points. At a Dirac point, two energy bands intersect linearly
and the quasiparticles in the vicinity of these points are described by the Hamiltonian
HD and are frequently called “Dirac fermions”, where HD is the Dirac Hamiltonian in
two spatial dimensions given by

HD = vxσxpx + vyσypy + ∆gσz. (76)

Here σx,y,z are the three Pauli matrices. Compared with the standard energy-momentum
relation for the relativistic Dirac particles, here ∆g and vx,y denote rest energy and
the effective velocity of light respectively. For ∆g 6= 0, the energy spectrum with a gap
denotes the massive Dirac fermions , as shown in Fig. 12(b). In graphene, by contrast,
the Dirac points appear at the corners (K and K′ points) where the dispersion relation of
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the honeycomb lattice shows the conical intersection between the first and second bands.
Here, the low-energy fermionic excitations are the massless Dirac fermions described by
the Dirac Hamiltonian (76) with ∆g = 0, vx = ±vy = ±v. Moreover, the associated
Berry phases of the Dirac points are ±π [140, 190, 191] where the corresponding Berry
curvatures have the form

Ωn = ±πδ
(
k−Kn

)
. (77)

Here Kn denotes the Dirac points K or K′. One can see that the Berry curvatures tend
to infinity at Dirac points. Here the Dirac points with the quantization of Berry phase
(to 0 and π) require symmetry protection, which can be the composition of inversion and
time reversal symmetries. This is in contrast to Weyl points in 3D (see Sec. 4.3.2), which
do not require any symmetry protection at all.

1J

2J3J

AB(a)

K'

K
(b) (c)

Figure 12. (Color online) (a) Crystal structure of a honeycomb lattice consisting of sublattices A (solid) and
B (open). The nearest-neighbor hopping amplitudes denoted as J1, J2, J3 corresponding to the three different
directions. (b) Energy bands of the low-energy excitations with a gap. The first BZ is outlined by the dashed line,
and two inequivalent valleys are labelled K and K′, respectively. Reprinted with permission from Xiao et al.[192].
Copyright c© (2007) by the American Physical Society. (c) The energy spectrum (dashed) and Berry curvature
(solid) of the conduction bands of a honeycomb lattice with broken inversion symmetry.

Since the relativistic Dirac fermions were found in graphene, a substantial amount
of effort has been devoted to the understanding of exotic relativistic effects in solid-
state systems and other artificial quantum systems [14, 23, 52]. Given these exciting
results and the state-of-the-art technologies in quantum control of atoms, one topic that
naturally arises is how to mimic the graphene and the relativistic quasiparticles with
cold atoms in a similar 2D hexagonal lattice [76, 193–196]. In cold atomic systems, it is
easy to realize the anisotropy Hamiltonian with mass term ∆g 6= 0 and vx 6= vy due to
the highly controllable experimental parameters [76]. Furthermore, the detection of the
Berry curvature can spread over a finite range, which provides a feasible way to measure
the Berry phase over the first BZ in reciprocal space [140]. In addition to the honeycomb
lattice, Dirac fermions can emerge in some lattices of other geometric structures [197–
205].

Figure 13. (Color online) The honeycomb optical lattices. (a),(b) The contours with three potentials described in
Eq. (78). The minima of the potentials are denoted by the solid dots. All V 0

j are the same in (a), and V 0
1 = V 0

2 =

0.91V 0
3 in (b). The dispersion relations are shown in (c) for β = 1 (gapless state) and (d) for β = 2.5 (gapped

state). Reprinted with permission from Zhu et al.[76]. Copyright c© (2007) by the American Physical Society.

Simulating Dirac equations with cold atoms loaded in a honeycomb OL was initially
proposed in Ref. [76]. In the proposal, single-component fermionic atoms (e.g., spin-
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polarized atoms 40K, 6Li, etc.) trapped in a 2D (x-y plane) hexagonal OL are consid-
ered. The hexagonal OL is constructed by three standing-wave laser beams with the
corresponding potential

V (x, y) =
∑

j=1,2,3

V 0
j sin2

[
kL(xcosθj + ysinθj) +

π

2

]
, (78)

where θ1 = π/3, θ2 = 2π/3, θ3 = 0, and kL is the optical wave vector. It is easy to
tune the potential barriers V 0

j by varying the laser intensities along different directions

to form a standard hexagonal lattice for V 0
1 = V 0

2 = V 0
3 , or a hexagonal lattice with a

finite anisotropy for different V 0
j as depicted in Fig. 13(a) and 13(b), respectively. The

tight-binding Hamiltonian of the system is then given by

H = −
∑
〈i,j〉

Jij(a
†
ibj + H.c.), (79)

where 〈i, j〉 represents the neighboring sites, ai and bj denote the fermionic mode oper-
ators for the sublattices A and B, respectively. The tunneling amplitudes Jij depend on
the tunneling directions in an anisotropic hexagonal lattice, denoted as J1, J2, and J3

corresponding to the three different directions as illustrated in Fig. 12(a). For simplicity,
assume J1 = J2 = J and J3 = βJ with β being the anisotropy parameter. As the atomic
tunneling rate in an OL is exponentially sensitive to the potential barrier, this control
provides an effective method to control the anisotropy of the atomic tunneling by laser
intensities. The first BZ of this system also has a hexagonal shape in the momentum
space with only two of the six corners in Fig. 12(b) being inequivalent, corresponding to
two different sites A and B in each cell in the real hexagonal lattice, usually denoted as
K and K′. One can choose K = (2π/a)(1/

√
3, 1) and K′ = −K, where a = 2π/(

√
3kL)

is the lattice spacing. Taking a Fourier transform a†i = (1/
√
N)
∑

k exp(ik ·Ai)a
†
k and

b†j = (1/
√
N)
∑

k exp(ik · Bj)b
†
k, where Ai (Bj) represents the position of the site in

sublattice A (B) and N is the number of sites of the sublattice, the Hamiltonian (79)
can be diagonalized with the expression of energy spectrum[76]

Ek = ±J
√

2 + β2 + 2cos(kya) + 4βcos(
√

3kxa/2)cos(kya/2). (80)

As plotted in Fig. 13(c) and 13(d), there are two branches of the dispersion relation,
corresponding to the ± sign in Eq. (80). When 0 < β < 2, the two branches touch
with each other, and a Dirac cone structure appears around the touching points. It has
the same standard Dirac cones as the graphene material with β = 1 [190, 191, 206].
The Dirac cones squeeze in the x or y direction when β deviates from 1, but they still
touch each other. When β > 2, a finite energy gap ∆g = |J |(β − 2) appears between
the two branches. So, across the point β = 2, the topology of the Fermi surface changes,
corresponding to a quantum phase transition without breaking any local symmetry [207].
Such a topological phase transition associated with the production or annihilation of a
pair of Dirac points has been investigated in Ref.[208]. The evolution of the Dirac points
in the hexagonal lattice by varying the asymmetric hopping and the resulting phase
transition was also studied in Ref.[194]. With this phase transition, the system changes
its behavior from a semimetal to an insulator at the half filling case (which means one
atom per cell; note that each cell has two sites). Around half filling, the Fermi surface
is close to the touching points, and one can expand the momentum k around one of the
touching points K ≡ (k0

x, k
0
y) as (kx, ky) = (k0

x + qx, k
0
y + qy). Up to the second order of
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qx and qy, the energy spectrum (80) becomes

Eq = ±
√

∆2
g + v2

xq
2
x + v2

yq
2
y , (81)

where ∆g = 0, vx =
√

3βJa/2, and vy = Ja
√

1− β2/4 for 0 < β < 2; ∆g = |J |(β − 2),

vx = Ja
√

3β/2, and vy = Ja
√
β/2− 1 for β > 2. This simplified energy sprectrum

Eq is actually a good approximation (named long wavelength approximation) as long as
qx, qy . 1/2a. The wave function for the quasiparticles around half filling then satisfies
the Dirac equation i~∂tΨ = HDΨ, where the relativistic Hamiltonian HD is the Dirac
Hamiltonian with the form

HD = τzvxσxqx + vyσyqy + ∆gσz, (82)

where τz = ±1 labels the two inequivalent valleys in Fig. 13(d). The corresponding Berry
curvature is concentrated in the valleys and has opposite signs in the two inequivalent
valleys. The symmetry property of the Berry curvature Ω(k): it is an odd function in the
presence of TRS and even in the presence of inversion symmetry, as shown in Fig. 12(c).
From Eq. (82), we can obtain the Berry curvature near the valleys for the conduction
band[192]

Ω(q) = τz
vxvy∆g

2(∆2
g + vxvyq2)3/2

. (83)

Through an analogy to the graphene physics, one can realize both massive and massless
Dirac fermions and observe the phase transition between them by controlling the lattice
anisotropy [76]. This proposal was demonstrated to be experimentally feasible in Ref.
[195], where the temperature requirement and critical imperfections in the laser configu-
ration were considered in detail. Even in the presence of a harmonic confining potential,
the Dirac points are found to survive [209]. In the presence of atomic interactions, the
many-body physics of Dirac particles in graphene-type lattices, such as novel BCS-BEC
crossover [210], topological phase transition between gapless and gapped superfluid [196]
and even charge and bond ordered states with the p-orbital band of lattices [193, 211],
have been investigated. Notably, a honeycomb lattice has been realized and investigated
using a BEC [212, 213], but no signatures of Dirac points were observed. Even so, these
important theoretical works pave the way for mimicking relativistic Dirac fermions and
the aforementioned beyond-graphene physics with controllable systems.

Figure 14. (Color online) Optical lattice with adjustable geometry. (a) Three retro-reflected laser beams create
the 2D lattice potential of Eq.(84). (b) The real-space potential of the honeycomb lattice. (c) Left: sketch of the
first and second BZs of the honeycomb lattice, indicating the positions of the Dirac points. Right: the energy
spectrum of honeycomb lattice in the first BZ showing the linear intersection of the bands at the two Dirac points.
The color scale illustrates lines of constant energy. W and EG denote the full bandwidth and the minimum energy
gap at the edges of the BZ, respectively; qB = 2π/λ is the Bloch wavevector. Reprinted by permission from
Macmillan Publishers Ltd: Tarruell et al.[77], copyright c© (2012).

Subsequently, an experiment to realize Dirac points with adjustable properties using
single-component ultracold fermionic atoms in a tunable honeycomb OL was reported
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in Ref. [77]. Furthermore, an artificial graphene consisting of a two-component ultracold
atomic Fermi gas with tunable interactions was realized [214]. To create and manipulate
Dirac points, the authors studied an ultracold Fermi gas of 40K atoms in a 2D tunable
OL [77]. In the experimental setup, three retro-reflected laser beams of wavelength λ =
1, 064nm are arranged to form the adjustable honeycomb OL, as shown in Fig. 14(a).
The interference of two perpendicular beams X and Y can form a chequerboard lattice
of spacing λ/

√
2. The third beam X̄, collinear with X but detuned by a frequency δ,

creates an additional standing wave with a spacing of λ/2. The yielding potential takes
the form

V (x, y) = −VX̄cos2(kx+ θ/2)− VXcos2(kx)

− VY cos2(ky)− 2α
√
VXVY cos(kx)cos(ky)cos(ϕ),

(84)

where VX̄ , VX and VY denote the single-beam lattice depths, α is the visibility of the
interference pattern and k = 2π/λ. Varying the relative intensities of the beams can
realize various lattice structures, such as the chequerboard, triangle, square and honey-
comb lattices. We focus on the honeycomb lattice with real-space potential as shown in
Fig. 14(b). The primitive lattice vectors are perpendicular, leading to a square BZ with
two Dirac points inside, as shown in Fig. 14(c). This lattice is called a brick-wall lattice,
which is topologically equivalent to the honeycomb lattice.

The Dirac points here were characterized by probing the energy split between the two
lowest-energy bands through inter-band transitions. They are topological defects in the
band structure with the associated Berry phases ±π, which guarantee their stability while
a perturbation only moves the positions of Dirac points. However, breaking the inversion
symmetry of the potential by introducing an energy offset ∆ between the sublattices
opens an energy gap at the Dirac points, as shown in the insets of Fig. 15(a). The band
structure can be measured with the Bloch-Landau-Zener-oscillation technique [77, 215,
216] (see Sec. 5.1), and the results are plotted in Fig. 15(a), where the total fraction
of atoms transferred to the second band ξ is plotted as a function of the detuning δ.
The maximum indicates the point of inversion symmetry, where ∆ = 0 and the gap at
the Dirac point vanishes. Therefore, one can identify the points of maximum transfer
with the Dirac points. To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, the authors varied the sublattice offset ∆, which is controlled
by the frequency detuning δ between the lattice beams, and measured the total fraction
of atoms transferred ξ. The population in the second band decreases symmetrically on
both sides of the peak as the gap increases, indicating the transition from massless to
massive Dirac fermions.

The position of the Dirac points inside the BZ and the slope of the associated linear
dispersion relation are determined by the relative strength of the tunnel couplings (i.e.,
J2/J1, J3/J1) [76, 194, 217], which can be adjusted simply by controlling the intensity
of the laser beams. Therefore, it was observed that the positions of the Dirac points
continuously approach the corners of the BZ when the tunnelling in the x direction
gradually increases by decreasing the intensity of X̄. When they reach the corners of
the BZ, the two Dirac points merge, annihilating each other. Beyond this critical point,
a finite band gap appears for all quasimomenta of the BZ. This situation signals the
transition between band structures of two different topologies, one containing two Dirac
points and the other containing none. This corresponds to a Lifshitz phase transition from
a semimetallic phase to a band-insulating phase in 2D honeycomb lattices at half-filling
[76, 194]. The topological transition line was experimentally mapped out by recording the
fraction of atoms transferred to the second band, ξ, as a function of the lattice depths VX̄

and VX , while keeping the value of VY /ER. The results are shown in Fig. 15(b). There the
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Figure 15. (Color online) Energy offset and topological transition. (a) The total fraction ξ of atoms transferred
to the second band as a function of the detuning δ, which controls the sublattice energy offset ∆. The maximum
indicates the Dirac point. Insets: away from the peak, the atoms behave as Dirac fermions with a tunable mass.
Solid line is a Gaussian fit to the data.The topological transition occurs along qx (b) and qy (c) directions in
the quasi-momentum space. The dashed line is the theoretical result for the transition line, and the dotted line
indicates the transition from the triangular lattice to the dimer lattice. The bottom diagrams show cuts of the
band structure along the qx axis (qy ;(b)) and qy axis (qx; (c)) for the values of VX and VX̄ indicated. Reprinted
by permission from Macmillan Publishers Ltd: Tarruell et al.[77], copyright c© (2012).

onset of population transfer to the second band signals the appearance of Dirac points
in the band structure of the lattice. For a given value of VX , the transferred fraction,
ξ, decreases again for large values of VX̄, as the Dirac points lie beyond the momentum
width of the cloud. The ξ as a function of qy for a 1D lattice structure (VX̄ � VX) was
obtained in Fig. 15(c), where the transition line is clearly demonstrated. This work opens
the way to realize and investigate other topological models with cold atoms in OLs, such
as the Haldane model [13] and Kane-Mele model [18, 19] to be addressed in Sec. 4.2.3
and 4.2.4, respectively.

After the realization of the Dirac points in the honeycomb OL using ultracold atoms,
a further experiment to detect the π Berry flux located at each Dirac point by realizing
an atomic interferometer was reported [140]. The idea of detecting the Berry flux is
analogous to using an Aharonov-Bohm interferometer to measure a magnetic flux in
real space. As we know, the Aharonov-Bohm effect describes a charged particle wave
packet being split into two parts that encircle a given area in real space [Fig. 16(a)].
Any magnetic flux through the enclosed area gives rise to a measurable phase difference
between the two components. In analogy to the magnetic field, the Berry curvature Ωn for
a single Bloch band in the reciprocal space can be probed by forming an interferometer
on a closed path in reciprocal space [Fig. 16(b)]. The geometric phase acquired along the
path can be calculated from the Berry connection An(k), which is given by An(k) =
〈unk|i∇k|unk〉. Here, |unk(r)〉 is the cell-periodic part of the Bloch wave function |ψnk(r)〉 =
eik·r|unk(r)〉 with quasimomentum k in the nth band. Accordingly, the phase along a
closed loop in reciprocal space is

ϕBerry =

∮
L

An(k)dk =

∫
S2

Ωn(k)d2k. (85)

where S is the area enclosed by the path L = ∂S , and Ωn(k) = ∇×An(k).
In the experimental setup, the graphene-like hexagonal OL for ultracold 87Rb atoms

is implemented by superimposing three linearly polarized blue-detuned running waves
at 120(1)◦ angles (Fig. 16(c)). Fig. 16(d) shows that the resulting dispersion relation
includes two inequivalent Dirac points with opposite Berry fluxes ±π located at K and
K′, respectively. The interferometer sequence begins with an almost pure 87Rb BEC in
the state | ↑〉 = |F = 2,mF = 1〉 at quasimomentum k = 0 in a V0 = 1 Er deep lattice,
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Figure 16. (Color online) Aharonov-Bohm analogy and geometric properties of the hexagonal lattice. (a) In the
Aharonov-Bohm effect, electrons encircle a magnetic flux in real space. (b) In the interferometer, the particles
encircle the π Berry flux of a Dirac point in reciprocal space. (c) Sketch of the hexagonal lattice in real space,
which is realized by interfering three laser beams (arrows) of intensity Ii and frequency wL, with linear out-
of-plane polarizations. A linear frequency sweep of the third lattice beam creates a uniform lattice acceleration
along the y direction. A magnetic field gradient along the x axis creates an additional spin-dependent force. (d)
Dirac points are located at the corners (K and K′ points) of the BZ (gray hexagons). Black diamond is a typical
interferometer path. (e) Summary of phase shifts measured relative to the zero-area reference interferometer for

different final quasimomenta kfiny (Inset shows the interferometer paths). Lines follow ab initio theory using a full
band structure calculation with no momentum spread σk = 0 and perfectly localized Berry curvature δkΩ = 0
(black) or σk = 0.21kL and δkΩ ' 10−4kL (blue). Reprinted from Duca et al.[140]. Reprinted with permission
from AAAS.

where Er = h2/(2mλ2
L) ≈ h × 4 kHz is the recoil energy and h is Planck’s constant. In

fact, the method of detecting the Berry phase here is a 2D extension of the Zak phase’s
measurement addressed in Sec. 4.1.1. The first step is to create a coherent superposition
of | ↑〉 and | ↓〉 = |F = 1,mF = 1〉 states by using a resonant π/2-microwave pulse. Then
a magnetic field gradient along x axis is applied to create a constant force in opposite
directions for the two spin components. Meanwhile, an orthogonal, spin-independent
force from lattice acceleration is created by a linear frequency sweep of the third lattice
beam and can move atoms along the y direction [Fig. 16(c,d)]. As a consequence, the two
spin components move symmetrically along the interferometer path in reciprocal space.
After an evolution time τ , a spin-echo π-microwave pulse is applied to swap the states | ↑〉
and ↓〉. Subsequently, the two atomic wave packets experience opposite magnetic forces
in the x direction, such that both spin components arrive at the same quasimomentum
kfin after an additional evolution time τ . At this point, the coherent superposition state
is given by |ψfin〉 ∝ | ↑, kfin〉 + eiϕ| ↓, kfin〉 with relative phase ϕ. Finally, a second
π/2-pulse with a variable phase ϕMW is applied in order to close the interferometer and
convert the phase information into spin population fractions n↑,↓ ∝ 1 ± cos(ϕ + ϕMW ).
Notably, the phase difference ϕ = ϕB + ϕd consists of the geometric phase ϕB and any
difference in dynamical phases ϕd between the two paths of the interferometer and is
equal to the Berry phase of the region enclosed by the interferometer. This is because
the dynamical contribution should vanish due to the symmetry of the paths and the use of
the spin-echo sequence. To ascertain that the measured phase is truly of geometric origin,
the authors additionally employed a zero-area reference interferometer, which comprises
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a V-shaped path produced by reversing the lattice acceleration after the π-microwave
pulse.

The experimental results for detecting the Berry phase (flux) of the varying region
enclosed by the interferometer are shown in Fig. 16(e). The results show that a phase
difference ϕ ' π when a Dirac point is enclosed in the measurement loop, which agrees
well with the theoretical prediction of the Berry phase for a single Dirac point. In contrast,
the phase difference vanishes when enclosing zero or two Dirac points. The shift in the
phase jump results from the momentum spread σk, the broadening of the edges is caused
by δkΩ, and the shaded area accounts for a variation in σk = 0.14−0.28kL. The contrast is
limited by inhomogeneous broadening of the microwave transition, the finite momentum
spread of the condensate, and, for large final quasimomenta, the dynamical instability of
the Gross-Pitaevskii equation.

4.2.2 Hofstadter model

The celebrated Hofstadter model (also named as the Hofstadter-Harper model) describes
charged particles moving in a 2D periodic lattice under a uniform magnetic flux per
unit cell [218]. In the tight-binding regime, the single-particle energy spectrum depends
sensitively on the number of flux quanta per unit cell and a band splits into narrow
magnetic bands. At high magnetic fields, the self-similar energy spectrum was predicted
to emerge, known as the Hofstadter butterfly. Moreover, for filled bands of non-interacting
fermions when the Fermi energy lies in one of the band gaps, the Hall conductance of
the system is quantized [10]. In this case, the Hofstadter model realizes the paradigmatic
example of a topological insulator that breaks TRS and can be characterized by the first
Chern numbers.

Consider the non-interacting spinless particles moving in a 2D square lattice in the
presence of an artificial magnetic field, which are described by the Hofstadter Hamiltonian
[218]

HH = −J
∑
m,n

(
a†m+1,nam,n + eiϕm,na†m,n+1am,n + h.c.

)
, (86)

where a†m,n (am,n) is the creation (annihilation) operator of a particle at lattice site
(m,n), and ϕm,n denotes the spatially-varying hopping phase induced by a magnetic
flux 2πφ. Taking the Landau gauge, the Hofstadter Hamiltonian can be rewritten as

HH = −J
∑
m,n

(
a†m+1,nam,n + ei2πmφa†m,n+1am,n + h.c.

)
. (87)

With y = na as the periodic coordinates on the system, this Hamiltonian can be diag-
onalized as a block Hamiltonian HH =

⊕
Hx(ky), where ky is the quasimomenta along

the periodic directions. The decoupled block Hamiltonian takes the form

Hx(ky) = −J
∑
m

(a†m+1am + h.c.)−
∑
m

Vma
†
mam, (88)

where Vm = 2Jcos(2πφm+ kya). The single-particle wave function is written as Ψmn =
eikyyψm, and then the Schrödinger equation Hx(ky)Ψmn = EΨmn reduces to the Harper
equation [179]

− J(ψm−1 + ψm+1)− Vmψm = Eψm. (89)
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Figure 17. (Color online) Hofstadter-butterfly energy spectrum. Dashed lines represent the Fermi energy for
different values of φ, namely φ = 1/3, 1/5, and 1/10. Regions marked by × and N have the band Chern numbers
C = ±1; those marked by ◦ and � have C = ±2.

For rational fluxes φ = p/q with p and q being relatively prime integers, and under the
periodic boundary condition along x axis, the wave function ψm satisfies ψm = eikxxum(k)
with um(k) = um+q(k). In this case, the spectrum of this system consists of q energy
bands and each band has a reduced (magnetic) BZ: −π/qa ≤ kx ≤ π/qa, −π/a ≤ ky ≤
π/a. In term of the reduced Bloch wave function um(k), Eq. (89) becomes

− J(eikxum−1 + e−ikxum+1)− Vmum = E(k)um. (90)

Since um(k) = um+q(k), the problem of solving the equation (90) reduces to solving the
eigenvalue equation, MΥ = EΥ, where Υ = (u1, ..., uq) is the Bloch wave function for
the q bands and M is the q × q matrix. The Hofstadter energy spectrum is displayed
in Fig. 17, where the band gaps form continuous regions in the φ − E plane. When the
Fermi energy lies in a gap, the system is an insulator, and the topological nature and
the Hall conductance of the insulator do not change as long as the Fermi level remains
within the same gap [10]. When the Fermi energy is in the gap between two bands N
and N + 1, the quantized Hall conductance is σxy = Ce2/h with the topological Chern
number

C =
1

2π

∑
n6N

∫ π/qa

−π/qa
dkx

∫ π/a

−π/a
dkyF

(n)
xy (k), (91)

where F
(n)
xy is the Berry curvature of the n-th subband. As marked in Fig. 17, the largest

two gaps correspond to topological insulators with the Chern number C = ±1, and the
second largest ones have C = ±2.

Despite its mathematical elegance, the Hofstadter butterfly and the topological Hof-
stadter insulator can hardly be realized in traditional solid-state systems because the
magnetic field needs to be thousands of Tesla for electrons in order to create a mag-
netic flux comparable to one flux quantum per unit cell. However, some quantum Hall
features associated with the fractal Hofstadter spectrum for low-energy Dirac fermions
were recently observed in graphene superlattices and van der Waals heterostructures.
[219, 220].

Recent theoretical and experimental advances in the creation of synthetic gauge fields
for neutral atoms provide an excellent platform to simulate the physics of charged par-
ticles in magnetic fields. The concept of coupling two or several internal states to realize
artificial magnetic fields was suggested in 2D OLs [114, 221, 222], which can be used to
realize the Hofstadter model. In the proposals, the crucial element is the laser-assisted
hopping between neighboring sites by Raman transitions. Because of the spatial variation
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Figure 18. (Color online) (a) Raman-assisted tunneling in the lowest band of a tilted lattice with an energy offset
∆ between neighboring sites. (b) Experimental geometry to generate uniform magnetic fields using a pair of far-
detuned laser beams and a uniform potential energy gradient. (c) A schematic depicting the position-dependent
phases of the tunneling process with resulting magnetic flux quanta per unit cell α = φy/2π. Reprinted with
permission from Miyake et al.[29]. Copyright c© (2013) by the American Physical Society.

of the Raman coupling, the wave function of an atom tunneling from one lattice site to
another acquires an effective spatially-varying Berry phase. This method can also create
non-Abelian U(2) gauge potentials acting on cold atoms in the OLs, leading to general-
ized Hofstadter butterfly spectra with new fractal structures and topological properties
[222, 223].

The laser-assisted hopping scheme was further proposed by using a long-lived
metastable excited state for alkaline-earth or ytterbium atoms in an optical superlat-
tice to produce uniform magnetic fields for realizing the Hofstadter Hamiltonian [224]. It
was also suggested to realize the uniform synthetic magnetic fields for neutral atoms by
periodically shaking square OLs, and thus provided the Floquet realization of the Hof-
stadter Hamiltonian [121, 225–228]. The atomic gas of noninteracting spinless fermions
in a rotating OL was considered to study the Hofstadter butterfly and to measure the
quantized Hall conductance of the Hofstadter insulator from density profiles using the
Středa formula [229]. The evolution of the Hofstadter butterfly in a tunable OL among
the square, checkerboard, and honeycomb structures was studied [230, 231]. A method
for detecting topological Chern numbers in the Hofstadter bands by simply counting
the number of local maxima in the momentum distribution from time-of-flight images
of ultracold atoms was presented [232]. The detection of the fractal energy spectrum of
the Hofstadter model from the density distributions of ultracold fermions in an external
trap and under finite temperatures was analyzed [233]. The chiral edge states in the
Hofstadter insulator may be created by using a steep confining potential in the OLs, and
then they can be detected from the atomic Bragg spectroscopy and from their dynamics
after the potential is suddenly removed [234, 235].

Experimentally, the laser-assisted technique was used to generate large staggered mag-
netic fields for ultracold bosonic atoms [118], where the two internal states in the propos-
als [114, 224] were replaced by doubling the unit cell of the OL using superlattices. Two
experiments were subsequently implemented for realizing the Hosftadter Hamiltonian
based on the generation of homogeneous and tunable artificial magnetic fields with ul-
tracold atoms in tilted OLs [29, 30]. In the experiments, the bosonic atoms were loaded
in a square OL with a tilt potential along the y direction, as shown in Fig. 18. The
atomic tunneling in this direction was then suppressed by the linear tilt of energy per
lattice site ∆� J , which can be created with magnetic field gradients, gravity, or an ac
Stark shift gradient. The tunneling is resonantly restored by the laser-assisted hopping
method with two far-detuned Raman beams of two-photon Rabi frequency Ω, frequency
detuning δω = ω1 − ω2 = ∆/~, and momentum transfer δk = k1 − k2 ≡ (δkx, δky),
as shown in Fig. 18(a). Here the two Raman beams couple different sites, but do not
change the internal state of the atoms, similar to the scheme proposed in Ref. [236]. In
the dressed atom picture (for resonant tunneling along the x axis) and high-frequency
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(a) (b) (c) (d)

C C

Figure 19. (Color online) Measurements of the Chern number of Hofstadter bands with ultracold bosonic atoms.
(a) The setup consists of a 2D OL with a staggered potential. The magnetic unit cell (gray shaded area) is four
times larger than the usual lattice unit cell. (b) The Chern number is extracted from the transverse displacement of
the atomic cloud, in response to an external force generated by an optical gradient. Measured Chern number Cexp

as a function of (c) gradient strength Fa; and (d) staggered detuning δ. Reprinted by permission from Macmillan
Publishers Ltd: Aidelsburger et al.[48], copyright c© (2014).

limit (δω � J/~), the tilt disappears and time averaging over rapidly oscillating Raman
beams yields an effective time-independent Hamiltonian for the lattice system, which
takes the single-band form (∆ < EGap) of the Hofstadter Hamiltonian:

H̃H = −
∑
m,n

(
Ke−iφm,na†m+1,nam,n + Ja†m,n+1am,n + h.c.

)
. (92)

The induced hopping strength K along the x axis and the spatially-varying phase φm,n =
δk·Rm,n = mφx+nφy correspond to the vector potential A = ~(δkxx+δkyy)/ax̂ instead
of the simple Landau gauge. Adding up the accumulated phases around a closed path
leads to an enclosed phase φy = δkya per lattice unit cell of area a2, thus realizing the
Hofstadter Hamiltonian with the magnetic flux α = φy/2π. When the frequencies of the
Raman beams are similar to those used for the OL, one can tune the magnetic flux over
the full range between zero and one by adjusting the angle between the Raman beams.

In the experiments, the laser-assisted tunneling processes was characterized by study-
ing the expansion of the atoms in the lattice [29], and the local distribution of fluxes were
determined through the observation of cyclotron orbits of the atoms on lattice plaque-
ttes [30]. Since the laser-assisted hopping used does not require near-resonant light for
connecting hyperfine states, this method can be implemented for any atoms, including
fermionic atoms. Moreover, for two atomic spin states | ↑, ↓〉 with opposite magnetic
moments and the titled potential created by a magnetic field gradient, two different spin
components experience opposite directions of the magnetic field [30, 237], and the system
naturally realizes the time reversal symmetric spinfull Hofstadter Hamiltonian:

H↑,↓ = −
∑
m,n

(
Ke±iφm,na†m+1,nam,n + Ja†m,n+1am,n + h.c.

)
, (93)

which gives rise to the quantum spin Hall effect, topologically characterized by a Z2 spin
Chern number. In a recent experiment [238], the weakly interacting ground state of the
Hofstadter Hamiltonian (92) was studied, which for bosonic atoms is a superfluid BEC.

The Chern numbers of the Hofstadter bands have been measured with ultracold bosonic
atoms from the transverse deflection of an atomic cloud as a Hall response [48]. The exper-
imental setup consisted of an ultracold gas of 87Rb atoms loaded into a two-dimensional
lattice created by two orthogonal standing waves with wavelength λs = 767 nm. An ad-
ditional standing wave with twice the wavelength λL = 2λs was superimposed along x
to create the staggered potential as shown in Fig. 19(a), with an energy offset ∆ much
larger than the bare tunneling Jx. The modulation restoring resonant tunneling was cre-
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ated by two additional pairs of far-detuned laser beams with wave number kL = 2π/λL
and frequency ω = ∆/~. This system realized an effective time-independent Hofstadter
Hamiltonian with the magnetic flux α = π/2. In contrast to previous experiments gen-
erating uniform flux in tilted OLs [29, 30], this scheme does not rely on magnetic field
gradients, providing a higher degree of experimental control. The incoherent distribution
of bosonic atoms (where the population within each band is homogeneous in momentum
space) was then loaded into the lowest Hofstadter band via an experimental sequence
using an auxiliary superlattice potential, which introduces a staggered detuning δ along
both directions [48]. For δ > 2J the topology of the bands is trivial and all Chern num-
bers are zero. When crossing the topological phase transition at δ = 2J (the spectral gaps
close), the system enters the topologically non-trivial regime, where the lowest band has
a Chern number C = 1. The Chern numbers were finally extracted from the transverse
Hall drift by exploiting Bloch oscillations. Under a constant force F = F êy, atoms on a
lattice undergo Bloch oscillations along the y direction. The cloud also experiences a net
perpendicular (Hall) drift shown in Fig. 19(b) when the energy bands have a nonzero
Berry curvature, which leads to an anomalous velocity that can be isolated by uniformly
populating the bands. In the absence of inter-band transitions, the contribution of the
n-th band to the center-of-mass motion along the x direction can be written in terms of
its band Chern number Cn [48]:

xn(t) = −4a2F

h
Cn t = −4aCn

t

τB
, (94)

where the factor 4a2 corresponds to the extended unit cell and τB = h/(Fa) is the char-
acteristic time scale for Bloch oscillations. The center-of-mass evolution of the atomic
cloud was measured in-situ with opposite directions of the flux α for subtracting the
differential shift x(t, α) − x(t,−α) = 2x(t), as shown in Fig. 19(c), where the deflection
is symmetric with respect to the direction of the applied force and gives an experimental
Chern number Cexp ≈ 1. The measured drifts for α = 0 and for a staggered-flux distribu-
tion do not show any significant displacement, corresponding to zero Chern number. The
dependence of the Chern-number measurement with respect to the force was studied, as
shown in Fig. 19(d).

The chiral edge states of the Hofstadter lattice were experimentally observed in a ribbon
geometry with an ultracold gas of neutral fermions [37] and bosons [38] subjected to an
artificial gauge field and a synthetic dimension (see Sec. 4.4 for synthetic dimensions).
Very recently, the following interacting Hofstadter model of bosons in the two-body limit
was realized in OLs [239]:

H = −
∑
i,j

(
Ke−iφi,ja†i+1,jai,j + Ja†i,j+1ai,j + h.c.

)
+
U

2

∑
i,j

ni,j(ni,j − 1), (95)

where U is an on-site repulsive interaction energy. Through microscopic atomic control
and detection [239], it was shown that the inter-particle interactions affect the populating
of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate
both bound and free-particle characteristics. The novel form of interaction-induced chi-
rality observed in these experiments provides the key piece for future investigations of
highly entangled topological phases of many-body systems. The superfluid pairing and
vortex lattices for interacting fermions in OLs under a uniform magnetic field was studied
[240]. The Hofstadter-Hubbard model on a cylinder geometry with fermionic cold atoms
in OLs was shown to allow one to probe the Hall response as a realization of Laughlin’s
charge pump [241].
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4.2.3 Haldane model

The well-known QHE in 2D electron systems is usually associated with the presence of
a uniform externally generated magnetic field, which splits the electron energy spectrum
into discrete Landau levels. In order to realize the integer QHE seen in the Landau-
level problem while keeping the translational symmetry of the lattice, in 1988, Haldane
proposed a spinless fermion model for the integer QHE without Landau levels[13]. He
proposed that the QHE may result from the broken TRS without any net magnetic flux
through the unit cell of a 2D hexagonal lattice, as illustrated in Fig. 20(a). The Haldane
model based on breaking both time reversal and inversion symmetries is the first example
of a topological Chern insulator, and the Hamiltonian is as follows

H = J1

∑
〈i,j〉

c†icj + J2

∑
〈〈i,j〉〉

e−ivijφc†icj +
∑
i

εic
†
ici. (96)

Here the on-site energy εi is ±M , depending on whether i is on the A or B sublattice,
J1 is the nearest-neighbor-hopping energy, J2 is the next-nearest-neighbor energy, and

vij = sgn(d̂i × d̂j)z = ±1, (97)

where d̂i,j are the unit vectors along the two bonds constituting the next-nearest neigh-
bors the particle traverses going from site j to i. As depicted in Fig. 20(a), a periodic
magnetic flux density B(r) is added normal to the plane with the full symmetry of the
lattice and with zero net flux through the unit cell. Thus, the flux φa and the flux φb in
the regions a and b respectively has the relation φb = −φa: since the net flux is zero and
the next-neighbor hoppings form closed loops in the hexagonal cell, the hopping terms
J1 are not affected but the hopping terms J2 acquire a phase φ = 2π(2φa+φb)/φ0 where
φ0 is the flux quanta.

C= -1 C= 1

C= 0

(a) (b) (c)

A B

A

AB

B

ijJ

' iji
ijJ e Φ

Figure 20. (Color online) (a) The Haldane honeycomb model showing nearest-neighbor bonds (solid lines) and
next-nearest-neighbor bonds (dashed lines). The white and black dots represents the two sublattice sites A and B
with different on-site energy M and −M . The areas a and b are threaded by the magnetic flux φa and φb = −φa,
respectively. The area c has no flux. (b) A distorted honeycomb lattice realized in the experiment [28]. (c) Phases
of the Haldane model.

Under the periodic condition, we can diagonalize the Haldane Hamiltonian by using the

basis of a two-component spinor c†k = (c†k,A, c
†
k,B) of Bloch states constructed on the two

sublattices. Let a1, a2, a3 be the displacements from a B site to its three nearest-neighbor

A sites, as shown in Fig. 20(a), then a1 = (
√

3
2 a,−

1
2a), a2 = (0, a), a3 = (−

√
3

2 a,−
1
2a),

where a is the bond length. Taking a Fourier transform c†i = (1/
√
N)
∑

k e
ik·ric†k, where

ri represents the position of the site in sublattice A or B and N is the number of sites
of the sublattice, the Haldane Hamiltonian can be expressed as

H(k) = ε(k) + d(k) · σ, (98)
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where

ε(k) = 2J2cosφ

3∑
i=1

cos(k · bi), d1(k) = J1

3∑
i=1

cos(k · ai),

d2(k) = J1

3∑
i=1

sin(k · ai), d3(k) = M − 2J2sinφ

3∑
i=1

sin(k · bi),

(99)

with b1 = a1 − a2, b2 = a3 − a2, and b3 = a1 − a3. The BZ is a hexagon rotated π
2

with respect to the Wigner-Seitz unit cell: At its six corners (k · a1,k · a2,k · a3) is a
permutation of (0, 2π

3 ,−
2π
3 ). The two distinct corners k0

α, are defined so that k0
α·bi = α2π

3 ,
α = ±1. The energy spectrum of this system can be easily obtained by diagonalizing the
Hamiltonian (98). There are two bands that touch only if all three Pauli matrix terms
have vanishing coefficients, and only occur at the zone corner k0

α while M = α3
√

3J2sinφ.
To guarantee that the two bands never overlap and are separated by a finite gap unless

they touch, in the following, we consider the case for |J2/J1| < 1/3. One can choose the
corner point K = 2π

3a (1/
√

3, 1), then (K ·a1,K ·a2,K ·a3) = (0, 2π
3 ,−

2π
3 ). We expand the

Haldane Hamiltonian around the point K to linear order in q = k−K:

H+ = v(qxσx − qyσy) +m+σz (100)

where v = 3
2J1a and m+ = M − 3

√
3J2sinφ. Hereafter, we ignore the k-independent

term −3J2cosφ, which plays no role in topology. At the other point K′ = −2π
3a (1/

√
3, 1),

(K′ · a1,K
′ · a2,K

′ · a3) = (0,−2π
3 ,

2π
3 ), around K′ we have

H− = v(−qxσx − qyσy) +m−σz (101)

where v = 3
2J1a and m− = M + 3

√
3J2sinφ. The Chern number of the whole system is

determined by

C =
1

2
[sgn(m−)− sgn(m+)]. (102)

The phase diagram of the Haldane model as a function of M/J2 and φ is shown in Fig.
20(c). For φ = 0, π, the model (98) is under time reversal, and the two mass m+ and
m− are equal, the system is trivial with C = 0. Moreover, the system has the inversion
symmetry when M = 0. If M and (or) J2sinφ vanish, the two bands touch with gapless
Dirac fermions. The model can have the nontrivial phases with C = ±1 only if |M | <
3
√

3J2sinφ and φ 6= 0, π. Note that along the critical lines in the phase diagram where
either m+ or m− vanishes, the system experiences a topological phase transition, and
has a low-lying massless spectrum around K or K′ simulating nondegenerate relativistic
chiral Dirac fermions.

Although the Haldane model has been proposed for nearly 30 years, it has not been
realized in any condensed matter systems since it is extremely hard to realize the required
staggered magnetic flux assumed in the model. The technology of ultracold atoms in
an OL provides an approach to realize and explore this model originally proposed in
condensed matter physics. The idea of realizing and detecting the QHE of the Haldane
model in an OL was first proposed in Ref. [242]. In the proposal, three standing-wave
laser beams are used to construct a honeycomb OL where different on site energies in two
sublattices required in the model can be implemented through tuning the phase of one
laser beam. The other three standing-wave laser beams are used to create the staggered
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Figure 21. (Color online) (a) Laser beam set-up for forming the OL. The laser X̄ is frequency-detuned from the
other beams. Piezo-electric actuators sinusoidally modulate the retro-reflecting mirrors, with a controllable phase
difference ϕ that induces the complex tunneling phase Φ. Acousto-optic modulators ensure the stability of the
lattice geometry. (b) Topological phase diagram measured in the experiments. Solid lines show the theoretically
computed topological transitions. Dotted lines represent the uncertainity of the maximum gap originating from
the uncertainty of the lattice parameters. Data are the points of maximum transfer for each Dirac point. Reprinted
by permission from Macmillan Publishers Ltd: Jotzu et al.[28], copyright c© (2014).

magnetic field. Firstly, to generate the honeycomb lattice with different on site energies
in sublattices A and B, the three laser beams with the same wave length but different

polarizations are applied along three different directions: ey and
√

3
2 ex± 1

2ey, respectively.
Thus, the corresponding potential is given by

V = V0[sin2(α+ +
π

2
) + sin2(ykL0 +

π

3
)sin2(α− −

χ

2
)], (103)

where α± =
√

3xkL0 /2± ykL0 /2, V0 is the potential amplitude and kL0 is the wave vector
of the laser. The ingenuity of the design is that the different site energies of sublattices
A and B are controllable by the phase of the laser beam χ. An interesting method
to realize the staggered magnetic field in the Haldane model is to use two opposite-
travelling standing-wave laser beams to induce Berry phase [84], which can create effective
staggered magnetic fields with zero net flux per unit cell. For the two laser beams with
Rabi frequencies Ω1 = Ω0sin(ykL2 + π

4 )eixk
L
1 and Ω2 = Ω0sin(ykL2 + π

4 )e−ixk
L
1 , the effective

gauge potential is generated as A1(r) = ~kL1 sin(2ykL2 )ex. Here, kL1 = kLcosθ and kL2 =
kLsinθ with kL being the wave vector of the laser and θ being the angle between the wave
vector and the ex axis. The choice of wave vector kL2 of the laser beams must be a multiple

of 2
√

3π
3a in order to be commensurate with the OL, such as kL2 = 2

√
3π

3a . Since the lattice
has the symmetry of point group C3v, the other two vector potentials can be rotated
by ±2π

3 from the vector potential A1. Finally, the total accumulated phases along the
nearest-neighbor directions are found to cancel each other out because of the symmetry
of the honeycomb lattice. However, the total accumulated phases for the next-nearest-

neighbor hopping are preserved as the hopping phase ϕ = kL1 asinak
L
2√
3

. Consequently,

the total Hamiltonian of this cold atomic system is described by the Haldane model.
However, in the proposal, the lasers for the honeycomb lattice and artificial magnetic
fields are different and thus the required lasers are extremely complicated and hard to
realize in practice.

Another scheme to realize the Haldane-like model was proposed in Ref. [243], with an
orbital analogue of the anomalous QHE arising from orbital angular momentum polariza-
tion without Landau levels. This effect arises from the energy-level splitting between the
on site px− ipy and px + ipy orbitals by rotating each OL site around its own center. At
large rotation angular velocities, this model naturally reduces to two copies of Haldane’s
quantum Hall model. An improved experimental proposal to realize the generalized Hal-
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dane model using OLs loaded with fermionic atoms in two internal states was proposed
in Ref. [244]. In this simulation, the original phase factors in the next-nearest-neighbor
hopping in Haldane’s paper are replaced by that in the nearest-neighbor, whose phase
depends on the momentum imparted by the Raman lasers. An experimental scheme to
realize the quantum anomalous Hall effect in an anisotropic square OL was proposed
[203].

Instead of using the extra laser beams, one can create effective magnetic fields in the
honeycomb OL by shaking the lattice [28, 120]. In 2014, the first experimental realiza-
tion of the Haldane model and the characterization of its topological band structure
were reported [28], which used ultracold fermionic atoms in a periodically modulated
honeycomb OL. In the experiment, the spin-polarized non-interacting ultracold Fermi
gas of 40K atoms was prepared in the OL created by several laser beams at wavelength
λ = 1064 nm. The lattice potential is given by

V (x, y, z) = −VX̄cos2(klatx+ θ/2)− VXcos2(klatx)− VY cos2(klaty)

−2α
√
VXVY cos(klatx)cos(klaty)cos(ϕlat)− VZ̃cos2(klatz),

(104)

where VX̄,X,Y,Z̃ are the single-beam lattice depths and klat = 2π/λ. The energy offset
∆AB can be controlled by varying θ around π and changing the frequency detuning
δ between the X̄ and the X (which has the same frequency as Y ) beams using an
acousto-optic modulator [77], as depicted in Fig. 21(a). ϕlat is the relative phase of the
two orthogonal retro-reflected beams X and Y , the geometry of the lattice is actively
stabilized at ϕlat = 0, and the visibility of the interference pattern is α = 0.81(1).

The crucial point for realizing the Haldane Hamiltonian in this experiment is the
creation of the next-nearest neighbor tunneling, which is the complex tunneling with
phase Φij . The complex tunneling eiΦijJ ′ij (see Fig. 20(b)) can be induced by circular
modulation of the lattice position. The modulation applied in this experiment consists of
moving the lattice along a periodic trajectory rlat(t). Here, the time-dependence of the
lattice position

rlat(t) = −A(cos[ωt)ex + cos(ωt− ϕ)ey], (105)

where A is the amplitude of the motion, and ω/2π denotes the modulation frequency.
Thus, after the atoms are loaded into the honeycomb lattice, a phase-modulated hon-
eycomb lattice will be realized by ramping up the sinusoidal modulation of the lattice
position rlat along the x and y directions with a final amplitude of 0.087(1)λ, frequency
of 4.0 kHz, and phase difference ϕ. This gives access to linear (ϕ = 0◦ or 180◦), circular
(ϕ = ±90◦) and elliptical trajectories.

At this point, the effective Hamiltonian of this phase-modulated honeycomb lattice can
be well described by the Haldane model, where the energy offset ∆AB ≷ 0 between sites
of the A and B sublattices breaks inversion symmetry and opens a gap |∆AB|. TRS can
be broken by changing ϕ. This controls the imaginary part of the next-nearest-neighbor
tunneling, whereas its real part, as well as the nearest-neighbor tunneling Jij and ∆AB,
are mostly unaffected. To explore the topological properties of this system, the authors
measured the band structure and probed the Berry curvature for the lowest band with
different parameter ∆AB and ϕ by applying a constant force to the atoms, and it was
found that orthogonal drifts are analogous to a Hall current. Meanwhile, one can map
out the transition lines in the topological phase diagram of the Haldane model, as shown
in Fig. 21(c), by identifying the vanishing gap at a single Dirac point.
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4.2.4 Kane-Mele model

In 2005, Kane and Mele [18, 19] generalized the Haldane model into the time reversal
symmetric electron systems with spin. They introduced the spin-orbit interaction between
electron spin and momentum to replace the periodic magnetic flux and predicted a
new quantum phenomenon – the quantum spin Hall effect. Unlike the QHE where the
magnetic field breaks TRS, the spin orbit interaction preserves TRS.

The Kane-Mele model takes the tight-binding Hamiltonian

HKM = J
∑
〈i,j〉

c†icj + iλSO
∑
〈〈i,j〉〉

vijc
†
iszcj + iλR

∑
〈i,j〉

c†i (s× d̂ij)zcj + λv
∑
i

ξic
†
ici. (106)

The first term is the usual nearest neighbor hopping term on a honeycomb lattice [Fig.

20(a)], where c†i = (c†i,↑, c
†
i,↓). The second term connecting next-nearest neighbors with a

spin dependent amplitude is a mirror symmetric spin-orbit interaction. Here vij = ±1
is still the sign of hopping phases determined by the same form as Eq. (97). si are
the Pauli matrices describing the electron’s spin. The third term is a nearest neighbor
Rashba term, which explicitly violates the z → −z mirror symmetry. The last term
is a staggered sublattice potential with ξi = ±1 depending on whether i is the A or
B site, which will describe the transition between the quantum spin Hall phase and
the simple insulator. If the Rashba term vanishes, the Kane-Mele model then reduces to
independent copies for each spin of a Haldane model. In this case with sz being conserved,
the distinction between graphene and a simple insulator is easily understood. Each spin
has an independent Chern number C↑ and C↓. The TRS gives rise to C↑ + C↓ = 0,
but the difference C↑ − C↓ is nonzero and defines a quantized spin Hall conductivity.
This characterization breaks down when sz non-conserving terms are present (λR 6= 0),
which makes the system more complicated. The electrons with spin-up and spin-down
are coupled, and thus the spin Hall conductance is not quantized.

arise due to a perpendicular electric field or interaction
with a substrate. The fourth term is a staggered sublattice
potential (�i � �1), which we include to describe the
transition between the QSH phase and the simple insulator.
This term violates the symmetry under twofold rotations in
the plane.
H is diagonalized by writing �s�R� �d� �

u�s�k�eik�R. Here s is spin and R is a bravais lattice vector
built from primitive vectors a1;2 � �a=2��

���
3
p

ŷ � x̂�. � �
0; 1 is the sublattice index with d � aŷ=

���
3
p

. For each k the
Bloch wave function is a four component eigenvector
ju�k�i of the Bloch Hamiltonian matrix H �k�. The 16
components of H �k� may be written in terms of the
identity matrix, 5 Dirac matrices �a and their 10 commu-
tators �ab � 	�a;�b
=�2i� [9]. We choose the following
representation of the Dirac matrices: ��1;2;3;4;5� �
��x � I; �z � I; �y � sx; �y � sy; �y � sz�, where the
Pauli matrices �k and sk represent the sublattice and spin
indices. This choice organizes the matrices according to
T . The T operator is given by �jui � i�I � sy�jui
. The
five Dirac matrices are even under T , ��a��1 � �a

while the 10 commutators are odd, ��ab��1 � ��ab.
The Hamiltonian is thus

H �k� �
X5

a�1

da�k��a �
X5

a<b�1

dab�k��ab; (2)

where the d�k�’s are given in Table I. Note that H �k�
G� �H �k� for reciprocal lattice vectors G, so H �k� is
defined on a torus. The T invariance of H is reflected in
the symmetry (antisymmetry) of da �dab� under k! �k.

Equation (2) gives four energy bands, of which two are
occupied. For �R � 0 there is an energy gap with magni-
tude j6

���
3
p
�SO � 2�vj. For �v > 3

���
3
p
�SO the gap is domi-

nated by �v, and the system is an insulator. 3
���
3
p
�SO > �v

describes the QSH phase. Though the Rashba term violates
Sz conservation, for �R < 2

���
3
p
�SO there is a finite region of

the phase diagram in Fig. 1 that is adiabatically connected
to the QSH phase at �R � 0. Figure 1 shows the energy
bands obtained by solving the lattice model in a zigzag
strip geometry [7] for representative points in the insulat-
ing and QSH phases. Both phases have a bulk energy gap
and edge states, but in the QSH phase the edge states
traverse the energy gap in pairs. At the transition between
the two phases, the energy gap closes, allowing the edge
states to ‘‘switch partners.’’

The behavior of the edge states signals a clear difference
between the two phases. In the QSH phase for each energy

in the bulk gap there is a single time reversed pair of
eigenstates on each edge. Since T symmetry prevents
the mixing of Kramers’ doublets these edge states are
robust against small perturbations. The gapless states
thus persist even if the spatial symmetry is further reduced
[for instance, by removing the C3 rotational symmetry in
(1)]. Moreover, weak disorder will not lead to localization
of the edge states because single particle elastic backscat-
tering is forbidden [7].

In the insulating state the edge states do not traverse the
gap. It is possible that for certain edge potentials the edge
states in Fig. 1(b) could dip below the band edge, reduc-
ing—or even eliminating—the edge gap. However, this is
still distinct from the QSH phase because there will nec-
essarily be an even number of Kramers’ pairs at each
energy. This allows elastic backscattering, so that these
edge states will in general be localized by weak disorder.
The QSH phase is thus distinguished from the simple
insulator by the number of edge state pairs modulo 2.
Recently two-dimensional versions [10] of the spin Hall
insulator models [11] have been introduced, which under
conditions of high spatial symmetry exhibit gapless edge
states. These models, however, have an even number of
edge state pairs. We shall see below that they are topologi-
cally equivalent to simple insulators.

The QSH phase is not generally characterized by a
quantized spin Hall conductivity. Consider the rate of
spin accumulation at the opposite edges of a cylinder of
circumference L, which can be computed using Laughlin’s
argument [12]. A weak circumferential electric field E can
be induced by adiabatically threading magnetic flux
through the cylinder. When the flux increases by h=e
each momentum eigenstate shifts by one unit: k! k�
2�=L. In the insulating state [Fig. 1(b)] this has no effect,
since the valence band is completely full. However, in the
QSH state a particle-hole excitation is produced at the
Fermi energy EF. Since the particle and hole states do
not have the same spin, spin accumulates at the edge.
The rate of spin accumulation defines a spin Hall conduc-
tance dhSzi=dt � Gs

xyE, where

TABLE I. The nonzero coefficients in Eq. (2) with x � kxa=2
and y �

���
3
p
kya=2.

d1 t�1� 2 cosx cosy� d12 �2t cosx siny
d2 �v d15 �SO�2 sin2x� 4 sinx cosy�
d3 �R�1� cosx cosy� d23 ��R cosx siny
d4 �

���
3
p
�R sinx siny d24

���
3
p
�R sinx cosy
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FIG. 1 (color online). Energy bands for a one-dimensional
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Figure 22. (Color online) Energy spectrum for a 1D zigzag strip in the (a) Quantum spin Hall phase λv = 0.1J
and (b) the insulating phase λv = 0.4J . In both cases λSO = 0.06J and λR = 0.05J . The inset shows the
phase diagram as a function of λv and λR for 0 < λSO � J . Reprinted with permission from Kane et al.[18].
Copyright c© (2005) by the American Physical Society.

Following the method introduced in the Haldane model, we diagonalize the Hamilto-

nian by using a basis of the four-component spinor c†k = (c†k,A↑, c
†
k,A↓, c

†
k,B↑, c

†
k,B↓) of Bloch

states constructed on the two sublattices and two spins. The generic 4× 4 Hamiltonian
can be written in the terms of Dirac matrices

HKM(k) =

5∑
a=1

da(k)Γa +

5∑
a<b=1

dab(k)Γab. (107)

Here, the five Dirac matrices are defined as

Γa = (σx ⊗ s0, σz ⊗ s0, σy ⊗ sx, σy ⊗ sy, σy ⊗ sz) (108)
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(a=1,2,3,4,5); their 10 commutators Γab = 1
2i [Γ

a,Γb], where the Pauli matrices σi rep-
resent the sublattice indices; σ0 and s0 are the identity matrices. In this representation,
the time reversal operator is given by T̂ = i(σ0 ⊗ sy)K̂, where K̂ is the complex con-
jugation operator. The five Dirac matrices are even under the time reversal operator
T̂ , T̂ΓaT̂−1 = Γa, while the 10 commutators are odd, T̂ΓabT̂−1 = −Γab. To obtain a
Hamiltonian preserving the TRS: T̂H(k)T̂−1 = H(−k), the coefficients must satisfy the
relations,

da(k) = da(−k), dab(k) = −dab(−k). (109)

Therefore, the nonzero coefficients of Kane-Mele model are given by

d1(k) = J(1 + 2cosxcosy), d2(k) = λv, d3(k) = λR(1− 2cosxcosy),

d4(k) = −
√

3λRsinxsiny, d12(k) = −2Jcosxsiny, d15(k) = 2λSO(sin2x− 2sinxcosy),

d23(k) = −λRcosxsiny, d24(k) =
√

3λRsinxcosy,
(110)

with x =
√

3
2 kx, y = −3

2ky, which are obtained through the variable transformations

k · b1 = y + x and k · b2 = y − x. Here b1 = (
√

3
2 a,−

3
2a) and b2 = (−

√
3

2 a,−
3
2a) are the

lattice translation vectors in the honeycomb lattice shown in Fig. 20(a).
The four-band system becomes insulating when the lower two bands are fully occupied

and an energy gap exists between the middle two bands. The phase diagram of the Kane-
Mele model is shown in the inset of Fig. 22. For λR = 0, the Hamiltonian reduces into
two independent copies of Haldane Hamiltonian with different spins;we can define a spin-
dependent Chern number Cs. For λv > 3

√
3λSO, the gap is dominated by λv, and the

system is a normal insulator since both Chern numbers C↑ and C↓ are zero. In contrast,

for λv < 3
√

3λSO, the corresponding Chern number becomes nonzero, C↑ = −C↓ =
sgn(λSO). Although the total Chern number C = C↑+C↓ = 0, their difference C↑−C↓ =
±2, which describes the quantum spin Hall phase with a pair of edge states crossing
the bulk gap, as depicted in Fig. 22(a). For λR 6= 0, the sz symmetry is broken, and
electrons with spin-up and spin-down mix together. Thus, we cannot introduce the spin-
dependent Chern number to describe this system. Instead, Kane and Mele introduced
the Z2 invariant (see Sec. A.3) to describe it.

Although the Kane-Mele model has been proposed for more than a decade, physicists
still have not realized it or found such materials in condensed matter physics. To directly
implement the Kane-Mele model is difficult, but the quantum spin Hall effect predicted by
Kane and Mele was first experimentally realized in HgTe quantum wells [22]. Compared
with conventional solid-state systems, cold atomic systems provide a perfectly clean
platform with high controllability to construct and investigate the Kane-Mele-like model.
There are several works in recent years proposing schemes to realize and study the
topological properties of the quantum spin Hall insulators with cold atoms [116, 237,
245, 246]. An experimental scheme to simulate and detect the 2D quantum spin Hall
insulator in a kagome OL was proposed in Ref. [245]. In this proposal, a kagome OL
with the trimer and SOC terms can host the 2D quantum spin Hall insulator phase with
only the nearest-neighbor hopping instead of the next-nearest-neighbor hopping in the
Kane-Mele model. Moreover, the nearest-neighbor intrinsic SOC generated by the laser-
induced-gauge-field method can be directly implemented in cold atomic experiments.
Based on the investigation of the Hofstadter model on a 2D square OL [29, 30], one
can construct the Kane-Mele-like model from two time-reversal copies of the spinless
Hofstadter model [116, 237, 246]. Here, we briefly introduce a recent proposal on realizing
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time-reversal invariant topological insulators in alkali atomic gases [116], where quantum
spin Hall states will emerge. In this model, particles with spin σ =↑, ↓ experience a
uniform magnetic flux per plaquette, but opposite in sign for the two spin components.
The corresponding Hamiltonian is given by[116]

H = −J
∑
m,n

c†m+1,ne
iθ̂xcm,n + c†m,n+1e

iθ̂ycm,n + H.c. + λs

∑
m,n

(−1)mc†m,ncm,n, (111)

where c†m,n is a two-component creation operator for fermonic atoms defined on a lattice
site (ma, na). The last term describes an on-site staggered potential with amplitude λs,
along the x direction, which has been introduced to drive transitions between different
topological phases. The Peierls phases θ̂x = 2πγσx and θ̂y = 2πmΦσz resulted from
an artificial gauge field, are engineered within this tight-binding model to simulate the

analog of SOCs. The effect of the SU(2) link variable Ûy(m) = eiθ̂y ∝ σz is therefore
analogous to the intrinsic SOC in Eq.(106). It corresponds to opposite magnetic fluxes
±Φ for each spin component and generates quantum spin Hall phases. The link variable

Ûx = eiθ̂x ∝ sin(2πγ)σx plays a role similar to the Rashba SOC in Eq. (106). For γ = 0,
this model corresponds to two decoupled copies of the spinless Hofstadter model. Besides,
θ̂x mix the two spin components as they tunnel from one site to its nearest-neighbor sites.
This model therefore captures the essential effects of the Kane-Mele model in a multi-
band framework and offers the practical advantage of only involving nearest-neighbor
hopping on a square lattice.

4.3 Three-dimension

4.3.1 3D Dirac fermions

As introduced in the previous sections, the 2D Dirac fermions have been extensively stud-
ied in graphene and honeycomb OLs. In recent years, it is of great interest to search for
relativistic quasiparticles in 3D materials or artificial systems with stable band touching
points, such as 3D Dirac(-like) fermions, which can exhibit transport properties differ-
ent from those of 2D Dirac fermions. The Dirac equation in the Weyl representation is
written as i~∂Ψ/∂t = HDΨ, where Ψ denotes the four-component bispinor for 3D Dirac
fermions and the Dirac Hamiltonian is given by

HD =

(
vFσ · p m
m −vFσ · p

)
, (112)

with the linear dispersion E±D = ±
√
v2
F p

2 +m2. Here σ = (σx, σy, σz) are Pauli matrices,

p = (px, py, pz) is the 3D (quasi-)momentum, and the Fermi velocity vF and the mass
term m represent the effective speed of light and rest energy, respectively. Notably, the
off-diagonal term m in Eq. (112) mixes the two Weyl fermions (see the following section)
of opposite chirality.

The Hamiltonian (112) can describe the transition between a 3D topological insulator
and a trivial insulator in the critical case m = 0. Recently, it was revealed that the Dirac
points with fourfold degeneracies can be protected by certain symmetries [247–249] such
as rotation or nonsymmorphic symmetries, which are not accidental band crossings at the
transition between topological and trivial insulators. Thus, one has a topological Dirac
semimetal with four band degeneracy, which can be viewed as 3D graphene, possessing 3D
Dirac fermions in the bulk with linear dispersions along all momentum directions. These
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massless (m = 0) 3D Dirac fermions have recently been observed in some compounds
(for a comprehensive review of Dirac semimetals in 3D solids, see Ref. [24]).

Before the Dirac semimetals were discovered in materials, several schemes for simu-
lating massless and massive 3D Dirac fermions with cold atoms in 3D OLs have been
proposed [115, 168, 250, 251]. With cold fermions in an edge-centered cubic OL for proper
parameters, the linear dispersion characterizing 3D Dirac-like particles with tunable mass
can exhibit [250]. The system was proposed to realize 3D massless Dirac fermions in a
cubic OL subjected to a synthetic frustrating magnetic field [251], and the mass term
may be induced by coupling the ultracold atoms to Bragg pulses in the system. It was
suggested that the massless and massive 3D relativistic fermions can also be simulated
with ultracold fermionic atoms in 3D optical superlattices with Raman-assisted hopping
[115, 168]. Moreover, by tuning the Raman laser intensities, the system may allow the de-
coupling of fermion doublers from a single Dirac fermion through inverting their effective
mass [115], providing a quantum simulation of Wilson fermions [252].

4.3.2 Weyl semimetals and Weyl fermions

The Dirac equation (112) for massless particles can be rewritten in a simpler form:

i~
∂ψ±
∂t

= HW±ψ±, HW± = ±vFσ · p, (113)

where ψ± are effectively two-component vectors acting as two chiral modes. This is the
Weyl equation and ψ± are referred to as Weyl fermions, which propagate parallel (or
antiparallel) to their spin and thus defines their chirality. There are no fundamental
particles currently found to be massless Weyl fermions. In some 3D lattice systems, Weyl
fermions can emerge as low-energy excitations near band crossings, and they always arise
in pairs with opposite chirality and separated momenta. These systems are the so-called
Weyl semimetals [253–255], which have been intensively investigated in the last couple of
years. For more details, see the comprehensive review of vast theoretical and experimental
studies of Weyl semimetals in 3D solids [24] and the references therein.

zk

ykxk

W- W+

Surface BZ

Bulk BZ

Fermi Arc

1kzC = −

0kzC =0kzC =

Figure 23. (Color online) A pair of Weyl points as the Berry flux monopole and anti-monopole in the bulk BZ.
They are connected by surface Fermi arcs.

Let us use the following minimal two-band model for discussing the properties of Weyl
semimetals in a simple cubic lattice. The Bloch Hamiltonian is given by

H(k) = dx(k)σx + dy(k)σy + dz(k)σz (114)
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with the Pauli matrices acting on two (pseudo-)spin states and the Bloch vectors

dx = 2Jssinkx, dy = 2Jssinky, dz = mz − 2J0(coskx + cosky + coskz). (115)

Here Js and J0 denote the hopping amplitudes of spin-flipping hopping in the xy plane
and spin-dependent hopping along all the three dimensions, respectively, and mz repre-

sents the Zeeman field. For 2J0 < mz < 6J0, the bands E±(k) = ±
√
d2
x + d2

y + d2
z have

two crossings in the first BZ located at W± = (0, 0,± arccos kw) with kw = (m−4J0)/2J0.
They are actually a pair of Weyl points (nodes) since one can obtain the effective Weyl
Hamiltonian for low-energy excitations by approximating HW±(k) ≈ H(W± + q):

HW± = vxqxσy + vyqyσx ± vzqzσz, (116)

where vx = vy = 2Js and vz = 2J0. When the Fermi level is at EF = 0, the Fermi surface
consists solely of two Weyl points and the system is the Weyl semimetal with emergent
Weyl fermions. The Hamiltonian HW± can be written as HW,± =

∑
i,j qiαijσj , where

[αij ] is a 3 × 3 matrix with elements αxy = αyx = 2Js, αzz = ±2J0 and zero otherwise.
Thus the chirality of the two Weyl points W± can be defined as χ± = sgn(det[αij ]) = ±1,
respectively. One can see that there is no matrix that anticommutes with HW± and opens
a band gap since all three Pauli matrices are used up in HW±. To further realize the
topological stability of Weyl points, one can obtain the Berry flux

F±(k) = ± k

2|k|3
, (117)

which is the source and sink of the Berry curvature, forming vector fields in momentum
space that wraps around the Weyl points W±. As shown in Fig. 23, the pair of Weyl
points act as the monopole and anti-monopole in the bulk BZ, which are characterized
by the topological charges (Chern numbers)

CW± =
1

2π

∮
S

F±(k) · dS = ±1 = χ±, (118)

through any surface S enclosing the points. This implies that the Weyl points always
exhibit in pairs of opposite chirality, because the field lines of the Berry curvature must
begin and end somewhere within the BZ. The only way to eliminate the Weyl points
is to annihilate them pairwise by moving them at the same point in momentum space.
Therefore, the stability of the Weyl points comes from their intrinsical topology. It is
worth noting that unlike Dirac points, Weyl points necessitate the breaking of either (or
both) time-reversal or space-inversion symmetry in lattice systems.

To further discuss the topological properties of Weyl semimetals, we consider the Bloch
Hamiltonian (114,115) using the dimension reduction method. Treating kz as an effective
parameter (kz being a good quantum number), we can reduce the original system to a (kz-
modified) collection of effective 2D subsystems described by Hkz(kx, ky). If kz 6= ±kc, the
2D bulk bands ofHkz(kx, ky) are fully gapped and thus can be topologically characterized
by the first Chern number

Ckz =
1

4π

∫ π

−π
dkx

∫ π

−π
dky d̂ ·

(
∂kx d̂× ∂ky d̂

)
=

{
−1, −kc < kz < kc;
0, |kz| > kc,

where d̂ ≡ ~d/|~d|. For any plane −kc < kz < kc, one has Ckz = −1 characterizing a Chern
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insulator, while elsewhere Ckz = 0 signals a trivial insulator. The value of Ckz changes
for a topological phase transition only when the bulk gap closes at W± = (0, 0,±kc).
From this point of view, the two Weyl points appear to be the critical points for the
topological phase transitions. An important consequence is that the Fermi arc surface
states arise in Weyl semimetals and terminate at the pair of Weyl points. When each
of the 2D Hamiltonians Hkz(kx, ky) represents a 2D Chern insulator, if one considers a
surface perpendicular to the x direction (still labeled by ky and kz), each of the 2D Chern
insulators will have a gapless chiral edge mode near the Fermi energy EF = 0. The Fermi
energy will cross these states at ky = 0 for all −kc < kz < kc, which leads to a Fermi
arc that ends at the Weyl point projections on the surface BZ (ky-kz plane), as shown in
Fig. 23. In this particular model, the Fermi arc is a straight line. The Weyl fermions near
the Weyl points and the Fermi arcs in a Weyl semimetals are fundamentally interesting
and can give rise to exotic phenomena absent in fully gapped topological phases, such as
anomalous (topological) electromagnetic responses [24, 253–255].

To realize this model of Weyl semimetals, a scheme has been proposed by using ul-
tracold fermionic atoms in a 2D square OL subjected to experimentally realizable SOC
and an artificial dimension from an external parameter space (acting as kz) [136]. It was
further shown that in the cold atom system, the simulated Weyl points can be experi-
mentally detected by measuring the atomic transfer fractions in a Bloch-Landau-Zener
oscillation, and the topological invariants of the Weyl semimetals can be measured with
the particle pumping approach [136]. Another proposal to construct a Weyl semimetal
was to stack 1D topological phases in double-well OLs with two artificial dimensions
[256]. Similar 3D lattice models for realizing Weyl semimetals with cold atoms from
stacking 2D layers of Chern insulators in checkerboard or honeycomb OLs with synthetic
staggered fluxes were suggested in Refs. [257–260]. The realization of chiral anomaly by
using a magnetic-field gradient in the system was also discussed [258]. In these schemes,
the spin degree of freedom can be encoded by two atomic internal states or sublattices,
and then the required hopping terms can be realized by synthetic SOC or magnetic
fields. These ingredients are well within current experimental reach of ultracold gases.
It was illustrated that Weyl excitations can also emerge in 3D OL of Rydberg-dressed
atomic fermions or dipolar particles [261, 262]. The Weyl points may automatically arise
in the Floquet band structure during the shaking of a 3D face-centered-cubic OL without
requiring sophisticated design of the tunneling [263].

(a) (b) (c) (d)

Figure 24. (Color online) Sketch of the 3D cubic lattice with engineered hopping along x and z directions, which
possesses Weyl points in momentum space. Dashed and solid lines depict hopping with acquired phase π and 0,
respectively. (a) The xy planes of the lattice are equivalent to the lattice of the Hofstadter-Harper Hamiltonian
with α = 1/2 flux. Green triangles along the axes denote the tilted directions. (b) A pair of Raman lasers enabling
laser-assisted tunneling is sketched with arrows. The 3D lattice alternates stacks of 2D lattices parallel to the xz
plane, which is shown in (c) and (d); the hopping between these planes (along y) is regular. The hopping along
z is alternating with phase 0 or π, depending on the position in the xy plane with broken inversion symmetry.
Reprinted with permission from Dubcek et al. [264]. Copyright c© (2015) by the American Physical Society.

An alternative scheme to realize the Weyl semimetal phase by stacking 2D Hofstadter-
Harper systems in cubic OLs was proposed in Refs.[264, 265]. A sketch of the 3D lattice
with laser-assisted tunneling along both x and z directions is shown in Fig. 24. To
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realize this hopping configuration, natural tunneling (Jx, Jz) along these directions is
first suppressed by introducing a large linear tilt of energy ∆ per lattice site (Jx, Jz �
∆� Egap), which can be obtained by a linear gradient potential (e.g., gravity or magnetic
field gradient) along the x̂+ ẑ direction. The tunneling is then resonantly restored by two
far-detuned Raman beams of frequency detuning δω = ω1 − ω2 = ∆/~, and momentum
difference δk = k1 − k2 [29, 30]. It yields an effective 3D Hamiltonian for the system
[264]

H3D = −
∑
m,n,l

( Kxe
−iΦm,n,la†m+1,n,lam,n,l+ (119)

Jya
†
m,n+1,lam,n,l +Kze

−iΦm,n,la†m,n,l+1am,n,l + h.c. ) .

Here, a†m,n,l (am,n,l) is the creation (annihilation) operator on the site (m,n, l), and
Φm,n,l = δk ·Rm,n,l = mΦx + nΦy + lΦz are the nontrivial hopping phases, dependent
on the positions Rm,n,l. Next, the directions of the Raman lasers are chosen such that
(Φx,Φy,Φz) = π(1, 1, 2), i.e. Φm,n,l = (m + n)π (modulo 2π), as schematically shown
in Fig. 24(b). The 3D system can be viewed as an alternating stack of two types of 2D
lattices, parallel to the xz plane, as illustrated in Figs. 24(c) and 24(d); hopping between
these planes is regular (along y). Another view is stacking of 2D lattices described by the
Hofstadter-Harper Hamiltonian with α = 1/2 flux in Fig. 24(a), such that the hopping
along z has phases 0 or π, for m + n even or odd, respectively. The 3D lattice has two
sublattices (A-B) with broken inversion symmetry and has the Bloch Hamiltonian

H(k) = −2(Jycoskyσx +Kxsinkxσy −Kzcoskzσz). (120)

The energy spectrum of the Hamiltonian has two bands,

E(k) = ±2
√
K2
xsin2kx + J2

y cos2ky +K2
z cos2kz, (121)

which touch at four Weyl points within the first BZ at (kx, ky, kz) = (0,±π/2,±π/2). The
schemes for the experimental detection of the Weyl points with both ultracold bosons
and fermions in the lattice were suggested [264]. The dynamics of Weyl quasiparticles in
this model was investigated [266].

In 3D crystals, the generic energy dispersion near the Weyl points takes the form of
the following low-energy Hamiltonian

H̃W± = v0qjσ0 ± vFq · σ, (122)

where an additional term with the Fermi velocity v0 introduces an overall tilt of the Weyl
cones. This term is forbidden by Lorentz symmetry for the Weyl Hamiltonian in vacuum
but it can generically appear when expanding the Bloch Hamiltonian at the Weyl points.
The energy spectrum is given by E± = v0qj ± vF |q| for particle and hole bands. When
|v0| < |vF |, the energy of the particle (hole) band is still positive (negative) and the Weyl
point is called a type-I Weyl point as discussed previously. When |v0| > |vF |, the Weyl
point is still there, but the two bands now overlap in energy in certain regions, forming
particle and hole pockets. In this case, the Weyl point becomes a point at which a particle
and a hole pocket touch and is dubbed a type-II Weyl point. These Weyl semimetals with
broken Lorentz symmetry that have no analog in quantum field theory are called type-II
Weyl semimetals [267]. Several schemes have been proposed to realize and detect type-II
Weyl semimetals (points) with cold atoms in 3D OLs [268–270].
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There is an additional subclass of Weyl semimetals called the multi-Weyl semimetals
[271–273]. In these systems, the Weyl points carry topological charges of higher magni-
tude, such as CW = ±2 for double-Weyl points and CW = ±3 for triple-Weyl points,
which may be stabilized by certain point-group crystal symmetries. Several materials
have been predicted to be candidates for double- and triple-Weyl semimetals, but they
are yet to be experimentally realized. The double-Weyl semimetals may be simulated
with ultracold atoms in 3D OLs in the presence of synthetic non-Abelian SU(2) gauge
potentials [274]. The topological properties of double-Weyl semimetals in OLs were also
explored [275].

The Weyl excitations may exist in a superfluid of Fermi atoms or an atomic Bose-
Hubbard system. For instance, the manifestation of anisotropic Weyl fermions in sound
speeds of Fulde-Ferrell fermionic superfluids was studied [276], an anisotropic Weyl su-
perfluid state was shown to be stable in a 3D dipolar Fermi gas [277], and the structured
Weyl points may exhibit in the superfluid quasiparticle spectrum of a 3D Fermi gas sub-
ject to synthetic SOCs and Zeeman fields [278]. It was found that the energy dispersion
of Bogoliubov excitations has Weyl points in both the superfluid and Mott-insulator
phases in a Bose-Hubbard extension of a Weyl semimetal [279], which can be realized
with ultracold bosonic atoms in 3D OLs.

4.3.3 Topological nodal-line semimetals

In 3D lattice systems, there is another kind of topological semimetals in addition to
Weyl and Dirac semimetals. In contract to Weyl and Dirac semimetals that have band
touching at isolated points, they have the band touching along lines in the 3D BZ, termed
nodal-line semimetals [255, 280, 281]. The nodal lines can be topologically stable under
certain discrete symmetry, and each carries a quantized π Berry phase (a Z2 topological
invariant). The topological nodal-line semimetal state has been predicted and recently
confirmed to exist in some materials [280–284].

A simple two-band model of nodal-line semimetals in the continuum can be written as

h(k) = [k2
0 − (k2

x + k2
y + k2

z)]σz + kzσy, (123)

which has both inversion symmetry P̂ = σz and time-reversal symmetry T̂ = K̂ with the
complex-conjugate operator K̂, and thus the combined P̂ T̂ symmetry. It is found that
the gapless points form a closed nodal line on the kx-ky plane with kz = 0, which may
be enclosed by a loop from the gapped region, such as a tiny circle on the ky-kz plane.
The circle is parametrized as (0, k0 + ρcosφ, ρsinφ), with ρ being the radius and φ the
angle. If ρ is sufficiently small, the Hamiltonian restricted on the circle is expanded as
h(φ) = −2k0ρcosφσz + ρsinφσy + O(ρ2). The Berry phase of the occupied state wave
function of such a Hamiltonian is quantized in units of π, which is equal to one modulo
2, namely

γ =
1

π

∫
〈ψ(φ)|i∂φ|ψ(φ)〉dφ = 1 mod 2, (124)

with |ψ(φ)〉 being the occupied state of h(φ). In a lattice system, the periodicity of the
momentum coordinates allows every large circle going inside the nodal loop to have
nontrivial topological charge γ = 1. For straight lines inside, each may be regarded as
corresponding to a 1D gapped system that is of topological band structure, leading to
gapless boundary modes. If particle-hole symmetry is additionally present, these modes
form the drumhead-shape surface states as a flat band over the surface BZ enclosed by
the projection of the nodal line. There are still nearly flat surface bands in the absence
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of this additional symmetry.
Notably, the quantized π Berry phase means that the nodal line is in the topologi-

cal class of the Z2 classification [285, 286]. According to the classification theory, the

topological protection of the stability of the nodal line requires only the combined P̂ T̂
symmetry, rather than both P̂ and T̂ symmetries. In other words, the nodal line still
exists for topological reasons when perturbations break both P̂ and T̂ symmetries but
preserve P̂ T̂ symmetry. In general, a σy term with even functions of k and a σz term with

odd functions of k break both P̂ and T̂ , which just change the shape and (or) position
of the nodal line.

Several schemes were proposed to realize topological nodal-line semimetals in cold atom
systems. Ref. [285] proposed to realize tunable P̂ T̂ -invariant topological nodal-loop states
with ultracold atoms in a 3D OL, which is described by the Bloch Hamiltonian

H(k) = fz(k)σz − 2Jssinkzσy − f0(k)σ0. (125)

Here fz(k) = mz−α−(coskx+cosky)−α+coskz and f0(k) = α+(coskx+cosky)+α−coskz,
where mz and α± ≡ J↑±J↓ are tunable parameters for adjusting the nodal rings, and J↑,↓
are the natural hopping strengths for two spins. To realize this Hamiltonian, atoms with
two hyperfine spin states are loaded in a spin-dependent 3D OL and two pairs of Raman
lasers are used to create spin-flip hopping with a site-dependent phase along the z direc-
tion. It was also demonstrated that the characteristic nodal ring can be detected from
Bloch-Landau-Zener oscillations, the topological invariant may be measured based on
the time-of-flight imaging, and the surface states may be probed via Bragg spectroscopy.

A four-band model allowing Dirac or Weyl rings was also suggested to realize with cold
atoms in 3D OLs, where the superfluidity of attractive Fermi gases in the model exhibits
Dirac and Weyl rings in the quasiparticle spectrum [287]. The atomic topological super-
fluid with ring nodal degeneracies in the bulk was proposed in Ref. [288]. An alternative
model of 3D topological semimetals whose energy spectrum exhibits a nodal line acting
as a vortex ring was proposed in Ref. [289], which may be realized with cold atoms.
Even in a dissipative system with particle gain and loss, a novel type of topological ring
was theoretically discovered [290], which is dubbed a Weyl exceptional ring consisting
of exceptional points at which two eigenstates coalesce. Such a Weyl exceptional ring
is characterized by both a Chern number and a quantized Berry phase, and may be
realized and measured in a dissipative cold atomic gas trapped in an OL. Recently, it
was theoretically found that there are other possible configurations for 1D nodal lines
of band touching, such as a nodal chain [291] containing connected loops and a nodal
link [292–294] hosting linked nodal rings in the BZ. A scheme to realize the topological
semimetal with double-helix nodal links using cold atoms in an OL was also presented
[292].

In a very recent experiment [295], a 3D topological nodal-line semimetal phase for
ultracold fermions with synthetic SOCs in an optical Raman lattice was realized. The
nodal lines embedded in the semimetal bands were observed by measuring the atomic
spin-texture. Moreover, the realized topological band structure was confirmed by ob-
serving the band inversion lines from the dynamics of the quench from a deep trivial
regime to topological semimetal phases. This work demonstrated a promising approach
to explore 3D band topology for ultracold atoms in OLs.

4.3.4 3D Z2 topological insulators

Inspired by the study of 2D Z2 topological insulators [18, 20, 22], three groups of theorists
independently proposed 3D generalizations of the quantum spin Hall insulators [296–
298]. A single Z2 invariant ν characterizes the topology of a 2D topological insulator;
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in contrast, four Z2 topological invariants ν0; (ν1ν2ν3) are needed to fully characterize a
3D Z2 topological insulator. As introduced in Sec. A.3, the mathematical formulations
of the four Z2 invariants can be obtained from the 2D case, which involves the quantities
δi of 8 distinct inversion invariant points Γi in the 3D BZ. Points k = Γi in the BZ are
inversion invariant since −Γi = Γi+G = Γi for a reciprocal lattice vector G. Thus, these
points are also time reversal invariant T̂H(Γi)T̂

−1 = H(Γi) and are called time reversal
invariant momenta. The eight Γi are expressed in terms of primitive reciprocal lattice
vectors as

Γi=(n1n2n3) = (n1b1 + n2b2 + n3b3)/2, (126)

where nj = 0, 1 and bl are primitive reciprocal lattice vectors. They can be regarded as
the vertices of a cube.

In the 2D case with b3 = 0, the Z2 invariant can be determined by the quantities

δa =

√
det[U(Γa)]

Pf[U(Γa)]
= ±1, (127)

where Γa are the four time reversal invariant momenta with the form (126) in the 2D
BZ, and U is the so-called sewing matrix defined by

Umn(k) = 〈um(−k)|UT |un(k)〉∗, (128)

which builds from the occupied Bloch functions |um(k)〉 [160]. At k = Γa, Umn = −Unm,
so the Pfaffian Pf[U ] satisfying det[U ] = Pf[U ]2 is well defined. At this time, the single
Z2 invariant ν is given by (−1)ν =

∏4
a=1 δa. Similarly, the four Z2 indices ν0; (ν1ν2ν3) in

the 3D BZ can be defined in term of δn1n2n3
as

(−1)ν0 =
∏

nj=0,1

δn1n2n3
, (−1)νi=1,2,3 =

∏
nj 6=i=0,1;ni=1

δn1n2n3
. (129)

One can see that ν0 can be expressed as the product over all eight points, while the other
three invariants νi are given by products of four δi, with which Γi reside in the same plane.
If the lattice system has inversion symmetry, the problem of evaluating the Z2 invariants
can be greatly simplified [299]. At the special points Γi, the Bloch states |u2m(Γi)〉 are also
the parity eigenstates of the 2m-th occupied energy band with eigenvalue ξ2m(Γi) = ±1,
which shares the same eigenvalue ξ2m = ξ2m−1 with its Kramers degenerate part. The
product involves the 2N occupied bands that can be divided into N Kramers pairs. In
this case, the Z2 invariants are still determined by Eq. (129) with

δn1n2n3
=

N∏
m

ξ2m(Γi). (130)

According to the parity of ν0, the system can be divided into two classes of phases. For
ν0 = 0, the system is referred to as a “weak” topological insulator with an even number of
Dirac cones at the surfaces, which can be interpreted as stacked layers of the 2D quantum
spin Hall insulators. The TRS does not protect their surface states and the system is
not robust against disorder. For ν0 = 1, the crystal is called a “strong” topological
insulator with an odd number of Dirac cones on all surfaces of the BZ. The connection
between the bulk topological indices and the presence of unique metallic surface states
is established. The 3D Z2 topological insulators have been theoretically predicted and
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then experimentally discovered in several materials, such as Bi1−xSbx [299, 300] as well
as the “second generation” topological insulators in Bi2Te3, Sb2Tb3 [301], and Bi2Se3

[301, 302].
The realization of the Z2 topological insulators in ultracold atomic systems will allow

investigation of interesting properties that cannot readily be explored in solid-state ma-
terials in a controlled way, such as the strong correlations and other perturbations in
Z2 topological insulators. Based on the optical flux lattice [303] with synthetic SOC, a
generic scheme was proposed to realize 2D and 3D Z2 topological insulators with cold
atoms [304]. Interestingly, the proposed lattice system work in the nearly free particle
regime, which allows for large gaps with the size set by the recoil energy. For an atom of
N internal states in an optical potential with position r and momentum p, the generic
Hamiltonian of the atom-laser system can be written as

H =
p2

2m
1N + V M̂, (131)

where V has dimensions of energy, 1N is the identity, and M̂(r) is a position-dependent
N×N matrix acting on the internal states of the atom describing the interaction between
the atom and the laser field. To realize a Z2 topological insulator, one requires N to
be even and the Hamiltonian invariant under time reversal: T̂ M̂ T̂−1 = M̂ with T̂ =
i(12 ⊗ σ̂y)K̂. The smallest nontrivial case has N = 4 with [304]

M̂ =

(
(A+B)12 C12 − iσ̂ ·D
C12 + iσ̂ ·D (A−B)12

)
, (132)

where A, B and C are real parameters, and D = (Dx, Dy, Dz) is a 3D vector.
The optical potential in Eq. (132) can be implemented by using four internal states of

171Yb atom (with nuclear spin 1/2) [304]. Both the ground state (1S0 = g) and the long-
lived excited state (3P0 = e) have two internal states. The magnetic field is considered to
be sufficiently small that the Zeeman splitting is negligible, and all four e-g transitions
involve the same frequency ω0 = (Ee−Eg)/~. Under this single photon coupling with the
state-dependent potential Vam, the optical potential in the rotating wave approximation
[305] is given by

V M̂ =

(
(~2 ∆d + Vam)12 −iσ̂ · εdr

iσ̂ · εdr −(~2 ∆d + Vam)12

)
, (133)

where ∆d = ω − ω0 is the detuning, dr is the reduced dipole moment, and ε represents
the electric amplitude vector. For the 3D case, this optical potential can be achieved
by three standing waves of linearly polarized light at the coupling frequency ω: two of
equal amplitude with wave vectors in the 2D plane (K1 for y polarization and K2 for z
polarization) and one with a wave vector K3 normal to the 2D plane for x polarization
with an amplitude smaller by a factor of δ. The corresponding electric field, detuning,
and state-dependent potential in Eq. (133) are given by

drε = V
[
δ′, cos(r ·K1), cos(r ·K2)

]
, ~∆/2 + Vam = V

[
c12 + δ′(µ+ c13 + c23)

]
, (134)

where δ′ = δcos(r · K3) and cij = cos
[
r · (Ki + Kj)

]
, with K1 = (1, 0, 0)κ, K2 =

(cosθ, sinθ, 0)κ, and K3 = (0, 0, 1)κ. The amplitudes are chosen to have a common energy
scale V , which can be interpreted as a measure of the Rabi coupling. Since ω ' ω0, the
magnitude of the wave vectors is κ ' 2π/λ0 with λ0 = 578 nm being the wavelength
of the e-g transition. The space-dependent Vam(r) is set by a standing wave at the
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anti-magic wavelength λam [224], which fixes the angle θ = 2arccos(±λ0/λam). For Yb

atoms, λ0/λam ' 1/2, so θ ' ±2π
3 (let θ = 2π

3 ). The optical coupling M̂ preserves

the symmetry of a monoclinic lattice, where the lattice vectors a1 = (
√

3/2,−1/2, 0)a,
a2 = (0, 1, 0)a, and a3 = (0, 0,

√
3/2)a, with a ≡ 4π/(

√
3κ). Thus, the eight time reversal

invariant momenta of the 3D topological insulator in this lattice are given by Γmnl =
(mK1 + nK2 + lK3)/2, with m,n, l = 0, 1 and the reciprocal lattice vectors Ki. In

addition, the system has inversion symmetry P̂ : r→ −r as the optical coupling is even
under the spatial inversion. Thus the Z2 topological invariants in this system take a simple
form based on Eqs. (129) and (130): The product

∏
m,n,l=0,1

∏
α∈filled ξα(Γmnl) = −1 for

ν0 = 1, where ξα(Γmnl) are the parity eigenvalues of the αth Kramers pair of bands at
the momenta Γmnl.

4.3.5 3D Chiral topological insulators

As we discussed in Sec. 4.1, 1D chiral topological insulators classified in the AIII class
have been extensively studied in condensed matter systems and OLs with cold atoms.
Similarly, according to the ten-fold classification of topological insulators [123, 161], there

are two distinct classes of 3D topological insulators protected by the chiral symmetry Ŝ,
which is the combination of time-reversal T̂ and charge-conjugation Ĉ symmetries. The
first class is the class AIII in the 3D cases, and the second one is the class DIII which
is invariant under both T̂ and Ĉ symmetries. The realization of 3D chiral topological
insulators in condensed matter materials has been studied [306, 307]. In addition, the ex-
perimental schemes for implementing the class AIII and DIII chiral topological insulators
using cold atomic gases in 3D OLs have been proposed [308, 309].

In the proposal in Ref. [308], an optical potential coupling noninteracting atoms with
two spin states was constructed, which is described by the model Hamiltonian

H(p, r) =
p2

2m
+ V

[
coskx+ cosky + coskz

]
+ BZ(r) · σ, (135)

with BZ(r) = BZ
∑4

i=1 bicos(kbi · r). Here k = 2π/a denotes the length scale of the
wave vector; p and r are the single-particle momentum and position; x̂, ŷ, and ẑ are
orthogonal unit vectors; and σ represents the Pauli matrices in spin space. Moreover,
the tetrahedral vectors bi are represented as b1 = (−x̂ + ŷ + ẑ)/2, b2 = (x̂− ŷ + ẑ)/2,
b3 = (x̂+ŷ−ẑ)/2, and b4 = −(x̂+ŷ+ẑ)/2. The potential V (r) creates a spin-independent
cubic lattice, while the effective Zeeman term BZ(r) · σ creates an alternating magnetic
hedgehog texture around the wells of the lattice [308], leading to the lattice structure
with the translation symmetry of a face-centered-cubic lattice. Although the Zeeman
field BZ(r) breaks T̂ since σ = −σyσ∗σy, the symmetry is restored by a translation T1/2

through a along any of the cubic axes. This Hamiltonian then has the combined symmetry
Σ = T̂ T1/2, which satisfies Σ2 = −1, and therefore keeps the necessary topological
characteristic of a nontrivial topological insulator phase.

In the deep-well limit, the Hamiltonian (135) reduces to the following tight-binding
model on the fcc cubic lattice

Htb =
∑
r∈A

∑
e

c†r(J + JMe · σ)cr+e + H.c., (136)

where J and JM (both are real) are the nearest-neighbor and spin-dependent hop-
ping, respectively. ĉr = (ĉr,↑, ĉr,↓) is the fermionic annihilation operator at site r, and
e ∈ ±x̂,±ŷ,±ẑ; A labels one of the two sublattices of the fcc cubic lattice. The Bolch
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Hamiltonian in momentum space is given by

H(k) = 2

(
0 g(k)

g†(k) 0

)
, g(k) =

∑
j∈x,y,z

(Jcoskj − iJM sinkjσj). (137)

The energy spectrum of this Hamiltonian has two bands (with twofold degeneracy)

ε(k) = ±2
√
J2f2(k) + J2

MfM (k), (138)

where f(k) =
∑

j∈x,y,z coskj , and fM (k) =
∑

j∈x,y,z sin2kj . In this tight-binding regime,

the system are protected by an extra chiral symmetry: ŜH(k)Ŝ−1 = −H(k) with the

operator Ŝ = τz ⊗ σ0, where τj are the Pauli matrices in the sublattice space and σ0 is
the identity matrix. Thus, this model belongs to the symmetry class DIII. The associated
topological invariant of this system can be characterized by the 3D winding number
[161, 310, 311]

νw = π

∫
d3k

(2π)3

1

3!
εabcTr

(
ŜDaDbDc

)
= 1, (139)

where Da = H−1(k)∂kaH(k), and the integral is over the whole BZ. The difficulty in the
proposed scheme is to realize the optical potential coupling on the two atomic internal
states BZ(r) · σ, which may be achieved with the optical flux lattice method similar as
to the one used for the 3D DIII chiral topological insulators [304].

Another experimental scheme to realize a 3D AIII chiral topological insulator with cold
fermionic atoms in an OL was proposed in Ref.[309]. The proposed model Hamiltonian
in momentum space is given by

H(k) =

 0 0 q1 − iq2

0 0 q3 − iq0

q1 + iq2 q3 + iq0 0

 , (140)

where q0 = 2J(h + coskxa + coskya + coskza), q1 = 2Jsinkxa, q2 = 2Jsinkya, and

q3 = 2Jsinkza, with h being a tunable parameter. Here H(k) anticommutes with Ŝ and

thus has a chiral symmetry with the operator Ŝ = diag(1, 1,−1). Additionally, H(k)
breaks TRS, and thus this model belongs to symmetry class AIII. H(k) has three energy
bands, with a zero-energy flat band protected by the chiral symmetry and the other two
bands having energy dispersion E± = ±

√
q2

0 + q2
1 + q2

2 + q2
3. This model is characterized

by the Z topological invariant (winding number) [312, 313]

νw =
1

12π2

∫
BZ
d3kεαβγρεµντ

1

E4
+

qα∂µqβ∂νqγ∂τqρ, (141)

where ε is the Levi-Civita symbol with {α, β, γ, ρ} and (µ, ν, τ) labeling respectively the
four components of the vector field q and the three coordinates of the momentum k. The
topological invariant νw as a function of h is given by

νw(h) =

−2, |h| < 1
+1, 1 < |h| < 3
0, |h| > 3.

(142)
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As shown in Fig. 25(a), the system is gapped when |h| 6= 1, 3 and corresponds to the
topological nontrivial phases for |h| < 3. The band gap closes for |h| = 1, 3, indicating
topological quantum phase transitions. Figure 25(b) shows the numerical results of the
energy spectrum for the system, which keeps x and y directions in momentum space
with periodic boundaries and z direction in real space with open boundaries, revealing
the macroscopic flat band as well as the surface states with Dirac cones.

Figure 25. (Color online). (a) The topological invariant νw as a function of h. (b) Energy spectrum for three
bulk bands (surface plot) and surface states (mesh plot) at the boundary along the z direction for h = 2. (c)
Proposed scheme to realize the Hamiltonian (140). A linear tilt ∆x,y,z per site in the lattice along each direction.
The detuning in x direction matches the frequency offset of the corresponding Raman beams, which are shown in
panel (d). Polarizations of each beam are shown in brackets. Rabi frequencies for each beam are: Ωπ1 = Ω0eikx,

Ωπ2 = Ω0eiky , Ωx1 = i
√

2Ω0eikz , Ωx2 = −i
√

2Ω0eikz , Ωy1 = −
√

2Ω0eikz , Ωy1 =
√

2Ω0eikz , and Ωz = 2iΩ0eikz .
Reprinted with permission from Wang et al.[309]. Copyright c© (2014) by the American Physical Society.

To realize this model Hamiltonian, a three-species gas of noninteracting fermionic
atoms (denoted by |1〉, |2〉 and |3〉) trapped in a 3D cubic OL is considered. The tight-
binding Hamiltonian (140) in the real space has the following form

H = J
∑

r

[(2ihc†3,rc2,r + H.c.) +Hrx̂ +Hrŷ +Hrẑ],

Hrx̂ = ic†3,r−x̂(c1,r + c2,r)− ic†3,r+x̂(c1,r − c2,r) + H.c.,

Hrŷ = −c†3,r−ŷ(c1,r − ic2,r) + c†3,r+ŷ(c1,r + ic2,r) + H.c.,

Hrẑ = 2ic†3,r−ẑc2,r + H.c..

(143)

Here cj,r(j = 1, 2, 3) denotes the annihilation operator at the lattice site r with the
spin state |j〉. The major difficulty for implementing this Hamiltonian is realization of
the spin-transferring hopping terms Hrx̂,Hrŷ,Hrẑ. In principle, the required hopping
can be realized by using the Raman-assisted tunneling with proper laser-frequency and
polarization selections [26, 29, 30, 54, 114, 238].

A scheme to realize this Hamiltonian was proposed in Ref. [309]. As illustrated in
Fig. 25(c), the atom-laser coupling configuration was suggested to realize the hopping
terms, of which two beams Ωπ

1 = Ω0e
ikx and Ωπ

2 = Ω0e
iky constitute the π-polarized

lights, propagating respectively along the x and y directions, where k = 2π/a is the
magnitude of the laser wave vector. The other five beams Ωx,y,z

1,2 are all propagating along
the z direction with the polarizations shown in Fig. 25(c). Note that the required broken
parity (left-right) symmetry is achieved by titling the lattice with a homogeneous energy
gradient along the x-, y-, z-directions. A different linear energy shift per site ∆x,y,z along
different directions is required, such as ∆z ≈ 1.5∆y ≈ 3∆x. Then the natural hopping is
suppressed by the large tilt potential, and the hopping terms are restored and engineered
by applying two-photon Raman coupling with laser beams of proper configurations.

71



April 3, 2019 Advances in Physics Manuscript˙AIP˙Final˙20190401

4.3.6 Hopf topological insulators

In general, 3D topological insulators should be protected by certain kinds of symmetries
[123, 161], such as time-reversal, particle-hole, or chiral symmetries. However, a special
class of 3D topological insulators without any symmetry other than the prerequisite U(1)
charge conservation was theoretically proposed, called Hopf insulators [66, 294, 314–316].
The Hopf insulator is topologically characterized by a topological invariant termed Hopf
index (also known as Hopf charge or Hopf invariant) as discussed in Sec. A.7, and has zero
Chern numbers. A two-band tight-binding model was first constructed on a cubic lattice
to realize a special Hopf insulator with the Hopf index χ = 1 [66]. Subsequently, a class of
tight-binding Hamiltonians that realize arbitrary Hopf insulator phases with any integer
Hopf index χ were suggested [314]. Recently, an experimental scheme to implement a
model Hamiltonian for Hopf insulators and to measure the Hopf topology in ultracold
atomic systems has been proposed in Ref. [317]. The observation of topological links and
Hopf fibration associated with Hopf insulators in a quantum simulator has been reported
in Ref. [318].

The model Hamiltonian in momentum space discussed in Ref. [317] is given by

H(k) = S(k) · σ, S(k) = η†ση, (144)

where S(k) is the pseudospin field. It is defined in terms of the two complex fields as
η = (η̄p↑ , η̄

q
↓)
t with p and q being coprime integers, η̄↑,↓ = η∗↑,↓, where η↑ and η↓ are

complex numbers given by

η↑(k) = sinkx + isinky, η↓(k) = sinkz + i(coskx + cosky + coskz + h), (145)

with h being a constant parameter. We introduce the standard CP1 field z(k) =

η/
√
|S(k)| = (z↑(k), z↓(k))t and the normalized pseudospin Ŝ(k) = S(k)/|S(k)| = z†σz

with |S(k)| = |η↑|2p + |η↓|2q. It is easy to obtain the expression of Ŝ(k),

Ŝx + iŜy = 2ηp↑ η̄
q
↓/η+, Ŝz = η−/η+, (146)

where η± = |η↑|2p±|η↓|2q. As we can see, the CP1 field constructed by a four-component
vector N(k) with the configuration N1 = Re[z↑(k)], N2 = Im[z↑(k)], N3 = Re[z↓(k)],
and N4 = Im[z↓(k)], takes values on the 3D sphere S3, together with the normalization
condition

∑
iN

2
i = 1. Therefore, Eq. (145) forms a map g: T3 → S3, where T3 is a

3D torus (describing the first BZ). On the other hand, the normalized pseudospin Ŝ(k)
expressed as z†σz defines a mapping f : S3 → S2, where the S3 coordinates N(k) =

(N1, N2, N3, N4) are mapped to S2 coordinates (Ŝx, Ŝy, Ŝz). Consequently, the underlying

structure of the Hamiltonian (144) constructs a composite map Ŝ(k) = f ◦g(k): T3 → S2

from the BZ to the target pseudospin space S2.
The topological properties of the Hamiltonian in Eq. (144) are characterized by the

Hopf index (see Sec. A.7), which has a simple integral expression [67, 319]

νH(Ŝ) = −
∫

BZ
F ·Ad3k, (147)

where F is the Berry curvature defined as Fµ = 1
8π εµντ Ŝ ·(∂νŜ×∂τ Ŝ) with εµντ being the

Levi-Civita symbol and ∂ν,τ ≡ ∂kν,τ (µ, ν, τ ∈ {x, y, z}), and A is the Berry connection
that satisfies ∇ × A = F. One can prove [314] that the Chern number Cµ = 0 in
all three directions, and the Hopf index takes all integer values Z and has an analytic
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expression with νH(Ŝ) = ±pq when 1 < |h| < 3, νH(Ŝ) = ±2pq when |h| < 1, νH(Ŝ) = 0

otherwise. As we discussed before, Ŝ(k) is a composition of two maps Ŝ(k) = f ◦ g(k).
The generalized Hopf map f from S3 → S2 has a known Hopf index χ(f) = ±pq [319].

Thus, we can decompose the composition map, νH(Ŝ) = νH(f)Λ(g), where Λ(g) is the
topological invariant classifying the maps g from T3 → S3

Λ(g) =
1

12π2

∫
BZ
dkεµνρτ

εαβγ
|η|4

ηµ∂αην∂βηρ∂γητ . (148)

Here η = (Re[η↑(k)], Im[η↑(k)],Re[η↓(k)], Im[η↓(k)]). Λ(g) = 1 when 1 < |h| < 3, Λ(g) =
−2 when |h| < 1, and Λ(g) = 0 otherwise. A geometric interpretation of such composition
is as follows: Λ(g) counts how many times T3 wraps around S3 nontrivially under the
map g and νH(f) describes how many times S3 wraps around S2 under f . This composite

process ultimately gives the Hopf index νH(Ŝ)[314]. Numerical results show that the
topologically protected surface states and zero-energy modes in these exotic nontrivial
phases are robust against random perturbations [66, 314].

A geometrical image of the Hopf invariant can be obtained by noting that each point
on S2 has a preimage that is a circle in T3, and that the linking number of two such
circles taken from different points of S2 is the Hopf invariant νH(Ŝ). To visualize such
circles and knots more easily, one can work with S3 rather than T3 and probe the Hopf
index νH(f). Similarly, the linking number of two preimage contours of distinct spin
orientations is equal to the Hopf invariant νH(f). Nevertheless, S3 is a hypersphere in
4D space R4 where is difficult to visualize the circles in S3. So one can visualize the Hopf
links by using a stereographic projection of S3 to R3, where the topological structure is
retained [320, 321]. The stereographic projection used in Ref. [317] is defined as

(x, y, z) =
1

1 + η4
(η1, η2, η3), (149)

where (x, y, z) and (η1, η2, η3, η4) are points of R3 and S3, respectively. Stereographic
projection preserves circles and maps of Hopf fibers as geometrically perfect circles in
R3, but there is one exception: the Hopf circle containing the projection point (0, 0, 0,−1)
maps to a straight line in R3 as a “circle through infinity”. Moreover, the preimage map
f−1(Ŝ) in S3 must be determined in order to obtain the stereographic projection of
the point on S3 in R3 by using Eq. (149). A direct parametrization of the 3D-sphere
employing the Hopf map is as follows [319]

η↑ = |η↑|eiqθ1 , η↓ = |η↓|eipθ2 , (150)

or as follows in Euclidean R4

η1 = |η↑|cos(qθ1), η2 = |η↑|sin(qθ1), η3 = |η↓|cos(pθ2), η4 = |η↓|sin(pθ2), (151)

where θ1,2 runs over the range 0 to 2π, with |η↑|2 + |η↓|2 = 1. A mapping of the above
parametrization to the 2D sphere (according to Eq. (146)) is given by

Ŝx =
2|η↑|p|η↓|q

η+
cos[pq(θ1 − θ2)], Ŝy =

2|η↑|p|η↓|q

η+
sin[pq(θ1 − θ2)], Ŝz =

η−
η+

(152)

For Ŝ1 = (1, 0, 0)
(
Ŝ2 = (0, 1, 0)

)
, we have θ1 = θ2

(
θ1 = θ2 + π

2pq

)
, |η↑|2p = |η↓|2q. By

combining it with the normalization condition |η↑|2 + |η↓|2 = 1, we can obtain the values
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of |η↑| and |η↓|. One can easily verify that |η↑|2 = 1, |η↓|2 = 0
(
|η↑|2 = 0, |η↓|2 = 1

)
for

Ŝ = (0, 0, 1)
(
Ŝ = (0, 0,−1)

)
. With these preparations, we can check that a set of points

η = (cosqθ1, sinqθ1, 0, 0)
(
η = (0, 0, cospθ2, sinpθ2)

)
forming a ring in R4 is the preimage

of the point Ŝ = (0, 0, 1)
(
Ŝ = (0, 0,−1)

)
on S2. If we denote the stereographic projection

s: S3\(0, 0, 0,−1)→ R3 given in Eq. (149), then s ◦ f−1((0, 0, 1)) is the unit circle in the
x-y plane, s ◦ f−1((0, 0,−1)) is the z axis, and for any other point on S2 not equal to

(0, 0, 1) or (0, 0,−1), s◦ f−1(Ŝ) is a circle in R3 when we choose p = q = 1. In Fig. 26(a),
the simplest nontrivial spin texture corresponding to νH(f) = 1 is sketched, where the
parameters are chosen as p = q = 1 and h = 2. This spin texture twisted with νH(f) = 1
is nontrivial and cannot be continuously untwined unless a topological phase transition
occurs. Following the above ideas, one can find more complex knots and links for larger
p and q, such as the well-known trefoil knot (p = 3, q = 2) and the Solomon seal knot
(p = 5, q = 2) plotted in Ref. [317] with nonunit knot polynomials [322].

Figure 26. (Color online). (a) Hopf links and spin texture in stereographic coordinates. Spins residing on the red
(green) circle point to the x (z) direction and those on the z axis all point to the south (negative z direction). The

red (green) circle represents the preimage of Ŝ1 = (1, 0, 0) (Ŝ2 = (0, 0, 1)), and the z axis represent the preimage
of (0, 0,−1). (b)A cross-section of the measured spin texture along the kz = 0 layer. The background color scale

labels the magnitude of the out-of-plane component Ŝz , and the arrows label the magnitude and direction of spins

in the kx-ky plane. (c) Topological links between the preimages from two spin states on the Bloch sphere Ŝ1 and

Ŝ2. The red (blue) circle denotes the theoretical preimage of Ŝ1 (Ŝ2) and the scattered red squares (blue dots)

are numerically simulated preimage of the ε-neighborhood of Ŝ1 (Ŝ2), which can be observed from time-of-flight
images. The parameters are chosen as p = q = 1 and h = 2. Reprinted by permission from Deng et al.[317].

In the previous discussion, a nonvanishing value of νH(Ŝ) indicates that the pseudospin

field Ŝ has a nontrivial texture that cannot be continuously deformed into a trivial one.
Since the spin textures for the model can be interpreted as Ŝ = 〈σ〉, they can be observed
in cold-atom experiments through time-of-flight imaging [244, 313]. Fig. 26(b) shows a

slice of the observed Ŝ with kz = 0 for the simplest case of p = q = 1, which provides a
glimpse of the 3D twisting of the Hopfion [323]. With the obtained spin texture, one can
reconstruct the topological links and knots by mapping out the preimages of two different
orientations of Ŝ(k). However, the various kinds of noises involved in a real experiment

may lead to inaccurate measurement results of Ŝ(k). To simulate real experiments, the
authors discussed the Hamiltonian (144) in real space and considered a finite-size lattice

with open boundaries, so the spin orientation Ŝ(k) in real experiment is always pixelized

with a finite resolution, which means the observed Ŝ(k) can only be approximately rather

than exactly equal to the specific orientations (such as Ŝ1,2) at any momentum point k.
To circumvent these difficulties, one need to consider a small ε-neigborhood of a specific
orientation (e.g., Ŝ1):

Nε(Ŝ1) = {Ŝ : |Ŝ− Ŝ1| ≤ ε}, (153)

where |Ŝ − Ŝ1| = [(Ŝx − Ŝ1x)2 + (Ŝy − Ŝ1y)
2 + (Ŝz − Ŝ1z)

2]1/2 represents the distance
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between Ŝ and Ŝ1. The preimages of all orientations in Nε(Ŝ1) are then denoted as a set

of Pε(Ŝ1) = (f ◦g)−1[Nε(Ŝ1)] describing the points in T3. Due to the finite resolution and

the discrete BZ, Pε(Ŝ1) contains finite momentum points. Therefore, one should choose

an appropriate value of ε to ensure that Pε(Ŝ1) contains a proper amount of momentum

points that could depict the closed loop structure of (f ◦ g)−1(Ŝ1). Fig. 26(c) shows the
simulated Hopf link with linking number one of real experiments. In order to obtain such
images, one should first examine the discrete Ŝ(k) at each momentum point k and then

append k to the set of Pε(Ŝ1) (Pε(Ŝ2)) while Ŝ(k) is in an ε-neighborhood of Ŝ1 (Ŝ2).

By plotting g(Pε(Ŝ1)) and g(Pε(Ŝ2)) in the stereographic coordinate system defined in
Eq. (149), one can obtain Fig. 26(c) in R3.

On the other hand, with the observed Ŝ(k), one can directly extract the Hopf invariant.

Since Fµ = 1
8π εµντ Ŝ · ∂νŜ× ∂τ Ŝ, one can obtain the discrete Berry curvature F at each

pixel of the BZ. Berry connection A(k) can be extracted from F by solving a discretized
version of the electrostatics equation ∇×A = F in momentum space with the Coulomb
gauge ∇ ·A = 0. Finally, one can attain the value of the Hopf index νH(Ŝ) by a discrete
sum over all momentum points. It was also numerically demonstrated that a finite-size
lattice of 10 × 10 × 10 is already capable of producing highly accurate estimation of
the quantized Hopf index and the detection method remains robust to experimental
imperfections and the global harmonic trap [317].

The physical realization of the Hopf insulators is of great interest but also especially
challenging. In principle, the model Hamiltonian of the Hopf insulators in Eq. (144) (with
p = q = 1 as the simplest case) could be realized using the Raman-assisted hopping
technique with ultracold atoms in OLs, which will involve a number of laser beams [317].

4.3.7 Integer quantum Hall effect in 3D

After the discovery of the QHE in 2D systems [7, 8], it was shown that if there is a band
gap in a 3D periodic lattice, the integer QHE can also exhibit when the Fermi energy lies
inside the gap [324–327]. In the 3D QHE, the Hall conductance in each crystal plane can
have a quantized Hall value defined on a torus spanned by the two quasi-momenta for the
crystal plane. It is hard to obtain the energy spectrum with band gaps for the emergence
of quantized Hall conductivities in 3D periodic lattices since a motion along the third
direction may wash out the gaps of the perpendicular 2D plane. Therefore up to now,
the 3D QHE has been predicted or observed only in systems with extreme anisotropy or
unconventional toroidal magnetic fields [327–331].

A scheme was recently proposed to realize the 3D QHE in a tunable generalized 3D
Hofstadter system that can be simulated by engineering the Raman-assisted hopping
of ultracold atoms in a cubic OL [265]. The optical lattice is tilted along the y and
z axis, as shown in Fig. 27(a). The atoms are prepared in a hyperfine state of the
ground state manifold, and the tilt potentials with linear energy shift per lattice site
∆s (s = y, z) can be generated by the gravity or real magnetic field gradients Bss.
For the case ∆s � Js we considered, where Js denotes the bare hopping amplitude
along the s axis, the atomic hopping between neighboring sites in these two directions
is suppressed. To restore and engineer the hopping terms with tunable effective phases,
we can use the Raman-assisted tunneling technique, which has been used to realize the
original Hofstadter model in 2D OLs [29, 30, 48]. In order to fully and independently
engineer the atomic hopping along the y and z axes, one can use three far-detuned
Raman beams denoted by their frequencies and wave vectors {ωj ,kj} (j = 1, 2, 3), as
shown in Fig. 27(b). For resonant tunneling along different directions, the frequency
differences ω2 − ω1 = ∆y/~ and ω3 − ω1 = ∆z/~ with ∆y 6= ∆z are required. The
momentum transfers Q = k1 − k2 ≡ (Qx, Qy, Qz) and P = k1 − k3 ≡ (Px, Py, Pz) can

75



April 3, 2019 Advances in Physics Manuscript˙AIP˙Final˙20190401

Figure 27. (Color online) A cold-atom setup for realizing a 3D generalized Hofstadter model [265]. (a) The OL
and hopping configuration. Along the s (s = y, z) axis, the tilted lattice with large tilt potentials ∆s can be created
by magnetic field gradients Bss. The natural hopping along the s axis is suppressed and then be restored by using
three far-detuned Raman lasers denoted by {ωj ,kj} (j = 1, 2, 3), which give rise to complex hopping amplitudes

Tye
±iφm,n,l and Tze

±iϕm,n,l with site indices (m,n, l). (b) Laser-assisted tunneling between nearest neighboring
sites along the s axis with the frequency differences ω2 − ω1 = ∆y/~ and ω3 − ω1 = ∆z/~ and the effective
two-photon Rabi frequency Ωs. (c) The effective magnetic fluxes {Φ1,Φ2,Φ3} in the three elementary plaquettes
in the {xy, xz, yz} planes, respectively. (d) (e) The energy spectra E as a function of the hopping strength Tz
for (d) Φ1 = 1/2, Φ2 = 1/3, and Ty = 0.5; (e) Φ1 = 1/3, Φ2 = 1/5, and Ty = 0.5. The dashed lines are shown
in (d) with Tz = 0.7 and in (e) with Tz = 0.5. The Chern numbers C = (Cxy , Cxz , Cyz) when the Fermi level
lies in each energy gap are shown. Reprinted with permission from Zhang et al.[265]. Copyright c© (2017) by the
American Physical Society.

be independently tunable, for instance, through independently adjusting the angles of
the second and third Raman lasers with the first Raman laser being fixed, as shown
in Fig. 27(a). Therefore, the Raman lasers induce atomic hopping along the y and z
axes with tunable, spatially dependent phases φm,n,l = Q · R = mφx + nφy + lφz and
ϕm,n,l = P · R = mϕx + nϕy + lϕz, respectively, where R = (ma, na, la) denotes the
position vector for the lattice site (m,n, l), φx,y,z = aQx,y,z and ϕx,y,z = aPx,y,z. This
system realizes a generalized 3D Hofstadter Hamiltonian with fully tunable hopping
parameters [265]

H = −
∑
m,n,l

[Jxa
†
m+1,n,lam,n,l + eiφm,n,l(Tya

†
m,n+1,lam,n,l +Tza

†
m,n,l+1am,n,l) + H.c.], (154)

where Jx is the natural hopping along the x axis, Tye
iφm,n (Tze

iϕm,l) denotes the Raman-
induced hopping along the y (z) axis with the spatially-varying phase φm,n (ϕm,l) im-
printed by the Raman lasers. The hopping strengths Ts = Ωsλs can also be tuned via
the laser intensities, with λs denoting the overlap integral of Wannier-Stark functions be-
tween neighbor sites along the s axis. One can introduce three effective magnetic fluxes
{Φ1,Φ2,Φ3} through the three elementary plaquettes in the {xy, xz, yz} planes with the
area S = a2, as shown in Fig. 27(c). The effective fluxes, in units of the magnetic flux
quantum, are determined by the phases picked up anticlockwise around the plaquettes.

They are obtained as Φ1 = φx
2π , Φ2 = ϕx

2π , and Φ3 = φz−ϕy
2π , which can be independently

tuned. For certain hopping configurations, the bulk bands of the system can respectively
have Weyl points and nodal loops [265], similar as the one proposed in Ref. [264]. This
allows the study of both nodal semimetal states within this cold atom system. Further-
more, the system can exhibit the 3D QHE when the Fermi level lies in the band gaps,
which is topologically characterized by one or two nonzero Chern numbers.

For simplicity, we consider Φ3 = 0 and rational fluxes Φ1 = p1/q1 and Φ2 = p2/q2,
with mutually prime integers p1,2 and q1,2. In this case, the Hamiltonian (154) can be
block diagonalized as H =

⊕
Hx(ky, kz), where ky and kz are the quasimomenta along
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the periodic directions and the decoupled block Hamiltonian is given by

Hx(ky, kz) = −
∑
m

(Jxa
†
m+1am + H.c.)−

∑
m

Vma
†
mam, (155)

where Vm = 2Tycos(2πΦ1m + kya) + 2Tzcos(2πΦ2m + kza). The corresponding single-
particle wave function Ψmnl is written as Ψmnl = eikyy+ikzzψm, and then the Schrödinger
equation Ĥx(ky, kz)Ψmnl = EΨmnl reduces to a generalized Harper equation:

−Jx(ψm−1 + ψm+1)− Vmψm = Eψm.

This 1D reduced tight-binding system with two commensurabilities Φ1 and Φ2 has a
period of the least common multiple of integers q1 and q2 denoted by q̃ = [q1, q2]. Under
the periodic boundary condition along the x axis, the wave function ψm satisfies ψm =
eikxxum(k) with um(k) = um+q̃(k). Therefore in a general case, the spectrum of the
three-dimensional system in the presence of the effective magnetic fluxes consists of
q̃ energy bands and each band has a reduced (magnetic) BZ: −π/q̃a ≤ kx ≤ π/q̃a,
−π/a ≤ ky ≤ π/a, and −π/a ≤ kz ≤ π/a. In term of the reduced Bloch wave function
um(k), one has −Jx(eikxum−1 + e−ikxum+1)− Vmum = E(k)um.

It was proven that every quantized invariant on a d-dimensional torus Td is a function
of the d(d−1)/2 sets of Chern numbers obtained by slicing Td by the d(d−1)/2 distinct
T2 [332]. In this 3D Hofstadter system, the topological invariants for the QHE are given
by three Chern numbers C = (Cxy, Cxz, Cyz) for three 2D planes, with Cyz = 0 for the
trivial yz plane since Φ3 = 0. As with the approach in Refs. [325, 326], when the Fermi
energy lies in an energy gap between two bands N and N + 1 in this system, the other
two Chern numbers Cxs with s = y, z are given by

Cxs =
1

2π

∑
n6N

∫ π

−π
dks′c

(n)
xs (ks′), (156)

where s′ denotes replacing s between y and z, and the Chern number c
(n)
xs (ks′) for the

n-th filling band (or n-th occupied Bloch state) is defined on the torus T 2 spanned by

kx and ks: c
(n)
xs (ks′) = 1

2π

∫ π/q̃
−π/q̃ dkx

∫ π
−π dksF

(n)
xs (k), where F

(n)
xs (k) is the corresponding

Berry curvature as a topological expression as a generalization of the results in 2D [10].
In Figs. 27(d) and (e), the three Chern numbers C = (Cxy, Cxz, Cyz) when the Fermi
level lies in each energy gap and the spectra are plotted. The results demonstrate that the
QHE in this 3D Hofstadter system is topologically characterized by one or two nonzero
Chern numbers.

4.4 Higher and synthetic dimensions

An important development in exploration of topological states with ultracold atomic
gases is the concept of “synthetic dimensions”. As discussed in Sec. 4.1.5, the topological
properties of 1D quasiperiodic OLs described by the Aubry-André-Harper model can be
mapped to the 2D QHE. A key in the mapping is that a cyclical parameter adiabatically
varying from 0 to 2π in the 1D lattice (such as the phase of the lattice potential) plays the
role of the quasimomentum of the second dimension. In Thouless pumping, the 1D system
constitutes a Fourier component of a 2D quantum Hall system at each point of the cycle,
where an adiabatic periodic pump parameter also acts as the quasimomentum. In these
cases, the cyclical parameter can effectively be considered a synthetic dimension under
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Figure 28. (Color online) (a) A synthetic gauge field in a synthetic dimension. 173Yb fermionic atoms are loaded
in a hybrid lattice, generated by an OL along a real direction x̂ with tunneling J , and by a Raman-induced hopping
between nuclear spin states along a synthetic direction m̂ with a complex tunneling Ω1,2eiϕj . (b) Experimental
observation of chiral edge currents Jc. (c) Experimental observation of edge-skipping orbits in the ladder. Reprinted
from Manciniet al.[37]. Reprinted with permission from AAAS.

the periodic boundary condition along this dimension. This approach can be extended to
studying topological systems in higher dimensions D = dr +ds > 3 in OLs of real spatial
dimensions dr = {1, 2, 3} and synthetic dimensions ds. For example, it was proposed
to simulate 3D Weyl semimetal physics with cold atoms in dr = {2, 1}D OLs that are
subjected to ds = {1, 2}D synthetic dimensions from external cyclical parameters [136,
256]. More interestingly, the intriguing 4D quantum Hall physics [16, 64] can be explored
in a 2D topological charge pump in 2D OLs with two cyclical parameters, which together
give an effective 4D BZ [17, 333, 334].

Another kind of synthetic dimension is engineered by a set of discrete internal atomic
(spin) states as fictitious lattice sites [335, 336]. In this approach, the atoms loaded into
a dr-dimensional OL can potentially simulate systems of D = dr + 1 spatial dimensions.
The hopping processes along the synthetic dimension can be induced by driving transi-
tions between different internal states with Raman lasers. The laser-coupling between two
internal atomic states has complex coupling element, which represents the tunneling ma-
trix in the synthetic dimension picture. Hence, similar to the Raman-assisted-tunneling
scheme, this fictitious tunneling contains a complex phase-factor, which can then be used
to simulate synthetic gauge fields in the synthetic dimensions and a finite strip of the
Hofstadter model [336]. For the atoms that have the hyperfine spin F , the Raman lasers
couple spin state |mF 〉 to |mF ± 1〉, where mF takes any value between −F and F with
a total of W = 2F + 1 components. This provides the naturally sharp boundaries in the
extra dimension, while it is also possible to create periodic boundary conditions in the
synthetic dimension by using an additional coupling to connect the extremal internal
states. This differs from the cyclical synthetic dimension previously introduced. There-
fore, the proposed 1D OL [336] that combines real and synthetic spaces offers a key
advantage to work with a finite-sized system with sharp and addressable edges, such as
the detection of chiral edge states resulting from the synthetic magnetic flux.

The proposed synthetic-dimension scheme [336] was recently realized in two indepen-
dent experiments with 173Yb fermionic atoms [37] and 87Rb bosonic atoms [38]. As shown
in Fig. 28(a), a system of 173Yb fermionic atoms in an atomic Hall ribbon of tunable
width pierced by an effective gauge field was experimentally synthesized [37]. One real di-
mension is realized by an OL with the tunneling J between different sites along direction
x̂. The synthetic dimension is encoded in the different internal spin states (the sites of
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(c)

Figure 29. (Color online) (a) The synthetic 4D lattice in the absence of perturbing fields, with atoms in a 3D
OL with hopping amplitude J and flux 2πΦ1 from x-dependent Peierls phase-factors in z hopping. The fourth
dimension w is a synthetic dimension with flux 2πΦ2 in the y−w plane by adding a y-dependent phase-factor to
the Raman-induced internal-state transitions. (b) Energy spectrum E(kx, ky) for Φ1,2 =1/4 and for many values
kz,w, with the second Chern number of the lowest band C2 =−1. (c) Simulation of the center-of-mass trajectory
xc.m.(t) after ramping up a perturbing “electric” and “magnetic” field (the blue sold curve), with the predicted
drift for C2 =−1 (the red dotted curve). Reprinted with permission from Price et al.[41]. Copyright c© (2015) by
the American Physical Society.

the synthetic dimension for the F = 5/2 nuclear spin manifold are up to six), which are
coupled by a two-photon Raman transition with a coherent controllable coupling Ωeiϕx

between different spin components. The phase amounts to the synthesis of an effective
magnetic field with tunable flux ϕ/2π (in units of the magnetic flux quantum) per pla-
quette, mimicking the 2D Hofstadter model on a three-leg ladder. The Hamiltonian of
the system is given by

H =
∑
j

∑
α

[
−J(c†j,αcj+1,α −

Ωα

2
eiϕjc†j,αcj,α+1 + h.c.) + µjnj,α + ξαnj,α

]
, (157)

where c†j,α(cj,α) are fermionic creation (annihilation) operators on the site (j, α) in the real

(j) and synthetic (α = 1, 2, 3) dimension, and n = c†j,αcj,α. The hopping parameters Ωα

are typically inhomogeneous due to the Clebsch-Gordan coefficients associated with the
atomic transitions. Besides the tunneling terms, µj describes a weak trapping potential
along x̂, while ξα accounts for a state-dependent light shift, giving an energy offset along
m̂. In the experiment, the chiral currents Jc in the upper and lower edge chains with
opposite sign were observed, while the central leg showed a suppressed net current in
the bulk, as shown in Fig. 28(b). This directly signals the existence of chiral states
propagating along the edges of the system, reminiscent of the edge states in the QHE
in the Hofstadter model. In addition, the edge-skipping orbits with the cyclotron-type
dynamics in the ladder due to the presence of the synthetic magnetic field were further
detected through state-resolved images of the atomic cloud, as shown in Fig. 28(c). In
the ladders, the finite-size effect (such as the overlap of chiral edge modes in different
edges) is significant because the lattice size along the synthetic dimension is small. To
limit undesired finite-size effects, one may use other atomic species with more addressable
internal states in the synthetic-dimension approach.

The synthetic three-leg ladder with the magnetic flux was also realized for 87Rb bosonic
atoms, and the chiral edge currents and skipping orbits were both observed in the quan-
tum Hall regime [38]. In addition, this synthetic-dimension approach was demonstrated
in a more recent experiment without two-photon Raman transitions but instead, based
on a single-photon optical clock transition coupling two long-lived electronic states of
two-electron 173Yb atoms [39]. These two systems involve less heating, which would be
important for further studies, such as spectroscopic measurements of the Hofstadter but-
terfly and realizations of Laughlin’s charge pump.

There is an important difference between ordinary lattice systems and systems in-
volving a synthetic dimension. In the synthetic dimension, interactions are generically
long-ranged, in contrast to the on-site interactions along the physical dimension. With the
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effectively nonlocal interactions, the cold atom systems realize extended-Hubbard mod-
els, which can display novel phases due to the intriguing many-body effects unattainable
in conventional condensed matter setups [337–340]. Such an interacting fermion gas with
multi-spin components coupled through Raman beams in a 1D OL provides an ideal
system to realize the topological fractional pumping reflected by the quantization to
fractional values of the pumped charge and to measure the many-body Chern number in
a cold-atom experiment [153, 341].

The synthetic-dimension technique offers a novel platform for exploring topological
states in higher dimensions [16, 40], such as detecting the 4D QHE [41]. In the 2D QHE,
the quantized Hall response induced by an external electric field is topologically charac-
terized by the first Chern number. As one of the first predictions of the time-reversal sym-
metric topological insulators [16, 64], the QHE can be generalized to 4D systems. In the
4D QHE, an additional quantized Hall response appears, which is nonlinear and described
by a 4D topological index, the second Chern number. The intriguing 4D QHE with the
second Chern number was also theoretically studied in other models [64, 333, 342, 343].
In the proposal [41], as shown in Fig. 29(a), a synthetic 4D lattice contains atoms hopping
in a 3D OL with Raman-coupling internal states as the fourth dimension w, in which the
x−z and y−w planes are penetrated by synthetic uniform magnetic fluxes Φ1,2, respec-
tively. This corresponds to two copies of the Hofstadter model defined in disconnected
planes, described by the tight-binding Hamiltonian

H4D = −J
∑
r

(
c†r+aexcr+c†r+aeycr+ei2πΦ1x/ac†r+aezcr+ei2πΦ2y/ac†r+aewcr

)
+h.c., (158)

where c†r creates a fermion at lattice site r = (x, y, z, w). To realize this Hamiltonian,
one requires x (y) dependent Peierls phases for tunneling along the z (w) direction,
generating a uniform flux Φ1 (Φ2) in the x−z (y−w) plane. This can be created by
combining the laser-assisted hopping along the z direction and the synthetic gauge field
in the synthetic dimension. As shown in Fig. 29(b), the bulk energy spectrum E(k) of
the Hamiltonian is reminiscent of the two underlying 2D Hofstadter models defined in
the x−z and y−w planes, where the lowest band can be non-degenerate and well isolated
from higher-energy bands for suitable fluxes Φ1,2. Moreover, the lowest band E1(k) is
characterized by a non-zero second Chern number C2 = −1 from [41]

C2 =
1

4π2

∫
T4

(ΩxyΩzw+ΩwxΩzy+ΩzxΩyw)d4k, (159)

where Ωµν is the 4D generalized Berry curvature. If there are additional perturbing
“electric” fieldEy and “magnetic” field Bzw= −2πΦ̃/a2, the current density along the x
dimension as a response for a filled band is given by

jx =
C2

4π2
EyBzw = − C2

2πa2
EyΦ̃, (160)

which reveals a genuine non-linear 4D quantum Hall response and is directly related
to C2. Hence, as shown in Fig. 29(c), the second Chern number in this system can
be measured from the center-of-mass drift along the x direction [41, 344]: xc.m.(t) =
xc.m.(0) + vc.m.t = xc.m.(0) + jxVcellt, with Vcell as the (magnetic) unit cell volume. For
the neutral atoms, the perturbing “electric” field corresponds to a linear gradient that
can created either magnetically or optically, and the perturbing “magnetic” field can be
generated by engineering additional Peierls phases.

Recently, based on a 2D topological charge pump as proposed in Ref. [333], a dynamical
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(a) (b) (c) (d)
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Figure 30. (Color online) 4D quantum Hall system and corresponding 2D topological charge pump. (a) A 2D
quantum Hall system on a cylinder pierced by a uniform magnetic flux Φxz , and an electric field Ez on the surface
resulting in a linear Hall response along x with velocity vx. (b) A 4D quantum Hall system can be composed of
two 2D quantum Hall systems in the xz- and yw-planes. (c) A dynamical version of the 4D quantum Hall system
can be realized with a topological charge pump in a 2D superlattice (blue potentials). (d) The pumping gives rise
to a motion of the atom cloud in the x-direction, corresponding to the quantized linear response of a 2D quantum
Hall system. (e) The velocity of the non-linear response is determined by the product of the Berry curvatures
ΩxΩy . The left (right) torus shows a cut at ky = 0, ϕy = π/2 (kx = π/(2dl), ϕx = π/2) through the generalized
4D BZ spanned by kx,y and ϕx,y . Reprinted by permission from Macmillan Publishers Ltd: Lohse et al. [17],
copyright c© (2018).

version of the 4D integer QHE was realized by using ultracold bosonic atoms in an angled
optical superlattice, and the bulk quantized response associated with the second Chern
number was observed [17]. The dynamical 4D quantum Hall system was also experimen-
tally realized with tunable 2D arrays of photonic waveguides [334]. For the geometry in
Figs. 30(a,b), the 2D subsystem as a Fourier component of a 4D quantum Hall system is
a square superlattice in Fig. 30(c). It consists of two 1D superlattices along x and y, each
formed by superimposing two lattices Vs,µsin2 (πµ/ds) + Vl,µsin2 (πµ/dl − ϕµ/2), where
µ ∈ {x, y}, ds,µ, and dl,µ = 2ds,µ denote the lattice periods, and Vs,µ (Vl,µ) is the depth
of the short (long) lattice potential. The superlattice phases ϕµ determined the position
of the long lattices relative to the short ones, and the phase ϕx was chosen as the pump
parameter in the experiment [17]. This is equivalent to threading ϕx in the 4D model,
which leads to a quantized motion along x as the linear response shown in Figs. 30(c,d).
The magnetic perturbation Bxw corresponds to a transverse superlattice phase ϕy that
depends linearly on x, which is realized by tilting the long y-lattice relative to the short

one by a small angle θ in the xy-plane, with ϕy(x) = ϕ
(0)
y + 2πθ x/dl,y to first order in θ.

As the two orthogonal axes are coupled, by varying ϕx, the motion along x changes ϕy.
This is analogous to the Lorentz force in 4D and induces a quantized non-linear response
along y [333]. For a uniformly populated band in an infinite system, the change in the
center-of-mass position ∆r during one cycle ϕx = 0→ 2π is given by [17]

∆r = Cx1 dl,x ex + C2 θ dl,x ey. (161)

The first term proportional to the pump’s first Chern number Cx1 describes the quantized
linear response in the x-direction. The second term is the non-linear response in the y-
direction, which is quantified by a 4D integer topological invariant, the pump’s second
Chern number

C2 =
1

4π2

∮
BZ

ΩxΩydkxdkydϕxdϕy. (162)

The generalized 4D BZ is shown in Fig. 30(e), and the Berry curvature Ωµ(kµ, ϕµ) =
i
(
〈∂ϕµu|∂kµu〉 − 〈∂kµu|∂ϕµu〉

)
, with |u(kµ, ϕx)〉 as the eigenstate of a given non-

degenerate band at kµ and ϕµ. In the experiment [17], the 2D topological charge pump
was realized with bosonic 87Rb atoms forming a Mott insulator in the superlattice. The
4D-like nonlinear response of the lowest subband with C2 = +1 was experimentally ob-
served from the atomic center-of-mass shift after a pump circle. Furthermore, using a
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small cloud of atoms as a local probe, the 4D geometric properties and the quantization
of the response were fully characterized via in situ imaging and site-resolved band map-
ping. This work paves the way for exploring higher-dimensional quantum Hall systems
with additional strongly correlated topological phases, exotic collective excitations and
boundary phenomena such as isolated Weyl fermions [16, 64].

Finally we note that the concept of synthetic dimension has been greatly extended,
which can involve other kinds of degrees of freedom. For instance, the synthetic di-
mensions may also be engineered by a set of orbital angular momenta for light [345]
or harmonic oscillator eigenstates for cold atoms in a harmonic trap [346] as fictitious
lattice sites. Moreover, it was proposed to create an effective synthetic lattice of sites
in momentum space based on discrete momentum states of neutral atoms, which can
be parametrically coupled with interfering Bragg laser fields [143, 144]. The synthetic
momentum-space lattice has been realized with cold atoms and opened up new prospects
in the experimental study of disordered and topological systems [142, 145, 347–349].

4.5 Higher-spin topological quasiparticles

In the previous sections, we focus on the spin-1/2 systems, such as the Dirac and Weyl
fermions, which have rich topological features. Quasiparticles with higher spin num-
bers are also fundamentally important but rarely studied in condensed-matter physics
or artificial systems [350–352]. These systems can potentially provide a quantum fam-
ily to find relativistic quasiparticles that have no high-energy analogs, such as integer-
(speudo)spin fermionic excitations. Recently, a series of work theoretically predicted that
unconventional fermions beyond the Dirac-Weyl-Majorana classification (also termed
“new fermions”, which means no elementary particle analogs) can emerge in some band
structures [350, 353]. These works have set off a boom in investigating and realizing “new
fermions” in condensed matter and artificial systems [354–361].

A recent work to implement the pseudospin-1 fermions in cold-atom systems was pro-
posed in Ref. [355]. In this paper, the authors constructed 2D and 3D tight-binding
models realizable with cold fermionic atoms in OLs, where the low-energy excitations
are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. The
Hamiltonian of these low-energy excitations is given by

HM = vxkxŜx + vykyŜy + vzkzŜz, (163)

where Ŝβ = (Ŝαγ)β = iεαβγ , and εαβγ (α, β, γ = x, y, z) is the Levi-Civita symbol. This
so-called Maxwell HamiltonianHM originally describes a massless relativistic boson (pho-
ton) with spin one. Because quasiparticles in a lattice system are constrained only by
certain subgroups (space groups) of the Poincaré symmetry rather than by Poincaré sym-
metry in high-energy physics [350], there is the potential to find free fermionic excitations
described by HM in lattice systems. Such relativistic (linear dispersion) excitations with
unconventional integer pseudospins are termed Maxwell fermions. For specificity and
without loss of generality, we describe the topological features of Maxwell fermions in
2D and 3D OLs in some detail.

The proposed Bloch Hamiltonian for a 2D case in momentum space is as follows [355]

H(k) = R(k) · Ŝ (164)

where the Bolch vector R(k) = (Rx, Ry, Rz) is given by

Rx = 2J sinkx, Ry = 2J sinky, Rz = 2J(M − coskx − cosky), (165)
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Figure 31. (Color online) The energy spectra and topological features of the 2D Maxwell lattices [355]. (a) The
energy spectrum for M = 2; (b) The energy spectrum for M = 0; (c) The Berry phase γ as a function of the
parameter M , which corresponds to the Chern number C1 = γ/2π when the 2D system is in the insulating phase
with M 6= 0,±2. Reprinted with permission from Zhu et al.[355]. Copyright c© (2017) by the American Physical
Society.

with M being a tunable parameter. The energy spectrum of this system is given by
E(k) = 0,±|R(k)|, which has a zero-energy flat band in the middle of the three bands.
The three bands touch at a single point K± = (0, 0)/(π, π) when M = ±2, as shown in
Fig. 31(a), and touch at two points when M = 0. The low-energy effective Hamiltonian
near K± can be expanded to linear order as

H±(q) = ±v(qxŜx + qyŜy), (166)

where v = 2J is the effective speed of light and q = k − K±. These fermionic exci-
tations are described by the Maxwell Hamiltonian HM in 2D. In this sense, these low-
energy excitations can be named Maxwell fermions, and the threefold degenerate point
as Maxwell point. When the Fermi level lies near the Maxwell point, this system is also
named Maxwell metal with a zero-energy flat band. To study the topological properties
of Maxwell metal phase, one can evaluate the Berry phase circling around the Maxwell
point γ =

∮
c dk · F(k), where the Berry curvature F(k) for the lower band in the kx-ky

space has an expression of

Fxy = − 1

R3
R · (∂kxR× ∂kyR). (167)

For M = ±2, the gapless points contribute to non-trivial Berry phase γ = ±2π. In other
words, each pseudospin-1 Maxwell point contributes to an integer Hall conductance when
an external synthetic magnetic field along the z axis is applied [351]. When M = 0 and
with the spectrum depicted in Fig. 31(b), two Maxwell points touch at (0, π) and (π, 0)
with the effective Hamiltonian

H0(q) = ±v(qxŜx − qyŜy). (168)

In this case, the Berry phase for both Maxwell points is γ = 0, which corresponds to a
trivial metallic state.

The system is in an insulating state when M 6= 0,±2 since there is a gap between any
two of the three bands. Then one can calculate the corresponding Chern number Cn for
the three bands:

Cn =
1

2π

∫
BZ

dkxdkyFxy(kx, ky) = γ/2π. (169)

Here n = −1, 0, 1 label the band index corresponding to the lowest, middle, and
highest band, respectively. Direct calculation indicates that nonzero Chern numbers
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C−1 = −C1 = 2sgn(M) for |M | < 2 and C−1 = C1 = 0 for |M | > 2, and thus the
zero Chern number C0(M) = 0 for the flat band. Figure 31(d) shows the phase diagrams
of this model characterized by γ/2π of the lowest band as a function of the parameter
M , which implies topological phase transition with band closing in this system when
M = −2, 0, 2. In addition, a correspondence between the helicity of these edge states and
the polarization of photons was found by investigating the edge modes between the first
gap. For the case 0 < M < 2, the system is a non-trivial insulator with C = 2. Under
the open boundary condition along the x direction, there are two edge states for each
edge and the corresponding effective Hamiltonian is given by Hedge = vykyŜy. This edge
Hamiltonian is the 1D Hamiltonian of circularly-polarized photons [355]. The helicity
operator defined as

h = Ŝ · k/|k| = sgn(ky)Ŝy (170)

is the projection of the spin along the direction of the linear momentum [351]. Hence,
the edge quasiparticle-streams in this Maxwell topological insulator can be treated as
Maxwell fermion-streams with the same helicities h ≡ 〈ĥ〉 = +1 for opposite momenta.

The model Hamiltonian determined by the Bloch vector (165) can be generalized to
the 3D model by adding an external term −2Jcoskz to the z-component of R(k). Thus

the Bloch Hamiltonian preserves inversion symmetry (P̂ ) represented as P̂H(k)P̂−1 =

H(−k) and breaks the TRS (T̂ ) since T̂H(k)T̂−1 6= H(−k), where P̂ = diag(1, 1,−1) and

T̂ = ÎK̂, with Î = diag(1, 1, 1) and K̂ being the complex conjugate operator. The system
is a Maxwell metal for |M | < 3 and a normal insulator for |M | > 3. For simplicity, we
consider the typical case of M = 2, where the band spectrum hosts two Maxwell points
in the first BZ at M± =

(
0, 0,±π

2

)
. The corresponding low-energy effective Hamiltonian

now becomes

HM±(q) = vqxŜx + vqyŜy ± vqzŜz. (171)

The two 3D Maxwell points have topological monopoles CM± = ±2, which is defined in
terms of a Chern number (defined by the lowest band) on a sphere enclosing the band
touching point. There are two Fermi arcs connecting the two points under open boundary
condition, which are similar to those in double-Weyl semimetals. The difference between
them is that the 3D Maxwell points in Maxwell metals have linear momenta along all
three directions, while the dispersion near double-Weyl points takes the quadratic form.
Besides, the topological stability of Maxwell points is weaker than that of Weyl points.
In this proposed model, the band gaps will be opened and Maxwell points will disappear
when the inversion symmetry is broken by introducing a perturbation term with one of
the other five SU(3) Gell-Mann matrices.

Two different schemes were proposed to realize the spin-1 Maxwell fermions in OLs
[355]. The first scheme is to use non-interacting fermionic atoms in a square or cubic
OL and choose three atomic internal states in the ground state manifold to encode the
three spin states. Using three atomic internal states to form the pseudospin-1 basis leads
to the realization of Maxwell fermions in a lattice of simplest geometry, i.e., a primitive
square or cubic lattice. Moreover, Maxwell fermions can be alternatively realized by using
single-component fermionic atoms in OLs with three sublattices, where the pseudospin-1
basis is represented by the three sublattices in a unit cell. Both schemes involve Raman-
assisted hopping with proper laser-frequency and polarization selections [355], which is
similar to the method we discussed in Sec. 4.3.5.

Inspired by the investigation of type-II Weyl semimetals, a recent work studied the
topological triply-degenerate points [360] in OLs induced by spin-tensor-momentum cou-
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pling [358]. These triply-degenerate points possess fermionic excitations with effective
integer spins. As we mentioned above, a 3D Maxwell point with threefold degeneracy
will be destroyed by a small spin-tensor perturbation ∼ Nij . Here the spin-1 matrices Ŝ
are also termed spin-vector-momentum-coupling, and the spin-tensor-coupling matrices
Nij = (ŜiŜj + ŜjŜi)/2 (i, j = x, y, z) are equivalent to the so-called Gell-Mann matri-
ces, which form a basis of the SU(3) algebra. A simple Hamiltonian of a stable triply-
degenerate point induced by a momentum-dependent term kiNij is as follows [358]

H(k) = kxŜx + kyŜy + kz(αŜz + βNij), (172)

where the spin-tensor Nij is coupled to the kz direction. At k = 0, H(k) exhibits a
triply-degenerate point with a topological charge C. The model Hamiltonian (172) has
a symmetry H(k) = −H(−k), indicating that the Chern number C1 = −C−1 for the
upper and lower bands and C0 = 0 for the middle one. For convenience, we use the lower-
band Chern number as an topological invariant for labeling triply-degenerate points, i.e.,
C = C−1. For β = 0, such a triply-degenerate point is the 3D Maxwell point we discussed
before, which carries the topological monopole

C =
1

2π

∮
S

F−(k) · dS = 2sgn(α), (173)

where S is a surface enclosing a triply-degenerate point, and F−(k) = ∇ ×
〈u−(k)|i∂k|u−(k)〉 = sgn(α)k/|k|3. Hereafter, the simplest triply-degenerate point with
topological monopoles C = ±2 is named type-I triply-degenerate point. In addition, a
nonzero βNij term will induce three types of triply-degenerate points [358] in Eq. (172).
The monopole charge of a type-I triply-degenerate point will not be changed by the three
spin-tensors Nxx, Nyy, and Nxy. The tensor Nzz induces a type-II triply-degenerate point
with C = ±1 for |β| > |α| 6= 0. A type-III triply-degenerate point with C = 0 can be
induced by the tensor Nxz or Nyz for |β| > 2|α| 6= 0.

It was proposed to realize type-II and type-III triply-degenerate points by coupling
three atomic hyperfine states, based on the realization of spin-tensor-momentum cou-
pling and spin-vector-momentum-coupling with spin-1 cold atoms [260, 362–364]. The
realization of topological monopoles of three different types of triply-degenerate points
and investigation of their geometric properties using the parameter space formed by three
hyperfine states of ultracold atoms coupled by radio-frequency fields was proposed [361].
The Maxwell points has recently been experimentally realized in the parameter space
of a superconducting qutrit [357], where the other two types of triply-degenerate points
may also be realized in this artificial atom system. Furthermore, there is potential to
study even higher spin qusiparticles with untracold atoms. For instance, the spin-3/2
qusiparticles satisfy the so-called Rarita-Schwinger equation in Rarita-Schwinger-Weyl
semimetal [352], and Dirac-Weyl fermions with arbitrary spin in 2D optical superlattices
[351].

5. Probing methods

Since the atoms are neutral, the traditional transport measurements in solids that can be
used to determine the topological bands, such as measuring the Chern numbers via the
QHE, are very challenging in cold atomic systems. Therefore, new methods of probing the
topological states of matter in cold atom systems are needed. On the other hand, some
topological invariants, such as the underlying Berry curvature as the central measure
of topology, could be directly measured in OL systems, which is not easily accessible in
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(a) (b)

Figure 32. (Color online) Detecting Dirac points from Bloch-Landau-Zener transition. (a) The quasi-momentum
distribution of the atoms before and after one Bloch oscillation, and (b) the corresponding trajectories. Reprinted
by permission from Macmillan Publishers Ltd: Tarruell et al.[77], copyright c© (2012).

traditional condensed matter materials. In this section, we review the methods developed
to reveal intrinsic properties of topological states and phenomena in cold atom systems.
We focus our discussion on the noninteracting atomic gases in OLs, highlighting those
experimental probes of topological invariants that are specific to the single-particle topo-
logical Bloch bands, and will mention extensions to the topological atomic states with
interactions.

5.1 Detection of Dirac points and topological transition

It has been demonstrated that the Dirac points (massless Dirac fermions) in a honeycomb
OL can be probed from measuring the atomic fraction tunnelling to the upper band in
Bloch oscillations [77, 215, 216], which is the Landau-Zener transitions between the
two energy bands. The starting point of the experiment is a ultracold gas of fermionic
40K prepared in the lowest-energy band of a honeycomb OL. The atomic cloud is then
subjected to a constant force F along the x direction by application of a weak magnetic
field gradient, as the effect is equivalent to that produced by an electric field in solid-state
systems. As shown in Fig. 32, the atoms are accelerated such that their quasi-momentum
qx increases linearly up to the edge of the BZ, where a Bragg reflection occurs. The cloud
eventually returns to the centre of the band, performing one full Bloch oscillation, and
the quasi-momentum distribution of the atoms in the different bands is measured. For
a trajectory far from the Dirac points, the atoms remain in the lowest-energy band. In
contrast, when passing through a Dirac point, the atoms are transferred from the first
band to the second because of the vanishing energy splitting at the linear band crossing.
Thus, the points (position) of maximum transfer factions can be used to identify the Dirac
points as the transition probability in a single Landau-Zener event increases exponentially
as the energy gap decreases. Moreover, the topological transition from gapless (massless
Dirac fermions) to gapped bands (massive Dirac fermions) can also be mapped out by
recording the fraction of atoms transferred to the second band. This Bloch-Landau-Zener-
oscillation technique can be extended to detect other band-touching points, such as the
Weyl points and nodal lines in 3D OLs [258, 275, 285, 365].

The Bragg spectroscopy can provide an alternative method to confirm the linear dis-
persion relation for the massless Dirac fermions and the energy gap for the massive ones
[76]. As shown in Fig. 33(a), two laser beams are shined on the atomic gas in the Bragg
spectroscopy, by fixing the angle between the two beams, which gives rise to the relative
momentum transfer q = k2− k1, with ki being the wave vector of each laser beam. One
can then measure the atomic transition rate by scanning the laser frequency difference
ω = ω2 − ω1. From the Fermi’s golden rule, this transition rate basically measures the
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Figure 33. (Color online) Detecting Dirac fermions from Bragg spectroscopy [76]. (a) Schematic of the Bragg
scattering. (b) The dynamic structure factors S(q, ω) for the massless Dirac fermions (solid line) and for the
massive ones (dotted line).

following dynamical structure factor

S(q, ω) =
∑
k1,k2

|〈fk2
|HB|ik1

〉|2δ[~ω − Efk2
+ Eik1

], (174)

where HB =
∑

k1,k2
Ωeiq·r|ik1

〉〈fk2
|+h.c. is the light-atom interaction Hamiltonian, and

|ik1
〉 and |fk2

〉 denote the initial and the final atomic states with the energies Eik1
and

Efk2
and the momenta k1 and k2, respectively. At the half filling, the excitations are

dominantly around the Dirac point, and S(q, ω) has the expression for the massless Dirac
fermions [76]

S(q, ω) =

{
0, ω 6 ωr;
πΩ2

8vF

2q2r−q2√
q2r−q2

Υ(ω − ωr), ω > ωr.
(175)

where Υ is the unit step function, ωr = qvF /~ (q ≡ |q|) and qr = ~ω/vF . For massive
Dirac fermions with the dispersion E ≈ ±(∆g+~2q2

x/2mx+~2q2
y/2my) with the effective

mass mx,y = ~2∆g/v
2
x,y , the Fermi velocity qx,y along x, y axis and the energy gap ∆g,

the dynamical structure factor becomes [76]

S(q, ω) =

{
0, ω 6 ωr;
πΩ2∆g

2vxvy
Υ(ω − ωx,yc ), ω > ωr.

(176)

where ωx,yc = 2∆g + ~2q2
x,y/4mx,y. As shown in Fig. 33(b), the dynamical structure

factor for massless Dirac fermions has the lower cutoff frequency ωr that is linearly
proportional to the momentum difference q and vanishes when q tends to zero. For
massive ones, the lower cutoff frequency ωx,yc does not vanish as the momentum transfer
goes to zero. This distinctive difference between the dynamical structure factors can be
used to distinguish the cases with massive or massless Dirac fermions. Similar Bragg-
spectroscopy methods were proposed to probe the edge and bulk states in 2D Chern
insulators in OLs [203, 234, 366, 367], such that the topological phase transition from
trivial insulating phase to quantum anomalous Hall phase can be detected.

5.2 Interferometer in momentum space

An interferometric method for measuring Berry’s phases and topological properties of
Bloch bands for ultracold atoms in 2D OLs was proposed in Ref.[368]. The proposal
is based on a combination of Ramsey interference and Bloch oscillations in the BZ to

87



April 3, 2019 Advances in Physics Manuscript˙AIP˙Final˙20190401

xk

yk

2G


1G


xk

yk

2G


1G


F

-F

pulse /2

pulse /2

xk

yk

2G


1G


0k
F

-F pulse /2

A B

D C

  

(a) (b) (c)

Figure 34. (Color online) An interferometer method to measure the Zak phase and Chern number [368]. A cloud
of ultracold atoms with a well-defined quasi-momentum k0 in the spin-up state is initially loaded into a 2D OL,
with G1 and G2 as reciprocal lattice vectors. (a) A π/2 pulse creates a coherent superposition of |↑〉 and |↓〉
states. Then spin-selective forces ±F parallel to G1 are applied. (b) The two spins meet in the quasi-momentum
space after half a period of Bloch oscillations, following by another π/2 pulse. The accumulated phase difference
between the two states containing the Zak phase is measured from the resulting Ramsey fringe. (c) The Chern
number of the band can be measured from the Zak phase across the primitive cell.

measure Zak phases, which can be used to measure π Berry’s phase of Dirac points and
the first Chern number of topological bands.

The scheme for measuring the Zak phase consists of three steps, as shown in Figs. 34
(a,b). The atoms are initially prepared in a spin-up state with a given quasi-momentum
k0 in the nth band, and a first π/2 pulse is used to create a coherent superposition of two
spin states denoted by the wave function ψk0n(r)⊗ (| ↑〉+ | ↓〉)/

√
2. The eigenfunctions

in the nth band is written as ψkn(r) = eikrukn(r), where ukn is the cell-periodic Bloch
function, satisfying ukn(r + Gi) = ukn(r) with two primitive reciprocal lattice vectors Gi

(i = 1, 2). Next, opposite forces ±F on the spin-up and spin-down are applied parallel to
some reciprocal lattice vector G1, which can be created by a magnetic field gradient along
the y axis. The atoms then exhibit the Bloch oscillations in the momentum space, which
is assumed to be adiabatic. In this case, the evolution under the application of the force
±F is described by the time-dependent wave function (Ψ↑(r, t)⊗| ↑〉+Ψ↓(r, t)⊗| ↓〉)/

√
2.

The wave functions Ψσ(r, t) (σ =↑, ↓) obey the Schrödinger equation i~∂Ψσ(r, t)/∂t =
HσΨσ(r, t), where the Hamiltonian

H↑,↓ = H0 ∓ Fr± EZ , H0 = − ~2

2m
∇2 + V (r), (177)

with V (r) being the lattice potential and EZ being the Zeeman energy. Under the adia-
batic condition, the atoms remain within the Bloch band. The wave functions take the
form: Ψ↑(↓)(r, t) = eiξ↑(↓)(t)ψk±(t),n(r), where k±(t) = k0 ± f t, f = F/~, and the phase
ξ↑(↓)(t) is given by:

ξ↑(↓)(t) = i

∫ k±(t)

k0

〈uk′n|∇k′uk′n〉dk′ −
1

~

∫ t

0
εn(k±(t′))dt′ ∓ EZt

~
. (178)

After half a period of the Bloch oscillations (period is given by T = |G1|/|f |), the two
spins meet at the edge of the first BZ, another π/2 pulse is applied to perform the
Ramsey interferometry, which measures the phase difference picked up by the two spin
species ξ↑(T/2)− ξ↓(T/2). During such an evolution, the up and down states pick up the
geometric Zak phase, which can be determined from the Ramsey phase:

ϕtot = ϕZak + ϕdyn + ϕZeeman, (179)
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where the Zak phase is given by:

ϕZak = i

∫ k0+G/2

k0−G/2
〈uk′n|∇k′uk′n〉dk′ (180)

and the dynamical phase and Zeeman phase are given by ϕdyn = − 1
~
∫ T/2
−T/2 sgn(t′)εn(k0 +

f t′)dt′ and ϕZeeman = −EZT/~, respectively. For a band structure with symmetric dis-
persion relation, εn(k0 + f t′) = εn(k0 − f t′), the dynamical phase vanishes. The Zeeman
phase can be also eliminated by a spin echo sequence [125, 368]. Thus, the Ramsey
interferometry can directly give the Zak phase.

The interferometer scheme can be further used to measure the Chern number of a
gapped band for cold atoms in 2D OLs. As shown in Fig. 34 (c), the initial quasi-
momentum can be prepared to k(α) = αG2, where α ∈ [0; 1). Then the Zak phase for
a specific α can be measured through the interferometer protocol. The small change of
Zak phase as α is increased by δα is equal to the integral of the Berry curvature over
the rectangle δS defined by the corresponding trajectories, which is the Berry’s phase
for the contour ABCDA. To see this, one can choose a smooth gauge for the periodic
Bloch function in δS, such that the Berry’s phase γ can be represented as the sum of
the Berry’s phases for the four sides of the rectangle, γ = γAB + γBC + γCD + γDA.
Since the sides AB and CD are equivalent but traversed in the opposite direction, their
contribution vanishes, γAB + γCD = 0, then γBC + γDA is equal to the difference of the
Zak phases for trajectories BC and DA. Thus, the change of the Zak phase is related to
the Berry phase and is given by an integral of the Berry curvature:

γ =

∫
δS
d2kΩ(k) = −ie−iϕZak(α)∂αe

iϕZak(α)δα. (181)

As the Chern number C = 1
2π

∫
BZ d

2kΩ(k), we then obtain C from the winding number
of the Zak phase [131],

C = − i

2π

∫ 1

0
dαe−iϕZak(α)∂αe

iϕZak(α). (182)

This relation implies that the Chern number can be extracted from the interferometric
measurements of the Zak phase across the BZ. The method for a more general lattice
structure is introduced in Ref. [368]. In addition, the π Berry phase of a Dirac point can
also be determined from the interferometric measurement over a trajectory enclosing the
point in the momentum space.

The proposed interferometer method has been demonstrated in cold atom experiments
[125, 140]. The Zak phase of topological Bloch bands for cold atoms in a 1D dimerized
OL, which realizes the SSH/Rice-Mele Hamiltonians (see Sec. 4.1.1), has been directly
detected from the interferometric measurements [125]. Furthermore, the atomic inter-
ferometer to measure π Berry flux of a Dirac point in momentum space has also been
demonstrated [140], which is in analogy to an Aharonov-Bohm interferometer that mea-
sures magnetic flux in real space (See Sec. 4.2.1).

Based on the proposed measurements of non-Abelian generalizations of Zak phases
(the Wilson loops) or time-reversal polarizations, the interferometric method by com-
bining the Bloch oscillations with Ramsey interferometry can be generalized to probe
Z2 topological invariants of time-reversal-invariant topological insulators realized in OLs
[369]. Moreover, by using an additional mobile impurities that bind to quasiparticles of a
host many-body system, an interferometric scheme for detecting many-body topological
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invariants of interacting states with topological order, such as the fractional excitations
in fractional quantum Hall systems, was proposed in Ref. [370].

5.3 Hall drift of accelerated wave packets

For a wavepacket evolving on a lattice, which is centered at position r with the quasi-
momentum k and driven by an external force F , the equations of motion are given by
[131]

ṙn =
1

~
∂En(k)

∂k
− (k̇ × ez)Ωn(k), ~k̇ = F , (183)

where Ωn(k) is the Berry’s curvature of the n-band, and En(k) is the corresponding band
structure. Here the equations are valid when the force F is weak enough to preclude
any inter-band transitions. Considering a 2D lattice and the force along the y direction
F = Fey, the average velocity vn = ṙn along the transverse (x) direction can be obtained
as

vxn(k) =
∂En(k)

~∂kx
− F

~
Ωn(k). (184)

The first term in the above equation describes the usual band velocity for Bloch oscil-
lations, and the second term related to the Berry curvature is the so-called anomalous
velocity, which can produce a net drift transverse to the applied force. It was shown that
the anomalous velocity can be isolated and observed by canceling the contribution from
the band velocity through comparing trajectories for opposite forces ±F [371]. Following
this protocol, a measurement of the averaged velocity of the accelerated wavepacket for
many trajectories gives the Berry’s curvature Ωn(k) over a “pixelated” BZ, and thus the
Chern number can be evaluated by properly adjusting the paths. In the experiment of
realizing the Haldane model with ultracold fermions [28], the drift measurement has been
performed to probe the nontrivial Berry curvature and map out the topological regime
of the model (see Sec. 4.2.3 ).

It was further shown that the Chern number could be directly measured by imaging
the center-of-mass drift of a Fermi gas as an effective Hall response to the external force
[372]. Due to the periodicity of the energies in k-space,∫

BZ

(
∂En(k)/∂kx

)
d2k = 0, (185)

so the contribution from the band velocity naturally vanishes by averaging the velocity
over the entire first BZ. By setting the Fermi energy within a topological bulk gap, the
averaged anomalous velocity can thus be isolated by uniformly populating the bands,
and the displacement along the transverse direction is directly proportional to the Chern
number [344, 372]. Considering a general square lattice system of size Asyst =Lx×Ly and
a unit cell size Acell, the number of states within each band is Nstates =Asyst/Acell, and

the total number of particles is Ntot =
∑

nN
(n), where N (n) is the number of particles

occupying the n-band. By assuming that each band is populated homogeneously, the
average number of particles in a Bloch state un(k) is uniform over the BZ and is given
by

ρ(n)(k) = ρ(n) = N (n)/Nstates, (186)
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which acts as the band filling factor. The total averaged velocity along the direction
transverse to the force is given by [372]

vxtot = −(FAcell/h)
∑
n

N (n)C(n), (187)

where C(n) = 1
2π

∑
k Ωn(k) ∆kx∆ky ≈ 1

2π

∫
BZ Ωn(k) d2k is the band Chern number, with

∆kx,y = 2π/Lx,y. This equation reveals that the averaged transverse velocity of the wave
packet is related to the Chern number, which is a topological invariant and remains a
constant as long as the spectral gaps to other bands do not vanish. For a free spin-
polarized Fermi gas at zero temperature loaded in a 2D OL with topological bands, the
Fermi energy EF within a spectral gap naturally leads to a perfect filling of the bands
located below the gap with ρ(n) = N (n)/Nstates = 1 for En < EF. Thus one has

vxtot = −(FAsyst/h)
∑
En<EF

C(n), (188)

which indicates that the total velocity of the Fermi gas is directly related to the sum of
Chern numbers associated with populated bands.

In cold atom experiments, one can also prepare a thermal Bose gas filling certain Bloch
bands, such as the lowest band, to measure such a Hall (transverse) response [48]. If only
the lowest band is filled, its Chern number C can be simply extracted from the center-
of-mass displacement of the Bose gas, as the transverse velocity of the center-of-mass is
given by

vxcm = vxtot/Ntot = −(FAcell/h)C. (189)

Since both the unit cell area Acell and the strength of the applied force F can be precisely
determined, the center-of-mass Hall drift ∆xcm(t) = vxcmt offers a direct measure of
the Chern number of the lowest band. This protocol of measuring Chern numbers was
successfully implemented with bosonic atoms in artificially generated Hofstadter bands
[48] (See Sec. 4.2.2). This simple scheme is robust against perturbations and could be
applied to any cold-atom setups characterized by nontrivial Chern numbers. Moreover,
this method could be extended to detect the Z2 topological states, where the spin Chern
number could be deduced by subtracting the center-of-mass drifts associated with the
two spin species.

5.4 Streda formula and density profiles

It was revealed by Strěda that the Hall conductivity and thus the first Chern number
can be represented as the number of occupied states in the QHE [373]. Considering the
Hofstadter model [218] on a 2D lattice subjected to a uniform magnetic field B with
the butterfly energy spectrum shown in Fig. 17, when the magnetic flux per plaquette
is rational Φ = p/q, this spectrum splits into q sub-bands En (n = 1, . . . , q). Each bulk
band En(k) is associated with a Chern number C(n), which remains constant as long as
the bulk gaps do not close. The quantized Hall conductivity of a 2D electron system can
be obtained from the Strěda formula (let h = c = e = 1)[373]:

σH = σ0C = σ0

∑
En<EF

C(n) =
∂N(E)

∂B
|E=EF (190)

91



April 3, 2019 Advances in Physics Manuscript˙AIP˙Final˙20190401

where σ0 is the conductivity quantum, the Chern number C includes the contribution
of all occupied bulk bands C(n), and N is the number of states lying below the Fermi
energy. The Strěda formula is valid when the Fermi energy EF lies in a gap.

For neutral atoms, by using the Strěda formula, it was proposed to extract the quan-
tized Hall conductance and thus the Chern number from the measurement of atomic
density profiles [229, 242]. For the OL with Fermi atoms, this quantized quantity is re-
lated to the particle density ρ(r), which can be directly detected in practical experiments.
For OL with a smooth confining potential Vc(r), the spatial density profile ρ(r) in the
local-density approximation is

ρ(r) =

∫
dE D(E) Θ[EF − Vc(r)− E], (191)

where D(E) is the homogeneous-system density of states, and the density ρ(r) actually
counts the number of states below the “local chemical potential” µ(r) = EF−Vc(r). When
the local chemical potential lies in one of the gaps, we have ∂ρ(r)/∂µ(r) = 0 because
of vanishing compressibility, and thus the plateaus in the density profile appear, which
correspond to the energy gaps in the energy spectrum [229]. The discernible number of
plateaus is related to the size of the energy gaps. Generally, smaller gaps have higher
values of Hall conductance, but it becomes increasingly harder to observe these gaps,
as the corresponding plateaus will become discernible at lower temperatures and higher
particle numbers. By comparing the density plateaus ρ1,2 obtained from two different
configurations of the magnetic flux Φ1,2 but corresponding to the opening of the same
bulk gap in the bulk spectrum, one can obtain the analogue of the Strěda formula for
the Hofstadter OL with the Chern number [229]:

C =
∆ρ

∆Φ
=

ρ2 − ρ1

Φ2 − Φ1
=
∑
n

C(n). (192)

This equation is analogous to the quantized Hall conductivity of an electronic system with
the Fermi energy set within the nth gap. In cold atom experiments, the Chern number
can be extracted by comparing two measurements of atomic densities at different values
of synthetic magnetic flux in the Hofstadter OL. Notably, it was shown in Ref. [232] that
the Chern number could also be revealed in the momentum density ρ(k) of the same
Hofstadter OL.

A simple relation between the Chern number and the atomic density plateaus for the
anomalous QHE in the Haldane model (see Sec. 4.2.3) was also obtained from the Strěda
formula [242]. This density-profile-measurement method for probing the band topology
has also been shown to be applicable in 1D OLs with non-interacting Fermi atoms [176]
and interacting Bose atoms [189], as well as the chiral topological insulator in 3D OLs
[309]. The intrinsic anomalous Hall effect in a Fermi gas loaded in a trap without OLs
may be also observed through the response of atomic density to the synthetic magnetic
field [112]. Thus, the measurement of the atom density plateaus with the analogous
Strěda formula for cold atoms offers a general way to identify topological order and
phase transitions [208, 374]. In practical experiments, one requires low temperature to
make the atomic density plateaus visible, which is the main obstacle for demonstrating
this detection method. For 40K atoms in typical OLs, the plateaus will become visible
when the temperature is lower than about 10 nK [176, 229].
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5.5 Tomography of Bloch states

A method for full tomography of Bloch vectors was first proposed for a specific realization
of a Haldane-Chern insulator in spin-dependent hexagonal OLs [244]. The Haldane model
[13] and some other models of Chern insulators can be well described by two-band Bloch
Hamiltonians of the form

H(k) = ε0(k)I2×2 + d(k) · σ, (193)

with the Bloch vectors d(k) = dx,y,z(k). The Berry curvature Ω and the Chern number
C of the lowest energy band can be expressed in terms of the normalized Bloch vector
n(k) = d(k)/|d(k)| [64]:

Ω(k) =
1

2
n · (∂kxn× ∂kyn), C =

1

2π

∫
BZ

Ω(k)dk. (194)

Based on this equation, when the system is in a phase C 6= 0, an experimental mea-
surement of n(k) would depict a Skyrmion pattern on a “pixelated” BZ, leading to an
approximate measurement of the Chern number. For a specific Haldane-like model that
could be realized with fermionic atoms of two spin states confined on the two triangular
sublattices of the honeycomb pattern, the Bloch vector distribution n(k) ∝ 〈σ〉 can be
experimentally determined from spin-resolved time-of-flight images [244]. In a typical ex-
periment, after the ground state is prepared, switching off the trap in adequate timescales
projects the atom cloud into the momentum density distributions ρa,b(k), which give the
pseudospin component nz(k) = 1

2 [ρa(k) − ρb(k)]/[ρa(k) + ρb(k)]. A fast Raman pulse
during time-of-flight allows one to rotate the atomic states and map nx and ny, which
is the tomography of the whole Bloch vector field. Actual experiments “pixelize” the
time of flight images, counting the number of atoms on each “square” of the effective
BZ and estimating the averages of nx, ny or nz. Either through repetitions or through
self-averaging in an experiment with multiple copies of the lattice, a set of normalized
vectors {nj}L×Lj=1 , evenly sampled over momentum space can be obtained, which gives

the Chern number with the error O(4π2/L2) expected from the discretization with the
smooth integrand [244].

A different scheme for tomography of Bloch states in OLs with two sublattice states
was further proposed, which is based on the quench dynamics and thus is not re-
stricted to a specific system [375]. Consider spinless fermions in a 2D OL with two
sublattice states A and B, and the system is described by the two-band Hamiltonian
in Eq. (193) with σ acting in the sublattice space. For every quasimomentum k, the
sublattice space defines a Bloch sphere, with north and south poles given by |kA〉
and |kB〉, respectively. The normalized vector on the Bloch sphere is parametrized as
n(k) = (sinϑkcosϕk, sinϑksinϕk, cosϑk). Then the Bloch state of the lowest band is given
by |k−〉 = sin(ϑk/2)|kA〉 − cos(ϑk/2)eiϕk |kB〉. In order to obtain the full information
of the Bloch state determined by ϑk and ϕk, one can measure the momentum distri-
bution of the system, which is subjected to an abrupt quench with a potential off-set
εA − εB ≡ ~ωAB between A and B sites for suppressing tunneling at the measurement
time tm, leading to an observable dynamics in the momentum distribution [375]

ρ(k, t) = f(k){1− sinϑkcos[ϕk + ωAB(t− tm)]}. (195)

Here f(k) is a broad envelope function given by the momentum distribution of the
Wannier function. The oscillatory time dependence in ρ(k, t) directly reveals both ϕk and
sinϑk = 1− |nz(k)|2. The time-dependence of ρ(k, t) allows one to reconstruct nx,y,z(k)
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from the amplitude and the phase of the oscillations. Such a complete tomography of
the Bloch states is mandatory for a measurement of the Berry curvature. It was shown
that this scheme is applicable to extract the Chern number and topological transitions
for the Hofstadter model with π flux and the Haldane model on a honeycomb OL [375].

An alternative but generic scheme for measuring the Bloch wavefunction based on the
time-of-flight imaging was presented in Ref. [313]. For fermionic atoms with N spin states
referred as |s〉 (s = 1, 2, ..., N) in a generic OL, the Bloch state in the non-degenerate n-

band can be denoted by |un(k)〉 =
∑N

s=1 cns(k)|s〉, where cns(k) is the Bloch wavefunction
with normalization

∑
s |cns(k)|2 = 1. To measure cns(k), one can first separate different

spin components through a magnetic field gradient and directly map out the atomic
momentum distribution ρns(k) = |cns(k)|2 for the filled band using the conventional
time-of-flight imaging. One then measure the phase information of cns(k) by introducing
a π/2 rotation between the two spin states denoted by s and s′ with an impulsive pulse
light before the flight of atoms, which induces the transition

cns(k)→ [cns(k) + cns′(k)]/
√

2, cns′(k)→ [cns(k)− cns′(k)]/
√

2.

With this pulse, the difference between |cns(k) ± cns′(k)|2/2 measured through time-
of-flight imaging gives the real part of the interference terms Re[c∗ns(k)cns′(k)]. The
imaginary part Im[c∗ns(k)cns′(k)] can be obtained by the same way with a different ro-
tation. The measurement of the population and interference terms determines the Bloch
wave function up to an arbitrary overall phase cns(k) → cns(k)eiχ(k), where χ(k) in
general depends on k instead of the spin index. This arbitrary k-dependent phase poses
an obstacle to measurement of the topological invariants, which can be overcame by a
gauge-invariant method to calculate the Berry curvature based on the so-called U(1)-
link defined for each pixel of the discrete BZ in experiments [376]. It was shown that the
proposed method is generally applicable to probe the topological invariants in various
topological bands [265, 313, 317] and robust to typical experimental imperfections such
as inhomogeneous trapping potentials and disorders in the systems.

Recently, the tomography of Bloch states has been experimentally demonstrated with
two different approaches [45, 46]. Based on the method proposed in Ref. [375], a full
tomography of the Bloch states across the entire BZ was experimentally demonstrated by
observing the quench dynamics at each momentum point [46]. In the experiment, a cloud
of single-component fermionic 40K atoms in a shaking hexagonal OL formed a tunable
Floquet band insulator. Even though the global of the band has zero Chern number in
the system, the measured distribution of Berry curvature showed the rich topology, such
as the phase vortices as topological defects near Dirac points and their chiralities as the
signal of the topological transition due to the shaking [46]. The topological defects of
the Bloch states in the hexagonal OL were further experimentally studied by mapping
out the azimuthal phase profile ϕk in the entire momentum space and by identifying the
phase windings [377].

The state tomography methods discussed above are applicable for non-degenerate or
isolated bands, where the Berry phase is merely a number. However, some lattice systems
having multiple bands with degeneracies, such as in topological insulators and graphene,
can seldom be understood with standard Berry phases but can instead be described using
matrix-valued Wilson lines [109, 369, 378, 379]. Wilson lines as non-Abelian generaliza-
tion of Berry phase [109] provide indispensable information to identify the topological
structure of bands as they encode the geometry of degenerate states, such as the eigen-
values of Wilson-Zak loops (i.e., Wilson lines closed by a reciprocal lattice vector) for
formulating the Z2 topological invariants [369, 378, 379].

In a recent experiment [45], using an ultracold gas of rubidium atoms loaded in a hon-
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(a)

(b)

(c)

(d)

(e)

Figure 35. (Color online) Realizing the Wilson lines in the honeycomb lattice. (a) In a non-degenerate system

(left), adiabatic evolution of a state through parameter space ~R results in the acquisition of a Berry phase. In
a degenerate system (right), the evolution is instead governed by the matrix-valued Wilson line, which lead to
population changes between the levels. (b) The band structure of the lowest two bands of the honeycomb lattice
in effective energy units of |F|d. As the force F is increased, the largest energy scale of the bands becomes small.
At large forces (iii), the effect of the band energies is negligible and the system is effectively degenerate. In this
regime, the evolution is governed by the Wilson line operator. (c) The measured population remaining in the first
band for different forces after transport to Γ + 0.2G (green), Γ + 0.55G (red), and Γ + G (blue), where inset
numbers i to iii refer to band schematics in (b). (d) Measuring mixing angles θq at different final quasimomenta
q. (e) Measuring relative phases φq at different q, lying at angular coordinate α on a circle centered at Γ. The
quantized jumps of π in the phase of the interference fringe each time α is swept through a Dirac point. Reprinted
from Li et al.[45]. Reprinted with permission from AAAS.

eycomb OL, the strong-force dynamics in Bloch bands that are described by Wilson lines
was realized and an evolution in the band populations for revealing the band geometry
was observed. This enables a full tomography of band eigenstates using Wilson lines. This
approach can be used to determine the topological invariants in single- and multi-band
systems. As shown in Fig. 35(a), the Berry phase merely multiplies a state by a phase
factor, while the Wilson line is a matrix-valued operator that can mix state populations.
The Wilson line was measured by detecting changes in the band populations under the
influence of an external force F, such that atoms with initial quasimomentum q(0) evolve
to quasimomentum q(t) = q(0)+Ft/~ after a time t. When the force is sufficiently weak
and the bands are non-degenerate, the system will remain in the lowest band and the
quantum state merely acquires a Berry phase and a dynamical phase. Transitions to
other bands occur at stronger forces, and when the force is infinite with respect to a cho-
sen set of bands, the effect of the dispersion vanishes and the bands appear as effectively
degenerate, as shown in Fig. 35(b). The system then evolves according to the formalism
for adiabatic motion in a degenerate system [109], and the dynamics is described by the
unitary time-evolution operator as the Wilson line matrix [45]:

Ŵq(0)→q(t) = P̂exp[i

∫
C
dqÂq], (196)

where the path-ordered P̂ integral runs over the path C in reciprocal space from q(0)
to q(t) and Âq is the Wilczek-Zee connection for local geometric properties of the state
space. In the honeycomb OL, the Wilson line operator describing transport of a Bloch
state from Q to q reduces to ŴQ→q = ei(q−Q)·r̂, and thus the Wilson line operator
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simply measures the overlap between the cell-periodic Bloch functions denoted |unQ〉 and

|umq 〉 (with the band index n,m) at the initial and final quasimomenta [379]:

Wmn
Q→q = 〈umq |unQ〉. (197)

This enables a tomograph of the cell-periodic Bloch functions over the entire BZ in the
basis of the states |unQ〉. In the experiment [45], a nearly pure BEC of 87Rb was initially
loaded into the lowest band at the center of the BZ Q = Γ, and an inertial force, created
by accelerating the lattice via linearly sweeping the frequency of the laser beams, was
used to realize the Wilson line. The Wilson line was then verified by transporting the
atoms from Γ to different final quasimomenta using a variable force |F| and performing
band mapping to measure the population remaining in the lowest band, as shown in Fig.
35(c). The saturation value |W 11

Γ→q|2 = |〈u1
q|u1

Γ〉|2 of the population after transport to q
is a measure of the overlap between the Bloch functions of the first band at Γ and q.
To demonstrate the reconstruct of Bloch states using the Wilson lines, it is convenient
to represent the state |u1

q〉 in the basis of |1〉 = |u1
Q〉 and |2〉 = |u2

Q〉 at a fixed reference
quasimomentum Q as

|u1
q〉 = cos

θq
2
|1〉+ sin

θq
2
eiφq |2〉. (198)

Obtaining θq and φq for each quasimomentum q will map out the geometric structure
of the lowest band [244, 375]. As shown in Fig. 35(d,e), mixing angles θq at different
final quasimomenta q was measured from the atom population remaining in the first
band after the transport, and relative phases φq at different q was measured through a
procedure analogous to Ramsey or Stückelberg interferometry [45]. Using the data, the
Bloch states in the lowest band |u1

q〉 and the eigenvalues of Wilson-Zak loops can both
be reconstructed.

5.6 Spin polarization at high symmetry momenta

It was proposed that for a class of Chern insulators, the topological index can be obtained
by only measuring the spin polarization of the atomic gas at highly symmetric points of
the BZ [380]. The two-band Bloch Hamiltonian of the Chern insulators in square lattices
is given by

H(k) = [mz − 2J0cos(kxa)− 2J0cos(kya)]σz − 2Jsosin(kxa)σx − 2Jsosin(kya)σy, (199)

where the mz is an effective Zeeman splitting, J0 and Jso represent the nearest-neighbor
spin-conserved and spin-flipped hopping coefficients, respectively. Notably, the cold-atom
realization of this Hamiltonian with the needed 2D SOC has been theoretically proposed
[117] and then experimentally achieved [36] by a simple optical Raman lattice scheme
that applies two pairs of light beams to create the lattice and Raman potentials simul-
taneously. The topology of the lowest Bloch band can be characterized by the Chern
number C = sgn(mz) when 0 < |mz| < 4J0, and otherwise C = 0.

The lattice system has an inversion symmetry defined by the 2D inversion trans-
formation P̂ ⊗ R̂2D, where P̂ = σz acting on spin space and R̂2D transforms Bra-
vais lattice vector R → −R. For the corresponding Bloch Hamiltonian, one has
P̂H(k)P̂−1 = H(−k), which follows that [P̂ ,H(Λi)] = 0 at the four highly symmetric
points {Λi} = {G(0, 0), X1(0, π), X2(π, 0),M(π, π)}. Therefore the Bloch states |u±(Λi)〉
in the two energy bands are also eigenstates of the parity operator P̂ with eigenvalues
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P± = +1 or −1. The topology of the inversion-symmetric Chern band can also be deter-
mined by the following invariant [36, 117]

Θ =
∏
i

sgn[P−(Λi)]. (200)

It can be proven rigorously that Θ = −1 for the topological band, while Θ = 1 for the
trivial band. Furthermore, for the square lattice with four highly symmetric points, the
corresponding Chern number is given by C = −1−Θ

4

∑4
i=1 sgn[P (Λi)]. Since the parity

eigenstates are simply the spin eigenstates (here P̂ = σz), with the spin-up and spin-down
corresponding to different atomic internal states, the topological invariants Θ and C of
the lowest Bloch band can be determined by measuring the spin polarization P(−)(k) of
an atomic cloud at the four highly symmetric points:

P−(Λi) =
n↑(Λi)− n↓(Λi)

n↑(Λi) + n↓(Λi)
, (201)

where n↑,↓(Λi) denotes the atomic momentum density of spin states | ↑, ↓〉, which can
be measured directly by spin-resolved time-of-flight imaging. This method can be used
to probe other topological bands with specific symmetries by measuring atomic spin po-
larization at highly symmetric points in momentum space, such as the chiral topological
insulators [165, 381] and double-Weyl semimetals [275].

Based on the optical Raman lattice method [117], the Bloch Hamiltonian in Eq. (199)
with the topological bands has been experimentally realized for a BEC of 87Rb atoms
[36]. For the condensate in the OL, the spin polarization at the four high symmetry
momenta can be written as

〈σz(Λi)〉 ≈ P−(Λi)f(E−, T ) + P+(Λi)f(E+, T ), (202)

where f(E±, T ) = 1/[e(E±(Λi)−µ)/kBT − 1] is the BEC with µ and T respectively being
the chemical potential and temperature. Since P+(Λi) = −P−(Λi), one has 〈σz(Λi)〉 ≈
P−(Λi)[f(E−, T ) − f(E+, T )]. Thus by preparing a cloud of bosonic atoms with the
temperature satisfying f(E−(Λi), T ) > f(E+(Λi), T ), one can obtain

sgn[〈σz(Λi)〉] = sgn[P−(Λi)]. (203)

Thus, the spin polarization can be precisely measured with a condensate at low temper-
ature. In the experiment [36], the spin polarization was measured as a function of the
tunable parameter mz to determine Θ and C for the topology of the lowest-energy band,
which is topologically nontrivial when 0 < mz < |mc

z|, whereas it is trivial for mz > |mc
z|,

as show in Fig. 36. The 2D SOC and the band topology for BECs in the optical Raman
lattices have recently been further investigated [260, 382, 383]

5.7 Topological pumping approach

As introduced in Sec. 4.1.2, the topological pumping, geometric pumping, and spin
pumping have been recently realized with ultracold atoms in 1D optical superlattices
[146, 157–159]. Very recently, a 2D topological charge pump as a dynamical version of
the 4D integer QHE was realized by using ultracold bosonic atoms in a 2D optical super-
lattice [17]. The quantized transported particle (i.e., the atomic center-of-mass change
in the experiments) in the adiabatic cyclic evolution of these pumps indicates the under-
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(a)
C=0 C=0C= -1 C=1

(b)

Figure 36. (Color online) (a) Measured spin polarization P (Λi) at the four symmetric momenta Λi as a function
of mz . (b) Obtained invariant Θ, which determines the Chern number C of the lowest band in Hamiltonian (199).
Reprinted from Wu et al.[36]. Reprinted with permission from AAAS.

lying band topology, such as the first and second Chern numbers characterizing the 1D
and 2D topological pumping, respectively.

Based on the pumping approach in OLs and hybrid Wannier functions in band theory
[384], it was shown that the Chern number can be extracted from hybrid time-of-flight
images [385]. In the modern theory of polarization, a 2D insulating lattice system can be
viewed as a fictitious 1D insulator along one direction, say along x, subject to an external
parameter ky, where ky is the crystal-momentum along y. The polarization of this 1D
insulator can be defined by means of hybrid Wannier functions [384], in which the Fourier
transform from Bloch functions is carried out in the y direction only. The polarization at
each ky is then given by the center of the corresponding hybrid Wannier functions, and the
change in polarization from adiabatically changing ky by 2π is proportional to the Chern
number of the 2D insulators [384, 386]. This is a manifestation of topological particle
pumping with ky being the adiabatic pumping parameter. A generalization of the hybrid
Wannier functions of band theory to the hybrid particle densities in cold atomic gases
ρ(x, ky), which are the particle densities resolved along the x-direction as a function
of ky, provides a natural way to measure the Chern number in OLs. Experimentally,
ρ(x, ky) can be measured by combing in situ imaging along x and time-of-flight imaging
along the release direction y. In the measurement, the OL is switched off along the y
direction while the system remains unchanged in the x direction. It was shown that
the hybrid particle density provides an efficient numerical reconstruction of the Chern
number in topologically-ordered OLs [385], such as the Hofstadter and Haldane models.
This method is general and allows the measurement of other topological invariants in
OLs, such as the Z2 topological invariant in time-reversal symmetric insulators and the
kz-dependent Chern number Ckz in Weyl semimetals [136, 275].

5.8 Detection of topological edge states

According to the bulk-edge correspondence, the topological index of the bulk bands
corresponds to the number of gapless edge-modes present within the bulk gap [14, 15].
In Chern insulators, all the gapless edge states propagate in the same direction, such
that they are chiral. In the context of the QHE, the chiral edge states are responsible
for the quantized Hall conductivity. As introduced in Sec. 4.4, the chiral edge states in
a quantum Hall ribbon have been experimentally realized and detected with cold atoms
through the synthetic dimension method [37, 38]. In addition, the chiral currents were also
observed in an optical ladder for ultracold bosonic atoms exposed to a uniform artificial
magnetic field [174]. The high-resolution addressing technique in cold atom gases offers
the possibility of directly visualizing the time-evolution of these edge states.

In a 2D atomic Chern insulator under an external trapping potential, the direct detec-
tion of topological edge states is challenging because the number of occupied edge modes
within a bulk gap and below the Fermi level contains a very small fraction of the total
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number of particles. In addition, these edge states would be washed out by the smooth
harmonic trap and thus one may not be able to distinguish them from the bulk states. To
circumvent these problems in detecting the topological edge states, it was proposed to use
a steep confining potential and to image the edge states from optical Bragg spectroscopy
[203, 234, 366, 367]. Based on a generalization of Bragg spectroscopy sensitive to angular
momentum [234], the Bragg probe can transfer energy and angular momentum to atoms
located in the vicinity of the Fermi level and simultaneously changes their internal states,
which completely removes the edge states from the cloud and allows imaging on a dark
background unpolluted by the untransferred atoms. In this scheme, the Bragg spectra
can provide an unambiguous signature of the topological edge states that establishes
their chiral nature. Another method to directly image the propagating edge states was
proposed by forcing them to propagate in a region that is unoccupied by the bulk states
after suddenly removing the potential [235]. Other methods to visualize the edge state
currents were also proposed by quenching the parameters of the system Hamiltonian
[387, 388]. It would to interesting to extend these cold-atom schemes to directly image
the helical edge states in Z2 topological insulators and the Fermi arc surface states in 3D
topological semimetals.

6. Topological quantum matter in continuous form

In this section, we move beyond topological Bloch bands in lattice systems to describe
some of the quantum matter in the continuum that have topologically nontrivial prop-
erties. Here we focus on there model systems realized with cold atoms without lattice
potentials, which are the topological solitons in Jackiw-Rebbi model, various topological
defects in BECs, and the atomic (quantum) spin Hall effect.

6.1 Jackiw-Rebbi model with topological solitons

In relativistic quantum field theory, Jackiw and Rebbi introduced a celebrated model to
generate topological soliton modes with fractional particle numbers [124]. The Jackiw-
Rebbi model describes a 1D Dirac field coupled to nontrivial background fields. The
relativistic Dirac Hamiltonian for 1D Dirac fermions subjected to two static bosonic
fields ϕ1 and ϕ2 can be written as [124, 127, 128]

HD = cxσxpx + ϕ1(x)σz + ϕ2(x)σy, (204)

where cx is the (effective) speed of light and the background field with a kink potential
can be described as

ϕ1(x) = Γ, ϕ2(x→ ±∞) = ±∆0, (205)

with positive constants Γ and ∆0. The relativistic Dirac Hamiltonian with such a topo-
logically nontrivial background potential supports an nondegenerate soliton state, which
gives rise to fractionalization of particle number. In the original Jackiw-Rebbi model
with Γ = 0, the nondegenerate zero-energy soliton state is protected by the conjugation
(particle-hole) symmetry that connects each state with energy E to its partner located
at the opposite energy. In the many-particle description, there are two degenerate many-
body ground states corresponding to the soliton state being filled or empty, carrying
fractional Fermi number N0 = ±1/2, respectively.

With the conjugation-symmetry-breaking term Γ, the soliton mode has non-zero energy
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Figure 37. (Color online) Fractionalization in Jackiw-Rebbi model [389]. (a) A background field with a pair of kink
and anti-kink, both of which support a localized soliton state. (b) The energy spectrum and a pair of solitons with
energies E = ±Γ and fractional particle numbers ±|N0|. At the kink, the soliton state picks a fractional particle
number of |N0| from the effective valance band (Fermi sea) and another 1 − |N0| from the effective conduction
band, and vice versa for the opposite case at the anti-kink.

and the particle number is generally irrational [127]:

N0 =
1

π
arctan

∆0

Γ
. (206)

One can see that N0 depends only on the asymptotic value of the kink rather than its
detailed shape. In this sense, it is topological and is insensitive to local fluctuations of the
background field. To have a better understanding of arbitrary fractional particle number
[389], one can consider another kind of background field with a simple but practical
configuration, that is, a pair of kink and anti-kink both with a step-function profile as
shown in Fig. 37(a). Solving the energy spectrum of the Dirac Hamiltonian (204) at
the kink potential (near x = −a) with ϕ2(x) = ∆0sgn(x + a) yields a localized in-gap
eigenstate in the kink at E = Γ with the wave function decaying as exp (−∆0|x+ a|/~c)
and the energy gap Eg = 2

√
∆2

0 + Γ2. It is understood that the soliton state picks up
a fractional fermion number of |N0| from the effective valance band (Fermi sea) and
(1 − |N0|) from the effective conduction band, as shown in Fig. 37(b). Without the
soliton, one can assume N fermions fully occupying the valence band acting as a uniform
background in the state counting. For filling with N + 1 fermions in the presence of kink
and anti-kink configuration, the expectation value of the fermion number of the soliton
modes at the kink and anti-kink can be |N0| and 1− |N0| if they are both occupied. For
an anti-kink potential (near x = a) with ϕ2(x) = −∆0sgn(x − a), the localized soliton
state is obtained at E = −Γ with the wave function decaying as exp (−∆0|x− a|/~cx).
It picks up (1− |N0)| from the valence band and |N0| from the conduction band. There
must be pairs of kink and anti-kink in a periodic system. If both states are unoccupied,
the particle numbers are −|N0| at the kink and |N0| − 1 at the anti-kink. When the
Fermi level in this system, is tuned up, the E = −Γ soliton state is occupied first and
the particle numbers at kink and anti-kink are ∓|N0|, respectively. When both states are
occupied, there are particles (1− |N0|) and |N0| at the kink and anti-kink, respectively.

The first condensed matter realization of the Jackiw-Rebbi model is the conducting
polymers described by the SSH model for lattice systems, wherein the low-energy effective
Hamiltonian of the Bloch Hamiltonian near Dirac points takes the Dirac form with kink-
soliton modes in the continuum. In particular, the Jackiw-Rebbi model and the SSH
model share many similar features related to topological insulators under a suitable
regularisation. The soliton modes and related topological properties in the SSH model
have been intensively investigated with cold atoms in 1D OLs (see Sec. 4.1.1).

The direct realization of the Jackiw-Rebbi model and the detection of the induced
soliton mode with the fractional particle number by using a 1D atomic Fermi gas in
the continuum were proposed in Ref. [389]. The first procedure is to create strong SOCs
for the ultracold atoms, and the second one is to generate a kink-like potential and
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a tunable conjugation-symmetry-breaking term are properly constructed by laser-atom
interactions, leading to an effective low-energy relativistic Dirac Hamiltonian with a topo-
logically nontrivial background field. The fractionalization of the particle number in the
atomic system may be detected through the soliton density and the local density of states
near the kink by using two standard experimental detection methods for ultracold atomic
gases, the in situ absorption imaging technique and spatially resolved rf spectroscopy
[389]. The realization of 1D homogeneous Dirac-like Hamiltonian (particles) and related
relativistic effects (e.g. Klein tunneling and Zitterbewegung) with cold atoms in the con-
tinuum has been studied in theories and experiments [92, 93, 95, 96, 105, 390, 391].
See Ref. [52] for a review on relativistic quantum effects of Dirac particles simulated by
ultracold atoms.

6.2 Topological defects in Bose-Einstein condensates

BECs of atomic gases in a harmonic trap without lattice potentials can host various
topological defects in real space. These topological defects include solitons in 1D, vortices
and Skyrmions in 2D, monopoles, Skyrmions and knots in 3D. The topological defects
have different physical properties and are classified by homotopy groups of their order-
parameter space. Thus, they are distinguished by their topological charges with discrete
values [392] and robust against to external perturbations. In particular, atomic BECs
with internal spin degrees of freedom provide unique platforms for investigating different
topological objects due to the rich structure of their superfluid order parameters, which
are vectors rather than scalar quantities. Moreover, the well-developed manipulation
techniques for atomic motion and spin states enable one to engineer the topological
defects of interest in real space for studying their dynamics and stability in a highly
controllable manner.

In early experiments of atomic BECs, the 1D solitons in the atomic density distribu-
tions have been created and controlled by a phase imprinting method [393–395]. The 2D
topological vortices, which are line defects in the superfluid order parameter accompa-
nied by a quantized phase winding of an integer multiple of 2π, have also been generated
in single- and multi-component atomic BECs by an external rotation [396, 397] or the
phase imprinting method [398–400].

As another kind of topological defects, Skyrmions are first envisioned in field theory
and then extended to condensed matter physics. A 2D Skyrmion is characterized by a
local spin that continuously rotates through an angle of π from the center to the boundary
of the system. In terms of a unit spin vector d, a typical 2D Skyrmion spin texture shown
in Fig. 38(e) with z-axis symmetry can be written as in the polar coordinate

d(r, φ) = cosβ(r)ẑ + sinβ(r)(cosφx̂+ sinφŷ), (207)

where β(r) is the bending angle characterizing the rotation or “bending” of the local
spin across the cloud, with the boundary conditions β(0) = 0 and β(∞) = π. This spin
texture has the topological charge

νw =
1

4π

∫
dxdy d · (∂xd× ∂yd) = 1, (208)

which is the 2D winding number representing the number of times that the spin texture
encloses the whole spin space. Such a 2D Skyrmion spin texture was first created in a
spin-2 condensate of 87Rb atoms with coherent Raman transitions between the spin states
[401]. In the experiment, the BEC was prepared in the |F = 2,mF = 2〉 = |2〉 state, and
then two Raman beams respectively with first-order Laguerre-Gaussian and Gaussian
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Figure 38. (Color online) Creation of 2D Skyrmions in a spinor BEC. The absorption image (a) of a 2D skyrmion
created in spin-2 87Rb. The winding number νw for each spin state is indicated. (b) Azimuthally averaged lineouts
(points) for each spin state. (c) 3D plot of the solid lines in (b), where the colors red, green, and blue correspond
to the |2〉, |0〉, and |−2〉 states, respectively, with the number of arrowheads indicating the winding number of the
spin state. (d) The polarization of the skyrmion. (e) The vector field of the Skyrmion. Reprinted with permission
from Leslie et al.[401]. Copyright c© (2009) by the American Physical Society.

intensity profiles were applied to transfer the population to the |0〉 (|−2〉) state, which
acquires a νw = 1 (νw = 2) azimuthal phase winding. The Raman interaction effectively
evolves the order parameter of the spinor BEC to [401]

Ψ(r) =
√
n(r)


cos2(β(r)/2)

0√
2eiφsin(β(r)/2)cos(β(r)/2)

0
e2iφsin2(β(r)/2)

 . (209)

Here n(r) is the density of the atomic cloud, and the distribution β(r) as the form in
Eq. (207) can be engineered to generate the 2D Skyrmion spin texture. The Skyrmion
was detected from absorption image of the atomic density profile shown in Fig. 38(a-d)
and further conformed by matter-wave interference [401]. It was demonstrated that the
state 2D Skyrmions can be created in a spin-1 BEC of 23Na atoms in a harmonic trap
by using a 3D quadrupole magnetic field [402, 403], and moreover, an atomic geometric
Hall effect in the spinor BEC with a 2D Skyrmion spin texture has been observed [404].

In 3D, Skyrmion is a particlelike soliton hypothetically introduced by Skyrme [405].
A 3D Skyrmion has a nonsingular texture that can be topologically characterized by a
3D winding number. The stability of a 3D Skyrmion in two-component BECs, which
can be simply viewed as a vortex ring containing a superflow, has been theoretically
studied and found as metastable solutions of the energy functional [406, 407]. Several
schemes have been proposed to create and stabilize the metastable 3D Skyrmions in
multi-component BECs [408–412]. Recently, it was shown that a fully stable 3D Skyrmion
can spontaneously emerge as the ground state of a two-component BECs coupled with
a synthetic non-Abelian gauge field [413]. The 3D Skyrmion spin texture is elusive in
experiments until recently, and it was realized within a spin-polarized ferromagnetic
87Rb BEC that is exposed to an externally controlled magnetic field [414].

On the other hand, knots are another 3D topological objects, which are characterized
by a linking number or a Hopf invariant [415]. The existence of a stable knot soliton was
first discussed in the context of a two-component BEC [416]. An experimental scheme
for generation of knot spin textures in a spin-1 BEC was proposed [417]. Based on this
theoretical proposal, the creation and observation of knot solitons in the spinor BEC has
recently been demonstrated [418].
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(a) (b) (c)

(d) (e)

Figure 39. (Color online) Creation of Dirac monopoles in a spinor BEC. (a-c) Spin orientation (red arrows) in
the condensate when the magnetic field zero (black dot) is above (a), entering (b) and in the middle of (c) the
condensate. The helix represents the singularity in the vorticity. (d) Azimuthal superfluid velocity vs (red arrow
and colour scale by equatorial velocity ve). Black arrows depict the synthetic magnetic field B∗. (e) Experimental
setup with a controlled 3D magnetic quadrupole. Reprinted by permission from Macmillan Publishers Ltd: Ray
et al.[419], copyright c© (2014).

A fundamentally important and interesting topological defect is monopole, following
Dirac’s theory of magnetic monopoles which are consistent with both quantum mechanics
and the gauge invariance of the electromagnetic field [1]. The experimental evidence of
magnetic monopoles as fundamental constituents of matter is still absent, however, they
can emerge as quasiparticle excitations or other analogies in condensed matter systems,
such as topological insulators [420]. It has been proposed that the light-induced gauge
potentials for neural atoms in proper Raman laser fields can provide the realization of
synthetic magnetic monopoles and even non-Abelian monopoles [92, 421–423]. Alterna-
tively, it was theoretically demonstrated that a topological defect as the Dirac magnetic
monopole can be imprint on the spin texture of an atomic BEC by using external mag-
netic fields [424]. Due to the spin of the condensate aligning with the local magnetic field
with nontrivial 3D structures, one can create a pointlike defect to the spin texture of
the condensate giving rise to a vorticity equivalent to the magnetic field of a magnetic
monopole. A synthetic monopole field on a sphere with exact flat Landau levels on curved
spherical geometry in a system of spinful cold atoms could be realized by engineering of
a magnetic quadrupole field [425].

Following the method introduced in Ref. [424], the Dirac monopoles have been experi-
mentally created in the synthetic electromagnetic field that arises in the order parameter
of a ferromagnetic spin-1 87Rb BEC in a tailored excited state [419]. The order param-
eter Ψ(r, t) = ψ(r, t)ζ(r, t) is the product of a scalar order parameter ψ, and a spinor
ζ = (ζ+1, ζ0, ζ−1)T ≡ |ζ〉, where ζm = 〈m|ζ〉 represents the mth spinor component along
z, with ζ = (1, 0, 0)T at the beginning. The spin texture S = Ψ †FΨ are given by the
condensate order parameter and the spin-1 matrices F. The spinor order parameter corre-
sponding to the Dirac monopole was generated by an adiabatic spin rotation in response
to a time-varying magnetic field [419]

B(r, t) = bq(xx̂+ yŷ − 2zẑ) +Bz(t)ẑ, (210)

where bq > 0 is the strength of a quadrupole field gradient and Bz(t) is a uniform bias
field. As shown in Fig. 39, the magnetic field zero is initially located on the z axis at
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z = Bz(0)/2bq, and the spin rotation occurs as Bz is reduced, drawing the magnetic
field zero into the region occupied by the superfluid. In the experiment, the condensate
spin nearly adiabatically follows the local direction of the field, as shown in Fig. 39(a-c).
Using a scaled and shifted coordinate system with x′ = x, y′ = y, z′ = 2z − Bz/bq,
corresponding spherical coordinates (r′, θ′, φ′), the applied magnetic field is then B =
bq(x

′x̂′ + y′ŷ′ − z′ẑ′). As Bz is reduced, each spin rotates by an angle π − θ′ about an
axis defined by the unit vector n̂(r′, θ′, φ′) = −x̂′sinφ′ + ŷ′cosφ′. In the adiabatic limit,
the condensate order parameter corresponds to the local eigenstate of the linear Zeeman
operator gFµBB ·F, and this spatially-dependent rotation leads to a superfluid velocity
[419, 424]

vs =
~
Mr′

1 + cosθ′

sinθ′
ϕ̂′, (211)

and vorticity

Ωs = ∇′ × vs = − ~
Mr′2

r̂′ +
4π~
M

δ(x′)δ(y′)Θ(z′)r̂′, (212)

where M is the atomic mass, δ is the Dirac delta function and Θ is the Heaviside step
function. The vorticity is a monopole attached to a semi-infinite vortex line singularity
as an analog of Dirac string, with phase winding 4π, extending along the positive z′

axis. The synthetic vector potential arising from the spin rotation can be written as
A∗ = −Mvs/~, and the synthetic magnetic field of the monopole is

B∗ =
~
r′2
r̂′. (213)

The fields vs and B∗ are depicted in Fig. 39(d). The created Dirac monopoles were then
experimentally identified at the termini of vortex lines within the condensate by directly
imaging such a vortex line in real space [419]. Based on this method, a topological point
defect as an isolated monopole without terminating nodal lines (the Dirac string) was
also created and observed in the order parameter of the spin-1 BEC [426].

6.3 Spin Hall effect in atomic gases

Spin Hall effects [427] are a class of SOC phenomena where flowing particles experience
orthogonally directed spin-dependent Lorentz-like forces and give rise spin currents. This
is analogous to the conventional Lorentz force for the Hall effect, but opposite in sign
for two spin states. A quantized spin Hall effect is closely related to the Z2 topological
insulators which preserves time-reversal symmetry (see Sec. 4.2.4 and 4.3.4). The spin
Hall effects have been observed for electrons in spin-orbit coupled materials [428, 429] and
circularly polarized photons passing through certain surfaces [430, 431]. It was proposed
that the spin Hall effects can be realized for neutral atoms with spin-dependent Lorentz
forces [84, 108], which can be achieved by the synthetic gauge potentials as discussed
in Sec. 3.4. Following the proposal of Ref. [84], the spin Hall effect was observed in
a pseudospin-1/2 87Rb BEC subjected to spin- and space-dependent vector potentials
[104].

Experimentally, two Raman lasers counterpropagating with wave number kR along x̂
were used to couple the internal states |f = 1;mF = 0,−1〉 = | ↑, ↓〉, which comprise
pseudospin-1/2 atomic system with strength Ω, as shown in Fig. 40(a). For ~Ω < 4ER

with the single-photon recoil energy ER, the 2D effective pseudospin Hamiltonian (ig-
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(a) (b)

(c) (d)

Figure 40. (Color online) Atomic spin Hall effect. (a) Experiment schematic of two controlled Raman beams
propagating along x̂ coupled two ground states in 87Rb atoms. (b) The induced double-well dispersion E(q) for
the three different y-positions marked in (a), with the synthetic vector potentials A. (c) Spin Hall effect with
spin-dependent forces along x̂ from motion along ŷ. (d) Acquired momentum along x̂ versus final momentum
along x̂. Reprinted by permission from Macmillan Publishers Ltd: Beeler et al.[104], copyright c© (2013).

noring the trap, the light shift and the zero-energy shift from the Raman dressing) can
be written as [104]

Ĥ =
1

2m
(p̂−Aσ̂zex)2 , (214)

where A = ~kR

[
1− (~Ω/4ER)2

]1/2
is a light-induced spin-dependent vector potential

along x̂. As shown in Fig. 40(b), the modified dispersion features two degenerate wells
and each of them displaces from zero by an amount A. Here A has the spatial dependence
of the Raman lasers’ Gaussian intensity profile since Ω depends on the laser intensity.
The spatial dependence of A gives rise to a spin Hall effect in the atomic gas [84, 108]. In
the experiment [104], the mechanism underlying the spin Hall effect was first probed from
observing spin-dependent shear in the atomic density distribution by abruptly changing
A, which gives rise to a spin-dependent “electric” force −∂A/∂t on the atom cloud.
Then for a time-independent A, the resulting spin Hall effect was further observed by
detecting a spin-dependent Lorentz-like response along ±x̂ with atoms propelled in either
spin state along ŷ and realizing an atomic spin transistor using a mixture of both spins.
As shown in Fig 40(c,d), each spin-polarized BEC acquired a momentum along x̂ that
was detected oppositely for the two spins and related to its final momentum along ŷ,
which demonstrates an intrinsic spin Hall effect.

Since the (pseudo)spin here is a good quantum number, the system can be thought of
as two independent subsystems that respond oppositely to temporal and spatial gradients
of the light-induced gauge potential A. By introducing a large non-zero curl for A, each
spin state could be separately driven to the regime of integer QHE [84, 104]. Therefore,
one can create a quantum spin Hall effect in this atomic system composed of an equal
mixture of both spins.
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7. Topological matter with interactions

Until now we have mainly reviewed cold-atom realizations of essentially non-interacting
topological phases. But interactions can lead to new topological phases including in-
trinsic topological phases and symmetry-protected topological phases for both bosonic
and fermionic systems in all dimensions. While tremendous theoretical efforts have been
recently paid with fruitful achievements usually by advanced mathematics, the experi-
mental realization for most theoretically predicted phases hardly has any solid progress
yet except several classic examples. This section is intended not to give a systematical
review of interacting topological phases, which is beyond the scope of this review article,
but much more modestly to introduce a number of interesting models with interactions,
which can exhibit interaction-intrinsic topological phases. In particular we focus on how
to realize them by recent advances of cold-atom techniques, and wish to convey the ex-
pectation that the high-tunability of cold-atom systems would enable us to explore this
open and deep field further.

7.1 Spin chains

7.1.1 Spin-1/2 chain

Ultracold atoms in OLs is a promising platform to realize some spin-1/2 models. We here
consider the well-know anisotropic Heisenberg model (XXZ model) in 1D, which arises in
the context of various condensed matter systems. The Hamiltonian of XXZ spin model
is given by

HXXZ = −
N∑
j=1

[
λzσ

z
jσ

z
j+1 + λ⊥

(
σxj σ

x
j+1 + σyj σ

y
j+1

)]
, (215)

where λz (λ⊥) denotes the nearest neighbor interaction along z-direction (x− and y-
direction), and σx,y,zj are the Pauli matrices for the jth spin. The phase diagram of this
Hamiltonian is pretty rich. In addition, the geometric phase of the ground state in this
spin model is quantized in certain parameters and it obeys scaling behavior in the vicinity
of a quantum phase transition[432, 433].

When λ⊥ = 0 and in the presence of an applied magnetic field along x direction, the
model in Eq.(215) becomes the transverse Ising model, which Hamiltonian is given by

HIsing = −λz
N−1∑
j=1

σzjσ
z
j+1 − hx

N∑
j=1

σxj , (216)

where the parameter hx is the intensity of the magnetic field applied in the x direction.
Consider the projection onto the x-axis of the spin with the fermionic occupation number

n: | ↑〉 ↔ n = 0, | ↓〉 ↔ n = 1, one has σxj = (−1)a
†
jaj . Employing the string-like

annihilation and creation operators (the Jordan-Wigner transformation):

aj =

(
j−1∏
k=1

σxk

)
σ+
j , a†j =

(
j−1∏
k=1

σxk

)
σ−j , (217)
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where σ+ and σ− are the spin raising and lower operators, HIsing can be rewritten as

HIsing = J

N−1∑
j=1

(aj − a†j)(aj+1 + a†j+1) + 2hz

N∑
j=1

(
a†jaj − 1/2

)
. (218)

This shows that the 1D transverse Ising chain is mathematically equivalent to the Kiteav’s
chain [434] of p-wave superconductor (see the next section) and thus exhibits the same
topological phase, in which the ground state degeneracy is dependent on the boundary
conditions of the chain. For the superconductors, the Z2 symmetry of fermionic parity
cannot be lifted by any local physical operators, because such operators must contain
an even number of fermion operators. However, the Z2 symmetry in the Ising model
is given by a global spin flip in the σz basis: PS =

∏N
j=1 σ

x
j , such that its degeneracy

can be lifted by a simple longitudinal magnetic field hz
∑

j σ
z
j . This indicates that the

topological phase in the transverse Ising chain is much weaker, and thus the creation and
manipulation of Majorana edge modes in this system are more difficult.

We now turn to address a scheme proposed in Ref. [435] to realize the spin models
with ultracold atoms in OLs. Consider an ensemble of ultracold bosonic or fermionic
atoms confined in an OL. We are interested in the Mott insulator regime, and the atomic
density of roughly one atom per lattice site. Each atom is assumed to have two relevant
internal states, which are denoted with the effective spin index σ =↑, ↓, respectively. We
assume that the atoms with spins σ =↑, ↓ are trapped by independent standing wave
laser beams through polarization (or frequency) selection. Each laser beam creates a

periodic potential Vµσsin2(~kµ · ~r) in a certain direction µ, where ~kµ is the wavevector of
light. For sufficiently strong periodic potential and low temperatures, the atoms will be
confined to the lowest Bloch band, and the low energy Hamiltonian is then given by the
Boson- or Fermi-Hubbard Hamiltonian

H = −
∑
〈ij〉σ

(
Jµσa

†
iσajσ +H.c.

)
+

1

2

∑
i,σ

Uσniσ (niσ − 1) + U↑↓
∑
i

ni↑ni↓, (219)

where 〈i, j〉 denotes the near neighbor sites, aiσ are bosonic (or fermionic) annihilation
operators respectively for bosonic (or fermionic) atoms of spin σ localized on site i, and

niσ = a†iσaiσ .
For the cubic lattice (µ = x,y,z) and using a harmonic approximation around the

minima of the potential, the spin-dependent tunneling energies and the on-site interaction
energies are given by

Jµσ ≈ 4E
1/4
R (Vµσ)3/4√

π
e−2(Vµσ/ER)1/2 , U↑↓ ≈

(
8
π

)1/2
(kas↑↓)(ERV 1↑↓V 2↑↓V 3↑↓)

1/4,

Uσ ≈
(

8
π

)1/2
(kasσ) (ERV1σV2σV3σ)1/4 (for bosons), Uσ ≈ 2

√
VµσER (for fermions),

where V µ↑↓ = 4Vµ↑Vµ↓/(V
1/2
µ↑ + V

1/2
µ↓ )2 is the spin average potential in each direction,

ER = ~2k2/2m is the atomic recoil energy, and as↑↓ is the scattering length between the
atoms of different spins. For fermionic atoms, Uσ is on the order of Bloch band separation
∼ 2

√
VµσER, which is typically much larger than U↑↓ and can be taken to be infinite.

In writing Eq.(219), overall energy shifts
∑

iµ

(√
ERVµ↑ −

√
ERVµ↓

)
(ni↑ − ni↓) /2 have

been neglected, which can be easily compensated by a homogeneous external magnetic
field applied in the z direction.

From the above expressions, we observe that Jµσ depend sensitively (exponentially)
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upon the ratios Vµσ/ER while U↑↓ and Uσ exhibit only weak dependence. So we can
easily introduce spin-dependent tunneling Jµσ by varying the potential depth Vµ↑ and
Vµ↓ with control of the intensity of the trapping laser. This simple experimental method
provides us a powerful tool to engineer many-body Hamiltonians. In the regime where
Jµσ � Uσ, U↑↓ and 〈ni↑〉+〈ni↓〉 ' 1, which corresponds to an insulating phase, the terms
proportional to tunneling Jµσ can be considered via perturbation theory. To the leading
order in Jµσ/U↑↓, Eq. (219) is equivalent to the following effective Hamiltonian

H = −
N∑
j=1

[
λµzσ

z
jσ

z
j+1 + λµ⊥

(
σxj σ

x
j+1 + σyj σ

y
j+1

)]
, (220)

where σzi = ni↑ − ni↓, σxi = a†i↑ai↓ + a†i↓ai↑, and σyi = −i
(
a†i↑ai↓ − a

†
i↓ai↑

)
are the usual

spin operators. The + and − signs before λµ⊥ correspond, respectively, to the cases of
fermionic and bosonic atoms. The parameters λµz and λµ⊥ for the bosonic atoms are
given by

λµz =
J2
µ↑ + J2

µ↓
2U↑↓

−
J2
µ↑
U↑
−
J2
µ↓
U↓

, λµ⊥ =
Jµ↑Jµ↓
U↑↓

. (221)

For fermionic atoms the expression for λ⊥ is the same as in (221), but in the expres-
sion for λz the last two terms vanish since Uσ � U↑↓. In writing Eq. (220), the term∑

iµ 4
(
J2
µ↑/U↑ − J2

µ↓/U↓

)
σzi is neglected, since it can be easily compensated by an ap-

plied external magnetic field. When we set Vµ↓/Vµ↑ � 1, so that Jµ↓ becomes negligible
while Jµ↑ remains finite. In this case, the Hamiltonian (220) reduces to the Ising model
H =

∑
〈i,j〉 λµzσ

z
i σ

z
j , with λµz = J2

µ↑/ (1/2U↑↓ − 1/U↑). The transverse field term in

Eq.(216) can be easily achieved with an applied external magnetic field along the x di-
rection. The Ising model has been realized experimentally with atoms in OLs [436, 437].

The approach using ultracold atoms to realize the spin models has a unique advantage
in that the parameters λµz and λµ⊥ can be easily controlled by adjusting the intensity
of the trapping laser beams. They can also be changed within a broad range by tuning
the ratio between the scattering lengths as↑↓ and asσ (σ =↑, ↓) by adjusting an external
magnetic field through Feshbach resonance. Therefore, even with bosonic atoms alone,
it is possible to realize the entire class of Hamiltonians in the general form (220) with an
arbitrary ratio λµz/λµ⊥. This is important since bosonic atoms are generally easier to
cool. We estimate the typical energy scales for the realized Hamiltonian. For Rb atoms

with a lattice constant π/
∣∣∣~k∣∣∣ ∼ 426nm, the typical tunnelling rate J/~ can be chosen

from zero to a few kHz. The on-site interaction U/~ corresponds to a few kHz at zero
magnetic field, but can be much larger near the Feshbach resonance. The energy scale for
magnetic interaction is about J2/~U ∼ 0.1kHz (corresponding to a time scale of 10ms)
with a conservative choice of U ∼ 2kHz and (J/U)2 ∼ 1/20.

Furthermore, the Ising model with long range interactions can be realized with the
Rydberg gas in OLs [438–441]. A promising avenue for realizing strongly interacting
quantum matter involves coherent coupling of neutral atoms to highly excited Rydberg
states. This results in repulsive van der Waals interactions of strength Vij = C/R6

ij
between Rydberg atom pairs at a distance Rij , where C is the van der Waals coefficient.
Such interactions have recently been used to explore quantum many-body physics of
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Figure 41. (Color online) Experimental platform for realization of the Ising model. (a) Individual 87Rb atoms are
trapped using optical tweezers (vertical red beams) and arranged into defect-free arrays. Coherent interactions Vij
between the atoms are enabled by exciting them to a Rydberg state with strength Ω and detuning ∆. (b) A two-
photon process couples the ground state |g〉 = |5S1/2, F = 2,mF = −2〉 to the Rydberg state |r〉 = |70S1/2, J =

1/2,mJ = −1/2〉 via an intermediate state |e〉 = |6P3/2, F = 3,mF = −3〉 with detuning δ, using circularly
polarized 420 nm and 1013 nm lasers with single-photon Rabi frequencies of ΩB and ΩR, respectively. Reprinted
by permission from Macmillan Publishers Ltd: Bernien et al. [438], copyright c© (2017).

Ising spin systems in OLs [438–441]. The achieved Hamiltonian (~ = 1) is given by

H̃Ising =
∑
i

Ωi

2
σxi −

∑
i

∆ini +
∑
i<j

Vijninj , (222)

where ∆i are the detunings of the driving lasers from the Rydberg state, Ωi is the
Rabi frequency describing the coupling between the ground state |gi〉 and the Rydberg
state |ri〉 of an atom at position i, and ni〉 = |ri〉〈ri|. The Hamilton with the first two
terms in Eq. (222) is equivalent to the Ising Hamiltonian in Eq. (216), while the last term
represents the long range interactions induced by the van der Waals interactions. Recently
a programmable Ising-type quantum spin model with tunable interactions and system
sizes of up to 51 qubits was experimentally realized [438]. Their approach combines these
strong, controllable interactions with atom-by-atom assembly of arrays of cold neutral
87Rb atoms. The experimental platform is shown in Fig. 41, each 87Rb atoms can be
controlled by optical tweezers, the parameters (|Ωi| = Ω and ∆i = ∆) can be controlled
by changing laser intensities and detunings in time. The interaction strength Vij can
be tuned either by varying the distance between the atoms or by coupling them to a
different Rydberg state.

7.1.2 Spin-1 chain and Haldane phase

Another topological spin model is the spin-1 quantum Heisenberg chain, with the ground
state belonging to the Haldane phase [9, 442]. In the topological aspect, the Haldane phase
is protected by the lattice inversion symmetry and can be classified as a symmetry-
protected topological phase [443, 444]. According to Haldane’s seminal work [9, 442],
the 1D integer-spin Heisenberg antiferromagnets have an exotic unordered ground state
with unbroken rotational symmetry and with a finite excitation gap in the spectrum,
while half-integer antiferromagnets are gapless. There are two topological features of the
Haldane insulator phase: the existence of hidden non-local string order [445] and emergent
fractional spin-1/2 edge states at the boundaries of open chains [446]. For integer spin
S = 1, the following quadratic-biquadratic Hamiltonian contains the Haldane phase in a
rich phase structure [447–449]:

HQB = α

N−1∑
j=1

[
Sj · Sj+1 + β(Sj · Sj+1)2

]
, (223)
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where β is a relative coupling constant, the sign of α determines the ferro or antiferro-
magnetic regimes, and Sj = (Sxj , S

y
j , S

z
j ) are spins at lattice site j with

Sxj =
1√
2

0 1 0
1 0 1
0 1 0

 , Syj =
1√
2

0 −i 0
i 0 −i
0 i 0

 , Szj =

1 0 0
0 0 0
0 0 −1

 . (224)

The properties of the ground state of HQB are entirely determined by an angle, θ, such
that α = |a|cosθ and αβ = |a|sinθ. The ground state belongs to the Haldane phase when
θ ∈ [−π

4 ,
π
4 ], with θ = 0 being the Heisenberg point and θ = arctan(1

3) the Affleck-Lieb-
Kennedy-Tasaki point [447, 448], which can be described with an exact valence-bond
wavefunction. There are two critical points θ = ±π

4 , at which a phase transition occurs

into a gapless phase for θ ∈ [π4 ,
π
2 ] and into a gapped dimerized phase for θ ∈ [−3π

4 ,−
π
4 ],

respectively. For other values of θ, the ground state belongs to the ferromagnetic phase.
Although the Haldane phase of integer-spin Heisenberg antiferromagnets has been

extensively studied in theories in the last decades, to the best of our knowledge, there
is no experimentally convenient system for realzing this phase. Recently, it has been
proposed that the Haldane phase can be explored with ultracold atoms in OLs thanks
to the high tunability in these systems. A first possible direction is to use spin-1 bosonic
atoms in a deep 1D OL with one atom per site [449], which can be described by the
following extended Bose-Hubbard Hamiltonian:

HBH = −J
∑
〈j,l〉,α

(a†jαalα + a†lαajα) +
∑
S=0,2

US
2

∑
j,α,β,γ,δ

(Ψ
(S)
γδ ajγajδ)

†(Ψ
(S)
αβ ajαajβ). (225)

Here the indices j and l run over the lattice sites, the Greek letters label the three spin-
component of an atom (α, β, γ, δ = −1, 0,+1). Then the first term in the Hamiltonian is
the single-particle hopping with amplitude J , and the second term describes the inter-
action between bosons within a site. Two bosons interact only when their total spin is
either 0 or 2 because the state S = 1 is antisymmetric, and the interaction may be dif-
ferent for each value of the total spin. This is taken into account by the spin-dependent

interaction constants US and the tensors Ψ
(S)
γβ = 〈S|s, γ; s, β〉, which are the Clebsch-

Gordan coefficients between the states |s = 1, γ〉 ⊗ |s = 1, β〉 and |S = 0, 2〉. For the case
of one atom per site, one can define the effective spin-1 operators

Szj = a†j,+1aj,+1 − a†j,−1aj,−1, S+
j = (S−j )† = a†j,+1aj,0 + a†j,0aj,−1,

where S±j = Sxj ±S
y
j . Using a perturbative calculation for J � US and around states with

unit occupation, one can obtain the Hamiltonian HQB in Eq. (223) from the Hamiltonian
HBH in Eq.(225) with the parameters α = 1

2C2, β = 1
3(2C0/C2 + 1), where CS =

J2/US is tunable in the OL. The ways for adiabatically preparing the Haldane phase
and detecting its intrinsic properties (the energy gap, end-chain spins effects and the
string order parameter) in the OL have also been proposed [449].

Sequent studies to realize the Haldane phase have been made on spinless bosons with
long-range dipole interactions in 1D OLs [450–455], where the effective spin-1 chain can
be obtained by truncating the Hilbert space of the Bose system to three occupation
states per site. The Haldane insulators were also predicted for two-component [456–
459] and multi-component [460–462] Fermi gases in 1D OLs. A two-leg spin-1/2 ladder,
which can be realized with cold atoms in a ladder-like OL, was also shown to host a
Haldane-like phase [463–465]. A gapless topological Haldane liquid phase in a 1D cold
polar molecular lattice and an exotic topological Haldane superfluid phase of soft-core
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bosons in 1D OLs were predicted [466, 467]. Recently, the direct observation of hidden
non-local string order via quantum gas microscopy of doped ultracold Fermi-Hubbard
chains was reported [468], which is an important step toward experimental studies of
emergent topological order in integer spin chains.

(a) (b)

J



。。。

21，11， 2,212， 2，L1，L。。。
NSC

TSC TSC

11， 21， 12， 2,2 1，L 2，L

Figure 42. (Color online) Two phases of the Kitaev chain. (a) Upper: In the topological trivial phase Majorana
fermions on each lattice site can be thought of as bound into ordinary fermions. Lower: In the topological nontrivial
phase Majorana fermions on neighboring sites are bound leaving two unpaired Majorana fermions at the two ends
of the chain. (b) The phase diagram of the Kitaev chain in the µ−J plane, showing the topological superconducting
phase and the normal superconducting phase.

7.2 Kitaev chain model

The well-known Kitaev chain was proposed by Alexei Kitaev [469], which is the sim-
plest model system that shows unpaired Majorana zero modes. The Kitaev model is a
toy model but can be exactly solved, which provides an extremely useful paradigm for
Majorana zero modes at the two ends of a quantum wire of p-wave superconductor. The
Kitaev chain is the spinless fermion model with nearest-neighbor hopping and pairing
between the sites of a 1D lattice described by the Hamiltonian

H =
∑
j

[−J(c†jcj+1 + c†j+1cj)− µ(c†jcj −
1

2
) + ∆cjcj+1 + ∆∗c†j+1c

†
j ], (226)

where µ is a chemical potential, and ∆ = |∆|eiθ is a superconducting gap. Consider a
chain with L sites and open boundary conditions, as shown in Fig.(42), we can rewrite
this Hamiltonian in the Majorana representation by using the Majorana operators as

H =
i

2

∑
j

[−µγj,1γj,2 + (J + |∆|)γj,2γj+1,1 + (−J + |∆|)γj,1γj+1,2]. (227)

Here the Majorana operators are defined as

γj,1 = ei
θ

2 cj + e−i
θ

2 c†j , γj,2 = (ei
θ

2 cj − e−i
θ

2 c†j)/i. (228)

which satisfy the relations

γ†j,α = γj,α, {γj,α, γk,β} = 2δjkδαβ, (229)

for j, k = 1, 2, ..., L and α, β = 1, 2.

111



April 3, 2019 Advances in Physics Manuscript˙AIP˙Final˙20190401

Now we discuss two specific cases. The topological trivial case for |∆| = J = 0 is
considered first. The Hamiltonian becomes

H = −µ
∑
j

(c†jcj −
1

2
) =

i

2
(−µ)

∑
j

γj,1γj,2. (230)

The Majorana operators γj,1, γj,2 from the same site j are paired together, as shown in
Fig. 42(a), to form a ground state with the occupation number 0 (µ < 0) or 1 (µ > 0).
Secondly, we consider the cases of |∆| = J > 0 and µ = 0, and we have

H = iJ

L−1∑
j

γj,2γj+1,1. (231)

Now the Majorana operators γj,2 and γj+1,1 from different sites are paired together, as
illustrated in Fig. 42(a). The ground state of this Hamiltonian is easily found by defining
new annihilation and creation operators

aj =
1

2
(γj,2 + iγj+1,1), a†j =

1

2
(γj,2 − iγj+1,1), (232)

with iγj,2γj+1,1 = 2a†jaj − 1 for j = 1, 2, ..., L − 1. Subsequently, the Hamiltonian (231)
can be rewritten in a canonical form

H = 2J

L−1∑
j

a†jaj − J(L− 1). (233)

As we can see that Hamiltonian (231) does not contain operators γ1,1 and γL,2, i.e.,
[γ1,1, H] = [γL,2, H] = 0, while all pairs of (γj,2, γj+1,1) for j = 1, 2, ..., L − 1 form new
fermions. The ground states with twofold degeneracy for J > 0 satisfy the condition
aj |g〉 = 0 for all j, and

H|g〉 = −J(L− 1)|g〉. (234)

These represent zero-energy Majorana modes localized at the two ends of the chain.
Since [γ1,1, H] = [γL,2, H] = 0, the two orthogonal ground states of the Kitaev chain
model can be constructed as |g〉 and a†|g〉, where a = 1

2(γ1,1 + iγL,2) is an ordinary
zero-energy fermion operator. These states have different fermionic parities: one is even
and the other is odd (i.e., it is a superposition of states with even or odd number of
electrons). Note that the ground states with double degeneracies or not reveal that the
system is topologically nontrivial or trivial, respectively. Similarly, the considerations
will also yield unpaired Majorana zero modes for the special case |∆| = −J and µ = 0.
These two specific cases represent two distinct phases of the Kitaev chain: topologically
trivial or nontrivial, corresponding to different pairing methods without or with unpaired
Majorana zero modes localized at the ends of the chain.

To study the general properties of the Hamiltonian (226) at arbitrary values of J , µ
and ∆, we diagonalize the Kitaev Hamiltonian under periodic boundary condition. After

the Fourier transformation with c†j = 1/
√
L
∑

k c
†
ke
ik·rj , the Hamiltonian in momentum
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space can be written in Bogoliubov-de Gennes form

H =
1

2

∑
k

(
c†k c−k

)
HBdG(k)

(
ck
c†−k

)
, (235)

where the Bogoliubov-de Gennes Hamiltonian is written in terms of Pauli matrices ~τ as

HBdG(k) = ε(k)τz + ∆(k)cosθτy + ∆(k)sinθτx, (236)

with ε(k) = −2Jcosk − µ, ∆(k) = 2|∆|sink. The energy spectrum is given by

E(k) = ±
√
ε(k)2 + |∆(k)|2. (237)

For ∆ 6= 0, the system is in superconducting states. The energy spectrum always fully
gapped except when 2J = ±µ. As shown in Fig. 42(b), two lines represent gap closing are
defined, which mark the phase transition between the two distinct phases of the model.
We can identify that the system in the region |J | > |µ|/2 is a topological superconductor.
In the other region, the system is a normal superconductor (topologically trivial).

Since the two distinct phases of the model have the same symmetries but different
topological features, we can distinguish these two phases by calculating the topological
invariants. As is known, HBdG preserves intrinsic particle-hole symmetry. One can check
that the Hamiltonian (236) satisfies the relation

ĈHBdG(k)Ĉ−1 = −HBdG(−k), (238)

where the particle-hole operator Ĉ = τxK̂ satisfies Ĉ2 = +1. According to the topological
classifications, Hamiltonian (236) belongs to the symmetry class D (d = 1) and thus has
a Z2-type topological number. The relevant topological invariant of the system described
by the Hamiltonian (226) is the so-called Majorana number M = ±1, which is actually
the Z2 index, first formulated by Kitaev. In Kitaev’s paper [469], it was shown that all 1D
fermionic systems with superconducting order fall into two categories distinguished by
M. One is topologically trivial with M = +1 and the other is nontrivial with M = −1
and the existence of unpaired Majorana zero modes.

To calculate M, we consider the Hamiltonian that can be written in the Majorana
representation as

H =
i

4

∑
lmαβ

Bαβ(l −m)γlαγmβ, (239)

where l and m label the lattice sites while α and β denote all other quantum numbers.
Then M is defined as

M = sgn{Pf[B̃(0)]}sgn{Pf[B̃(π)]} (240)

where B̃(k) denotes the spatial Fourier transform of B(l − m) regarded as a matrix
in indices α, β and Pf[A] denotes the Pfaffian where Pf[A]2=det[A], with A being an
antisymmetric matrix. Thus, we can calculate the Majorana number of the Kitaev model
by using Eq. (240). In momentum space, the Kitaev Hamiltonian (227) can be written
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in the following form

H =
i

4

∑
k

(
γk,1 γk,2

)( 0 D(k)
−D∗(k) 0

)(
γ−k,1
γ−k,2

)
, (241)

with D(k) = −2Jcosk − 2i|∆|sink − µ. The operators γk,1 and γk,2 are defined as

γk,1 = c†−k + ck, γk,2 = i(c†−k − ck), (242)

which satisfy the relations

{γ†k,α, γk′,β} = 2δkk′δαβ, γ†k,α = γ−k,α. (243)

Note that γk,1 and γk,2 are not the Majorana operators except when k = 0. As we

can see that the matrix B̃(k) here for k = 0, π is antisymmetric, the Pfaffian of 2 × 2
antisymmetric matrix can be simply given by its upper off-diagonal component D(k)0,π.
It yields the Majorana number

M = sgn(D(0))sgn(D(π)) = sgn(µ2 − 4J2). (244)

One can check that the topological superconducting phase occurs when M = −1 for
|µ| < 2|J |, the other phase is trivial when M = +1 for |µ| > 2|J |, as we have discussed
above.

The Kitaev’s model describes a 1D system of spinless fermions but electron spectra
are usually degenerate with respect to spin in real system. For this reason it has been
initially viewed as a somewhat unphysical toy model because the physical realization of a
quantum wireM = −1 in condensed matter systems is very difficult. This problem can be
avoided in higher dimensional space, which involve various combinations of the SOC and
magnetic interactions that the produced normal metal is effectively spinless [15, 470, 471].
There are many efforts to search for p-wave superconductors and Majorana fermions in
condensed matter systems, but their unambiguous detection (realization) remains an
outstanding challenge.

T
he search for observable signatures that identify exotic
states of quantum matter and their fractionalized
excitations has become a main focus of research in

quantum physics. A paradigmatic example is the hunt for
Majorana quasi-particles (MQPs) that exist at the ends of
topological superconductors1. First experimental evidence2–7

consistent with the presence of MQPs has recently been
reported in various superconducting hybrid systems8–10. While
the ultimate goal is to probe the existence of non-Abelian anyons
such as MQPs by performing controlled braiding operations,
several possible fingerprints have been proposed that may be
easier to access experimentally.

A prominent example hallmarking MQPs is the fraction-
alization of the Josephson effect, which can exhibit a 4p
(half frequency) period due to a non-equilibrium population of
excited states that is protected by fermion parity conservation1,4.
However, a similar, though non-protected, fractionalization is
also known to occur in conventional S-wave superconductors,
due to the presence of accidental mid-gap states11,12. As a
new signature for MQPs, here we show how a dissipationless,
non-equilibrium 8p periodic Josephson effect occurs when two
MQPs are subject to a super-exchange coupling via a controllable
energy level interrupting a Kitaev chain, an effect that is not
found in S-wave superconductors. In addition, we show how our
model can be realized in systems of cold atoms in optical lattices,
where isolation from the environment creates an ideal platform
for the study of such non-equilibrium phenomena.

Our proposal is motivated by remarkable recent experimental
progress with cold atom systems, including the observation of
the non-equilibrium Josephson effect13, initially demonstrated
with Bose–Einstein condensates14,15, and later observed over the
Bose-Einstein Condensate (BEC)–Bardeen-Cooper-Schrieffer
(BCS) crossover16,17. These results demonstrate not only the
ability to measure non-equilibrium signals, but in addition, this
realization of the 2p Josephson effect17 will provide a crucial piece
of our implementation. More concretely, in our proposal, the
starting point is an atomic realization of the Kitaev wire18–21, here
using a system of alkaline earth atoms (AEAs) coupled to a BEC
reservoir (Fig. 1b). AEAs allow the creation of a controllable extra
site by means of species-dependent potentials22, while the
reservoir allows both the implementation of the Kitaev wire
and the modification of the Josephson phase via an underlying
Josephson effect of the reservoir itself. In addition, we investigate
the visibility of this effect by studying the transient dynamics of
the Josephson current in the presence of imperfections, including
various dissipation mechanisms (single-particle losses and
dephasing) captured by a quantum master equation. Our

simulations support not only the observability of the 8p effect,
but further underline how this signature is characteristic of
MQPs: while 4p peaks in the Fourier signal cannot be
distinguished from those arising from mid-gap states in an
ordinary S-wave SC, and peaks at 4p, 2p and zero frequency
can be enhanced from dissipation, the 8p signal visible in our
set-up provides a signature that cannot be confused with these
undesired effects.

Results
Model Hamiltonian. We consider spinless fermions with field
operators cj, where j¼ 0, y N� 1 labels the sites of a
one-dimensional (1D) lattice in ring geometry. The model
Hamiltonian reads as

H Fð Þ ¼
XN � 1

j¼1

� tcyj cjþ 1þDcjcjþ 1�
m
2

cyj cj�
1
2

� �� �

þ tLc
y
N � 1c0þ tRc

y
0c1eiF=2þ m0

2
cy0c0þ h:c:;

ð1Þ

which describes a proximity-induced P-wave superconductor1

with pairing D, interrupted by an extra site at j¼ 0, which is
assumed to be not affected by the pairing (Fig. 1a). The hopping
strength is denoted by t and the chemical potential relative to
half-filling by m. The site at j¼ 0 is connected to its neighbours by
the hoppings tL and tR, respectively, and has an energy offset m0.
The phase factor eiF/2 on the hopping between j¼ 0 and j¼ 1
models a flux that advances the phase of a Cooper pair by F when
moving around the ring.

For |m|o2t, |D|40 and tL¼ tR¼ 0, in the limit of large N the
system hosts a single pair of zero-energy MQPs1, gL and gR, which
are localized exponentially around j¼N� 1 and j¼ 1, respectively.
All other quasi-particles of the superconductor are gapped, such
that c0 along with gL and gR form a subspace that is energetically
detached from the bulk spectrum. To understand the qualitative F
dependence of equation (1) in the physically relevant regime
tL, tRooD, t, we hence consider a minimal model encompassing
the dynamics within this low-energy sector. Decomposing c0 into
the Majorana operators gx¼c0þcy0; gy¼

c0 �cy0
i , and setting

m0¼ 0, the effective Hamiltonian then reads as

HJ Fð Þ ¼ 1
2i

tLgLgx� tRgR gx sin F=2ð Þþ gy cos F=2ð Þ
� �h i

: ð2Þ

In Fig. 2, we compare the energy spectra of HJ(F) and H(F).
The full qualitative agreement confirms that the effective
Hamiltonian HJ(F) captures the basic Josephson physics of the
full model H(F). To understand the various level (avoided)

21
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γ L γ R

�0
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Figure 1 | System Hamiltonian and cold atom setting. (a) Schematics of the model Hamiltonian equation (1): the central part of the system is magnified in

the box at the bottom, where the Majorana degrees of freedom included in the simplified model (equation (2)) are highlighted. (b) Implementation
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Figure 43. (Color online) (a) Schematics of the model Hamiltonian: the central part of the system is magnified in
the box at the bottom, where the Majorana degrees of freedom included in the simplified model are highlighted.
(b) Realization in a cold atom system. A 1D OL is coupled to a BEC reservoir that gives rise to the Kitaev
Hamiltonian in the chain. An optical barrier acts both to create the impurity site (red) and triggers the Josephson
effect in the reservoir itself. The phase difference across the barrier in the reservoir then acts as the phase Φ for
the OL. Rrprinted by permission from Laflamme et al.[472].

Cold atom systems may provide a platform with high controllability to simulate and
study the Kitaev chain model based on the remarkable advances in recent experiments.
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Several experimental proposals for realization of the Kitaev wires with cold atoms in
the past years have been presented [472–477], where the two key ingredients to induce
the unpaired Majorana zero modes can be created. In these proposals, a single-piece gas
of cold fermionic atoms which can be regarded as the spinless fermions are considered.
Furthermore, the effective p-wave pairing term can be realized by a Raman induced
dissociation of Cooper pairs [473] or Feshbach molecules [476] forming an atomic BCS
(or BEC) reservoir. The Kitaev chain model is usually considered as a noninteracting
system; however, the pairing in the superfluid should be formed in an interacting atomic
system.

Without loss of generality, we describes a recent work for realizing the Kitaev wires
with cold atoms [472]. In this experimental scheme, the model Hamiltonian describes the
spinless fermions with field operator ψj in a ring OL reads as [472]

H(Φ) =

N−1∑
j=1

[−Jψ†jψj+1 + ∆ψjψj+1 −
µ

2
(ψ†jψj −

1

2
)]

+ JLψ
†
N−1ψ0 + JRψ

†
0ψ1e

iΦ/2 +
µ0

2
ψ†0ψ0 + h.c.,

(245)

where j = 0, 1...N − 1 labels the lattice sites. As shown in Fig. 43(a), it describes a
proximity-induced p-wave superconductor with pairing ∆, interrupted by an extra site
at j = 0 (assumed to be not affected by the pairing), J and µ denote the normal nearest-
neighbour hopping and the chemical potential relative to half-filling, respectively. The
site at j = 0 is connected to its neighbours by the hopping amplitudes JL and JR,
respectively, and has an energy offset µ0. The phase factor eiΦ/2 on the hopping between
j = 0 and j = 1 represents the phase of a Cooper pair by Φ when moving around the
ring. For JL = JR = µ0 = 0, the model Hamiltonian returns to the Eq. (226), which
describes the original Kitaev chain model. Thus, for the case |µ| < 2J and |∆| > 0,
the system hosts unpaired Majorana zero modes, γL and γR, which are localized around
j = N − 1 and j = 1, respectively.

In their proposed setup, three points to realize the model Hamiltonian are required:
the realization of a 1D Kitaev chain, the additional single site separating the two ends
of the chain, and the time control of the phase Φ. A system of fermionic alkaline earth
atoms prepared in their 1S0 ground state in a 1D ring lattice was considered. The choice
of alkaline earth atoms allows one to independently trap the 1S0 ground state |g〉 and the
3P0 metastable excited state |e〉. To address the first issue, the hopping terms J in the
lattice naturally arise and the pairing term ∆ can be induced by coupling the fermions
in the lattice to a BEC reservoir. Here a radio-frequency field is used to break up Cooper
pairs into neighbouring sites directly in the lattice [473], as depicted in Fig. 43(b). The
second step is to interrupt the chain with a single site. Following this idea, a barrier is
engineered to inhibit |g〉 atoms from being at site j = 0, which splits the Kitaev wire
into two wires. It can be done by using a highly focused beam at the so-called anti-magic
wavelength, which acts as a sink for |e〉, and as a source for |g〉. Consequently, the |e〉
atom only being trapped at site j = 0 acts as the additional site coupling the two ends
of the chain. Although the natural tunnelling into and out of this site is deterred by
this barrier, the hopping JL and JR are then can be reintroduced with Raman processes
involving a clock transition [114, 224, 478]. Finally, the realization of the time control of
phase Φ is related to the Josephson effect where the additional site j = 0 and its nearest-
neighbour form a Josephson-like knot [472]. Within these setups, this system will occur
a non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson
current. At this point, the system is pumped to an excited state after slowly increasing
Φ by 4π, and returns to the ground state after a second 4π cycle.
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7.3 1D Anyon-Hubbard model

The Hubbard model of 1D lattice anyons with on-site interactions, called Anyon-Hubbard
model, takes the form

HA = −J
N∑
j=1

(a†jaj+1 + h.c.) + U

N∑
j=1

nj(nj − 1). (246)

Here nj = a†jaj is the number operator for anyons and the operators aj and a†j annihilate
or create an anyon on site j, and they are defined by the commutation relations

aja
†
k − e

−iθsgn(j−k)a†kaj = δjk, ajak = eiθsgn(j−k)akaj , (247)

which are parameterized by the statistical angle θ. The sign function in the above equa-
tions is sgn(j − k) = −1, 0, 1 for j < k, j = k, j > k, respectively. Thus, two particles
on the same site behave as ordinary bosons. Consequently, even for θ = π, these lattice
anyons are just pseudofermions: they are bosons on-site and fermions off-site, since many
of them are allowed to occupy the same site.

There exists an exact mapping between anyons and bosons in 1D. Define the fractional
version of a Jordan-Wigner transformation,

aj = bj exp

(
iθ

j−1∑
k=1

nk

)
, (248)

with nk = a†kak = b†kbk the number operator for both particle types. One can check that

the mapped operators aj and a†j indeed obey the anyonic commutation relations in Eq.

(247), provided that the particles of type b are bosons with the bosonic commutation

relations: [bj , b
†
k] = δjk and [bj , bk] = 0. By inserting the anyon-boson mapping (248), the

Hamiltonian (246) can be rewritten in terms of bosons [479],

HB = −J
N∑
j=1

(b†jbj+1e
iθnj + h.c.) + U

N∑
j=1

nj(nj − 1). (249)

Therefore, the anyonic exchange phase has been translated to an occupation-dependent
Peierls phase: when tunneling from right to left (j + 1, j), a boson picks up a phase
given by θ times the number of particles occupying the site that it jumps to. Under
this condition, the many-body wave function picks up a phase of θ (−θ) if two particles
pass each other via two subsequent tunneling processes to the right (left). The proposed
conditional-hopping scheme is depicted in Fig. 44. Interestingly, the non-local mapping
between anyons and bosons in Eq. (248) leads to a purely local and thus realizable
Hamiltonian (249).

The occupation-dependent gauge potential can be implemented in OLs with a laser-
assisted Raman tunneling scheme [479], generalized the idea proposed in Ref. [114] to
create an artificial gauge potential, see the Sec.3.4.2. Figure (44) displays the basic con-
cept. A non-zero on-site interaction U is required to distinguish between different local
occupational states. The OL is tilted, with an energy offset ∆ between neighbouring sites.
For simplicity, we consider lattice site occupations that are restricted to nj = 0, 1, 2, but
higher local truncations are also possible. Two different occupational states in either of
the two sites form in total a 4D atomic ground state manifold, which are coupled to an
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Figure 44. (Color online) The mapping between Anyon- and Boson-Hubbard models and a scheme to realize
occupation-dependent gauge potential [479]. (a) Anyons in 1D can be mapped onto bosons featuring occupation-
dependent gauge potential. (b) Assisted Raman tunnelling proposed for the realization of the Anyon-Hubbard
model.

excited state |e〉 via four external driving fields, labelled L1, L2, L3 and L4 in Fig. 44(b).
The excited state can be experimentally realized in at least two alternative ways. First,

two spin-dependent lattices can be used. We take 87Rb as an example. One lattice traps
atoms in the F = 1, mF = −1 hyperfine state, which is the ground state manifold.
The F = 1, mF = 0 hyperfine state is chosen as the excited state |e〉 and trapped in
a second lattice. Atoms in the excited state would then be localized between the left
and right wells of the F = 1, mF = −1 lattice, but not necessarily in their center.
This implementation has the advantage of external driving fields in the radio-frequency
regime. Such frequencies could resolve the typical energies U and ∆, both of the order of
a few kHz, which requires a laser with a linewidth δ � U,∆. This is a necessary condition
for selectively coupling the four different states in the ground state manifold. Second, one
can use two optical lattices, and trap ground state manifold atoms in the red-detuned
lattice, while the excited state would live in the blue-detuned one. The driving fields
required in this case would be typically in the THz frequency regime, making a precise
resolution of U and ∆ more challenging in experiments.

The effective tunnelling rates Jab (a ∈ 1, 2, b ∈ 3, 4) between the four different levels
are obtained in terms of the effective Rabi frequencies Jab = Ω∗aΩb/∆, where an overlap
integral should be included in the Rabi frequencies Ωa,b since ground and excited states
feel different lattices. It is demonstrated that the model in Eq. (249) can be implemented
if the conditions J23 = J24 ≡ J and J13 = J14 ≡ Jeiθ were satisfied [479]. It is notable
that the tilt energy ∆ disappears in the effective Hamiltonian after rotating out time-
dependent phase factors, this energy offset is absorbed by the external radiation field,
yielding a total Hamiltonian without a tilt term.

To realize the model in Eq. (249), one has the parameters to satisfy the following
conditions. (i) The lasers linewidth δ � ∆, U , so that the external driving fields can
resolve the different levels of the ground state manifold. (ii) A short-lived excited state
and the validity of the adiabatic elimination require large detunings ∆ � |Ω1−4|. (iii)
∆ and U can be in the same frequency regime (a few kHz), but their difference should
be much larger than the lasers linewidth δ. As an example, ∆ ≈ 2 kHz, U ≈ 3 kHz,
|Jab| = J ≈ 5 kHz and |Ωab| ≈ 20 kHz would be sufficient if the linewidth of the
radiation field were δ ≈ 50 Hz, which is a realistic assumption for typical radio-frequency
driving fields. However, it was shown in Ref. [480] that a further condition U,∆ � δ is
also required in the above scheme. For typical experimental parameters, it would lead to
large heating. This drawback was solved by a scheme proposed in Ref. [480], where one
ground-state component bosonic gas is replaced by two ground-state components atomic
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gas.
An alternative scheme for the experimental realization of 1D Anyon-Hubbard model,

based on time-periodic forcing, was proposed in Ref. [481]. The occupation-dependent
Peierls phase can be engineered by means of coherent lattice-shaking-assisted tunneling
against potential offsets created by a combination of a static potential tilt and strong
on-site interaction. The potential tilt ∆ is added in the Hamiltonian with the term

∆jb†jbj . By shaking the lattice, a similar term F (t)jb†jbj can be further added in the

Hamiltonian, where F (t) = F (t+ T ) incorporates a homogeneous time-periodic force of

angular frequency ω = 2π/T with vanishing cycle average 1/T
∫ T

0 dtF (t) = 0 and the
resonance condition ∆ = ~ω. It can be implemented as an inertial force F (t)/a = −mẍ(t),
with lattice constant a, by shaking the lattice x(t) back and forth.

A fully 1D Anyon-Hubbard model introduced here has not yet been experimentally re-
alized. However, some relevant ingredients have been achieved, such as the experimental
implementation of tunable occupation-dependent tunneling with Floquet engineering of
the on-site interaction energy [482] and the realization of the occupation-number sensi-
tivity of the tunneling [483]. These techniques may immediately applied to generating
low-dimensional anyons.

7.4 Bosonic quantum Hall states

The integer and fractional QHE are among the most important discoveries in condensed
matter physics in 1980s. It is a quantum-mechanical version of the Hall effect, observed in
2D electron systems subjected to low temperatures and strong magnetic fields, in which
the Hall conductance σH undergoes quantum Hall transitions to take on the quantized
values σH = ν e

2

h , where e is the elementary charge and h is Planck’s constant. The
prefactor ν is known as the filling factor, and can take on either integer or fractional
values. The QHE is referred to as the integer or fractional QHE depending on whether
ν is an integer or fraction, respectively. Until now, the QHE has been observed only in
electron systems. Can we experimentally observe such important quantum properties in
other systems is still a long-standing open question. Recently, there has been consider-
able progress towards their realization in cold-atom systems. In this section, we introduce
several theoretical proposals for realization of the QHE with cold atoms. In principle,
both bosonic and fermionic atoms can be used in the experiments; however, the prepa-
ration of topological states of matter relies on quick thermalization and cooling below
the many-body gap, which is hard to achieve in cold atom systems. Since bosonic atoms
are generally easier to cool, we focus on the realization of the QHE with bosonic atoms.
We will mainly focus on the realizations of bosonic integer QHE with a Chern number
C = 2, and the fractional quantum Hall state with the filling factor ν = 1/2, since they
will be the most experimentally accessible conditions.

Compared with the QHE of fermions, non-interacting boson phases are topologically
trivial, and integer QHE with bosons can only occur under the strong interactions. The
needed strong interactions for creating bosonic quantum Hall states makes them harder
to study than their fermionic cousins. As a smoking gun of the realization of quantum
Hall state, one can compute the many-body Chern number of the ground state |Ψ〉. In
the theory of the QHE, it is well understood that the conductance quantization is due to
the existence of certain topological invariants, the so-called Chern numbers. The Chern
numbers with the single-particle problem and Bloch waves have been introduced in the
previous sections. For fermions, the Chern number is defined as an integration over the
occupied states in momentum space [10]. This definition cannot be applied to the bosonic
system as many bosons can occupy the same momentum state. The generalization to
many-body systems has been proposed by Niu et al. [484] by manipulating the phases
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under the closed boundary conditions on a torus for both the integer and fractional
quantum Hall systems. Suppose the ground state |Ψ〉 has a gap to the excited state and
depends on the parameters θx, θy through the generalized periodic boundary conditions:

|Ψ(m+M, l)〉 = eiθx |Ψ(m, l)〉, |Ψ(m, l + L)〉 = eiθy |Ψ(m, l)〉,

where M ×L denotes the system size, and (θx, θy) are the twist angles vary on the torus.
Under this boundary condition, we numerically diagonalize the Hamiltonian of the system
and derive the ground state |Ψ(θx, θy)〉, and then one can define the many-body Chern
number CMB as a topological invariant by the following formula [484]

CMB =
1

2π

∫ 2π

0
dθx

∫ 2π

0
dθy(∂θxAθy − ∂θyAθx), (250)

where the Berry connection Aµ ≡ i〈Ψ(θx, θy)|∂µ|Ψ(θx, θy)〉 (µ = θx, θy).
As for fractional quantum Hall state, one can also calculate the overlap between the

ground state and the Laughlin wavefunction. If N is the number of particles in the
system and Nφ is the number of magnetic fluxes measured in units of the fundamental
flux quanta Φ0 = 2π~/e, we can define the filling factor ν = N/Nφ. In the simplest form
the fractional QHE occurs if the number of magnetic fluxes is an integer 1/ν. At this
value of the magnetic field, the ground state of the system is an incompressible quantum
liquid which is separated from all other states by an energy gap and is well described by
the Laughlin wavefunction

Ψ(z1, z2, . . . zN ) = e−
∑
j |zj |2/4

∏
j<k

(zj − zk)1/ν , (251)

where z = x + iy. Due to the Pauli principle, only the states with odd (even) 1/ν is
applicable to fermions (bosons). In the following, we will address bosonic QHE in both
single- and two-component Bose-Hubbard models.

7.4.1 Single-component Bose-Hubbard model

We consider single-component bosonic atoms at zero temperature confined in a 2D square
OL with the lattice constant a and a background harmonic potential in the presence of
artificial magnetic field. In the Landau gauge, the system is well described by the Bose-
Hubbard model with Peierls substitution term in the nearest-neighbor hopping,

H =
∑
m,l

[
−J

(
ei2παlb†m+1,lbm,l + b†m,l+1bm,l + h.c.

)
+
U

2
n̂m,l(n̂m,l − 1)− (µ− Vm,l)n̂m,l

]
,

(252)
where J is the hopping energy between two neighboring sites, U is the on-site interac-
tion energy, and the phase 2πα arises from the artificial magnetic field and 0 ≤ α ≤ 1
is the flux quanta per plaquette. µ − Vm,l is the local chemical potential with Vm,l be-
ing the trapping potential. In the Bose-Hubbard Hamiltonian, the hopping and on-site
interaction are the two competing terms, and both of them can be tuned over a wide
range of values by changing the depth of the lattice potential and employing Feshbach
resonance. The phase diagram of the Bose-Hubbard model for α = 0 is well-known: the
Mott-insulator phase corresponds to the strong on-site interaction limit J/U � 1, and
superfluid phase corresponds to the opposite limit J/U � 1.

It was first proposed in Ref. [122] that fractional quantum Hall states may occur in
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the single-component Bose-Hubbard model. They argued that the interactions of atoms
localized in the lattices are strongly enhanced compared to the interaction of atoms in
free space, so the created states of the quantum Hall type in OLs are characterized by
large energy gaps. It is a clear advantage from an experimental point of view because
the state is more robust against external perturbations. There are two energy scales
for the system in the presence of an artificial magnetic field: the first is the magnetic
tunneling term, Jα, which is related to the cyclotron energy in the continuum limit
~ωc = 4πJα, and the second is the on-site interaction energy U . By using the method
of exact diagonalization [122], it was shown that the overlap of the ground state wave
function |Ψ〉 of the Hamiltonian in Eq. (252) with the Laughlin wave function is very
good when ν = 1/2 for α ≤ 0.3, but the overlap start to fall off for α ≥ 0.3. Furthermore,
the Chern numbers for fixed ν = 1/2 and different α’s were calculated in Ref. [485]. The
results show that, for higher α, the lattice structure becomes more apparent and the
overlap with the Laughlin state decreases. However, the ground state remains twofold
degenerate and the ground state Chern number tends to remain equal to 1 before reaching
some critical αc ≈ 0.4.

The states in the Bose-Hubbard model can be classified based on the compressibility
defined by κ = ∂ρ/∂µ, where the density ρ =

∑
m,l〈Ψ|n̂m,l|Ψ〉/(ML). It is incompressible

(κ = 0) for the quantum Hall states, and finite for the superfluid states. The compressibil-
ity of the Hamiltonian in Eq. (252) was calculated by using the cluster Gutzwiller mean
field theory in Ref. [486]. The results for α = 1/5 and α = 1/2 are plotted in Fig. 45.
The states in superfluid phase are compressible, as a result, the density ρ varies linearly
with the chemical potential µ. However, for specific values of filling factor ν there are
states with constant ρ, represented by the blue horizontal lines, and these incompressible
positions correspond to the existence of quantum Hall states. In Fig. 45(a), the plateaus
or the constant ρ values correspond to ν = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2 and the corre-
sponding ρ values are να. In Fig. 45(b), the plateaus correspond to ν = 1/2, 1, 3/2.

Whether a state with integer filling factor in Fig. 45 is an integer quantum Hall state
should be carefully analyzed. It was demonstrated that the conductivity σxy must be
even for any bosonic quantum Hall state without fractional quasiparticle excitations
[487]. To have a basic idea about this issue, we consider some excitations created in a
general bosonic quantum Hall state. Each of them can be considered as a bosonic particle
attaching with 2π flux and has charge σxy. If we braid one excitation around another,
the statistical phase follows from the Aharonov-Bohm effect: θ = 2πσxy. Similarly, if
we exchange two excitations, the associated phase is θ/2 = πσxy. On the other hand,
if the state does not support fractional quasiparticles, then these excitations must be
bosons. Therefore, we conclude that σxy must be even for any bosonic quantum Hall
state without fractional quasiparticle excitations. Based on this argument, the ν = 1
state in Fig. 45(a) cannot be a stable integer quantum Hall state.

Notably, the integer quantum Hall state for single component bosons can occur in
some lattice structures with Chern number CMB = 2 [488–491]. Recently, two different
lattice versions of bosonic quantum Hall states have been proposed at integer filling
ν = 1 of the lowest topological flat-band with CMB = 2. The optical flux lattice has
been studied by exact diagonalization of the projected Hamiltonian in momentum space
[490] and correlated Haldane honeycomb lattice has been studied by infinite density
matrix renormalization group of hardcore boson in real space. The authors in Ref. [489]
established the existences of the bosonic quantum Hall phase in their model by providing
numerical evidence: (i) a quantized Hall conductance with σxy = 2; (ii) two counter
propagating gapless edge modes. On the other hand, it was demonstrated that bosonic
integer quantum Hall state emerges in integer boson filling factor ν = 1 of the lowest
band in a generalized Hofstadter lattice (including the nearest neighbor hopping) with
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Figure 45. (Color online) The variation in the number density ρ in the presence of an artificial magnetic field
with α = 1/5 in (a) and for α = 1/2 in (b). The states in superfluid are compressible and ρ varies linearly with µ,
as shown with solid black lines. For specific values of filling factor ν there are states with constant ρ, represented
by the blue lines, and these incompressible states correspond to the existence of quantum Hall states. Reprinted
with permission from Bai et al.[486]. Copyright c© (2018) by the American Physical Society.
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Figure 46. (Color online) Ground-state phase diagram in the space of the total filling factor ν and the ratio
U↑↓/U = tan γ between the intercomponent coupling constant and the intracomponent one. The product states of
a pair of nearly uncorrelated quantum Hall states (Laughlin, composite fermion, and Moore-Read states) appear
when U↑↓ < 0. BIQH: bosonic integer quantum Hall state; PS: phase separation; CFSS:composite fermion spin-
singlet state; CFL: composite fermion liquid. SU(3)1: the Halperin state with an SU(3)1 symmetry. Reprinted
with permission from Furukawa et al. [492]. Copyright c© (2017) by the American Physical Society.

CMB = 2 [488].

7.4.2 Two-component Bose-Hubbard model

We further address the quantum Hall states in a two-component Bose-Hubbard model.
We consider a system of a 2D pseudospin-1/2 bosonic gas (in the xy plane) subject to
the same magnetic fields B along the z axis for both spin states. In the second-quantized
form, the interaction Hamiltonian is written as

Hint =
∑
αβ

Uαβ
2

∫
d2rΨ̂†α(r)Ψ̂†β(r)Ψ̂α(r)Ψ̂β(r),

where Ψ̂α(r) is the bosonic field operator for the spin state α (=↑ or ↓). We set the
strengths of the intracomponent contact interactions U↑↑ = U↓↓ = U > 0 and the
strengths of the intercomponent contact interactions U↑↓ = U↓↑. For a 2D system
of area A, the number of magnetic flux quanta piercing each component is given by
Nφ = |φ|/(2π~) = A/(2`2), where ` =

√
~A/|φ| is the magnetic length. Strongly corre-

lated physics is expected to emerge when Nφ becomes comparable with or larger than
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the total number of particles, N = N↑ + N↓, where N↑ and N↓ are the numbers of
pseudospin-↑ and ↓ bosons, respectively.

The ground-state phase diagram of pseudospin-1/2 bosonic gases in a uniform artificial
magnetic field in the space of the total filling factor ν = N/Nφ and the coupling ratio
U↑↓/U were numerically calculated by performing an extensive exact diagonalization
analysis in the lowest-Landau level based on spherical and torus geometries [492]. The
main results are summarized in Fig. 46. In the figure, the two coupling constants are
parametrized as

(U,U↑↓) = G`2(cosγ, sinγ),

where G > 0, and γ ∈ [−π/2, π/2]. As can be seen in this diagram, when the intercom-
ponent coupling is attractive (U↑↓ < 0), doubled quantum Hall states are remarkably
robust and persist even when |U↑↓| is comparable to the intracomponent coupling U .
This sharply contrasts with the case of an intercomponent repulsion (U↑↓ < 0), where
a variety of spin-singlet quantum Hall states with high intercomponent entanglement
emerge for U↑↓ ≈ U . This remarkable dependence on the sign of U↑↓ can be interpreted
in light of Haldanes pseudopotentials on a sphere. More specifically, the stability of the
doubled quantum Hall states for U↑↓ < 0 can be understood from the ferromagnetic
nature of the intercomponent interaction in terms of (modified) angular momenta of
particles. Meanwhile, various spin-singlet quantum Hall states with a finite excitation
gap emerge for pseudospin-independent [SU(2)-symmetric] interactions with U↑↓ = U .
Among those states, relatively large gaps are found for the Halperin state with an SU(3)1

symmetry at ν = 2/3 [493] and a bosonic integer quantum Hall state protected by a U(1)
symmetry at ν = 2 [487, 494]. At ν = 4/3, two types of spin-singlet quantum Hall states
compete in finite-size systems: a non-Abelian SU(3)2 state and a composite fermion spin-
singlet state. Furthermore, a gapless spin-singlet composite Fermi liquid has been shown
to appear at ν = 1 [495]. In all these spin-singlet states, the two components are highly
entangled. For small U↑↓/U , in contrast, the system can be viewed as two weakly coupled
scalar bosonic gases, and the product states of nearly independent quantum Hall states
(doubled quantum Hall states) are expected to appear.

We can compare the phase diagram in Fig. 46 with that of the two-component bosonic
gases in antiparallel magnetic fields [496]. In the latter case, the pseudospin ↑ (↓) com-
ponent is subject to the magnetic field B (−B) in the direction perpendicular to the 2D
gas, and the system possesses the TRS [84, 108]. In the regime with ν = O(1), (frac-
tional) quantum spin Hall states [21] composed of a pair of quantum Hall states with
opposite chiralities are robust for an intercomponent repulsion U↑↓ > 0 and persist for
U↑↓ as large as U . Similar results have also been found in the stability of two coupled
bosonic Laughlin states in lattice models. These results suggest that the case of U↑↓ > 0
for antiparallel fields essentially corresponds to the case of U↑↓ < 0 for parallel fields
[492].

7.5 Kitaev honeycomb model

Generalized the previous idea on realization of the unpaired Majorana zero modes in a
1D system, in 2006, Kitaev further proposed another model that unpaired zero-energy
Majorana modes can appear in a 2D spin-1/2 system on a honeycomb lattice, where
nearest-neighbor interactions can be reduced to a problem of non-interacting Majorana
fermions [497]. It is one of the rare examples where a complex system is described by an
exactly solvable 2D spin Hamiltonian. Its quantum-mechanical ground state is a quantum
spin liquid and supports exotic excitations which obey Abelian or non-Abelian statistics.
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Figure 47. (Color online) (a) Kitaev model on the honeycomb lattice where interactions between nearest neighbors
are Jν , depending on the direction of the link Dν . (b) The phase diagram of the Kitaev honeycomb model in the
Jx+Jy +Jz = 1 plane in the parameter space. In the three unshaded areas labeled Ax, Ay , and Az , the system is
gapped with Abelian anyon excitations, and in the shaded area labeled B the system is gapless with non-Abelian
excitations.

The Kitaev honeycomb model is a spin-1/2 system in which spins are located at the
vertices of a honeycomb lattice with a spatially anisotropic interaction between neigh-
boring spins, as shown in Fig. 47(a). This lattice consists of two equivalent sublattices
labelled ‘A’ and ‘B’, which are shown by open and filled circles. A unit cell of the lattice
contains both of them. The Hamiltonian is given by [497]

HKHM = −
∑

ν,〈j,l〉∈Dν

Jνσ
ν
j σ

ν
l , (253)

where σνj are the Pauli matrices at the site j, Jν (ν = x, y, z) are interaction parameters,
and the symbol 〈j, l〉 ∈ Dν denotes the neighboring spins in the Dν directions. Neigh-
boring spins in Heisenberg models normally interact isotropically so that the spin-spin
interaction does not depend on the spatial direction between neighbors. In the above
model, however, neighboring spins along links pointing in different directions interact
differently.

The ground state of the Kitaev honeycomb model has two distinct phases in the pa-
rameter space and the phase diagram can be shown in terms of points in an equilateral
triangle satisfying Jx + Jy + Jz = 1 (the value of Jν is the distance from the opposite
side), as shown in Fig. 47(b) [497]. If Jx < Jy + Jz, Jy < Jz + Jx and Jz < Jx + Jy, the
system is gapless with non-Abelian excitations corresponding to B phase. For all other
values of (Jx, Jy, Jz), the system is gapped with Abelian anyon excitations, labelled, Ax
where Jx > Jy +Jz, Ay where Jy > Jz +Jx, Az where Jz > Jx +Jy. The gapped phases,
Ax, Ay, and Az, are algebraically distinct, though related to each other by rotational
symmetry. They differ in the way lattice translations act on anyonic states, and thus a
continuous transition from one gapped phase to another is impossible. The two phases
A and B are separated by three transition lines, i.e., Jx = 1/2, Jy = 1/2, and Jz = 1/2,
which form a small triangle in the B phase.

Precise proposals to realize an artificial Kitaev model using atomic OLs have been
made in the literature [435, 498], where the well-controllable OLs offer the possibility of
designing such anisotropic spin lattice models. The main idea is that the two-component
Bose-Hubbard model in a honeycomb lattice can reduce to the Kitaev spin model at
half filling and large on-site repulsion. For completeness, we here focus on the proposal
in Ref. [435] and its modified implementation scheme for 87Rb atoms proposed in Ref.
[498]. To implement the Kitaev honeycomb model using ultracold atoms, we first get an
effective 2D configuration with a set of independent identical 2D lattice in the xy plane
by raising the potential barriers along the vertical direction z in the 3D OL so that the
tunneling and the spin exchange interactions in z direction are completely suppressed.
And then a honeycomb lattice can be constructed with three trapping potentials of the
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forms

Vj(x, y) = V0sin2[k‖(xcosθj + ysinθj + ϕ0), (254)

where j = 1, 2, 3, and θ1 = π/6, θ2 = π/2, θ3 = −π/6. Each of the potentials is formed by
two blue-detuned interfering traveling laser beams above the xy plane with an angle ϕ‖,
so that the wave vector k‖ projected onto the xy plane has the value k‖ = ksin(ϕ‖/2) =

k/
√

3. The relative phase ϕ0 is chosen as π/2 in Eq. (254) so that the maxima of the three
potentials overlap. In this case, the atoms are trapped at the minima of the potentials
and the potential barrier between neighboring atoms is around Vb ≈ V0/4. Actually,
the honeycomb (hexagonal) lattice and its topologically equivalent configuration, the
brick wall lattice, have been experimentally realized by several groups [28, 77, 140].
We consider a 87Rb BEC and two hyperfine ground states | ↑〉 = |F = 2,mF = −2〉
and | ↓〉 = |F = 1,mF = −1〉 are defined as the effective atomic spin. The potential
barrier between neighboring atoms in the honeycomb lattice is adiabatically ramped up
to approximately Vb = 14ER to obtain a Mott insulator state with one atom per lattice
site, where ER = ~2k2/(2m) is the recoil energy for Rb atoms.

In this hexagonal lattice, one can engineer the anisotropic spin-spin interactions
Jνσ

ν
j σ

ν
m in Eq. (253) using additional spin-dependent standing wave laser beams in the

xy plane. To this end, one can apply three blue-detuned standing-wave laser beams in
the xy plane along the tunneling directions denoted by Dx, Dy, and Dz, respectively:

Vνσ(x, y) = Vνσsin2[k(xcosχν + ysinχν), (255)

where χx = −π/3, χy = π, χz = π/3. With properly chosen laser configurations, a
spin-dependent potential

Vνσ = Vν+|+〉ν〈+|+ Vν−|−〉ν〈−| (256)

along different tunneling directions ν can be generated, where |+〉ν (|−〉ν) is the eigenstate
of the corresponding Pauli operator σν with the eigenvalue +1(−1). One can adjust V ν

+

and V ν
− by varying the laser intensity in the Dν direction so that atoms can virtually

tunnel with a rate t+ν only when it is in the eigenstate |+〉ν , which yields the effective
spin-spin exchange interactions Jνσ

ν
j σ

ν
m with the interaction strength Jν ≈ −t2+ν/(2U).

Here the on-site interactions U↑↓ ≈ U↑ ≈ U↓ ≈ U .
As for a typical example, we introduce more detailed on how to generate the spin-spin

interaction Jzσ
z
jσ

z
m in the Hamiltonian Eq. (253) following the proposal in Ref. [498],

and the other spin-spin interaction terms can be created using a similar procedure [435].
The potentials (255) and (256) do not have influence on the equilibrium positions of
the atoms, but they change the potential barrier between the neighboring atoms in the
Dz direction from Vb ≈ V0/4 to V ′zσ = Vb + Vzσ. The standing wave laser beam used
for generating spin-dependent tunneling is along the z-link direction and has a detuning
∆0 = 2π×3600 GHz to the 52P3/2 state (corresponding to a wavelength 787.6 nm). This
laser beam forms a blue-detuning potential for atoms with spin | ↑〉, but a red-detuning
potential for | ↓〉 atoms. For instance, with a properly chosen laser intensity, the spin-
dependent potential barriers may be set as V↓ = 8ER and V↑ = −4ER, which, combined
with the spin-independent lattice potential barrier V0 = 14ER, yield the total effective
spin-dependent lattice potential barriers V↓ = 22ER and V↑ = 10ER for neighboring
atoms in the honeycomb lattice. Therefore, the tunneling rates for two spin states satisfy
t↑/t↓ � 1, which leads to the spin-spin interaction Jzσ

z
jσ

z
m with Jz ≈ t2↑/U , as shown

in Ref. [435]. For 87Rb atoms, the time scale for the spin-spin interaction h/Jz ≈ 10
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ms. By carefully tuning the spin-dependent lattice depth in different directions, one can
in principle access all phases of the Kitaev honeycomb model. However, to observe the
properties in this model, the temperature of the system needs to be much lower than the
spin-spin interaction strength T � Jz/kB ≈ 1 nK, which sets a strict requirement for
experiments. Higher temperatures will populate the system with an excess of unwanted
excitations.

The Kitaev honeycomb model is an exactly soluble spin model that carries excitations
with both Abelian and non-Abelian anyonic braiding statistics, which are the hallmarks
of topological quantum matter. The advantage of the realization of this model with OLs
is that both the Abelian and non-Abelian phases can be accessed just by varying the OL
parameters. On the other hand, how to create, braid, and detect these anyons in this spin
model defined on a honeycomb OL have also been proposed in Ref. [498], which is an
important first step towards topological quantum computation. Furthermore, even the
simple observation of Abelian anyonic properties in an OL and the subsequent read-out
them will be a break-through achievement in itself, because anyonic statistic has never
been directly demonstrated in any experimental system.

8. Conclusion and outlook

In the previous sections, we have reviewed the recent theoretical and experimental ad-
vances on exploring topological quantum matter with cold atoms. The cold atom systems
provide many interesting possibilities of searching for exotic topological states that are
currently absent or unrealizable in real materials. These include some unconventional
topological insulators and semimetals, the topological phases with many-body interac-
tions, non-equilibrium dynamics, and non-Hermitian or dissipation perturbations. So far,
the theoretical understanding of these phases is limited and most experimental studies
are at the single-particle level, but progress is already being made. In this final section
of the review, we aim to discuss some promising developments for the near future.

8.1 Unconventional topological bands

Ultracold atomic gases in OLs with fully engineered geometries and atomic hopping forms
provide a promising platform for exploring certain unconventional topological bands.
These include some unconventional topological insulators and semimetals that are diffi-
cult to realize in solid-state materials, such as the chiral topological insulators protected
by the chiral symmetry [163, 308, 309], topological nodal-line semimetals protected by
the combined space-time symmetry [285, 292], and the topological bands with unconven-
tional relativistic quasiparticles [350, 355, 358]. The chiral symmetry played by certain
sublattice symmetry is typically broken by disorder potential in real materials; however,
it naturally arises for cold atoms in OLs with negligible disorder [309]. The topological
semimetals or metals with tunable structures of nodal points or lines could be experi-
mentally implemented by varying the atom-laser interaction configuration [355, 499].

Furthermore, some theoretically predicted topological insulators beyond the ten-
fold classification could be implemented in OLs. These include the Hopf insulators
[66, 314, 317], the 3D quantum Hall states [265], the topological crystalline insulators
stabilized by crystalline lattice symmetries [500], the topological Anderson insulators
[501–503], and the so-called higher-order topological insulators and semimetals [504–
509]. The topological Anderson insulator is a disorder-driven topological phase, where
the static disorder induces nontrivial topology when added to a trivial band structure
[501–503]. Although there are many theoretical studies, the topological Anderson insu-
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lator has so far evaded experimental realization due to the lack of precise control over
disorder and topology in real materials. In a recent experiment, evidence for the topolog-
ical Anderson insulator phase in synthetic cold-atomic wires with controllable disorder
has been found [349]. As an extension of the topological insulator family, the recently
proposed higher-order (n-th order) topological insulators can host quantized multipole
moments in the bulk bands, such as quadrupole and octupole, and has robust gapless
states at the intersection of n crystal faces (but is gapped otherwise). For instance, a bulk
2D topological quadrupole insulator described by nested Wilson loops hosts protected
corner states with fractional charges [504], and its extension to a layered 3D system can
give rise to a topological quadrupolar semimetal [509]. It was also proposed to realize
topological quadrupole insulators using ultracold atoms in an optical superlattice [504].

Cold gases also allow the exploration of band topology in D = dr + ds dimensions
higher than the real dimension dr = 3, through the use of ds synthetic dimensions. A
recent experiment has demonstrated the topological response of an effective 4D system
by using 2D pumping in an OL [17]. Other topological states in 4D would be studied in
the near future, such as 4D intriguing fractional phases induced by interactions [16] and
time-reversal-symmetric 4D QHE. In addition, the 5D generalization of the topological
Weyl semimetals with Yang monopoles and linked Weyl surfaces in the BZ [510, 511]
would be similarly simulated with cold atoms. Very recently, the quantum simulation of
a Yang monopole in a 5D parameter space built from the internal states of an atomic
quantum gas was reported [512]. Moreover, its topological charges (the second Chern
numbers) were measured by experimentally characterizing the associated non-Abelian
Berry curvatures in the parameter space.

8.2 Other interacting topological phases

Topological superfluids with Majorana bound states. It has been theoretically shown that
the p+ ip-wave or p-wave topological superconductors/superfluids can be effectively in-
duced in conventional s-wave superconductors/superfluids by combining the SOC and
Zeeman splitting [513–516]. The zero-energy Majorana bound states with non-Abelian
statistics can emerge in these systems, but they have not yet been experimentally con-
firmed. With the recent advances, all the individual ingredients including the synthetic
SOC and effective Zeeman fields for topological superfluids in fermionic quantum gases
are in place. Several concrete proposals for realizing exotic topological superfluids with
Majorana bound states for cold atomic gases have been proposed [103, 473, 514–519].
Recently, a 2D SOC and a perpendicular Zeeman field have been simultaneously gener-
ated in ultracold Fermi gases [35, 113], which paved the way for future exploration of
topological superfluids in ultracold atoms. Once the systems are experimentally realized,
the high degree of experimental control over these cold atom systems will enable new
approaches for the direct observation and manipulation of Majorana bound states, such
as non-Abelian braiding.

Topological Mott insulators. In general, a strong interaction will open a trivial energy
gap and break the band topology. However, there exists a class of topological insula-
tors called the topological Mott insulators [520], where the many-body interactions are
responsible for topological insulator behaviors. Although the topological Mott insula-
tor phase was first reveled in an extended Fermi-Hubbard model on a 2D honeycomb
lattice [520], it has now been known as a class of interaction-induced topological insu-
lators for interacting fermions or bosons. The topological Mott insulators in 1D and 3D
fermion systems have also been investigated [521–523]. Whereas many studies provide
growing evidence for the existence of the topological Mott insulating phase, its exper-
imental observation in electron systems is still outstanding. The schemes for realizing
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the topological Mott insulator with Rydberg-dressed fermionic atoms in 2D OLs were
put forward [524, 525]. Furthermore, several works have theoretically and numerically
shown that the topological Mott insulator phase can occur for interacting bosonic atoms
[189, 526–528], atomic mixtures [529], and fermionic atoms [530] in 1D optical super-
lattices. Due to the tunable atomic interactions in OLs (similar as the engineered Bose-
or Fermi-Hubbard models for cold atoms), these artificial systems may provide the first
realization of topological Mott insulators in the near future.

Topological Kondo insulators. A class of topological insulators called topological Kondo
insulators for few heavy-fermion materials were recently predicted [531–533], which orig-
inates from the hybridization between itinerant conduction bands and correlated elec-
trons. Topological Kondo insulators are essentially induced by the strongly correlated
Kondo effect that leads to the insulating gap, although they share the same topologi-
cal properties with conventional topological insulators. Little evidence for a topological
Kondo insulator state in SmB6 has been reported [534, 535], and more theoretical and
experimental works are needed to fully understand it. On the other hand, a scheme has
recently been proposed to realize and observe topological (Chern) Kondo insulators in
a 2D optical superlattice with laser-assisted s and p orbital hybridization and a syn-
thetic gauge field [536]. The topological Kondo insulator phase was also predicted on
interacting “sp-ladder” models [537, 538], which could be experimentally realized in OLs
with higher orbitals loaded with ultracold fermionic atoms. Motivated by experimental
advances on ultracold atoms coupled to a pumped optical cavity [539], a scheme for syn-
thesizing and observing the topological Kondo insulator in Fermi gases trapped in OLs
was also proposed [540].

8.3 Non-equilibrium dynamics and band topology

In a recent experiment [47], the dynamical evolution of the Bloch wavefunction was stud-
ied by using time- and momentum-resolved state tomography for spinless fermionic atoms
in the driven hexagonal OL. In particular, the appearance, movement and annihilation
of dynamical vortices in momentum space after sudden quenches close to the topologi-
cal phase transition were observed. Furthermore, it was theoretically proposed [541] and
experimentally demonstrated [542] that the topological Chern number of a static Hamil-
tonian can be measured from a dynamical quench process through a rigorous mapping
between the band topology and the quench dynamics, i.e., the mapping of the Chern
number to the linking number of dynamical vortex trajectories appearing after a quench
to the Hamiltonian. It was also predicted that a topologically quantized Hall response
can be dynamically built up from nontopological states [543].

Very recently, a different dynamical approach with high precision has been experi-
mentally demonstrated to reveal topology through the unitary evolution after a quench
from a topological trivial initial state to a 2D Chern band realized in an ultracold 87Rb
atom gas [383]. The emerging ring structure in the spin dynamics uniquely determines
the Chern number for the post-quench band. The dynamical quantum phase transition
and the topological properties in the quench dynamics have been theoretically studied
for various topological systems [544–550]. These studies have shown that the cold atom
systems provide a natural and promising platform to explore the connection between
topological phases and non-equilibrium dynamics.

8.4 Topological states in open or dissipative systems

Topological states in open systems. The topological phases discussed so far are ground
state phases in isolated systems. With an additional dissipative coupling between atoms
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and an environment, one may consider the possibility of engineering topological states
using the concept of dissipative state preparation [551, 552]. For simplicity, here we take
the environment temperature to be T = 0 and restrict our discussion to the cold atom
implementations [474, 553, 554]. For a weak coupling to a Markovian bath, which is a
good approximation of atoms coupled to a continuum of radiation modes, the master
equation takes the Lindblad form [555]

dρ̂/dt = i
[
ρ̂, Ĥ

]
+
∑
j

(
L̂j ρ̂L̂

†
j −

1

2

{
L̂†jL̂j , ρ̂

})
, (257)

where ρ̂ denotes the reduced density matrix of the system, and the incoherently acting
Lindblad operators L̂j (also called jump operators) account for the system-bath coupling
with the dissipative channels being labelled by j. In the open systems, the steady states ρ̂s
are defined by dρ̂s/dt = 0, and the counterpart to an energy gap is provided by a damping
gap defined as the smallest rate at which deviations from ρ̂s are damped out. When the
coupling is engineered so that the system ends up after some relaxation time into a pure
state (called a dark state), “topology by dissipation” is achieved where the pure state has
nontrivial topological properties [474, 553]. The specific system studied in Ref. [474] is a
quantum wire of spinless atomic fermions in an OL coupled to a bath. The key feature
of the dissipative dynamics described by the Lindblad master equation is the existence
of Majorana edge modes, and their topological protection is granted by a non-trivial
winding number of the system density matrix. Such a concept of topology by dissipation
has formally been extended to higher spatial dimensions and various symmetry classes
[554]. Furthermore, it was shown that the dissipation can lead to a novel manifestation
of topological states with no Hamiltonian counterpart [553], such as spatially separated
Majorana zero modes in the dissipation-induced p-wave paired phase of 2D spin-polarized
fermions with zero Chern number.

Topological superradiant states. The experimental advances on ultracold atomic gases
coupled to an optical cavity have shown that the interplay between the atomic motion and
the light fields can give rise to rich dynamical processes and exotic many-body collective
phenomena [539], such as the Dicke superradiant state [556]. Recently, a topological
superradiant state in a 1D spin-1/2 degenerate Fermi gas in a cavity with cavity-assisted
Raman processes was predicted [557, 558]. This novel steady-state topological phase of a
driven-dissipative system is characterized simultaneously by a local order parameter and
a global topological invariant (the winding number of momentum-space spin texture) with
a superradiance-induced bulk gap. It was also suggested to detect the topological phase
transition between normal and topological superradiant states from its signatures in the
momentum distribution of the atoms or the variation of the cavity photon occupation,
due to the nontrivial feedback of the atoms on the cavity field [557]. A superradiant
topological Peierls insulator involving transversely laser-driven atoms coupled to a single
mode of an optical resonator in the dispersive regime was also predicted [559]. A fermionic
quantum gas in a 2D OL coupled to an optical cavity can self-organize into a state in
which the cavity mode is occupied and an artificial magnetic field dynamically emerges,
such that the fermionic atoms can form steady-state chiral insulators [560] or topological
Hofstadter insulators [561].

Topological states in non-Hermitian systems. Recently, the search for topological states
of matter in non-Hermitian systems has attracted increasing interest (see Ref. [562] for
a review). For a dissipative cold atom system with particle gain and loss, a new type of
topological ring characterized by both a quantized Chern number and a quantized Berry
phased (defined via the Riemann surfaces) was revealed [290], dubbed a Weyl exceptional
ring consisting of exceptional points at which two eigenstates coalesce. Realizing the Weyl
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exceptional ring requires a non-Hermitian term associated with particle loss for spin-down
atoms. Without this term, the system is in the Weyl semimetal phase that can be realized
with cold atoms in 3D OLs (see Sec. 4.3.2). To generate the decay term representing an
atom loss for spin-down atoms, one may consider using a resonant optical beam to kick
the spin-down atoms out of a weak trap, or alternatively, using a radio frequency pulse to
excite the spin-down atoms to another irrelevant internal state. A possible approach to
measure the Weyl exceptional ring is probing the dynamics of atom numbers of each spin
component after a quench [290]. The non-Hermitian Hamiltonian was recently realized
in a noninteracting 6Li Fermi gas via generating state-dependent atom loss, and the
non-Hermitian term was achieved by an optical beam resonant with the atomic decay
coupling [563].
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Appendix A. Formulas of topological invariants

The purpose of this Appendix is to provide general discussions and more details of deriva-
tions of topological invariants referenced in this review. Mathematically, these topological
invariants are defined for vector or principal bundles to characterize the topological (iso-
morphism) classes of the bundles and have applications wherever the bundles find their
manifestations in physical systems. In the course of adapting this mathematical subject
into physics, condensed matter and high energy physics communities made tremendous
endeavors. To serve our main subject of topological cold-atom systems, we do not intend
a complete review but focus on the Berry bundle of band theories for an insulator of
non-interacting fermions. The formulas of topological invariants are applicable to other
suitable bundles of physical systems.
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A.1 Flattened Hamiltonians and Berry Bundles

We denote the momentum-space Hamiltonian of the insulator as H(k) with k in the first
Brillouin zone (BZ), and assume finite number of bands, namely H(k) is a (M + N)-
dimensional matrix at each k, where M and N are numbers of conduction and va-
lence bands, respectively. At each k, H(k) can be diagonalized and the conduction
and valence eigenpairs are (E+,a, |+,k, a〉) and (E−,b, |−,k, b〉), respectively, with
a = 1, · · · ,M and b = 1, · · · , N . Therefore the Hamiltonian is now expressed as
H(k) =

∑
aE+,a|+,k, a〉〈+,k, a| +

∑
bE−,b|−,k, b〉〈−,k, b|. We further introduce the

projectors onto conduction and valence spaces as Π±(k) =
∑

a |±,k, a〉〈±,k, a|, which
satisfy the following relations,

1 = Π+ + Π−, Π2
± = Π±, Π+Π− = Π−Π+ = 0. (A1)

Then, it is clear that H(k) can be adiabatically deformed to be the flattened Hamiltonian

H̃(k) = Π+(k)−Π−(k) (A2)

without closing the energy gap by smoothly regulating positive and negative energies
converging to ±1, respectively. Since the topological properties of an insulator do not
change under gap-preserving continuous deformations, it is sufficient and more convenient
to adopt the flattened H̃(k) for studying topological properties.

At each k, valence states |−,k, b〉 span an N dimensional vector space that is the image
of Π−(k), and these vector spaces spread smoothly over the whole BZ, forming an ND
vector bundle, which is called the Berry bundle of valence bands of an insulator. Since the
Berry bundle is generated by the projector Π−(k), there exists a canonical Levi-Civita
connection, called the Berry connection, which is given by

Aµb,b′(k) = 〈−,k, b| ∂
∂kµ
|−,k, b′〉 (A3)

with µ = 1, 2, · · · , d labeling momentum coordinates. To see that Eq. (A3) is indeed a
connection, one may check that under a gauge transformation

|−,k, b〉 −→ |−,k, b′〉Ub′b(k) (A4)

with U(k) being a field of unitary matrices globally defined in the whole BZ, the Berry
connection transforms as

Aµ(k) −→ U †AµU + U †∂µU. (A5)

Accordingly, the Berry curvature of the Berry bundle is

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ], (A6)

whose gauge transformation is given by

Fµν −→ U †FµνU. (A7)

As an example we discuss the general two-band model for insulators,

H2b(k) = d(k) · σ, (A8)

130



April 3, 2019 Advances in Physics Manuscript˙AIP˙Final˙20190401

where σi with i = 1, 2, 3 are the Pauli matrices. The σ0 term with σ0 the 2× 2 identity
matrix has been ignored for it only shifts the energy spectrum and does not affect eigen-
states. For insulator |d(k)| is not equal to zero for all k, since the spectrum is given by
E±(k) = ±|d(k)|. The Hamiltonian of Eq. (A8) can be flattened as

H̃2b(k) = d̂(k) · σ (A9)

with d̂(k) being the unit vector d(k)/|d(k)|. Accordingly the projectors for valence and
conduction bands are

Π2b
± (k) =

1

2
[σ0 ± d̂(k) · σ]. (A10)

The valence eigenstates can be represented by |−,k〉 = e−iσ3φ(k)/2e−iσ2θ(k)/2| ↓〉, where

θ(k) and φ(k) are the standard spherical coordinates of d̂(k), and | ↓〉 is the negative
eigenstate of σ3. The Berry connection can be straightforwardly derived as

Aµ(k) =
i

2
cosθ(k) ∂µφ(k). (A11)

Note that for two-band case the Berry connection is Abelian. Under the U(1) gauge
transformation |−,k〉 → eiϕ(k)|−,k〉, the Berry connection Aµ(k) is transformed to be
Aµ(k)+i∂kµϕ(k). But the Berry curvature is invariant under gauge transformations, and

is given from Eq. (A6) by Fµν(k) = − i
2sinθ(k)(∂µθ(k)∂νφ(k) − ∂νθ(k)∂µφ(k)), which

can be recast in terms of d̂(k) as

Fµν(k) =
1

2i
d̂ · (∂µd̂× ∂νd̂). (A12)

Equations (A5), (A6) and (A7) also appear in gauge theory. More specifically the Berry
connection Aµ(k) and curvature Fµν(k) corresponds to the gauge field or potential and
field strength tensor, respectively, according to the terminologies of U(N) gauge theory,
for which the base space is the spacetime. Conventionally the connection of a vector
bundle is not unique (but usually forming a space), and actually the definition of the
Berry connection, namely Eq. (A3), is just a canonical way to assign a vector bundle with
Hermitian metric connection. Therefore a band theory can be regarded as a U(N) gauge
theory with a given connection, the Berry connection. Once a connection is assigned for
a vector bundle, we can compare two vectors at two separate points y and z through
parallel transport of the one at y along a path C to z. Parameterizing the path C as x(τ),
where τ ∈ [τi, τf ], x(τi) = y and x(τf ) = z, the mutually parallel vectors |ψ(x(τ))〉 along
C satisfy the equation,

dxµ
dτ

Dµψ = 0, (A13)

with the covariant derivative Dµ = ∂
∂xµ

+ Aµ(x). The solution is |ψ(x(τ))〉 =

UP (z, y)|ψ(y)〉, and the parallel-transport operator UP is given by

UP (z, y) = P̂ exp

[
−
∫
C
dτ

dxµ
dτ
Aµ(x(τ))

]
, (A14)

where P̂ indicates that the integral is path ordered. If C is a closed path, the parallel-
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transport operator is called the Wilson-loop operator in the context of gauge theory, or
the holonomy along C in mathematics. If τ ∈ [τi, τf ] is divided into N equal intervals,
the parallel-transport operator can be approximated by

UP (z, y) ≈ UNUN−1 · · ·U1, (A15)

where Uj = exp[−Ay((τj−1 + τj)/2)∆τ/N ] with τj = τi + j∆τ/N and ∆τ = (τf − τi)/N ,
so that the equality is recovered taking N to infinity.

Performing a gauge transformation |ψ(x(τ))〉 → V (x(τ))|ψ(x(τ))〉 along the path C,
the parallel-transport operator is transformed as

UP (z, y) −→ V (z)UP (z, y)V †(y). (A16)

For a Wilson loop C, which is a closed circle, it is a unitary transformation given by
the reference point y, namely UP (y, y) → V (y)UP (y, y)V †(y). In particular, for Abelian

connection Aµ, the path order P̂ is not important, and therefore the Wilson loop is gauge
invariant, and is given by the flux inserted over the area surrounded by C,

UC = exp

[
−
∫
D
d2x F12(x)

]
, (A17)

where D is any smooth surface with C being its boundary, and F12 is the corresponding
Abelian Berry curvature. In this case, the phase factor UC is called the geometric Berry
phase along C as well.

A.2 Chern Number and Chern-Simons Term

The Chern number can be formulated for any even-dimensional integral domain. For 2n
dimensions, the corresponding Chern number is called the nth Chern number, and the
corresponding integrand is called the nth Chern character. When n = 1, the first Chern
number for a 2D insulator is explicitly given as

C =
i

2π

∫
T2

d2k trF12. (A18)

Here and hereafter T2n represents a 2n dimensional torus. Noting that the trace over
the commutator in Eq. (A6) vanishes, the first Chern number essentially comes from the
Abelian connection aµ = trAµ, and can be accordingly recast as C = (i/2π)

∫
T2 d

2k f12

with fµν = ∂µaν − ∂νaµ. If n = 2, the second Chern number for a 4D insulator is

C2 = − 1

32π2

∫
T4

d4k εµνλσtrFµνFλσ, (A19)

which is essentially non-Abelian.
For 2D insulators, the first Chern number of Eq. (A18) is also called the Thouless-

Kohmoto-Nightingale-den Nijs (TKNN) invariant, and was shown to be the transverse
conductance in the unit of e2/h by using the Kubo formula [10]. A nonvanishing trans-
verse conductance requires the breaking of TRS. This is consistent with Eq. (A18),
because the first Chern number has to be vanishing in order to preserve TRS, since iF is
odd under time-reversal, which shall be clear when we discuss TRS. In other words, a 2D
Chern insulator cannot have TRS. In contrast, the second Chern number of Eq. (A19)
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is time reversal symmetric, namely there exist time-reversal-symmetric 4D Chern insu-
lators. The meaning of the second Chern number for electromagnetic response can be
found in Refs. [63, 64].

If a 2n dimensional sphere S2n is chosen to enclose a singular point, where the bundle
is not well-defined, in a (2n + 1)D space, the Chern number may be calculated on the
S2n, and is referred to as the monopole charge of the singular point. For monopoles
in 3D space, the monopole charge can be calculated by the Abelian connection aµ =
trAµ, and therefore are termed as Abelian monopoles. For instance the Weyl points for
HW (k) = ±k · σ can be interpreted as unit Abelian monopoles in momentum space for
the respective Abelian Berry bundles of valence band restricted on S2 surrounding the
origin. Monopoles in 5D space are categorized into non-Abelian monopoles, the monopole
charge must be calculated by non-Abelian connections. Accordingly the 5D Weyl points
H5D
W (k) = ±kµΓµ with µ = 1, 2, · · · , 5, where Γµ are 4× 4 Dirac matrices.
It is noteworthy that if the Chern number is nontrivial (nonzero), it is impossible to find

a complete set of globally well-defined valence eigenstates in the whole BZ. Otherwise, the
Chern character is a total derivative, and the Chern number must be trivial, which shall
be clear when we discuss Chern-Simons forms. Due to the lack of global wavefunctions
in general, it is usually technically difficult to directly calculate the Chern number via
Eq. (A18) or (A19). To avoid this difficulty, we can reformulate the Chern number in
terms of the Green’s function of imaginary time, G(ω,k) = 1/[iω −H(k)] [64, 564–567],
which for Eq. (A18) is explicitly given by

C[k] = − 1

24π2

∫ ∞
−∞

dω

∫
T2

d2kεµνλtr G∂µG−1G∂νG−1G∂λG−1. (A20)

Note thatG(ω,k) is an invertible matrix for each (ω,k), namelyG(ω,k) ∈ GL(N+M,C),
because H(k) is invertible.

Although there is no global Berry connection A over the base manifold if the Berry
bundle is nontrivial, if the base manifold is trivially a disk D2n, A can be given over the
whole D2n, and furthermore the Chern character can be expressed as a total derivative
of the Chern-Simons form. If n = 1, it is obvious that the first Chern character C(F) =
dQ1(A) with

Q1(A) =
i

2π
trA. (A21)

For n = 2, the Chern-Simons form is a third form

Q3(A,F) =
1

2

(
i

2π

)2

tr(AdA+
2

3
A3), (A22)

and it is straightforward to check that dQ3(A,F) = C2(F). A general formula
Q2n−1(A,F) for any n is

Q2n−1(A,F) =
1

(n− 1)!

(
i

2π

)n ∫ 1

0
dt tr

(
AF (n−1)

t

)
(A23)

with Ft = tF+t(t−1)A2. The integration of Q2n−1 over a (2n−1) dimensional manifold,
for instance S2n−1, is called the Chern-Simons term,

ν2n−1
CS [A] =

∫
S2n−1

Q2n−1(A,F). (A24)
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A significant difference of the Chern-Simons term from Chern number is that it is not
gauge invariant. For instance,

Q1(AU ) = Q1(A) +
i

2π
trU †∂kU, (A25)

and therefore the change of ν1
CS is just the winding number of U(k). Analogous calcu-

lations for Q3(A,F), although are a little more complicated, can also be made straight-
forwardly. It is actually a general conclusion that a gauge transformation of U changes
the Chern-Simons term over S2n−1 by a winding number ν2n−1

w [U ] of U , namely

ν2n−1
CS [AU ]− ν2n−1

CS [A] = ν2n−1
w [U ]. (A26)

We now make a classic application of the mathematics introduced in this subsection,
which is of fundamental importance. Consider a Berry bundle on a 2D sphere S2. If the
bundle is nontrivial, there is no globally well-defined Berry connection A. But one can
always have Berry connections on the north hemisphere D2

N and the south as AN and
AS , respectively, and glue the wave functions along the equator S1, which is given by the
transition function from the south hemisphere to the north, namely U(k) ∈ U(N) with
k ∈ S1. Then, the Chern number is calculated as

C =

∫
D2
N

dQ1(AN ,FN ) +

∫
D2
S

dQ1(AS ,FS) =

∫
S1

Q1(AN ,FN )−
∫

S1

Q1(AS ,FS)

= ν1
w[U ], (A27)

where the minus sign in the second equality is due to the opposite orientations of S2n−1

with respect to the north hemisphere and the south, and the third equality has used
Eq. (A26). It is concluded that the Chern number of the bundle on the sphere is just the
winding number of the transition function along the equator.

1st Chern Number in Terms of Wilson Loop. The topological invariant for 2D Chern
insulators is the first Chern number of Eq. (A18). There does not exist a complete set of
globally well-defined valence eigenstates in the whole torus T2. But we can find it over
the cylinder, which does not require periodic boundary condition over ky ∈ (−π, π], and
then use a transition function from the bundle on the circle S1

− at ky = −π to that on S1
+

at ky = π. The Chern number is just the winding number of the transition function as a
mapping from S1 to U(N), which can be inferred from the discussions about Eq. (A27).
Given such a set of eigenstates over the cylinder, we can use the method of Wilson loops
over ky, which are parametrized by kx ∈ (−π, π], to obtain the transition function. At
each kx, the Wilson-loop operator is given by

U(kx) = P̂ exp

∫ π

−π
dky Ay(kx, ky) ∈ U(N). (A28)

After working out the transition function by Wilson loops, the Chern number is calculated
by the winding number

νw =
i

2π

∮
dkx trU(kx)∂kxU

†(kx). (A29)

Note that trF = tr(dA + A∧A) = trdA =
∑

a dAaa, it implies the fact that whether
A is non-Abelian is not important in two dimensions, namely each valence band can
be treated individually. In practice, one can always add appropriate perturbations to
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separate valence bands, and for the ath band the corresponding Berry connection Aa is
just an Abelian connection. Thus the Chern number is just the summation of winding
numbers for each valence band,

C =
i

2π

∑
a

∮
dkx Ua(kx)∂kxU

†
a(kx). (A30)

Chern Number of Two-band Model. For the two-band model of Eq. (A8) as an example,
the Chern number can be expressed explicitly by

C =
1

4π

∫
T2

d2k d̂ · (∂kxd̂× ∂ky d̂), (A31)

which can be derived by directly substituting Eq. (A12) into Eq. (A18), or alternatively
by substituting the Green’ function with imaginary frequency, G(ω,k) = 1/[iω−d(k)·σ],
into Eq. (A20). The simplified formula of Eq. (A31) is just the winding number of the

vector field d̂(k) as a mapping from T2 to S2.

A.3 Topological Invariants for Topological Insulators

A.3.1 3D Topological Insulators.

The Chern insulators do not require any symmetry for the momentum-space Hamilto-
nian, but the 3D topological insulator requires TRS. The TRS is represented in mo-
mentum space (even in real space) by T̂ = UT K̂, where UT is a unitary matrix, and

K̂ is the complex conjugate operator, satisfying T̂ 2 = −1. Note that for electronic
systems, UT = −iσ2 with σ2 acting in the spin space. If a system has TRS, then
T̂ †H(−k)T̂ = H(k), which may be explicitly expressed as

U †TH(−k)UT = H∗(k). (A32)

For a valence eigenstate |a,k〉 with H(k)|a,k〉 = Ea(k)|a,k〉, UT |a,k〉∗ is an eigenstate
of H(−k) with the same energy Ea(k), which can be deduced from Eq. (A32). Here we
abbreviate |−, a,k〉 to be |a,k〉 for simplicity. Thus, the spectrum is inversion symmetric
in momentum space, and UT |a,k〉∗ can be expanded by the basis at −k as

UT |a,k〉∗ =
∑
b

U∗ab(−k)|b,−k〉, (A33)

where U(k) is a unitary matrix for each k. Due to the constraint of Eq. (A33) exerted
by the TRS in the valence bands, the Berry connection satisfies the relation,

A∗(k) = U(−k)A(−k)U†(−k) + U(−k)dU†(−k). (A34)

In general the Chern-Simons term can take any real number, but symmetry could lead
to quantization of the Chern-Simons term. For 3D topological insulators with TRS, the
relation of Eq. (A34) can be applied to quantize the Chern-Simons term. Observing
that A∗(k) is just the gauge transformed A(−k) by U†(−k) from Eq. (A34), and the
Chern-Simons term is a real number odd under inversion, we can deduce

2ν3
CS [A] = ν3

w[U ], (A35)
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in the light of Eq. (A26). The right hand of Eq. (A35) is the winding number of U(k)
over the 3D BZ. Because of the gauge ambiguity described by Eq. (A26), 2ν3

CS [A] can be
regarded as a Z2 topological invariant for 3D topological insulators, which is explicitly
given by [64]

ν
(1)
Z2

= − 1

4π2

∫
T3

d3kεµνλtr(Aµ∂νAλ +
2

3
AµAνAλ) mod 2. (A36)

It is essential important for 3D topological insulators that T̂ 2 = −1, which can readily
be seen from another topological invariant given by Fu-Kane-Mele [296]. The fact that

T̂ 2 = −1 implies UT is anti-symmetric, namely U tT = −UT , which further implies U t(k) =
−U(−k). In the 3D BZ, there are eight inversion invariant points Γi with i = 1, 2, · · · , 8,
where U(Γi) are anti-symmetric. A significant consequence of TRS is the presence of
the two-fold Kramers degeneracy for energy eigenstates, and therefore the valence-state
number is even at Γi. For an anti-symmetric even-dimensional matrix U , the Pfaffian
Pf(U) can be defined as a polynomial of entries of U , and the topological invariant is
given by

(−1)ν
(1)
Z2 =

8∏
i=1

Pf(U(Γi))√
Det(U(Γi))

, (A37)

which is called the Fu-Kane-Mele invariant [296]. Note that the determinants of U(Γi)
as unitary matrices are all definitely positive. Although, the expression of Eq. (A37) is
local at Γj , the global information is acquired by the requirement that the valence wave
functions are globally well-defined in the whole BZ. A proof for the equality of Eqs. (A36)
and (A37) can be found in Ref. [568]. Despite of using the unfamiliar Pfaffian, Eq. (A37)

can be radically simplified in the presence of inversion symmetry P̂ . Since each Γi is
inversion invariant, each valence state |−,Γi, a〉 at Γi with a = 1, 2, · · · , 2N is also an

eigenstate of P̂ with eigenvalue (parity) ξa(Γi) = ±1. Assuming that (2m − 1)th and

2mth states form Kramers pairs with m = 1, 2, · · · , N , we define δi =
∏N
m=1 ξ2m−1(Γi)

noticing that two states of each Kramers pair have the same parity because of [P̂ , T̂ ] = 0.
Then Eq. (A37) takes the simple expression [299],

(−1)ν
(1)
Z2 =

∏
i

δi. (A38)

The convenience of Eq. (A38) lies in that it is entirely determined by the representation

of P̂ , which can be derived from local eigenstates at Γi, and hence its practice does
not require global valence eigenstates, which as aforementioned are usually technically
difficult to obtain.

A.3.2 2D Topological Insulators

There exists no Chern insulator without TRS, since the first Chern number is odd un-
der time-reversal. From Eq. (A5), it is found that F∗(k) = U(−k)F(−k)U†(−k), but
F∗(k) = −F t(k). However, new time reversal invariant topological insulators arise with
Z2 classification, and the corresponding topological properties requires and are protected
by TRS [18]. The Z2 topology can be characterized by a topological invariant quite sim-
ilar to Eq. (A37), but now the product is over four inversion invariant points in the 2D
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BZ [160],

(−1)ν
(2)
Z2 =

4∏
i=1

Pf(U(Γi))√
Det(U(Γi))

, (A39)

which again requires globally well-defined wave functions. If the inversion symmetry is
present, Eq. (A38) is also a usually more convenient alternative for Eq. (A39), where the
product is now over four inversion invariant points.

A topological invariant in terms of the Berry connection may also be formulated for
the time-reversal-symmetric topological phase. For each k, let |I, α,k〉 and |II, α,−k〉
be a pair of states labelled by α, which are related by TRS by

|I, α,k〉 = UT |II, α,−k〉∗, |II, α,k〉 = −UT |I, α,−k〉∗.

Locally the state label a is further specified to be (s, α) with s = I or II. However, if the
topological insulator has nontrivial topological invariant, such a basis |s, α,k〉 does not
exist globally. Instead, we can choose such a basis for the 1D subsystem with ky = −π,
and also for the one with ky = 0. Then the topological invariant is given by

ν
(2)
Z2

=
i

2π

∫ π

−π
dkx tr[A1(kx,−π)−A1(kx, 0)]− i

2π

∫ π

−π
dkx

∫ 0

−π
dky trF12 mod 2,

(A40)

noting that the 1D subsystems with ky = −π and 0 are the boundary of the integration
domain of the second term, which is a cylinder. The gauge freedom of the first term
justifies the Z2 nature of the topological invariant, recalling Eq. (A26). The equivalence
of the two topological invariants Eqs. (A39) and (A40) can be found in Ref. [160].

A.4 Winding Numbers for Chiral Classes

In this section, we consider a Hamiltonian H(k) with chiral symmetry Γ, namely H(k)
anti-commutes with Γ,

{H(k),Γ} = 0, (A41)

and assume that Γ2 = 1 and Γ† = Γ. The chiral symmetry implies at each k the valence
states of the insulator H(k) have a one-to-one correspondence to conduction states,
noting that if H(k)|ψ〉 = E|ψ〉, then H(k)Γ|ψ〉 = −EΓ|ψ〉. One can always choose a
basis, for which Γ = diag(1N ,−1N ) with 1N being the N ×N identity matrix, and then
the Hamiltonian takes the anti-diagonal form,

H(k) =

(
0 q†(k)

q(k) 0

)
, (A42)

where q(k) is an N ×N invertible matrix for each k, since H(k) describing an insulator
is invertible. Thus, the winding number of q from the BZ to GL(N,C) is a topological
invariant for this symmetry class, which is given by

ν2n+1
w [q] = ηn

∫
T2n+1

tr(qdq−1)2n+1 (A43)
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with ηn = n!/[(2n + 1)!(2πi)n+1] for a (2n + 1)D BZ [123]. Note that even-dimensional
insulators in this symmetry class are all trivial. In physical dimensions, for 1D insulators
with n = 0, the topological invariant is explicitly given by

ν1
w[q] =

1

2πi

∮
dk tr qdq−1, (A44)

and for 3D insulators with n = 1,

ν3
w[q] = − 1

24π2

∫
d3kεµνλtr q∂µq−1q∂νq−1q∂λq−1. (A45)

The definition of q(k) or the anti-diagonal form of Eq. (A42) is based on the particular
representation of Γ = diag(1N ,−1N ), and therefore Eq. (A43) is gauge dependent. A
gauge independent expression of the topological invariant can be given for hermitian
chiral symmetry Γ with the normalization Γ2 = 1 as

ν2n+1
w [H] =

ηn
2

∫
T2n+1

trΓ(HdH−1)2n+1. (A46)

A.5 Quantized Zak Phase

In general the Berry phase of valence bands in the unit of π for a 1D gapped system is
given by

ν =
i

π

∮
dk trA (A47)

with A given by Eq. (A3), may be any real number, and thus cannot be a topological
invariant. However, certain symmetries can quantize it into integers, which is similar to
that the quantized Chern-Simons term in three dimensions, recalling from Eq. (A21)
that Eq. (A47) is just the Chern-Simons term in one dimension. The quantization of
Eq. (A47) was first discussed in 1D band theory by Zak taking into account inversion
symmetry [62], and therefore the Berry phase in band theory is also called the Zak phase.
Only the parity of the quantized Berry phase of Eq. (A47) is gauge invariant, since a
large gauge transformation, |k, b〉 →

∑
c Ubc(k)|k, c〉, can change Eq. (A47) by two times

of the winding number of u(k) = Det[U(k)] ∈ U(1), namely

ν → ν +
1

πi

∫
dk u(k)∂ku

†(k), (A48)

which is just Eq. (A26) specialized to n = 1. These results are consistent with the physical
meaning of the Zak phase. The Zak phase of Eq. (A47) is just the center of the Wannier
functions with the lattice constant normalized to be 2. For a periodic system, of course
the center of the Wannier functions should be a position modulo the lattice constant. It is
also clear that in order to preserve inversion symmetry the center has to be concentrated
at lattice sites or at the midpoints of lattice sites, namely it is an integer for the lattice
constant 2.

If a gapped system has chiral symmetry, casting the Hamiltonian into the form of
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Eq. (A42), globally well-defined valence states are given readily as

|k, b〉 =
1√
2

(
−vb
q(k)vb

)
(A49)

where q = 1, · · · , N , and vq is a N -vector with all entries being zero except the bth being

1. In Eq. (A49), we have assumed H̃ with q(k) ∈ U(N). Using this set of valence states,
one may check that Eq. (A47) is equal to Eq. (A44). Thus, the Berry phase of Eq. (A47)
is quantized into integers by chiral symmetry. Since the Zak phase is only a Z2 invariant,
it counts only the parity of the topological invariant of Eq. (A44) for the symmetry class.

The Zak phase can also be quantized by charge-conjugate or particle-hole symmetry.
In momentum space charge-conjugate symmetry is represented by Ĉ = UCK̂Î with UC
being a unitary matrix, and is required to satisfy Ĉ2 = 1, which implies UCU

∗
C = 1 and

UC = U tC . The momentum-space Hamiltonian is transformed under charge-conjugate
symmetry as

U †CH(−k)UC = −H∗(k). (A50)

The charge-conjugate symmetric 1D gapped systems have a Z2 topological classifica-
tion, and the Zak phase is just the topological invariant. Noting that the Bogoliubov-de
Gennes Hamiltonians of superconductors are naturally charge-conjugate symmetric, thus
the Zak phase is the topological invariant for 1D topological superconductors. Similar
to time-reversal-symmetric topological insulators, the topological invariant can also be
equivalently expressed as a product of Pfaffians at two inversion invariant points, which
is given by the Majorana representation of free fermionic systems in Ref. [469].

A.6 Skyrmions in two and three dimensions

As discussed in Sec. A.1, a two-band model gives a field of unit vectors n(k) over the
2D BZ, and the Chern number is just the winding number of the unit-vector field as a
mapping from T2 to S2. If a similar unit-vector texture n(x) occurs in 2D real space R2,
the winding number is also called the topological charge ν2D

w of skyrmions in the vector
field n(x), which is explicitly given by

ν2D
w =

1

4π

∫
R2

d2x n · (∂xn× ∂yn). (A51)

Vectors at infinity are usually assumed to be oriented toward the same direction, namely
the plane R2 is effectively compactified to be S2, and therefore the topological charge of
skyrmions is an integer.

In some physical systems, there may exist a field of four-component unit vectors in
3D space. For example, SU(2) order parameters after condensation, or two-component
normalized quantum states. A group element U(x) of SU(2) can be expressed as U(x) =

d̂0(x)σ0+id̂i(x)σi with dµ = (d̂0, d̂) being a unit vector in 4D Euclidean space, and a two-

component normalized quantum state ψ(x) can be represented as ψ(x) = (d̂0 + id̂1, d̂2 +

id̂3)t. If vectors are constant at infinity, the 3D space R3 is topologically identical to S3,
and the vector fields are mappings from S3 to S3. Therefore, there exist 3D skyrmions
as counterpart of 2D ones can exist in such systems, whose topological charge is just the
corresponding winding number. For SU(2) field U(x), as afore-mentioned, the winding

139



April 3, 2019 Advances in Physics Manuscript˙AIP˙Final˙20190401

number is given by

ν3D
w = − 1

24π2

∫
d3x εµνλtr U(x)∂µU †(x)U(x)∂νU †(x)U(x)∂λU †(x). (A52)

Substituting U(x) = d̂0(x)σ0 + id̂i(x)σi, the formula in terms of the unit vectors is

ν3D
w =

1

2π2

∫
R3

d3x εµνλρd̂
µ∂1d̂

ν∂2d̂
λ∂3d̂

ρ. (A53)

The notion of skyrmion can be readily generalized to any dimension n, where the
skyrmion charge is just the winding number of the unit vector field dµ(x) as a mapping
from Sn to Sn. The formula for topological charge is explicitly given as

νnDw =
1

Ωn

∫
Rn
dnx εµ0µ1···µn d̂

µ0∂1d̂
µ1 · · · ∂nd̂µn , (A54)

where Ωn is the geometric angle of (n + 1) dimensional Euclidean space equal to
2πd/2/Γ(d/2), and the integrand is just the volume element of the unit-vector-valued

function d̂µ(x) ∈ Sn.

A.7 Hopf Invariant

So far, we have mainly concerned with band theories of sufficiently many bands. We
now consider a topological insulator, which has only two bands and occurs only in three
dimensions. For a two-band insulator, the flattened Hamiltonian can always be written
as Eq. (A9). Hence H̃(k) at each k can be regarded as a point on the unit sphere S2, and

H̃ gives a mapping from the 3D momentum space to S2. Because of the homotopy group
π3(S2) ∼= Z, there exist (strong) 3D two-band topological insulators with Z classification,
which is termed Hopf insulators. The topological invariant is called the Hopf invariant [66,
67], and is given by

νH = − 1

4π2

∫
T3

d3k εµνλAµ∂νAλ, (A55)

where Aµ = 〈−,k|∂kµ |−,k〉 is the Berry connection of the valence band defined in
Eq. (A3). It is worth noting that we have ignored all cases of weak topological insu-
lators, i.e., the Chern number over any 2D sub BZ has been assumed to be zero, such
that the valence wave function |−,k〉 can be globally well-defined in the whole 3D BZ.

We now develop another expression of the Hopf invariant, which also gives an expla-
nation of the homotopy group π3(S2) ∼= Z and Eq. (A55). At each k, d̂i(k)σi can be
obtained from σ3 by a SU(2) rotation, namely

H̃(k) = U(k)σ3U−1(k), (A56)

with U(k) ∈ SU(2). Then the valence eigenstates are |−,k〉 = U(k)| ↓〉. Note that the
rotation to the z-axis, e−iσ

3φ/2, does not change the orientation of the state | ↓〉, namely

U(k) and U(k)e−iσ
3φ(k)/2 give the same d̂(k). Due to the U(1) gauge freedom in the

presentation of d̂(k) by an element of SU(2), U(k) can be made globally well-defined
in the whole BZ. Then, the Hopf invariant is equal to the winding number of U(k) as a
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mapping from the 3D BZ to SU(2) [569],

νw[U ] = − 1

24π2

∫
T3

d3k εµνλtrU∂µU−1U∂νU−1U∂λU−1. (A57)
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