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Abstract
Most quantum states of condensed matter are classified by the sym-

metries they break. For example, crystalline solids break transla-

tional symmetry, and ferromagnets break rotational symmetry. By

contrast, topological states of matter evade traditional symmetry-

breaking classification schemes, and they signal the existence of a

fundamentally different organizational principle of quantum matter.

The integer and fractional quantum Hall effects were the first topo-

logical states to be discovered in the 1980s, but they exist only in the

presence of large magnetic fields. The search for topological states of

matter that do not require magnetic fields for their observation led to

the theoretical prediction in 2006 and experimental observation in

2007 of the so-called quantum spin Hall effect in HgTe quantum

wells, a new topological state of quantum matter. In this article, we

review the theoretical foundations and experimental discovery of the

quantum spin Hall effect.
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1. INTRODUCTION
Symmetry appears to be a profound organizational principle of nature. Beautifully symmet-

ric natural patterns are ubiquitous, ranging from spiral galaxies and nearly spherical planets

to the fivefold symmetry of starfish and the helical symmetry of DNA. Symmetry also turns

out to be a remarkably useful theoretical principle by which we can structure our under-

standing of complex physical systems. In the field of condensed matter physics—where one

studies matter arranged in an endless variety of forms—the symmetry principle may find its

most spectacular application. Paradoxically, one of the most instructive ways to study

stable phases of matter is to classify them according to the symmetries they break. Most

classical and quantum gases and liquids do not break any symmetries; they enjoy the full

translational and rotational symmetries of free space. Most classical and quantum solids

break these symmetries down to a discrete subgroup of translations and rotations (the space

group). Magnetically ordered quantum spin systems such as ferromagnets and antiferro-

magnets break spin rotation symmetry. This “broken symmetry principle” is at the heart of

the phenomenological Ginzburg-Landau theory (1) of phase transitions, which, combined

with microscopic many-body theories of condensed matter systems, constitutes the corner-

stone of pre-1980s condensed matter physics. In Ginzburg-Landau theory, a stable phase of

matter is characterized by a local order parameter, which is nonzero in an ordered phase

but vanishes in a disordered phase. Phases with nonzero order parameters are further

distinguished by the way the order parameter transforms under symmetry operations,

i.e., by the representation of the symmetry group of the system Hamiltonian to which it

belongs.

The 1980s were marked by the discovery of the integer (2) and fractional (3) quantum

Hall (QH) effects. The QH effect occurs when a two-dimensional electron gas (2DEG),

for instance, one formed by electrons trapped in the inversion layer of a metal-oxide-

semiconductor structure or electrons in a semiconductor quantum well (QW), is subjected

to a large magnetic field perpendicular to the plane of the 2DEG. A perpendicular magnetic

field causes the electrons to travel along circular cyclotron orbits, the radii of which becomes

smaller with increasing magnetic field. For large enough magnetic fields, electrons in the bulk

of the material form small, closed cyclotron orbits. By contrast, electrons near the edge of

the sample can trace extended, open orbits that skip along the edge. At low temperatures,

quantum effects become important and two series of events happen. First, the area of closed

orbits in the bulk becomes quantized, bulk electrons become localized (because they trace

only small, closed orbits) and the bulk turns into an insulator. Second, the skipping edge

orbits form extended one-dimensional channels with a quantized conductance of e2/h per

channel. Furthermore, the transverse (Hall) conductance sxy is quantized in integer (integer

QH) or rational (fractional QH) multiples of e2/h.

It was soon realized that the bulk of a QH state is a featureless insulating state that does not

break any symmetries other than time-reversal (TR) symmetry and thus cannot be characterized

by a local order parameter. Nevertheless, QH states with different values of the Hall conduc-

tance are truly distinct phases of matter and correspond to quantum ground states that cannot

be adiabatically connected to each other without closing a spectral gap, i.e., without going

through a QH plateau transition. Even more surprising is the fact that the quantization of the

Hall conductance is extremely accurate even in disordered samples, where one would expect the

randomizing effect of disorder to destroy any quantization phenomenon. Indeed, if conduction

proceeds only through one-dimensional channels, one would naively expect these to be strongly

affected by disorder due to Anderson localization (4).
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The lack of a bulk local order parameter description à la Ginzburg-Landau and the existence

of boundary states robust to disorder both can be understood as defining characteristics of a

topological state of quantum matter. A useful concept in this context is that of bulk-edge

correspondence (5), of which the integer QH state provides a clear illustration. A topological

state of matter is insulating in the bulk but supports gapless boundary states that are

perturbatively robust to disorder. Rather than being characterized by a local order parameter,

the bulk is characterized by a topological invariant that, in the case of the integer QH state, is

an integer denoted as the TKNN number (6) or Chern number (7). The bulk topological

invariant is in turn related to the number of stable gapless boundary states. In the integer QH

state, the Chern number is equal to the number of stable gapless edge states and is also the value

of the quantized Hall conductance in units of e2/h. In that sense, one says that the edge states are

protected by the bulk topology. But more concretely, what is the mechanism for this “topolog-

ical protection”? The answer is the following: The bulk topology is responsible for some kind of

fractionalization on the edge. More precisely, the usual degrees of freedom of the electron are

spatially separated on opposite edges. The usual degrees of freedom of an electron in a one-

dimensional channel are twofold: right-moving and left-moving. However, in a QH sample, one

edge has only right-moving electrons and the other edge has only left-moving electrons (or vice

versa, depending on the sign of the magnetic field). Backscattering on a given edge is thus

suppressed owing to the inability of an electron to reverse its direction of motion, and the QH

edge channels completely evade Anderson localization. Because a single direction of propaga-

tion is present on a given edge, the QH edge channels are termed chiral.

The TKNN integer relates the physical response of the Hall conductance to a topological

invariant in momentum space. Although the TKNN formalism (6) gives the first insight into the

topological nature of the QH state, it is limited to noninteracting systems. A more fundamental

description of the QH effect is given by the topological field theory based on the Chern-Simons

term in 2þ1 dimensions (8, 9). In this approach, the problem of electrons in a 2DEG subject to

an external perpendicular magnetic field B is exactly mapped to that of bosons coupled to both

the external magnetic field and an internal, emergent statistical magnetic field b. This statistical

magnetic field, the dynamics of which are described by the Chern-Simons term (10), is respon-

sible for the transmutation of the fermionic electrons into bosons. At the magic filling fractions

n ¼ 1/m (when m is an odd integer) at which the QH effect occurs, the external and statistical

magnetic fields precisely cancel each other, and the bosons condense into a superfluid state. The

effective field theory of a boson superfluid is the 2þ1 Maxwell electrodynamics (11, 12). In the

long wavelength and low-energy limit, the Chern-Simons term dominates over the Maxwell

term, and the effective theory of the QH state is just the topological Chern-Simons term. This

topological field theory is generally valid in the presence of disorder and interactions.

Until very recently, QH states were the only topological states for which the existence had

been firmly established by experimental observation. Compared with the rich variety of “tradi-

tional” broken-symmetry states, the following question naturally arises: Should there not be

other topological states remaining to be discovered? In this article, we review the 2006 theoret-

ical prediction (13) and the 2007 experimental discovery (14) of the quantum spin Hall (QSH)

effect in HgTe QWs, a new topological state of matter sharing some similarities—but also

several qualitative differences—with the QH effect. We start in Section 2 by reviewing develop-

ments in the field of spintronics that took place in the first half of the past decade, as well as

theoretical work on the QH effect in the late 1980s, which became key precursor elements in

the 2006 theoretical prediction of the QSH effect. We then describe the phenomenology of the

QSH state per se. In Section 3, we discuss in greater detail the theoretical prediction of the QSH

state in HgTe QWs. In Section 4, we describe the 2007 experimental discovery of the QSH state
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in HgTe QWs. In Section 5, we describe the theory of the QSH edge states in greater detail. In

particular, we discuss the perturbative stability of the edge states and describe the theoretical

prediction of novel phenomena associated with these states, which stem from their unusual

electromagnetic response. In Section 6, we give a brief discussion of the recently discovered

three-dimensional topological insulators, a three-dimensional generalization of the QSH effect.

We then conclude with an outlook on future directions as well as open questions in the field.

2. PHENOMENOLOGY OF THE QUANTUM SPIN HALL EFFECT
One key element that was instrumental in arriving at the theoretical prediction of the QSH state

is the prediction of the intrinsic spin Hall (SH) effect in doped semiconductors (15, 16). The SH

effect can be thought of as the spin counterpart to the classical “charge” Hall effect. In the SH

effect, a transverse spin current flows, say, in the x direction, in response to an applied electric

field in the y direction. In contrast to the Hall effect, which breaks TR symmetry due to the

applied magnetic field, the SH effect does not break TR symmetry. This can be simply seen by

looking at the corresponding response equations. In the Hall effect, the Hall current is given by

Jx¼ sxyEy, where sxy is the Hall conductivity and Ey is the electric field. Because Jx is odd under

TR symmetry but Ey is not, sxy must necessarily be odd under TR symmetry. Hence, if sxy 6¼ 0,

TR symmetry is broken. By contrast, the spin Hall current is given by, say, Js
x ¼ ss

xyEy, where

ss
xy is the spin Hall conductivity. In contrast to the charge current Jx, the spin current Js

x is even

under TR symmetry (15, 17) and ss
xy 6¼ 0 is consistent with TR symmetry. The role played by

the magnetic field in the charge Hall effect is assumed by the spin-orbit coupling of the

bandstructure in the SH effect. To theorize a topological state of matter related in some way to

the SH effect, one first needs to make sure that the bulk of the system is insulating. The

theoretical prediction that the intrinsic SH effect could also be realized in insulators (18) was

an important step in that direction.

Because the charge Hall effect naturally leads to the QH effect, asking if the intrinsic SH

effect of metals and insulators can similarly have a quantum version follows. Kane & Mele (19)

and Bernevig & Zhang (20) independently proposed two systems to realize the QSH effect.

Roughly speaking, the QSH state can be viewed as two copies of the QH state with opposite

Hall conductances. The proposal by Kane and Mele is based on the spin-orbit interaction of

graphene and is mathematically motivated by the earlier work of Haldane (21) on the so-called

quantum anomalous Hall effect (QAH effect). The proposal by Bernevig and Zhang is based on

the spin-orbit interaction induced by strain in semiconductors. Neither proposal has yet been

realized in actual condensed matter systems, mostly because of the small spin-orbit interaction

in the proposed systems. However, they provide an important conceptual framework in which

the stability of the QSH state can be investigated.

What is quantized in the QSH effect, and in what sense is the QSH state a topological state

of matter? These questions are most clearly answered by looking at whether this state supports

stable gapless boundary modes, robust to disorder. Let us proceed by comparison with the QH

edge modes discussed in Section 1 (Figure 1). As mentioned above, the edge states of the QH

state are such that electrons can propagate only in a single direction on a given edge. Compared

with a one-dimensional system of spinless electrons (Figure 1, top left), the top edge of a QH

system contains only half the degrees of freedom (Figure 1, bottom left). The QH system can

thus be compared to a “freeway” where electrons traveling in opposite directions have to

be “driving in different lanes.” This spatial separation resulting in chiral edge channels can

be illustrated by the symbolic equation 2 ¼ 1þ1 where each 1 corresponds to a different

chirality. This “chiral traffic rule” is particularly effective in suppressing electron scattering:
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Because electrons travel always in the same direction, they are forced to avoid impurities

(Figure 1, bottom left, green dot), and thus cannot backscatter.

By contrast, the QSH state can be roughly understood as two copies of the QH state, with

one copy for each spin. The edge state structure of the QSH state (Figure 1, bottom right) can

thus be described pictorially by superposing two copies of QH edge states (Figure 1, bottom
left), with opposite chirality for each spin. Compared with a spinful one-dimensional system

(Figure 1, top right), the top edge of a QSH system contains only half the degrees of freedom.

The resulting edge states are termed helical, because spin is correlated with the direction of

propagation. This new pattern of spatial separation can be illustrated by the symbolic equation

4 ¼ 2þ2 where each 2 corresponds to a different helicity. Although electrons are now allowed

to travel both forward and backward on the same edge, there is a new “traffic rule” that

suppresses backscattering: To backscatter, an electron needs to flip its spin, which requires the

breaking of TR symmetry. If TR symmetry is preserved, as is the case for nonmagnetic impuri-

ties, no backscattering is allowed (a more detailed discussion of the stability of the QSH edge

states and the importance of Kramers’s theorem is given in Section 5).

What is the mechanism that allows this spatial separation? In the case of the QH effect, the

separation is achieved by an external magnetic field, and in the case of the QAH effect, some

internal field breaks TR symmetry. This internal field takes the form of a relativistic mass term

for emergent Dirac fermions in 2þ1 dimensions, with the sign of the internal field (and hence

the chirality of the QAH edge states) dictated by the sign of the mass. In the case of the

QSH effect, the separation is achieved through the TR invariant spin-orbit coupling—which is

why the QSH insulator can be thought of as an extreme case of the SH insulator discussed

previously.

Because the QSH state is characterized by a bulk insulating gap and gapless boundary states

robust to disorder (in the presence of TR symmetry), the QSH state is indeed a new topological

Spinless 1D chain

QH QSH

2 = 1+1 4 = 2+2

Spinful 1D chain

Impurity

Figure 1

Chiral versus helical: Spatial separation is at the heart of both the quantum Hall (QH) and quantum spin

Hall (QSH) effects. A spinless one-dimensional (1D) system (top left) has both right-moving and left-
moving degrees of freedom. Those two basic degrees of freedom are spatially separated in a QH system

(bottom left), as illustrated by the symbolic equation 2 ¼ 1þ1. The upper edge has only a right-mover and

the lower edge a left-mover. These chiral edge states are robust to disorder: They can go around an impurity

(green dot) without backscattering. By contrast, a spinful 1D system (top right) has twice as many degrees of
freedom as the spinless system owing to the twofold spin degeneracy. Those four degrees of freedom are

separated in a time-reversal (TR) invariant way in a QSH system (bottom right). The top edge has a right-

mover with spin up (red dot) and a left-mover with spin down (blue cross), and conversely for the lower

edge. That separation is illustrated by the symbolic equation 4¼ 2þ2. These helical edge states are robust to
nonmagnetic disorder, i.e., impurities that preserve the TR symmetry of the QSH state.
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state of matter. However, because the Hall conductance of the QSH state vanishes, it is clear

that the TKNN or Chern number discussed above, which corresponds to the the value of the

Hall conductance in units of e2/h, cannot provide a useful classification of the QSH state. This

issue has been addressed within both the topological band theory (23) and the topological field

theory (23). Accordingly, the proper topological invariant is valued in the Z2 group containing

only two elements, 0 or 1, with 1 corresponding to the topologically nontrivial QSH insulator

and 0 corresponding to a topologically trivial insulator with no robust gapless edge states.

Physically, this Z2 invariant counts the number of stable gapless edge states modulo 2 (more

details in Section 5).

3. THE QUANTUM SPIN HALL EFFECT IN HgTe QUANTUM WELLS
As mentioned above, Kane & Mele (19) proposed graphene—a monolayer of carbon atoms—as

a possible candidate for the QSH effect. Unfortunately, this proposal turned out to be unrealis-

tic because the spin-orbit gap in graphene is extremely small (24, 25). The QSH effect was also

independently proposed in semiconductors in the presence of strain gradients (20), but this

proposal was hard to realize experimentally. Soon afterward, Bernevig, Hughes, and Zhang

(BHZ) (13) initiated the search for the QSH state in semiconductors with an “inverted”

bandstructure and predicted a quantum phase transition in type-III HgTe/CdTe QW between a

trivial insulator phase and a QSH phase governed by the thickness d of the QW. In this section,

we review the basic theory of the QSH state in the HgTe/CdTe system. We start by reviewing the

basic electronic properties of bulk three-dimensional HgTe and CdTe that make them suitable

for hosting the QSH effect (Section 3.1). We then discuss the nature of the two-dimensional

subband states in HgTe/CdTe type-III QW and present a simple model that captures the physics

of the relevant subbands for the QSH effect (Section 3.2). Finally, we discuss the helical edge

states in the HgTe/CdTe QW system in greater detail (Section 3.3).

3.1. Spin-Orbit Coupling and Band Inversion in Bulk HgTe
HgTe and CdTe are binary II-VI semiconductors, both of which crystallize in the zincblende

structure. This crystal structure has the same geometry as the diamond lattice, i.e., two

interpenetrating face-centered cubic lattices shifted along the body diagonal, but with a differ-

ent atom on each sublattice. The presence of two different atoms breaks the inversion symmetry

of the diamond lattice and reduces the point group symmetry from Oh (cubic) to Td (tetrahe-

dral). However, the explicit breaking of inversion symmetry has only a small effect on the

physics of the QSH state (26). We therefore ignore it from now on and approximate the point

group as Oh.

For both HgTe and CdTe, the important bands near the Fermi level are close to the G point in

reciprocal space and can therefore be indexed according to the G-point representations of the

cubic group. They are the s-type antibonding (parity odd) G6 band and the p-type bonding

(parity even) band that is split into a J ¼ 3/2, G8 band and a J ¼ 1/2, G7 band by spin-orbit

coupling. CdTe, as shown in Figure 2a (right), is characterized by a band ordering following

that of GaAs, with an s-type (G6) conduction band and p-type (G8,G7) valence bands separated

from the conduction band by a large direct energy gap of �1.6 eV. By contrast, HgTe, as a bulk

material, can be regarded as a symmetry-induced semimetal (Figure 2a, left). Its negative energy

gap of �300 meV indicates that the G8 band, which usually forms the valence band, lies above

the G6 band. The light-hole (LH) G8 band becomes the conduction band, the heavy-hole (HH)

G8 band becomes the topmost valence band, and the s-type G6 band is pushed below the Fermi
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level to lie between the HH band and the spin-orbit split-off G7 band. Because of this unusual

sequence of states, such a bandstructure with the associated negative bandgap is termed

inverted. Ultimately, because HgTe and CdTe are structurally similar materials with bandgaps

of opposite sign, the QSH state can be realized in HgTe/CdTe QWs (discussed in the following

sections).

3.2. HgTe Quantum Wells and the Effective Model Hamiltonian
When HgTe-based QW structures are grown, the peculiar properties of the well material can be

utilized to engineer the bandstructure in a controlled fashion. More precisely, we discuss the

nature of the two-dimensional subbands for the propagation of electrons and holes in the plane

perpendicular to the growth axis, which we denote z. The particular QW structure in which we

are interested consists of an HgTe QW layer of thickness d sandwiched between thick CdTe

barriers (Figure 2b). For wide QW layers (large d), quantum confinement effects are weak

HgTe

CdTe CdTe

H1

E1

d < dc d > dc

CdTe

HgTe

CdTe

E1

H1

0

1.5

–1.5

–1.0

–0.5

0.5

1.0

a

b

k(nm–1)

0 1.0–1.0
k(nm–1)

0 1.0–1.0

HgTe

E (eV) 0

1.5

–1.5

–1.0

–0.5

0.5

1.0

E (eV)

Γ6 Γ6

Γ8 Γ8

Γ8

Γ6

Γ7

CdTe

Γ8

Γ6

Γ7

HH-like

Fermi level (EF)

LH-like

LH

HH

Figure 2

(a) Bulk bandstructure for three-dimensional HgTe (left) and CdTe (right) with Fermi level EF indicated by a

green line; (b) schematic picture of the type-III quantum well geometry and lowest-lying subbands for the
trivial insulator state with d < dc (left) and the nontrivial QSH insulator state with d > dc (right).
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and the bandstructure remains “inverted,” i.e., the physics is mostly “HgTe-like.” For the most

part, conduction subbands have G8 character and the valence subbands have G6 character. By

contrast, for very thin QW layers (small d), the physics is dominated by the neighboring CdTe

barriers and the band ordering is “normal,” i.e., not inverted. In this case, conduction subbands

have mostly G6 character and the valence subbands have mostly G8 character. One therefore

expects a critical thickness dc intermediate to these two regimes, where the G8 and G6 subbands

cross and the band ordering changes. This scenario is illustrated in Figure 3, where the subband

structure has been obtained from self-consistent Hartree calculations using an 8�8 k�p model

(13, 26, 27). The notation of the subbands as HH (H)-like and electron (E)-like is based on the

properties of the respective wave functions (28). The LH-like subbands are far away in energy

(E≲�100 meV) and are thus not depicted in Figure 3. The transition from a normal band

alignment to an inverted one can be seen clearly in this figure. For a thin QW layer d < dc,

quantum confinement gives rise to a normal subband sequence and the subband gap defined

as Eg � EE1
� EH1

is positive. For a thick QW layer d > dc, the subband sequence is inverted and

Eg is negative.

Of interest is the derivation of a low-energy effective two-dimensional Hamiltonian

to describe the motion of electrons and holes in the plane perpendicular to the growth

direction z. In particular, we are interested in QW thicknesses close to the critical thick-

ness dc. As shown in Figure 3, the bands closest in energy to the Fermi energy are the E1 and

H1 bands. Furthermore, in experiment, the Fermi energy can be tuned by the application of a

gate potential to lie in the gap (for d 6¼ dc) between the E1 and H1 bands. The simplest

nontrivial effective Hamiltonian will therefore be a Hamiltonian in which only these bands

participate. Instead of presenting the details of an explicit calculation, we derive the form

this Hamiltonian must take from simple symmetry arguments.

The generic form of the effective Hamiltonian can be inferred from TR symmetry and our

assumption of inversion symmetry. We consider a symmetric QW such that even in the QW

geometry the inversion symmetry is not broken.1 This means that the QW wave functions must

100

50

–50

–100
4 6 8

E1
E meV–1

dQW nm–1

E2

H1

H2
H3

H4

10 12 14

0

Figure 3

Spectrum of HgTe/CdTe type-III quantum well (QW) subband states as a function of the HgTe QW layer

width. The E1 subband is of mixed G6 and G8 character, and the H1 subband is of G8 character. For thin

wells d < dc, E1 is the conduction subband, H1 is the valence subband, and the band ordering qualitatively
follows that of bulk “normal” CdTe (Figure 2a, right). For thick wells d > dc, the band ordering is reversed

and qualitatively follows that of bulk “inverted” HgTe (Figure 2a, left).

1Terms that break the structural inversion symmetry (i.e., the reflection z!�z along the growth direction) but preserve

TR symmetry do not destroy the QSH state. In fact, they can be incorporated in the four-band Bernevig-Hughes-Zhang

model (see Reference 29).
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be eigenstates of the parity operator with eigenvalues �1. As such, the E1 states are odd under

parity, whereas the H1 states are even (13, 27, 28, 29). Furthermore, combining TR symmetry

and inversion symmetry, the E1 and H1 must both be doubly degenerate. We thus have four

basis states jEþ1 i,jE�1 i,jHþ1 i,jH�1 i with � denoting TR, or Kramers, partners (see Section 5 for a

discussion of Kramers’s theorem). The states jE�1 i and jH�1 i transform oppositely under parity

and a Hamiltonian matrix element that connects them must be odd under parity because we

assumed our Hamiltonian preserves inversion symmetry. Thus, to lowest order in the in-plane

momentum k¼ (kx,ky), ðjEþ1 i,jHþ1 iÞ and ðjE�1 i,jH�1 iÞwill each be coupled generically via a term

linear in k. The jHþ1 i HH state is formed from the spin-orbit-coupled p-orbitals jpxþipy,"i,
whereas the jH�1 i HH state is formed from the spin-orbit-coupled p-orbitals j�(px�ipy),#i, by

TR symmetry. Because the total angular momentum J along the z direction is still a good

quantum number, these states have J ¼ 3/2 and mJ ¼ �3/2, respectively. Furthermore, the jE�1 i
are formed, roughly speaking, by spin-orbit-coupled s-orbitals js,"i and js,#i that have J ¼ 1/2

and mJ ¼ �1/2. Because the jE�1 i and jH�1 i states differ in their total angular momentum J by 1

(in units of ħ), the matrix elements between these states must be proportional to k� ¼ kx � iky,

which carries one unit of angular momentum in the z direction. The only terms allowed in

the diagonal elements have even powers of k, including k-independent terms. Because of the

twofold degeneracy mentioned above, there can be no matrix elements between the positive (þ)

state and the negative (�) state of the same band. Finally, the existence of nonzero matrix

elements between jEþ1 i and jH�1 i, and similarly for jE�1 i and jHþ1 i, would induce a higher-order

process that couples the � states of the same band, thus lifting the required degeneracy. Hence,

these matrix elements are also forbidden.

If one now writes the effective Hamiltonian according to the symmetry requirements

described in the previous paragraph, a striking result is found. This Hamiltonian, first denoted

by BHZ, is equal to two copies of the massive Dirac Hamiltonian in 2þ1 dimensions (one copy

for each spin) with relativistic masses of opposite sign for opposite spins (13). In other words,

the HgTe/CdTe QW system precisely realizes the phenomenological QSH model described in

Section 2, with two copies of the QAH effect of Haldane for each spin. The BHZ model can

thus be considered as the “hydrogen atom” continuum model of the QSH effect. A more

detailed calculation (13) reveals that the QSH effect is realized only for d > dc, when the QW

bandstructure is inverted, whereas there is no QSH effect (trivial state) for d < dc. The critical

thickness is dc ’ 6.3 nm, in very good agreement with experiments (see Section 4).

3.3. Helical Edge States
As explained in Section 2, we expect that the HgTe/CdTe QW should support gapless helical

edge states. To see if the BHZ Hamiltonian does indeed predict such edge states, we study this

Hamiltonian on a strip of finite width, say, in the y direction. This problem has been studied

both numerically (26, 30) and analytically (26, 30, 31), and edge states are indeed found when

the system is in the QSH phase, i.e., for d > dc (Figure 4).

The edge state properties can be determined from the edge state wave functions, which are

obtained numerically or analytically (26, 30, 31). First, the edge states are exponentially

localized on the edge. The associated decay length x is roughly given by x � ħv/Eg, where Eg

is the E1-H1 gap mentioned above and n is the velocity of the edge states (nominally the

velocity of the bulk Dirac point). Second, the edge states are indeed helical, as anticipated by

the phenomenological model of the QSH state described in Section 2. At energies smaller than

Eg, the edge states disperse linearly and can be described by a one-dimensional Dirac equation.

However, the simple picture of a chiral edge state for spin up and an antichiral edge state for
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spin down is not rigorously exact. As described in Section 3.2, the QW states are strongly spin-

orbit coupled and thus are not eigenstates of the spin operator, but rather of the total angular

momentum in the z direction. Therefore spin is not conserved. Furthermore, in the presence of

a boundary, even the conservation of total angular momentum in the z direction fails. How-

ever, TR symmetry is preserved, and Kramers’s theorem still holds. The defining characteristic

of the helical edge state is that the two states with opposite chirality on a given edge transform

into each other under TR, forming what is known as a “Kramers pair.” This property does

not require any symmetry other than TR and is robust under the introduction of disorder

E

E

0

2

–2

k

0

2

–2

0–π π

Bulk subbands 

Helical edge states 

Figure 4

Calculated quasi-one-dimensional subband dispersion for a strip of HgTe/CdTe quantum well of finite

width in the y direction, with k the momentum along the x direction: (top) exact numerical diagonalization
of the tight-binding form of the Bernevig, Hughes, and Zhang Hamiltonian; (bottom) analytical solution

with bulk subbands in blue and helical edge states in red. One can clearly see the helical edge states

dispersing linearly within the E1-H1 gap.
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(Section 5). This is useful to keep in mind, as many theoretical works in the field use the simple

“spin up/spin down” picture but really mean Kramers partners. This is also the reason why the

QSH effect is not to be understood as a quantized SH effect: Because spin-orbit coupling

destroys spin conservation, there is no such thing as a quantized SH conductance in the QSH

effect. This is another way to understand why the correct topological invariant for the QSH

effect is Z2 and not Z. Finally, the BHZ Hamiltonian predicts a single helical edge state per

edge. This is useful when we compare the theoretical predictions of the BHZ model to

experiment in Section 4.

4. EXPERIMENTS ON HgTe QUANTUM WELLS
Less than one year after the 2006 theoretical prediction described in Section 3, a team at the

University of Würzburg led by Laurens W. Molenkamp observed the QSH effect in HgTe/CdTe

QWs grown by molecular beam epitaxy (14). In this section, we review the main results of these

experiments.

4.1. Landau Levels and Band Inversion in HgTe Quantum Wells
As described in Section 3, the QSH effect relies heavily on the existence of band inversion in

bulk HgTe and its consequences for the HgTe/CdTe QW subband structure. Therefore, one

should first verify whether band inversion in the HgTe/CdTe system exists. A striking manifes-

tation of this is a so-called re-entrant QH effect (26) that has been experimentally observed

(Section 1.3) (see Figure 5). The peculiar band structure of inverted HgTe/CdTe QWs gives rise

100

a   dQW = 40 Å

E meV–1

B T–1 B T–1

E meV–1

b   dQW = 150 Å

50

–50

–100

–20

20

40

0

0

0 5 10 15 0 5 10 15

Figure 5

Bulk Landau levels (fan diagram) for an HgTe/CdTe quantum well (QW) in a perpendicular magnetic field B.
(a) Trivial insulator (d < dc): No level crossing occurs as a function of B, and for a fixed Fermi energy EF in the

B ¼ 0 gap, the Hall conductance sxy is always zero. (b) Quantum spin Hall insulator with d > dc: There is a

level crossing at some critical field B ¼ Bc, and for a fixed EF in the B ¼ 0 gap, a conduction or valence band

Landau level eventually crosses EF, giving rise to a re-entrant quantum Hall effect with sxy ¼ �e2/h.
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to a unique Landau level (LL) dispersion. For a normal band structure (d < dc), all LLs are

shifted to higher energies for increasing magnetic field B (Figure 5a). This is the usual behavior

and can be commonly observed for a variety of semiconductors. When the band structure of the

HgTe/CdTe QW is inverted (d > dc), the LL dispersion is markedly different (Figure 5b). Due to

the mixing of electron- and hole-like states, one of the states of the H1 conduction subband is a

pure HH state (mJ ¼ �3/2). Consequently, the energy of the corresponding LL decreases with

increasing B. In addition, one of the E1 valence subband LLs has mainly electron character and

thus shifts to higher energies with increasing B. This leads to a crossing of these two peculiar

LLs at some critical value of the magnetic field B ¼ Bc. The existence of such an LL crossing is a

clear indication of the occurrence of an inverted band structure.

The crossing of the conduction and valence subband LLs for a QSH insulator (d > dc) can be

verified experimentally by QH experiments. We consider that the Fermi level EF is fixed and lies

inside the zero-field gap Eg(B ¼ 0). At B ¼ 0, the Hall conductance vanishes sxy ¼ 0. At small

enough fields, EF is still in the gap; therefore, a vanishing sxy remains. For large enough fields,

however, one of the “peculiar” LLs will cross EF. Whether a conduction or a valence subband

LL crosses EF first depends on the position of EF and on the exact slope of the LL dispersions

(Figure 5b). In any event, an LL will cross the Fermi level and will therefore give rise to a

re-entrant QH effect with sxy ¼ �e2/h (for a valence LL) or sxy ¼ e2/h (for a conduction LL).

For even larger B, the second “peculiar” LL will cross EF and “cancel” the re-entrant QH

state, restoring the initial vanishing Hall conductance sxy ¼ 0. This re-entrant QH effect has

been experimentally observed (14), which confirms the phenomenon of band inversion in

HgTe/CdTe QWs.

4.2. Transport Measurements: Edge Conductance and Nonlocal Transport
However, the observation of band inversion alone does not constitute a discovery of the QSH

effect. The most striking feature of the QSH state may be the existence of protected gapless edge

states (Section 3.3), so one would like to observe these experimentally. Because, as discussed in

Section 3.3, we do not expect any quantized SH conductance, the most natural experiment

involves the observation of the transport of charge by these edge states. However, because the

QSH effect exists in the absence of an external magnetic field, one cannot perform a measure-

ment of the Hall conductance, which would be zero. The simplest measurement is thus to

measure the longitudinal conductance G on a strip of HgTe/CdTe QW of finite width. It is well

known (32) that a single quantum channel has a longitudinal conductance of e2/h. Because the

BHZ model (Section 3.2) predicts a single helical edge state per edge, and a strip has two edges,

we expect a longitudinal conductance G ¼ 2e2/h, independent of the width and length of the

sample. Indeed, there is a right-mover (say) on each edge. By comparison, a QH system on a

strip with a single chiral edge state per edge would give G¼ 2e2/h, because only one of the edges

has a right-mover. In Figure 6 we show the experimental data (14) obtained for an HgTe/CdTe

QW in the inverted regime d > dc. The longitudinal resistance reaches a plateau Rxx ’ h/2e2 for

values of the Fermi level inside the gap (the Fermi level can be adjusted by the gate voltage Vg).

This quantization has been observed for several samples and at various temperatures. More

precisely, the longitudinal resistance is independent of sample width and length, provided the

sample size is smaller than the phase coherence length. As discussed in the following sections,

unlike the QH effect, the stability of the QSH edge states relies on Kramers’s theorem, which

assumes phase coherence.

These first experimental results provide strong evidence for the existence of the QSH state,

by confirming the basic predictions of the BHZ model. One can submit the edge state prediction
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of the BHZ model to even more stringent tests by performing multiterminal transport experi-

ments (33; see also 34). In these experiments, one measures various nonlocal resistances

denoted Rij,kl by passing a current from terminal i to terminal j and detecting a voltage between

terminals k and l. Within the Landauer-Büttiker formalism of phase-coherent transport

(32, 35), these resistances can be expressed in terms of a transmission matrix Tij � Ti j giving

the probability for an electron to transmit from terminal j to terminal i. For a general two-

dimensional sample, the number of transmission channels scales with the width of the sample,

such that the transmission matrix Tij is complicated and nonuniversal. However, a tremendous

simplification arises if the quantum transport is dominated by edge states. Consider labeling

consecutive terminals of an N-terminal device such as a Hall bar (Figure 7, insets) by consecu-

tive integers i ¼ 1, 2, . . . , N. In the n ¼ 1 QH effect, there is one chiral edge state going along the

boundary from each terminal i to (say) its neighbor on the right iþ1, but not to its neighbor on

the left i�1 (because the edge state is chiral) nor to any other terminal. Therefore, the transmis-

sion matrix for the QH state reads TQH
iþ1,i ¼ 1 for all i and is zero otherwise. From this simple

transmission matrix, one can solve the Landauer-Büttiker equations (35, 36), with results

such as a vanishing four-terminal resistance R14,23 ¼ 0 and a finite two-terminal resistance

R14,14 ¼ h/e2 for the n ¼ 1 QH effect. In contrast, in the QSH effect, the edge states are helical

and consist of counterpropagating Kramers partners. As explained above, this means that we

can consider the helical edge states as two copies of chiral edge states related by TR

symmetry, and the transmission matrix follows as TQSH ¼ TQHþ(TQH){. Therefore, we obtain

TQSH
iþ1,i ¼ TQSH

i,iþ1 ¼ 1 and all other TQSH
ij vanish. One can again solve the Landauer-Büttiker

equations for the four- and two-terminal resistances taken as examples above, and we obtain

R14,23 ¼ h/2e2 and R14,14 ¼ 3h/2e2. These resistances are quantized but manifestly different

from the QH case. Such nonlocal transport measurements have been performed (Figure 7) with

very good agreement with the theoretical Landauer-Büttiker predictions in the helical edge state

16

14

R x
x 

k
Ω

–
1

(Vg – Vth) V–1

12

10

8

6

4

2

0

–1 0 1 2

1μm × 1 μm, 1.8 K

R = h/(2e2)

1μm × 0.5 μm, 1.8 K
1μm × 1 μm, 4.2 K

Figure 6

Measurement of the longitudinal resistance Rxx on strips of HgTe/CdTe quantum well in the inverted regime

(d > dc). The gate voltage Vg is adjusted to position the Fermi level inside the gap (Vg�Vth ’ 0). The
resistance reaches a quantized plateau Rxx ’ h/2e2 indicated by the horizontal line, for small enough

samples and at low enough temperatures where quantum phase coherence is preserved.
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picture. These and other nonlocal transport measurements in different multiterminal geometries

(33) can be taken as definitive evidence for the existence of edge channel transport in the QSH

regime.

5. THEORY OF THE HELICAL EDGE STATE
In the above sections, we allude several times to the fact that helical edge states should be robust

to disorder owing to the bulk topology of the QSH state and the fact that this bulk topology is

protected by a discrete symmetry, TR symmetry. We now explain this assertion in more detail.

The generic properties of TR symmetry are important for understanding the properties of

the helical edge states. The antiunitary TR operator has different properties depending on

whether the degrees of freedom considered carry integer or half-odd-integer angular momen-

tum. For half-odd-integer angular momentum, we have T2 ¼ �1, which implies, according to a

theorem by Kramers, that any eigenstate of a single-particle Hamiltonian must have a degener-

ate partner. In addition, matrix elements of a single-particle TR invariant perturbation between

a state and its Kramers partner must vanish identically (22, 37). As a result, TR symmetry

forbids scattering or hybridization between a state and its Kramers partner. For integer angular

momentum, we have T2 ¼ þ1, and there are no constraints on the single-particle energy

spectrum.

The robustness of the QSH edge state is a direct consequence of the property T2 ¼ �1 for

half-odd-integer angular momentum. In fact, the counterpropagating states on the same edge

are Kramers partners. Therefore, no single-particle TR invariant perturbation can backscatter

the helical edge states, and each edge will carry a longitudinal conductance of e2/h per helical

edge state. Furthermore, for a translationally invariant system, Kramers’s theorem ensures the

crossing of the edge state dispersions at special points in the Brillouin zone (Figure 4, edge state

crossings at k ¼ 0). Because of this level crossing, the spectrum of a QSH insulator cannot be

adiabatically continued into that of a topologically trivial insulator without helical edge states.
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Figure 7

Measurement of the nonlocal resistances Rij,kl in an HgTe/CdTe Hall bar. When the sample is gated
into the quantum spin Hall regime (V	 ’ 0), the nonlocal resistances follow closely the predictions of the

Landauer-Büttiker formalism for helical edge states.
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This is the starting point for the definition of the Z2 invariant (22, 23, 37–40). The Z2 nature of

the invariant can be easily understood in the following way: If there is more than one helical

edge state on each edge, edge states may annihilate in pairs without violating TR symmetry.

Thus, if an odd number of helical edge states is present initially, then at least one helical edge

state will remain after such annihilation processes and the state will remain topologically

nontrivial. If an even number of helical edge states is present initially, then all edge states can

annihilate pairwise and a topologically trivial insulating state with no edge states results. This

even-odd distinction is precisely the reason why the invariant is Z2 valued. By contrast, if TR

symmetry is broken, say, by a magnetic field or a magnetic impurity, backscattering is not

forbidden and the gaplessness of the edge states is not protected. In this case, a gap will

generally open in the edge state dispersion. In the language of one-dimensional Dirac fermions

on the edge, the gap corresponds to a relativistic mass term, and we use the terms gap and mass

interchangeably.

A nice semiclassical picture illustrates why single-particle backscattering is forbidden for

degrees of freedom with half-odd-integer angular momentum (Figure 8). The mechanism is

analogous to the way antireflective coatings on eyeglasses and camera lenses work. In such a

system, reflected light from the top and bottom surfaces of the antireflective coating interfere

destructively, suppressing the overall amount of reflected light (Figure 8a). This effect is,

however, not robust, as it requires precise matching of the coating thickness to the wavelength

of the light. Just as photons can be reflected from an interface between two dielectrics, so can

electrons be backscattered by an impurity, and different backscattering paths will interfere with

each other (Figure 8b). On a QSH edge, the two paths correspond to the electron going around

the impurity in either a clockwise or counterclockwise fashion, with the spin rotating by an

angle of p or �p, respectively. Consequently, the phase difference between the two paths is a full

2p rotation of the electron spin. However, the wave function of a spin-1/2 particle picks up a

minus sign under a full 2p rotation. Therefore, the two backscattering paths related by TR

always interfere destructively, leading to perfect transmission. In contrast to the antireflective

ba

Nonmagnetic impurity

Figure 8

(a) On a lens with an antireflective coating, light beams reflected from the top (blue) and bottom (red)

surfaces interfere destructively, which suppresses the overall amount of reflected light. (b) Two possible

paths taken by a quantum spin Hall (QSH) edge electron when scattered by a nonmagnetic impurity. The

spin is rotated by 180 degrees clockwise along the blue curve and counterclockwise along the red circle.
A geometrical phase factor associated with the rotation of the spin leads to destructive interference between

the two paths, leading to the suppression of electron backscattering on the QSH edge.
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coating, this effect is robust (at the single-particle level), as it depends only on the basic property

T2 ¼ �1 for half-odd-integer spin particles.

5.1. Stability of the Helical Liquid: Disorder and Interactions
As discussed in Section 4, we expect the QSH edge states to be robust under single-particle

perturbations that preserve TR symmetry. This includes isolated nonmagnetic impurities and,

more generally, quenched nonmagnetic disorder (37, 38, 41, 42) [in the presence of a external

magnetic field that breaks TR symmetry, even nonmagnetic disorder can localize the QSH edge

states (43, 44)]. To be more precise, we consider the case of a very wide sample, i.e., W 
 x,
where W is the sample width and x the decay length of the edge states. If a perturbation can

scatter an electron from one edge of the sample to the other, it can gap the edge states even in the

presence of TR. We are, however, not interested in such nonlocal perturbations, but rather, our

interest lies in perturbations that are local to the edge. That being said, we have so far discussed

only the QSH edge states in the absence of interactions. Are the QSH edge states stable to

interactions?

If interactions are allowed, there exist processes that can backscatter electrons on the QSH

edge without violating TR symmetry. The simplest of these is a correlated two-particle back-

scattering process (37, 38, 45, 46), in which two right-moving (for example) spin-up electrons

are backscattered as two left-moving spin-down electrons. Why this process preserves TR

symmetry can be understood in a simple way using the semiclassical picture of electron back-

scattering described in the previous section and in Figure 8b. Whereas the wave function of a

single electron will pick up a minus sign under a 2p spin rotation, the wave function of two

electrons backscattered in the same way will pick up two minus signs that cancel each other.

Therefore, the two time-reversed processes interfere constructively, and two-particle backscat-

tering (or more generally, 2n-particle backscattering with n integer) is allowed by TR symmetry

(37, 38, 45, 46).

However, the QSH edge state is perturbatively stable to electron-electron interactions, in the

sense that a gap will be opened only if the interaction strength exceeds a critical value. In one-

dimensional systems such as the QSH edge, the strength of (short-range) electron-electron

interactions can be parametrized by a number K called the Luttinger parameter, where K ¼ 1

corresponds to noninteracting electrons, K>1 to attractive interactions, and 0 < K < 1 to

repulsive interactions. For repulsive electron-electron interactions, perturbation theory in

the two-particle backscattering amplitude (38) shows that the QSH edge states become gapped

if K < Kc, where Kc ¼ 1/2.. This result holds for a uniform (umklapp) two-particle backscatter-

ing perturbation. If the two-particle backscattering happens only at a single point along

the edge (38), as is the case for an impurity-induced process, the critical value is reduced to

Kc ¼ 1/4, i.e., even stronger interactions. Finally, in the case of quenched disorder-induced

random two-particle backscattering (38, 42), the critical interaction strength is Kc ¼ 3/8.

Although these values correspond to rather strong electron-electron interactions, numerical

estimates (46, 47) of the Luttinger parameter show that one could possibly achieve K � 0.5

in the HgTe/CdTe system or even K � 0.2 in the recently proposed InAs/GaSb/AlSb type-II QW

structure (48), which should also realize the QSH effect.

Another perturbation that can potentially gap the QSH edge states is a magnetic impurity.

On the one hand, classical magnetic impurity acts as a local Zeeman field, which splits the

degeneracy between spin up and spin down and opens a gap. On the other hand, a quantum

magnetic impurity, i.e., a Kondo impurity, exhibits subtler behavior. The physics of the Kondo

effect is that of a crossover from a high-temperature regime at T 
 TK where the magnetic
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impurity (say, a spin-1/2 impurity) acts as a free spin decoupled from the edge eletrons, to a

low-temperature regime at T � TK where the impurity spin is screened by the edge electrons

(49). TK is the Kondo temperature that represents the crossover scale for this problem. For

T 
 TK, the QSH edge electrons will be weakly backscattered by spin flips of the impurity.

As T approaches TK, spin flips are more frequent and the edge conductance decreases (46).

However, at even lower temperatures T � TK, the impurity spin is screened and behaves

effectively as a spinless, nonmagnetic impurity (38, 46, 49). Therefore, the conductance must

be restored to e2/h per edge at T ¼ 0, owing to the helical nature of the QSH edge (46). In

general, the interplay between interactions and the helical nature of the QSH edge states gives

rise to qualitatively different transport properties as compared with ordinary one-dimensional

quantum wires or QH edge states (47, 50–54).

5.2. Fractional-Charge Effect and Spin-Charge Separation

Although a number of interesting physical phenomena associated with the QSH effect have

been mentioned above, such as nonlocal edge transport, suppression of backscattering, and

an “anomalous” Kondo effect, we have not yet fully addressed the question of how the Z2

invariant can be measured, although we have discussed indirect consequences of the bulk

topology. We now discuss two physical properties of the QSH state directly related to the Z2

invariant, which can, in principle, be measured experimentally.

The first property we discuss is the existence of a localized fractional charge at the edge of a

QSH sample when a magnetic domain wall is present (55). As explained above, a magnetic field

(or ferromagnetic layer) generates a mass term for the one-dimensional edge Dirac fermions;

hence, we can speak of a mass domain wall. The idea of fractional charges in condensed matter

systems induced on a mass domain wall goes back to the Su-Schrieffer-Heeger model of

polyacetylene (56), where the mass there corresponds to a charge density wave order parameter.

For spinless fermions, a mass domain wall induces a localized state with charge e/2. The

continuum field theory description of this problem corresponds to the Jackiw-Rebbi soliton

(57). However, for a real material such as polyacetylene, two spin states are present for each

electron. Because of this doubling, a mass domain wall in polyacetylene carries only integer

charge. Indeed, conventional one-dimensional electron systems such as polyacetylene have four

basic degrees of freedom, i.e., right- and left-movers with two spin orientations. However, the

helical edge state on a given edge of the QSH insulator has only two degrees of freedom: a spin-

up right-mover and a spin-down left-mover. Therefore, the QSH helical edge state has half the

degrees of freedom of a conventional one-dimensional system and thus avoids the doubling

problem. Because of this fundamental topological property of the helical liquid, a magnetic

domain wall carries e/2 charge (55). In addition, if the magnetization is rotated adiabatically

(i.e., with angular frequency o� Eg /ħ), a quantized current will flow, with a quantized charge

e pumped after each cycle. This provides a direct realization of the Thouless pump (58). The

fractional charge effect is also realized in the presence of two-particle backscattering at an

impurity site for strong electron-electron interactions K < 1/4, where instanton effects at low

temperatures correspond to tunneling of excitations with e/2 charge (46).

Although the fractional charge effect is truly a topological effect, it still occurs only on the

edge. Because the QSH effect is defined in terms of bulk topology, it would be satisfying to have

bulk physical observables that directly probe this topology. Such an observable is given by

the spin-charge separation effect (59, 60). We first adopt the simple picture of the QSH state

with Sz conservation as two copies of the QH state for opposite spins and then comment on the

realistic case of no spin conservation. The idea essentially follows the Laughlin gauge argument
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(61) for the QH effect. We consider threading adiabatically a thin hc/2e magnetic flux tube

(p flux) through the bulk of a QSH sample. Because both spin species carry the same charge,

electrons of both spins feel the same flux ’" ¼ ’# ¼ p. We now consider a Gauss loop

surrounding the flux tube. As the flux ’" is turned on adiabatically from 0 to p, Faraday’s law

of induction states that a tangential electric field E" is induced along the Gauss loop. The

quantized Hall conductance for spin-up electrons implies a radial current j" ¼ e2

h ẑ� E",
resulting in a net charge flow DQ" ¼ e/2 (62, 63) and a net spin flow DSz

" ¼ ħ=4 (64) through

the Gauss loop when j" is integrated over time. An identical argument applied to the spin-down

component yields j# ¼ � e2

h ẑ� E#, DQ# ¼ �e/2, and DSz
# ¼ ħ=4. Therefore, this process creates a

state with total charge DQ ¼ 0 and total spin DSz ¼ ħ/2, i.e., a spinon (59, 60). Because a flux of

p is equivalent to a flux of �p owing to the two compact U(1) symmetries (charge and spin Sz),

we can also formally insert a spin flux ’" ¼ �’# ¼ p, which gives rise to a holon state with

DQ ¼ �e and DSz ¼ 0, or a spin flux ’" ¼ �’# ¼ �p, which gives rise to a chargeon state with

DQ ¼ e and DSz ¼ 0. A holon (chargeon) is a spinless particle with negative (positive) electric

charge. In the absence of Sz conservation, one can still define generalized spinon and holon/

chargeon states solely in terms of their transformation properties under TR (59, 60). Although

not dynamical excitations, these spin-charge-separated soliton states provide a striking physical

consequence of the bulk topology of the QSH insulator, and they can be used to provide a bulk

definition of the Z2 invariant beyond topological band theory (59, 60).

6. TOPOLOGICAL INSULATORS IN THREE DIMENSIONS

From the above discussions, we see that the simplest TR invariant two-dimensional topo-

logical insulator, the QSH insulator in HgTe/CdTe QWs, has an insulating gap in the bulk

and one pair of helical edge states at each edge. A topological phase transition occurs as a

result of the band inversion at the G point driven by the spin-orbit interaction. The helical

edge state forms a single one-dimensional massless Dirac fermion with counter-propagating

states forming a Kramers doublet under TR symmetry. Furthermore, the helical state

consisting of a single massless Dirac fermion is “holographic,” in the sense that it cannot

exist in a purely one-dimensional system, but can exist only as the boundary of a two-

dimensional system (38).

The model Hamiltonian for the two-dimensional topological insulator in HgTe/CdTe QWs

also gives a basic template for a generalization to three dimensions, leading to a simple model

Hamiltonian for a class of materials: Bi2Se3, Bi2Te3, and Sb2Te3 (65, 66). Similar to their two-

dimensional counterpart the HgTe/CdTe QW, these materials can be described by a simple but

realistic model where the spin-orbit interaction drives a band inversion transition at the G point.

In the topologically nontrivial phase, the bulk states are fully gapped, but there is a topologi-

cally protected surface state consisting of a single two-dimensional massless Dirac fermion. This

two-dimensional massless Dirac fermion is “helical,” as the spin of the electron points perpen-

dicularly to its momentum, forming a left-handed helical texture in momentum space. Similar

to the one-dimensional helical edge state, a single two-dimensional massless Dirac surface state

is “holographic,” in the sense that it cannot occur in a purely two-dimensional system with

TR symmetry but can exist as the boundary of a three-dimensional insulator. A TR invariant

single-particle perturbation cannot introduce a gap for the surface state. A gap can open up for

the surface state when a TR breaking perturbation is introduced on the surface. In this case,

the system becomes a full insulator, both in the bulk and on the surface. The topological

properties of the fully gapped insulator are characterized by a novel topological magneto-

electric effect (23).
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Soon after the theoretical prediction of the three-dimensional topological insulator in the

Bi2Se3, Bi2Te3, Sb2Te3 class of materials (65, 67), angle-resolved photoemission (ARPES) exper-

iments demonstrated the surface state with a single Dirac cone (67–69). Furthermore, spin-

resolved ARPES experiments observed the left-handed helical spin texture of the massless Dirac

fermion (69). These pioneering theoretical and experimental works inspired much of the subse-

quent developments both in theory and experiment.

The general theory of the three-dimensional topological insulator has been developed

along two different routes. The topological band theory gives a general description of the

topological invariant in the single-particle momentum space (39, 70, 71). In particular, a

method due to Fu & Kane (72) gives a simple algorithm to determine the topological

properties of any complex electronic structure with inversion symmetry. This method pre-

dicts that the semiconducting alloy BixSb1�x is a topological insulator for a certain range of

composition x. ARPES experiments (73) have shown topologically nontrivial surface states in

this system. However, the surface states in BixSb1�x are complicated and cannot be described

by a simple model Hamiltonian.

The topological band theory is valid only for noninteracting systems in the absence of

disorder. The topological field theory is a more general theory that describes the electromag-

netic response of the topological insulator (23). Qi et al. (23) found that the electromagnetic

response of three-dimensional topological insulators is described by the Maxwell equations

with an added topological term proportional to E�B. This exact modification (23) had been

proposed earlier in the context of high-energy physics (74), as a modification to conventional

electrodynamics due to the presence of the Peccei-Quinn axion field (75). In this approach (23),

the Z2 topological invariant from topological band theory corresponds to a quantized emergent

axion angle y that is constrained by TR invariance to take only two values, 0 (the trivial

insulator) or p (the topological insulator). The equivalence between the two definitions has

recently been proven (76). Several unique experiments based on axion electrodynamics in three-

dimensional topological insulators have been proposed: a topological Kerr and Faraday effect

(23, 77–79), a topological magneto-electric effect (23), and an image magnetic monopole effect

(80). Efforts toward the discovery of these exotic phenomena, as well as intensive searches for

new three-dimensional topological insulator materials, are ongoing.

7. CONCLUSION AND OUTLOOK
This review covers our current theoretical understanding of the QSH state, with an emphasis on

the theoretical prediction of the QSH state in the HgTe/CdTe QW system and its experimental

realization in that particular material. We first discuss a phenomenological description of the

QSH state in terms of two copies of the QH state for opposite spins and related by TR. As a

consequence of this phenomenological description, we introduce the concept of helical edge

state in terms of two copies of chiral QH edge states for opposite spins and related by TR. We

then explain the importance of spin-orbit coupling and the phenomenon of band inversion in

the HgTe/CdTe system, which is key for the realization of the QSH effect. From simple symme-

try arguments, we describe the main properties of the low-energy effective Hamiltonian (the

BHZ model) for the QSH state in HgTe/CdTe QWs. We then review the experimental discovery

of the QSH state in HgTe/CdTe QWs. The occurrence of band inversion is confirmed by the

observation of a re-entrant QH effect in the presence of an external magnetic field, and

transport measurements provide strong evidence for the existence of extended helical edge

channels. We discuss the theory of the helical edge state in more detail, with an emphasis

on the stability of the edge state to disorder and interactions. We also discuss the existence of
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spin-charge-separated solitons in the bulk of a QSH system as a direct measurable consequence

of the bulk Z2 topology. Finally, we briefly discuss the three-dimensional generalization of the

QSH state, the three-dimensional topological insulator state.

Topological insulators in two and three dimensions have been the subjects of tremendous

investigation over the past few years, from both a theoretical and experimental point of view.

However, many questions remain to be answered. On the experimental side, several new

material candidates for both two-dimensional (48, 81, 82) (QSH) and three-dimensional

(83–85) topological insulators await experimental verification. Even for available materials

(HgTe/CdTe for the QSH effect, Bi2Se3 and related compounds for the three-dimensional

topological insulator), most measurements confirm the existence of the boundary states but do

not probe their intrinsically topological properties (fractional charge for the QSH effect; topo-

logical Kerr/Faraday effect, topological magneto-electric effect, and monopole effect for the

three-dimensional topological insulator). On the theoretical side, many avenues are open for

further investigation. Perhaps one of the most interesting questions concerns whether one can

find fractional topological insulator states in strongly correlated materials. This question can be

interpreted in (at least) two ways. One can consider fractional states in the sense of spin-charge

separation in Mott insulators, i.e., a topological insulator of deconfined, dynamical spinons

(86, 87) that carry spin but no charge. Another definition of a fractional topological insulator

(20, 88–90) is more analogous to the fractional QH state and corresponds to a state with

fractional bulk topological quantum number and deconfined fractionally charged quasiparti-

cles, for instance a fractional axion angle in the bulk of a three-dimensional topological insula-

tor (89, 90). In any event, the prediction, discovery, and recent study of the quantum spin Hall

effect and topological insulators have brought together in an unexpected fashion insights from

fields as diverse as semiconductor physics, solid state physics, materials science, spintronics,

quantum field theory, topological field theory, and particle physics. We look forward to the

many exciting future developments that surely lie ahead.
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