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Abstract

One-dimensional semiconducting nanowires with strong spin-orbit cou-
pling coupled to s-wave superconductors, and exposed to external magnetic
field have been predicted to support Majorana fermion bound states at its
ends. The effect of spin-orbit coupling and external magnetic field is analysed
by studying the energy spectrum of the wire. The appearance of unpaired
Majorana fermions at the ends of a 1D spinless p-wave superconductor is
studied by means of Kitaev’s toy model.

The thesis is then aimed at an analysis and possible improvement of a
simple model for a quantum wire realization of the topological Kondo effect
[1], with particular focus on the role of the charging energy of the supercon-
ducting island. The project entails literature studies as well as independent
calculations, using mainly an analytical approach (tight-binding for nonin-
teracting electrons), supplemented by simple numerical calculations.

The thesis also contains a brief introduction to Kondo effect and the
theory of Numerical Renormalization Group.

Keywords: Topological superconductors, Majorana fermions, Kondo ef-
fect, Non-Fermi liquids, Topological quantum computation, spin-orbit cou-
pling, charging energy.
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Chapter 1

Introduction

This thesis revolves around the quantum wire realization of the topological
Kondo effect [1], primarily the analysis of it, focusing on the role of charg-
ing energy and exploring possible improvements. Chapter 2 begins with an
introduction to Fermi liquids and their deviating behavior, citing the neces-
sity to look beyond Landau’s realms, which leads to the origin of Non-Fermi
liquids. It is the desire to grasp the physics of Non-Fermi liquids that serves
as an underlying motivation for the project.

This is followed, in chapter 3, by a brief overview of the Kondo effect.
Herein a short rundown of the numerical renormalization group is given to
aid the understanding of the multichannel Kondo effect, and how to locate
the fixed point which exhibits Non-Fermi liquid behaviour. The multichannel
Kondo model is then dealt with in detail, in particular, describing the critical
overscreening of the impurity spin and the exotic physics associated with
it. The chapter finally outlines the possibility of realizing Kondo effect in
quantum dots and semiconducting heterostructures.

Chapter 4 is subsequently dedicated to the topological classification of
systems into topological insulators and topological superconductors. It ex-
poses the characteristics of the elusive Majorana fermions appearing in con-
densed matter systems and their potential applications in quantum comput-
ing. The rest of the chapter is devoted to the realization of a 1D spinless
p-wave superconductor that hosts Majorana fermion bound states at its ends.

Finally, chapter 5 elucidates the set-up consisting of two topological su-
perconducting wires to realize topological Kondo effect and the role of charg-
ing energy of the superconducting island that governs the energy spectrum.
The significance of parity in electron transport across the superconductor is
discussed, ultimately delving into the emergence of the Kondo problem in
the effective model.
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Chapter 2

Physics beyond Landau’s
paradigms

For more than half a century, our understanding of the metallic state has
relied primarily on Landau’s Fermi-liquid theory [2]. While the Fermi gas
paints a picture of non-interacting fermions, the Fermi liquid provides an
effective description of interacting fermions. Accordingly the metallic state
is accounted for; on the other hand, the numerous different states of matter
are distinguished by identifying the broken symmetry. This idea of sponta-
neously broken symmetry expressed by an order parameter forms the basis
for Ginzburg-Landau theory of phase transitions [3]. Though Fermi liquid
theory presents an astonishingly successful description of many metals, it has
become increasingly evident that the behaviour of many complex materials,
such as the most notorious problem of high temperature superconductors and
certain f-electron materials fall outside this Fermi liquid picture [4]. As it
turns out, the order parameter too fails to capture the true nature of the state
of these materials violating the Ginzburg-Landau paradigm [5]. As experi-
ments continue to unveil novel materials with unexpected metallic behaviour,
theoretical advances have questioned the inadequacies of these paradigms in
the general understanding of correlated matter. Thus it becomes pertinent
to explore the physics beyond Landau’s paradigms.
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2.1 Fermi Liquids and Non-Fermi liquids

2.1.1 Fermi Liquids

The key ideas of Landau’s Fermi liquid theory, fundamental to the under-
standing of Quantum many-particle systems, are the notion of adiabatic con-
tinuity and quasiparticle. For a non-interacting Fermi system at zero temper-
ature, the ground state consists of a filled Fermi sea of electrons occupying
all states below the Fermi energy εF and the Fermi momentum pF . The
distribution function can be easily described by a step function of the form

n(p) = θ(p− pF ) =

{
1 when p < pF

0 when p > pF .
(2.1)

The concept of adiabatic continuity generalized by Anderson [6] involves the
idea that, often the strongly interacting system retains some of the properties
of its non-interacting parent. With the interactions being slowly turned on
in a non-interacting system, there is a continuous mapping of the low energy
eigenstates of an interacting system with that of the reference non-interacting
Fermi sea. Thus the quantum numbers associated with the excitations of
non-interacting electrons are still valid even after the interactions are fully
applied, provided no phase transition occurs. However, the electrons in the
interacting system are not free electrons anymore but electron-like ‘quasi-
particles’. This is because wavefunctions and energies associated with the
interacting system are different from that of their non-interacting counter-
part. The total energy of the interacting system is not merely the sum of
single-particle energies as observed in a free Fermi gas. There is a differ-
ence in energy which is accounted for by a change in effective mass of the
particles. This energy of the quasiparticles also depends on the quasiparticle
distribution which no longer follows that of the non-interacting Fermi system
described above (2.1). However, a discontinuity is still observed as shown in
Figure 1.1 below.
The discontinuity in the electron distribution function at the Fermi level is
given by quasiparticle weight Z. In a non-interacting system, the eigenstates
are the single-electron states, hence the spectral function of free electrons is a
delta function with Z = 1, same as the probability of finding an electron in an
occupied state below the Fermi level. In the interacting system however, the
eigenstates represent the quasiparticles, making Z < 1 since the probability
of finding an electron in a given state while it is interacting with other elec-
trons is less than 1. Just like particle-hole excitations of the non-interacting
system, a quasiparticle with momentum p close to pF can undergo scattering
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Figure 2.1: Probability distribution of the non-interacting system (red line)
and the interacting Fermi liquid (shaded region) with the discontinuity Z.

into another state p′, creating quasiparticle-quasihole excitations. This leads
to a decay rate of ∼ |p− pF |2, reflecting a finite lifetime thus causing the
quasiparticles to be well-defined and stable close to the Fermi level. This also
illustrates the T 2 low-temperature resistivity of the metal due to electron-
electron interactions. In the same way, the quasiparticle does recover the
free electron expressions for specific heat and magnetic susceptibility as the
temperature goes to zero, thus confirming the success of Fermi liquid theory.

2.1.2 Non-Fermi liquids

Materials which do not display Fermi liquid behaviour are called non-Fermi
liquids [7]. Some of the examples of such materials with properties appearing
to be inconsistent with Fermi liquid theory that have been experimentally
discovered include,

• High-temperature superconductors - The unusual metallic behaviour
of cuprates and the effective two-dimensional nature of CuO2 planes
and its properties can not be accounted for by the Fermi liquid theory
[8][9].

• Many metallic alloys containing elements such as Ce or U with partially
filled f-shells or, Fe or Ru with partially filled d-shells - The properties
in bulk d- and f -electron metals were found to violate the Fermi liquid
behaviour at low temperatures [10][11].
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• Edge states of quantized Hall systems - the appearance of fractionally
charged objects in the fractional quantum Hall effect. Contrary to the
Fermi liquid, switching off interactions in a fractional quantum Hall
system does not produce a unique non-interacting reference state but
a number of degenerate ground states [12].

Theoretically the concept of Landau’s Fermi liquid has been found to break
down in the following cases,

• In one-dimension. In one-dimensional metals, the electrons are unstable
and decay with a rate ∼ T [7][13], into two separate quasiparticles,
spinons and holons carrying the electron’s spin and charge respectively.
The concept which replaces the Fermi liquid theory in one dimension
is called the Luttinger liquid [14].

• Near quantum critical points. When a phase transition occurs at abso-
lute zero, the quantum fluctuations cause the quasiparticles to scatter
drastically and become unstable, ceasing their Fermi liquid behaviour
[15].

• In non-trivial impurity models. In a Kondo model, a magnetic impu-
rity scatters electrons near the Fermi level. While the ordinary single-
channel Kondo model behaves as a Fermi liquid, the two-channel ex-
tension doesn’t so. In general, Kondo models with multiple electron
channels or interacting impurities follow the physics of non-Fermi liq-
uids [16].

Approaches towards explaining these phenomena and developing new ideas
and concepts have lead to the development of numerous mathematical meth-
ods and experimental techniques. Thus the understanding of non-Fermi liq-
uids has become an important challenge in condensed matter physics with
the breakdown of Landaus paradigms in correlated quantum phases.

2.2 Phase transitions and order parameters

As mentioned at the start, in the Ginzburg-Landau paradigm of phase tran-
sitions, an order parameter is defined to classify and distinguish the different
states of matter. Because one of the symmetries of the system is broken
spontaneously as the system moves from a disordered to an ordered state,
the order parameter is defined as the measure of the degree of order across
the phase boundaries [3]. In fact, the order parameter is zero on the high-
temperature, disordered side and non-zero in the ordered, low-temperature
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side of the phase transition. A common example of a phase transition is
a disordered liquid crystallizing to form a solid crystal of long range order
which breaks the continuous translational symmetry, as each point in a crys-
tal does not have the same properties as observed in a fluid. Similarly in a
ferromagnetic phase, the magnetic moments undergo a spontaneous transi-
tion from a disordered phase with no net magnetization to an ordered phase
with a non-zero net magnetization where the magnetic moments are aligned
in a definite direction, resulting in a degenerate ground state. As the spins
(angular momenta) change sign during time reversal, the spontaneous magne-
tization in a ferromagnet breaks the time-reversal symmetry. While the order
parameter in a one-dimensional crystal is the local displacement, the order
parameter in a ferromagnetic material is the local magnetization. Likewise
the low-frequency elementary excitations are sound waves or the phonons in
crystals, and in the latter, the massless excitations are the spin waves called
the magnons.

In the same way, the superconducting phase transition of conventional
superconductors can also be explained in terms of symmetry breaking [17].
Herein the electrons experience an attractive force due to phonon mediated
interactions and become bound to each other and condensate to form Cooper
pairs. The many single-electron wave functions now transfigure into a col-
lective wave function representing the condensate, breaking the global phase
U(1) symmetry, with the pair density acting as the order parameter.

2.3 Breakdown of Landau’s paradigms

The prominent instance where the Fermi liquid theory breaks down is at a
quantum critical point. At second order phase transitions, the fluctuations
corresponding to the order-order correlations occur over longer wavelengths
causing dramatic scattering of the quasiparticles [5]. With the lifetimes of
the approximate eigenstates now much reduced, the quasiparticles wither
away even before the interactions are turned on adiabatically. Secondly, the
well-known example as mentioned previously that violates Ginzburg-Landau
symmetry breaking paradigm is the fractional quantum Hall effect, as the
many phases in these systems exhibit the same symmetry. Moreover, these
correlated phases display a new kind of ‘order’ which simply cannot be en-
capsulated by a Ginzburg-Landau order parameter. Such order which defies
the old notion of spontaneous symmetry breaking theory is called topological
order [18]. While the degenerate ground states previously mentioned were
a reflection of the spontaneous symmetry breaking during a quantum phase
transition, here the degenerate ground states that arise reflect the topologi-
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cal order of the system. Such degeneracy which depends on the topology of
the geometry of the system is called topological degeneracy and it is robust
against perturbations [19]. As opposed to Landau’s concepts wherein the
quantum numbers are retained and the symmetry is broken, the FQH states
possess different quantum numbers of topological origin known as topological
quantum numbers [18] whilst the symmetry is preserved. Here the topo-
logical deformations define the adiabatic continuity. The continuous phase
transition between these different phases in the fractional quantum Hall effect
cannot be explained by fluctuations in an order parameter alone since there
is no order parameter to begin with. The ideas of Landau not only break
down at the correlated phases but also at the zero temperature quantum
phase transitions.

2.4 Exploring beyond Landau’s paradigms

Thus in effect, be it the topologically ordered phases or the multichannel
Kondo effect or the heavy fermion metals, to understand any non-Fermi liq-
uid behaviour, exploring the physics beyond Landau’s paradigm becomes
vital. Of the above, the non-trivial Kondo models are appealing in partic-
ular because they likely pave the way for understanding the formation of
heavy fermions [16]. Moreover, the simplest one-channel Kondo model also
exhibits the interesting phenomenon of asymptotic freedom providing for a
simple variant of the very mechanism behind quark confinement in QCD [20].
In the case of the two-channel Kondo model, the anti-ferromagnetic Kondo
interaction causes a cooperative enhancement of the interactions between the
impurity spin and the conduction electrons resulting in an extraordinarily
strong effective Kondo coupling, which because of the competition between
the two screening channels makes the resulting ground state unstable. In
a quantum dot, a Kondo mediated transport results in enhanced conduc-
tance. However, realizing the two-channel Kondo effect experimentally in a
quantum dot does become tricky with the requirement of fine tuning of the
applied bias and other parameters [21]. External parameters such as temper-
ature and magnetic field, and various processes such as thermal fluctuations
and microwave radiations in the quantum dot may also cause decoherence of
the Kondo singlet state destroying the Kondo effect.

Recent developments have lead to the possibility of realizing localized
Majorana Fermions at the ends of topological superconductors [22][23]. The
degeneracy of the ground state associated with these Majorana modes is
topological in nature which is robust under perturbations and gives rise to
nonlocal zero-energy degrees of freedom. Moreover, the quantum spins as-
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sociated with these nonlocal modes in turn give rise to a novel Kondo effect
topologically protected against perturbations, resulting in a highly robust
non-Fermi liquid behaviour, the “topological Kondo effect” [1]. As topolog-
ical qubits can be encoded in these nonlocal zero-energy modes, they form
the basis for fault tolerant quantum computation [24].

Therefore, study of this robust non-Fermi liquid, the topological Kondo
effect can lead to better understanding of the mesoscopic transport in the
superconducting structures that support Majorana fermions. This may pave
way for the realization of fault tolerant computation using Majorana fermions.
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Chapter 3

Kondo effect

The Kondo effect arises as a magnetic impurity scatters conduction electrons
near the Fermi level with a spin-exchange interaction causing an increase in
resistivity of the metal at low temperatures. It was first observed during
the 1930s that metals such as gold and copper exhibit a finite resistance at
low temperatures [25]. Later studies of gold and copper with iron impurities
revealed that the presence of magnetic impurities dramatically changes low-
temperature resistivity in metals [26]. The phenomenon as initially explained
by Jun Kondo in 1964 is simply due to the interaction of spins [27]. The local
magnetic moment of the impurity aligns parallel or anti-parallel to the spin
of nearby electrons corresponding to a ferromagnetic or antiferromagnetic
interaction and brings about a spin-exchange scattering of electrons. Jun
Kondo showed that the resistivity ρ due to spin exchange scattering increases
logarithmically with decrease in temperature ρ ∼ − ln(T/TK). However, the
theory put forward by Kondo remains valid only till a particular temperature
called “Kondo temperature”, TK and cannot be trusted for temperatures
far below. At T far below TK , the spin-exchange interaction between the
impurity and electrons rapidly grows with decrease in temperature eventually
leading to a coupling of a single electron with the impurity to form a singlet.
Understanding of the physics below Kondo temperature is facilitated by the
theory of Poor Man’s Scaling [28] developed by Anderson and the concept of
Numerical Renormalization Group invented by Wilson [29].

The Kondo effect therefore has two regimes, a strong coupling and a weak
coupling regime very analogous to asymptotic freedom behind quark confine-
ment in QCD. In the weak coupling regime (T > TK) the magnetic impurity
scatters electrons which increases logarithmically with decrease in temper-
ature analogous to the free quarks weakly interacting at high energies and
with strong coupling(T < TK), magnetic moment of the impurity is screened
by single electrons which are bound to it forming a singlet state much alike
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the quarks interacting strongly at low energies where they bind to each other.
The Kondo model of a single impurity is given by the Hamiltonian,

H =
∑
k,σ

εkc
†
kσckσ + J

∑
k,k′,σ,σ′

c†kσσσσ′ck′σ′ · S (3.1)

where the first and second term represent the kinetic energy and electron-
impurity spin-exchange interaction of a sea of spin-1/2 conduction electrons
respectively. S represents a spin-1/2 magnetic impurity and J the exchange
coupling between the impurity and conduction electrons. A negative J cor-
responds to a ferromagnetic interaction and a positive J implies an antifer-
romagnetic interaction.

While the single-impurity Kondo model is well-understood, a Kondo
model in general can be associated with multiple scattering channels and/or
several coupled impurities. Also the ferromagnetic Kondo model remains
essentially trivial as the spin of the impurity is not screened by conduction
electrons, in the strong coupling low-temperature regime, the impurity fun-
damentally remains free and is decoupled from the conduction sea. However,
such is not the case with respect to antiferromagnetic coupling as the im-
purity is screened by conduction electrons which strongly couple to form
a singlet under low energies. A simple perturbative approach cannot ex-
plain such low-temperature phenomena of the Kondo model and calls for
non-perturbative treatments such as numerical renormalization group to un-
derstand the physics below Kondo temperature.

3.1 Concept of Renormalization

In condensed matter systems, the energy scales at which various physical
processes take place may vary. In the Kondo effect, the kinetic energy of
the free conduction electrons is typically of the order of several electron-volts
while the energy scale of the electron-impurity interaction is only few meV.
Therefore, to understand the physics in the low-temperature regime T < TK ,
the Kondo model devised at higher energies needs to be scaled down to lower
energies. This can be done by lowering an energy cutoff scale Λ [30]. An
ultraviolet cutoff gives the maximal allowed energy of the excitations that are
taken into account in the model, ignoring physical quantities and excitations
with energies above the cutoff. Since only the low-energy (infrared limit)
properties of the system are of primary interest, by successfully lowering the
cutoff one focuses on the behaviour of the system at lower energies, thus
eliminating any higher energy contributions. The system once renormalized
is rescaled again to a new energy cutoff, and integrating out the degrees
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of freedom outside the newly rescaled energy range results in an effective
coarse-grained Hamiltonian after rescaling of the cutoff energy.

Thus, it is the cutoff dependence of physical quantities that is the premise
of renormalization group. The procedure of renormalization group transfor-
mation can be summarized into following steps,

1. Discretizing the energy scale with cutoff energy (Λ).

2. Integrating out states at energies above the rescaled cutoff and renor-
malizing the coupling constants (J → J(Λ)) to low energies.

3. Rescaling the cutoff energy (Λ→ Λ′) resulting in a new Hamiltonian.

Repeating the above steps, the RG transformation leads to a fixed point
Hamiltonian that is no longer sensitive to iteration, having filtered out fine
details of the original high-energy model and retaining only observables that
remain universal. The RG transformation of a high energy model Hamilto-
nian continuously evolves with Λ and flows towards these fixed points which
are scaling invariant and hence belong to the same universality class. There-
fore, with a running energy scale Λ and cutoff dependent coupling constant,
the RG transformation causes a renormalized flow of the coupling constant
towards the fixed point resulting in a running coupling constant J(Λ) [30].

For the simple one-channel Kondo model there exists two fixed points as
cutoff energy scales with temperature.

• At T =∞, in high energy scales where Λ→∞, the coupling constant
is J → 0 denotes weak coupling regime.

• At T = 0 low-temperature regime, low energy physics dominates as
coupling constant flows to infinity J →∞.

In a ferromagnetic Kondo model the coupling at lower energies is negligible
and hence J → ∞ fixed point is unstable and only the weak coupling fixed
point at J = 0 is stable. But in an antiferromagnetic Kondo model, the
J = 0 weak coupling point is unstable and J(Λ) → ∞ gives the strong
coupling fixed point describing the stable singlet state validating the low-
energy theory of the Kondo model below TK . Thus these two fixed points
for antiferromagnetic coupling, J = 0 (unstable when renormalizing to low
energies) and J = ∞ (stable at low energies) are indeed hallmarks of an
asymptotically free theory.

13



3.2 Multichannel Kondo problem

Whereas the single-channel Kondo model by far renormalizes to a Fermi liq-
uid at low temperatures, the so-called multichannel Kondo problem exhibits
unusual non-Fermi liquid behaviour. Nozires and Blandin [31] formulated
the multichannel Kondo model for an impurity of arbitrary spin S with M
orbital channels as

H =
∑
k,σ,µ

εkc
†
kσµckσµ + J

M∑
µ=1

S · σµ

with σµ =
∑
k,k′α,β

c†kαµσαβck′βµ.

(3.2)

Here σ denotes the vector of Pauli matrices representing the spin of the
conduction electrons in the channel with index µ (µ = 1, 2, ...,M) and J
denotes the exchange coupling which is taken to be antiferromagnetic. The
ferromagnetic case is for now ignored as the coupling stays weak at lower
energies.

Three different cases are observed in a multichannel Kondo model with
antiferromagnetic interaction depending on the number of channels M and
spin S of the impurity [31].

• M < 2S: when the number of channels is less than the magnitude of
the impurity spin S, the impurity is not effectively screened and has a
net spin that is not compensated resulting in a underscreened Kondo
model.

• M = 2S: Perfectly screened Kondo model where the impurity spin is
completely screened and compensated for, with the number of scatter-
ing channels being equal to the impurity spin size. This is much alike
the single-channel Kondo model.

• M > 2S: the case of overscreening occurs when the number of chan-
nels is larger than the magnitude of the impurity spin, resulting in an
unstable ground state which is a non-Fermi liquid.

The resulting singlet ground state in the first two cases (with a residual de-
coupled spin in the underscreened case) is a Fermi liquid state and does not
display any unusual behaviour [32]. While both the underscreened and over-
screened multichannel Kondo models have net spin, the differences between
the two and the intriguing physics of an overscreened multichannel Kondo
model can be easily explained in a renormalization group language [30].
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(a) (b)

Figure 3.1: Multichannel Kondo effect (a) Underscreened case M < 2S (b)
Overscreened case M > 2S

Underscreening

In an underscreened model, M < 2S, once the cutoff energy Λ goes below
the Kondo temperature, the impurity is partly screened by antiferromagnetic
coupling to the conduction electrons. The uncompensated net spin given
by S ′ = S −M/2 has same spin direction as S as shown in Figure 3.1(a)
and can still interact with electrons. However as all orbital channels are
already occupied by electrons of opposite spin leaving no room for further
antiferromagnetic interaction, the residual coupling of the resultant spin J ′ is
therefore ferromagnetic. The orbital channels of the conduction electrons can
be envisioned as spherical shells surrounding the impurity, with each shell of
electrons carrying opposite spins (depicted in Figure 3.2) because of the Pauli
principle. Hence, only the next channel of electrons with spin parallel to S ′

can interact with the residual spin S ′. Since ferromagnetic coupling scales
to weak coupling, J ′ = 0, the RG flow of the antiferromagnetic coupling is
towards J(Λ) =∞ fixed point, which is now stable.

Overscreening

In an overscreened case, as Λ→ 0 the conduction channels try to screen the
impurity spin to form a Kondo singlet in the strong coupling limit J(Λ) →
∞. However, since there is now a surplus of channels, the screening will
overcompensate the spin-up impurity, resulting in a net spin S ′ = M/2− S
pointing down as seen in Figure 3.1(b). Much alike the underscreened case,
there is no extent for spin down electrons to interact with the impurity as
they have occupied all available states and only spin-up electrons of the next
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Figure 3.2: Electron orbital channels as 3D shells surrounding and screening
the impurity in a multichannel Kondo problem.

set of orbital channels interact with the impurity. The difference lies in the
detail that S ′ in the underscreened case has the same spin as the impurity
S, but in the present case the effective spin S ′ is opposite in direction to S
making the residual coupling J ′ to be anitferromagnetic. Nevertheless, when
the antiferromagnetic coupling J ′ flows towards the strong coupling fixed
point J ′(Λ)→∞, it will explode yet again like J did. One thus expects that
the strong coupling fixed point, J(Λ) = ∞, is unstable and RG flows to a
finite but stable intermediate coupling fixed point as illustrated schematically
in Figure 3.3. This conclusion is corroborated by a formal RG calculation.

Figure 3.3: Renormalization group flows of the running coupling J(Λ) [30].

The ground state characterized by this intermediate coupling fixed point
exhibits non-Fermi liquid behaviour. Using Bethe ansatz or conformal field
techniques, an exact solution to the multichannel Kondo problem can be
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obtained and the intermediate coupling fixed point can be identified [33][34].
The simplest example of a multichannel Kondo problem is the case of the
overscreened spin-1/2 two-channel Kondo model. The two-channel Kondo
problem is of particular interest as it paves way towards observing non-Fermi
liquid behaviour, has practical applications as a two-level system, and also
gives a better insight into the physics of an intermediate-coupling fixed point.

3.2.1 Two-channel Kondo model

In a two-channel Kondo effect, a spin-1/2 impurity is surrounded by two
scattering channels M = 2. The sea of conduction electrons in these two
channels do not interact with each other and are perceived only by the im-
purity. In the weak-coupling high-temperature regime, conduction electrons
in both channels are scattered by the spin-1/2 impurity. However, the physics
in the low-temperature strong coupling limit becomes particularly interesting
depending on the coupling of the two channels with the impurity. If a and
b are the two conduction channels, then from (3.2) the two-channel Kondo
Hamiltonian takes the form,

H =
∑

k,σ,µ=a,b

εkc
†
kσµckσµ + JaS · σa + JbS · σb. (3.3)

Even for a small channel asymmetry, Ja 6= Jb, the stronger coupled channel
screens the impurity and thus the two-channel Kondo model behaves just like
an ordinary single-channel model. In other words, channel asymmetry causes
the channel that is coupled stronger to flow towards the strong coupling limit
J → ∞, and the weakly coupled channel flows to the weak coupling fixed
point J = 0. However, when both channels have equal coupling strength,
Ja = Jb, then exotic overscreened behaviour ensues, resulting in an unstable
ground state [32].

Because of the symmetry of the two channels in this case, the impurity
cannot favour a single channel to form a singlet. Therefore the resultant state
has a net spin S ′ = M/2− S = −1/2 as the two spins bind to the impurity.
This state with a net spin −1/2 behaves as a new spin-1/2 impurity, and
having two channels to interact with, undergoes another Kondo effect which
in turn results in a new state with spin +1/2 and so on. This behaviour is
illustrated in Figure 3.4. Therefore, the ground state in the strong coupling
limit is unstable and flows towards a finite intermediate coupling fixed point,
which is only stable at the critical point Ja = Jb. As a result, the impurity
is never completely screened.

The Bethe ansatz solution of the two-channel Kondo problem gives the
ground state associated with the intermediate coupling fixed point and it has
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Figure 3.4: Two-channel Kondo effect where the impurity spin +1/2 interacts
with two conduction channels and forms an effective residual spin which has
a net spin −1/2. The residual spin acts as a new spin-1/2 impurity and
interacts with two conduction channels going through another Kondo effect
and so on [7].

a residual entropy of 1/2 ln 2 [33]. This residual entropy can be interpreted by
following an Abelian bosonization approach which identifies this fractional
entropy as a Majorana fermion mode [35]. Majorana fermions are fermions
that are their own anti-particles and the appearance of Majorana fermions
as quasiparticles in condensed matter systems is discussed in detail in forth-
coming chapters. The Abelian bosonization of the two-channel Kondo model
results in a resonant-level Kondo model and is analogous to the Toulouse
limit of the single-channel Kondo model [36]. Thus, a reformulation of the
two-channel Kondo problem in terms of Majorana representation helps to
understand the low-energy fixed point. Another method involves compacti-
fying the two-channel Kondo model by expressing the Hamiltonian in terms
of three Majorana fermion modes that describe the decoupled spin degrees
of freedom. This is achieved by separating spin and charge into independent
degrees of freedom and focusing exclusively on the former [37]. In fact, a
channel signifies the internal degrees of freedom of conduction electrons cou-
pled to the impurity. Since a Majorana fermion is only half a fermion, it can
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be perceived that only half the impurity degrees of freedom are coupled to
the conduction electrons, therefore leading to a suitable interpretation of the
residual entropy 1/2 ln 2. Besides it has been shown that a Majorana formu-
lation of the two-channel Kondo model emerges naturally as a representation
of the algebra associated with total spin currents of the two channels [38].
It is achieved by following a conformal field theory approach [39][34]; when
the interaction term of the two-channel Kondo model is defined in terms of
spin currents of the conduction electrons and impurity spin, the spin current
operators satisfy Kac-Moody algebra commutation relations of non-Abelian
symmetry groups pertaining to the number of channels. As a result, the spin
currents of the two-channel Kondo model is found to obey an SU(2) level-2
algebra. And by representing these spin currents by way of three Majorana
fermion operators that reproduce aforesaid SU(2) level-2 algebra, an equiv-
alent Majorana fermion representation of the two-channel Kondo model is
readily obtained [38]. As a result, by conveniently expressing the two-channel
Kondo model in a Majorana representation, the physics of low-energy fixed
point can be analysed effectively.

Similarly it has been shown that a four-channel spin-1/2 Kondo model
can be mapped to an equivalent two-channel spin-1/2 model but with spin-1
conduction electrons [40]. A subsequent Abelian bosonization of the two-
channel Kondo model with spin-1 conduction electrons greatly facilitates the
determination of low-temperature properties.

These multichannel Kondo effects can be used to explain some aspects
of the physics of heavy fermion systems. In fact, the simplest case of a two-
channel Kondo model is well suited to explain the properties of many heavy
fermion alloys and compounds [16]. While many actinide and rare-earth
impurities exhibit exotic Kondo effects, the multichannel Kondo model dis-
cussed so far fits URu2Si2, UPd2Si2, UPd2Al3 and UBe13Pt3, all of which
are heavy fermion superconductors. And Y1−xUxPd3 exhibits residual en-
tropy and thermodynamics similar to that of a two-channel Kondo problem.
Further experimental data on the two-channel Kondo model as well as de-
tailed accounts of solvable methods for the multichannel Kondo problem can
be found in [41].

3.3 Kondo effect in Quantum dots

A quantum dot is nothing but a solid state device, a semiconductor box
capable of holding a well-defined number of electrons. Electron transport
through the quantum dot is possible when it is connected to two leads. A
weak coupling between the source, drain leads and the dot results in a tun-
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nel barrier and when the coupling energy is small compared to the charging
energy, electrons are confined to the dot ensuing in a well-defined parti-
cle number N . The quantization of electronic charge e due to the charg-
ing energy requires more than a single-particle description to describe the
dynamic electron-electron interactions. The electron transport phenomena
arising out of such a single-electron box with dynamic charge fluctuations
is called Coulomb blockade effect [42]. It is now evident that in a Coulomb
blockade regime, first order tunneling is scarce and is suppressed owing to
the presence of two tunnel barriers. However, second order co-tunneling pro-
cesses are possible such that the electrons can tunnel readily through virtual
intermediate states. A spin exchange tunneling enhances the electron trans-
port between leads, increasing the conductance through the quantum dot
[43], the very spin exchange scattering that causes an increase in resistivity
in metals. Kondo effect in metals increases the resistance while the Kondo
effect in quantum dots enhances the conductance, displaying the opposite
behaviour [21]. This is due to constructive quantum interference effects be-
tween empty and doubly occupied virtual states on the dot and happens only
when the dot is connected to leads by two separate tunnelling junctions. A
quantum dot side-coupled to a lead has the same effect as a spin impurity in
a bulk metal, causing increased resistivity. It should be noted that a Kondo
effect arises in a quantum dot only when the number of electrons is odd, with
the unpaired electron in the dot behaving as a localized spin-1/2 impurity.
The electron tunneling through the dot experiences a spin flip. There is no
enhanced conductance when electron occupancy is even, as it does not give
rise to a Kondo effect.

There are several advantages in investigating Kondo physics of quantum
dots. The Kondo effect can be simply switched on and off as a function
of electron occupancy, i.e. odd and even occupancy. The characteristic
Kondo temperature can be tuned in such devices and the behaviour of a
localized impurity can be well observed [44]. The ability to design and con-
trol the parameters of semiconductor quantum dots facilitates study and
experimentation of new Kondo regimes. In effect, observation of the exotic
two-channel Kondo effect is deemed possible by carefully engineering semi-
conductor nanostructures and fine tuning the system [45][46][47][48]. Yet the
very same fine tuning of parameters causes the non-Fermi liquid fixed point
to be fragile and susceptible to perturbations. Therefore, to examine the
exotic non-Fermi liquid behaviour of a two-channel Kondo model, a more
robust system is desirable.
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Chapter 4

Topological Insulators and
Superconductors

A doughnut and a coffee mug are not any different to a topologist. Topology
in the mathematical context deals with the study of properties of objects
which are invariant under certain smooth and continuous transformations.
These transformations, such as a doughnut being continuously deformed and
reshaped in to a coffee mug with a handle on its surface, conserving its geo-
metrical property as a torus, are called homeomorphisms. The property or
quantity that is preserved under such homeomorphisms is known as topo-
logical invariant. If the topological invariants of two systems are different,
then they are not topologically equivalent and do not exhibit any homeomor-
phism. The different classes of topological equivalence are defined based on
a topological invariant, in the simple case just discussed, the ‘genus’ of the
object. A genus is nothing but the classification of 2D surfaces based on the
number of holes; the genus of a torus is one and the genus of a sphere is zero.
The textbook by [49] Nakahara provides a good introduction to the subject
of topology in physics.

Topology in the context of condensed matter physics comes in two varieties:
symmetry-protected topological phases vs topologically ordered phases. The
latter is exemplified by the fractional quantum Hall effect which (like other
topologically ordered phases) can be described by a topological field the-
ory. A hallmark here is that the topological invariant is encoded in the
ground state degeneracy, with long range quantum entanglement as a defin-
ing characteristic. In contrast, symmetry-protected topological phases (like
topological insulators and superconductors) have ground states with short-
range quantum entanglement. Most of these systems can be understood by
employing the tools of topological band theory. Since the topological super-
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conductors are of primary concern in this thesis, we shall provide first an
introduction to topological band theory in the next section.

Figure 4.1: Examples of homeomorphisms of different topological classes
defined by their genus. In the top (g=0) the sphere can be smoothly deformed
into a bowl, at the bottom (g=1) a torus being smoothly changed into a coffee
mug.

4.1 Topological Band Theory

An insulator and a semiconductor, much like the doughnut and a coffee mug,
are said to be topologically equivalent. In both an insulator and semiconduc-
tor, the conduction band states are separated from the valence band states
by an energy gap but it is the size of the energy gap that tells apart a semi-
conductor from an insulator. The crystal momentum in 2D is defined on a
torus and not on an infinite plane as it is periodic in both directions. A band
structure is a mapping of this crystal momentum to the Bloch Hamiltonian
H(k). The energy of the band structures is described by the eigenvalues
En(k) of this Hamiltonian. The concept of topology is employed in the band
theory of solids such that the Hamiltonian describing an insulator can be
smoothly deformed into the Hamiltonian of a semiconductor without closing
the energy gap, making them topologically equivalent [50]. However, not
all spectra with a finite energy gap are topologically equivalent, the integer
quantum Hall state being a counterexample. The band structures thus fall
into topological classes and the different classes of topological equivalence
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are classified based on a topological invariant playing a role analogous to the
genus in the example discussed above.

Figure 4.2: (a) An atomic insulator, (b) band structure of an insulator, (c)
an integer quantum Hall state illustrating the electrons moving in cyclotron
orbits, (d) shows the Landau levels with a band gap separating the occupied
from the unoccupied Landau levels [50].

The integer quantum Hall effect is observed in two-dimensional electron
systems placed in a strong magnetic field. The electrons then move in cy-
clotron orbits perpendicular to the magnetic field, leading to a massively
degenerate spectrum of quantized Landau levels. The Landau levels are
quantized with an energy Em = ~ωc(m + 1/2). Similar to the band struc-
ture, an energy gap separates the empty Landau levels from the occupied
levels. Nevertheless, in an integer quantum Hall state, when an electric field
is applied, the drift of cyclotron orbits causes a Hall current to flow, unlike
an ordinary insulator. The quantised Hall conductivity of the Hall current
is given by,

σxy = ne2/h. (4.1)

It is here the topological invariant n becomes relevant as it gains physical
significance with the n in the Hall conductance [50]. With the n being a
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topological invariant (a Chern number in the case of the integer quantum Hall
effect), the Hall conductance remains accurate as n stands robust against any
local perturbations (“continuous deformations of the Hamiltonian”) that do
not close the gap. It should also be noted that the presence of an external
magnetic field here breaks the time reversal symmetry.

In summary, the concept of topology applied to gapped band structures
has resulted in a topological classification of gapped band structures with a
topological invariant distinguishing different states. In the paradigm example
of the integer quantum Hall state, it differs from an ordinary insulator by
being associated with a nonzero Chern number.

4.1.1 Edge states and bulk-boundary correspondence

One remarkable outcome of topological band theory is the existence of gapless
edge states at the interface when two states of different topological classes, or
a topologically non-trivial state with the vacuum, are put in contact together.
When two quantum states of the same topological class are put together, the
interface does not support gapless states. It can be seen that the change in
topological invariant across the interface from one state to the other causes
the closing of energy gap resulting in gapless conducting states.

In an interface between an integer quantum Hall state (n = 1) and an
ordinary insulator (n = 0), the Chern number changes by ∆n = 1. This
change is possible only if the energy gap vanishes at the interface, resulting
in low-energy electronic states bound to the interface. The interface between
a quantum Hall state and an insulator gives rise to chiral edge states [50].
The dispersion of the edge states can be changed by modifying the Hamil-
tonian near the surface. A single edge state can be described by a single
band crossing the Fermi energy once, connecting the valence band to the
conduction band with a positive group velocity. If the Hamiltonian is varied
smoothly such that the edge state crosses the Fermi energy three times, then
additional modes arise to the left and the right with a positive group veloc-
ity twice and a negative group velocity once. The difference ∆n between the
number of right and left moving modes can never change and is preserved
under these variations,

NR −NL = ∆n. (4.2)

As the variations are smooth, the perturbed (or deformed) Hamiltonian re-
mains homeomorphic to the original one, conserving the Chern number of
the bulk states. Here ∆n is the difference in the Chern number across the
boundary. This is known as the bulk-boundary correspondence [50].

24



4.2 Topological Insulators

Both the Hall conductivity and the Chern number as seen in (4.1) and (4.2)
are odd under time-reversal and it is evident that the time-reversal symmetry
is broken in non-trivial topological states. However there exists topologically
non-trivial states that conserve time-reversal symmetry where spin-orbit in-
teraction comes into play [50]. A topological insulator also known as a quan-
tum spin Hall insulator with n = 0 is one such example. As we shall see,
the non-trivial topological state here is associated with a nonzero value of a
different kind of topological invariant, a so called Z2 invariant.

Consider the time-reversal symmetry for spin-1/2 electrons represented
by the antiunitary operator T 2 = −1 which leads to a very important conse-
quence, the Kramers’ theorem. Kramers’ theorem states that all eigenstates
of a time-reversal invariant Hamiltonian commuting with T must be at least
twofold degenerate [51]. If a non-degenerate state |ξ〉 were to exist such that
T |ξ〉 = c |ξ〉 for some constant c, then it would mean that T 2 |ξ〉 = |c|2 |ξ〉,
which is not allowed as |c|2 6= −1, thus violating the time-reversal invari-
ance. Because all angular momenta are reversed under T symmetry, if there
is no spin degeneracy, the system will not be time-invariant. Kramers’ de-
generacy is simply the degeneracy between up and down spins in the absence
of a magnetic field. Conversely, this degeneracy is lifted by the spin-orbit
coupling. Importantly, the different classes of Hamiltonians preserving T
symmetry that can be smoothly deformed without closing the energy gap
can be distinguished topologically.

As a result some interesting non-trivial consequences are observed at the
edge states (2D topological insulator) or surface states (3D topological in-
sulator) of the sample [52]. Especially, the electronic states bound to the
surface of the system at the points k = 0 and k = ±π/a of the Brillouin zone
(where a is the lattice spacing) become interesting since these points turn out
to be mirror images as they transform onto themselves under time-reversal.
These states remain degenerate following Kramers’ theorem in the absence of
spin-orbit interaction. Now the degeneracy of different spins is lifted in the
presence of spin-orbit coupling but Kramers’ theorem requires for the states
to remain degenerate. This is achieved through two possibilities resulting in
two distinct topological configurations.

For one, when there is an even number of Kramers’ pairs present, i.e.
pairs of spin up and spin down states, these states can be pairwise connected
at the Γ point, k = 0, leading to an opening up of a gap as shown in Figure
4.3 which shows band configurations of a fourfold degenerate edge state (two
Kramers’ pairs). With even number of Kramers’ pairs, the edge states can be
smoothly transformed from gapless to gapped configuration without violating
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the Kramers’ theorem and in fact, the edge states can be eliminated by
pushing all the bound states out of the gap further into the bulk resulting in
a trivial insulting state.

Figure 4.3: (a) A gapless configuration of edge states with two Kramers’ pairs
(b) A gapped configuration of the same under spin-orbit coupling. Opposite
spins are indicated by red and green colours.

Now for the other, when the number of Kramers’ pairs is odd, the state
cannot be transformed into a gapped state without violating the Kramers’
degeneracy. For example, when the system is doubly degenerate with one
Kramers’ pair as shown in Figure 4.4, opening up a gap would destroy the
degeneracy and this is impossible in an a time-reversal invariant system. The
edge states cannot be eliminated unlike the first case and the bands cross the
Fermi level EF odd number of times resulting in a topologically non-trivial
state called the quantum spin Hall state with helical edges [50].

These two different topological configurations can be distinguished by a
Z2 topological invariant ν, defined modulo 2 [50]. Thus, very much analogous
to a Chern number, the topological invariant ν distinguishes a trivial insu-
lator with ν = 0 from a topological insulator with conducting edge states,
ν = 1, corresponding to even and odd number of Kramers’ pairs respectively.
The Chern number in these time-reversal invariant systems is zero. The
bulk-boundary correspondence can be defined similarly based on the change
in ν across the boundary,

NK = ∆ν mod 2. (4.3)

Here NK is the number of Kramers’ pairs crossing the Fermi energy and
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Figure 4.4: (a) A gapless configuration of edge states with one Kramers’
pair (b) a forbidden gapped configuration showing the loss of degeneracy.
Opposite spins are indicated by red and green colours.

∆ν is the change in topological invariant ν across the interface between two
regions with topologically different states.

While the edge states appearing at the interface of an ordinary insulator
and an integer quantum Hall state is due to change in Chern number, the
edge states occurring at the surface between an ordinary insulator and a
topological insulator is due to a change in the Z2 invariant making the edge
states robust against smooth deformations and hence topologically protected.
Figure 4.5 draws out a good comparison [53] between the two edge states.
Ref.[54] gives a detailed mathematical formulation of the Z2 invariant ν.

4.3 Topological Superconductors

The topological band theory extended to superconducting states gave birth
to the study of topological superconductors. Topological classification of
superfluid states is also possible, the B phase of superfluid 3He being an ex-
ample [55]. In a superconductor, the condensate of Copper pairs is separated
from the normal state by a superconducting energy gap. The Bogoliubov-de
Gennes (BdG) Hamiltonian which gives the quasiparticle excitation spectrum
of a superconductor consists of a superconducting gap similar to the band
gap of an ordinary insulator. Since electrons are coupled in a superconductor,
removing an electron from state ’k’ uncouples the complementary electron in
state ’−k’. Thus creation of a quasihole at an eigenstate of energy−E is same
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Figure 4.5: (a) Chiral edge states between an integer quantum Hall state
and an ordinary insulator differentiated by the Chern invariant n and a band
structure (b) describing the same. (c) Helical edge states between a quantum
spin Hall state and an insulator distinguished by the Z2 invariant ν. (d) Band
structure of the edge states with one Kramers’ pair [52].

as removal of a quasiparticle at the eigenstate of energy E and a particle-hole
symmetry exists in the elementary excitation spectrum of a superconductor.
Thus, for a spinless superconductor (like a p-wave supercondcutor in 1D),
the creation and annihilation operators of a Bogoliubov quasiparticle satisfy
the relation Γ†E = Γ−E. Similar to the topological insulators, the different
classes of BdG Hamiltonian preserving the particle-hole symmetry constraint
that can be smoothly deformed without closing the superconducting energy
gap can be distinguished topologically [56].

The fascinating consequence is the possible existence of topologically pro-
tected non-trivial edge states at the boundaries of spinless superconductors
[57]. If an edge state were to appear within the energy gap say, with energy
E, by particle-hole symmetry there exists a state at energy −E. Hence the
bound states occur in finite energy pairs and can be pushed out of the gap
into the bulk much alike the case of an even number of Kramers pairs, re-
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Table 4.1: Topological periodic table

sulting in a trivial state. However, the bound state at E = 0 is evidently
unpaired and cannot be eliminated, resulting in a topologically non-trivial
state [57]. These two different states are distinguished by the Z2 topological
invariant of the bulk superconductor.

In fact, a T invariant topological superconductor is nothing but a topo-
logical insulator with an additional particle-hole symmetry and is classified
similarly by a topological invariant Z2 in 1D and 2D, and by Z invariant in
the case of 3D (shaded violet in Table 4.1) [52]. Topological superconductors
can also be differentiated based on T symmetry, the ones breaking the time-
reversal symmetry are analogous to the integer quantum Hall state and give
rise to chiral edge states, while those superconductors that are time-reversal
invariant are analogous to the quantum spin Hall state resulting in helical
superconductors. In the former case, an integer similar to the Chern number
is used to classify the time-reversal breaking topological superconductors.
The classification of topological insulators and topological superconductors
into various classes and their topological invariants can be learnt from the
topological periodic table in 4.1 where TRS is time-reversal symmetry, PHS
is particle-hole symmetry and SLS is sublattice (or “chiral”) symmetry. The
presence (absence) of these symmetries is labelled either by “+” or “-” (“0”),
depending on whether the eigenvalue of the corresponding squared antiuni-
tary operator is +1 or -1. The first six rows represent non-superconducting
systems while the last four represent superconducting systems [56].

The simplest model of a T breaking chiral topological superconductor in
2D can be realized in a p-wave pairing spinless superconductor [58] with a
topological invariant Z2 belonging to Class D (see Table 4.1). In an s-wave
paired superconductor, the ground state consists of a Bose condensate when
there is strong attractive interaction and when the particles are weakly inter-
acting, it consists of a quasiparticle excitation spectrum [58][23]. While there
is no phase transition as we move from a strong pairing to a weak pairing
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regime in a normal s-wave superconductor, it is not the same in case of a
p-wave pairing superconductor where a phase transition does occur between
the two regimes. This transition is of topological in nature as described
by Volovik [55]. A spinless p-wave pairing state therefore has two distinct
phases, a weak paring phase and a strong pairing phase corresponding to
a topologically non-trivial phase and topologically trivial phase. The two
phases are distinguished by a topological invariant and separated by a topo-
logical phase transition [58]. The intriguing property of the time-reversal
breaking topological superconductors is that the Bogoliubov quasiparticle
excitations occurring in these systems at zero energy are Majorana fermions
that obey non-abelian statistics [59][60]. In order to understand the appear-
ance of these exotic boundary states, a first look on the elusive Majorana
fermions becomes essential.

4.3.1 Majorana fermions

Majorana fermions were first surmised by Ettore Majorana in 1937. Majo-
rana fermions are particles that are their own anti-particles unlike the Dirac
fermions such as electrons and positrons. The proposition that neutrinos may
in fact be Majorana fermions still remains a mystery. It could be established if
the neutrinos are found to violate lepton number conservation. Experiments
at the Large Hadron Collider [61] and processes that involve neutrinoless
double β decay [62] are being carried out to confirm the same, still, however,
without a success. While particle physicists search for the mysterious Majo-
rana fermion as fundamental particles of nature, Majorana fermions emerge
as non-fundamental low-energy excitations in condensed matter systems.

Since a Majorana fermion is its own anti-particle, the creation and anni-
hilation operators are equal, γ = γ†, with the property γ2 = 1. But since
particles and holes have opposite charges, being created by creation (c†σ) and
annihilation operators (cσ) respectively, a Majorana fermion - with its cre-
ation and annihilation operator being equal - must necessarily be uncharged
[63]. While the Bogoliubov quasiparticle in a superconductor possesses the
necessary electron-hole superposition violating the charge conservation, the
s-wave pairing observed in ordinary superconductors implies that the elec-
trons and holes carry opposite spin projections. In an s-wave superconductor,
the creation and annihilation operator of the Bogoliubov quasiparticles are
of the form b = uc†↑+ uc↓ and b† = u∗c†↑+ u∗c↓, which are still physically dis-
tinct. For the particles to be Majorana fermions, they also need to possess
equal spin projections. Thus to observe quasiparticles that are Majorana
fermions, the ideal candidates are effectively spinless superconductors that
involve Cooper pairs of the same spin (s = 1) with triplet pairing symme-
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try [60]. As fermions obey antisymmetric exchange, in order to preserve the
antisymmetry of the total wavefunction, a spin triplet state requires the sym-
metric orbital wave function be of odd parity (l = 1, 3...), the simplest case
being p-wave (l = 1).

Majorana fermions therefore are expected to appear at the edges of p-
wave superconductors in 1D, in the vortices of p+ ip superconductors in 2D,
in Sr2RuO4 superconductor [64] which has triplet pairing and also in the
ν = 5/2 fractional quantum Hall state [65]. One of the breakthroughs in the
prediction of Majorana fermions is when Fu and Kane [57] showed that zero-
energy Majorana fermion modes can also appear at the interface between
an ordinary s-wave superconductor and a topological insulator. The result-
ing surface states at the interface exhibits p-wave like pairing as a result of
proximity effect. The work by Fu and Kane inspired other designs for achiev-
ing low-dimensional topological superconductors through a simple recipe in-
volving spin-orbit coupling, s-wave superconductivity and magnetism in 2D
structures [52]. Artificial engineering of p-wave superconductors from hybrid
structures becomes a necessity as naturally occurring p-wave superconduc-
tors are hard to come by in nature. Before delving into the practical details
of the realization of Majorana modes in proximity induced p-wave supercon-
ductors, it is crucial to look into the properties of Majorana fermions and
the emergence of non-abelian statistics in these systems.

Properties of Majorana fermions

It is evident as to why the Bogoliubov quasiparticle excitations at zero energy
modes in topological superconductors are Majorana fermions, they simply
satisfy Γ†0 = Γ0 at E = 0. A Bogoliubov quasiparticle at finite energy
pair states E and −E has the same physical degrees of freedom, implying
that Majorana states at E = 0 possess half the degrees of freedom. Thus,
a Majorana fermion is half of a Dirac fermion and a fermionic operator is
constructed from a pair of Majorana fermions as

cj = (γ1,j + iγ2,j)/
√

2,

c†j = (γ1,j − iγ2,j)/
√

2.
(4.4)

The fermionic operator constructed above still satisfies cj 6= c†j, while the

Majorana fermions are hermitian γj = γ†j and obey the fermionic anti-
commutation relations

{γi, γj} = 2δij. (4.5)

Since a Majorana fermion is its own anti-particle, it is meaningless to regard a
Majorana state being occupied or unoccupied. The occupancy of a Majorana
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mode cannot be defined, even counting in terms of the number operator
proves meaningless, nmfj = γ†jγj which by way of hermiticity is always nmfj =
γ2
j = 1. However the fermionic state constructed from (4.4) can be occupied

or empty and is physically meaningful. The number operator is defined as
nj = c†jcj which by way of Pauli’s exclusion principle is either nj = 0 or
1. As a pair of Majorana fermions is combined together to form a fermion,
2N Majorana modes give rise to N number of fermionic states which can be
either occupied or unoccupied leading to 2N fold degenerate ground states.
Moreover the eigenstates of the system can be defined in terms of the fermion
number operator as |n1, n2, ..., nN〉, while the sum of occupation numbers∑N

j=1 nj gives the parity of the superconductor indicating the total number
of electrons present. In conclusion, the occupation numbers nj of electrons
are the proper observables and not the occupation numbers of Majorana
fermions [63].

Non-abelian statistics

In two-dimensional systems, quasiparticles that obey abelian statistics are
referred to as abelian anyons while those which obey non-abelian exchange
statistics and are non-commutative, are called non-abelian anyons. In a
many-particle system, when identical particles undergo exchange, one parti-
cle goes through the other in loops or intersects their trajectories clockwise
or counter-clockwise. A braid group consists of a map of the trajectories of
the particles as they move from initial to final positions [66]. The transfor-
mation of the many-particle wavefunctions under these exchanges are given
by the braid group acting on the states of the system. In case of an abelian
braiding, wavefunctions of the particles remain in the same state but acquire
a phase eiθ. If θ = π for a phase of -1, Fermi-Dirac statistics is recovered
and for a value of 1, i.e. for a phase of θ = 0(2π), the particles are bosons
and Bose-Einstein statistics is recovered. For other values of phase θ, the
anyons are simply regarded to follow statistics θ [67]. Thus, quasiparticles
that follow abelian statistics acquire a phase factor during an exchange that
reflects the statistics they follow.

Non-abelian anyons are quasiparticles that do not acquire a phase factor
under wavefunction exchanges but rather change to a fundamentally different
quantum state [23]. As a consequence, the exchange process is noncommu-
tative, thus the notion of non-abelian statistics. This is only possible when
different quantum states of the system are degenerate. The system starts
from an initial state and, as a result of the exchange, ends up in a differ-
ent final state in the space of degenerate ground states. As the zero-energy
Majorana modes of a topological superconductor are degenerate and robust
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against perturbations, their topological degeneracy provides for non-abelian
exchange statistics. Non-abelian statistics is known to occur in certain frac-
tional quantum Hall states by virtue of the topological degeneracy of the
quasiparticles [68][65]. It was established that a spinless p-wave supercon-
ductor in the weak pairing state behaves the same as that of a Moore-Read
Pfaffian quantum Hall state and hence possesses similar properties of non-
abelian statistics [58].

For a better comprehension of how the non-abelian statistics plays out,
consider a 2D topological insulator with vortices hosting Majorana modes
in their vortex cores. If the fermion number operator nj = c†jcj is de-
constructed in terms of the Majorana operators from (4.4), then we get
nj = c†jcj = (1

2
+iγ1,jγ2,j), two Majorana modes associated with one fermionic

mode. When a pair of vortices are exchanged, the positions of the Majo-
rana modes are also exchanged and the wavefunction is unitarily transformed
within the degenerate ground state space and the resulting braid operator
does not commute leading to non-abelian statistics [63]. Though the swap-
ping of Majorana modes changes the fermionic state, the value of the number
operator, nj, remains the same which gives the total parity of the super-
conductor. A detailed description on the braiding operators governing the
exchange of Majorana fermions and their non-abelian nature can be found
in [63].

Topological quantum computation

Two Majorana modes defining a fermionic operator need not be local and can
be spatially far apart from each other ensuing in a highly non-local fermionic
state. A ‘qubit’ of quantum information can be stored in this highly non-
local fermionic state. As non-abelian anyons - i.e. many-quasiparticle states
with a topological degeneracy - are robust against local perturbations, quan-
tum information stored in such systems [69] will also be robust and immune
to errors caused by such perturbations, leading to fault-tolerant topological
quantum computation [24]. A topological qubit is then encoded in the two-
fold degenerate ground state represented by the number operator nj. Since
the degenerate ground state is separated from the bulk spectrum by an energy
gap, if the manipulations on the qubit are carried out at sufficiently low tem-
peratures, then the evolution of the system happens within the ground state
manifold which remains unperturbed and not easily prone to decoherence.
The obstacles faced with storing and processing quantum information, the
methods of error corrections employed, and a detailed overview of topological
quantum computation can be obtained from [66].

Therefore, superconductors hosting zero-energy Majorana fermion modes,
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being non-abelian quasiparticles, serve as a viable platforms for carrying out
fault-tolerant topological quantum computation.

While several experimental research groups have reported observations
of signatures of Majorana fermions in topological superconductors [70][71]
[72][73][74], further experimental studies are yet to be done to confirm their
properties and their potential application in quantum computing. Majorana
fermions have also been predicted to occur in cold atomic gases [75][76], in
carbon nanotubes [77][78][79], in the vortices of doped topological insulators
[80], and in B phase 3He [60].

4.4 Theoretical model of Topological Super-

conductors supporting Majorana modes

The paradigm theoretical model describing the emergence of Majorana modes
in a topological superconductor is the 1D toy model developed by Kitaev [22].
This simple set-up describes how isolated Majorana modes can be observed
in a one-dimensional system. Consider a one-dimensional superconducting
quantum wire consisting of a tight-binding chain of electrons with a fixed spin
say, spin up (↑), thus effectively spinless as required for realizing Majorana
fermion states. The Hamiltonian of this 1D spinless p-wave superconductor
can be described as

H = −t
N−1∑
j=0

(c†jcj+1 + c†j+1cj)−
N−1∑
j=0

(∆∗c†jc
†
j+1 + ∆cj+1cj)− µ

N∑
j=0

c†jcj. (4.6)

Here cj and c†j is the fermionic annihilation and creation operator respectively,
µ is the chemical potential associated with the number operator, t is the
hopping amplitude and ∆ = |∆|eiφ is the superconducting gap induced due to
p-wave pairing. φ is the superconducting pairing phase and can be absorbed
into the fermionic operators defined in terms of Majorana fermion operators,

cj = e−iφ/2(γ1,j + iγ2,j)/
√

2,

c†j = eiφ/2(γ1,j − iγ2,j)/
√

2.
(4.7)

From above, it is evident that Majorana fermions can be obtained by splitting
the fermions into real and imaginary parts. Hence,

γ1,j = (e−iφ/2c†j + eiφ/2cj)/
√

2,

γ2,j = i(e−iφ/2c†j − eiφ/2cj)/
√

2.
(4.8)
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Thus γi,j is the Majorana operator residing at site j. As two Majorana
fermions are required for constructing a fermion, j = (1, 2) indicates the two
Majoranas (at 1 and 2) combining to form a fermion at site j. Clearly the
above operators (4.8) are hermitian and obey the Majorana fermion relations
(4.5). It can be seen that the fermionic operators are defined similar to (4.4)
except for an additional phase φ. Now the Hamiltonian (4.6) is simplified to

H = −t
N−1∑
j=0

(c†jcj+1 + c†j+1cj)− |∆|
N−1∑
j=0

(c†jc
†
j+1 + cj+1cj)− µ

N∑
j=0

c†jcj. (4.9)

The newly defined fermionic operators (4.7) applied to the above Hamiltonian
gives the Hamiltonian of a 1D spinless chain of p-wave paired electrons in
terms of Majorana fermion operators,

H = i
N−1∑
j=0

[(t−|∆|)γ2,j+1γ1,j−(t+|∆|)γ1,j+1γ2,j]−µ
N∑
j=0

(
1

2
+iγ1,jγ2,j). (4.10)

There are two cases to consider here but an understanding of the nature of
a spinless 1D chain and its bulk properties is required in prior. It should
be noted that the time-reveral symmetry is broken as the spin is fixed in
one direction. As previously mentioned, the spinless p-wave pairing has two
phases, the weak-pairing phase and the strong-pairing phase distinguished
topologically [55]. The Hamiltonian of a spinless electron system in the BCS
mean field theory is written as,

Heff =
∑
k

[(εk − µ)c†kck +
1

2
(4∗kc

†
kc
†
−k +4kc−kck)]. (4.11)

Here εk is the kinetic energy and 4k is the pairing amplitude. By applying
perioduc boundary conditions to the above Hamiltonian, the BCS mean field
equations and dispersion relations obtained show that the system admits
a gapless phase at µ → 0, while µ > 0 (µ < 0) the system enters the
weak-pairing (strong-pairing) phase [58]. Thus, a weak-strong topological
transition occurs at µ = 0. These two states can not only be distinguished
topologically but also by the occupation number of their ground states. In
the strong-pairing phase, as the name suggests, the Cooper pairs are tightly
bound to each other and the energy required to break the pair becomes
large, leaving the paired ground state to be unoccupied with an even number
of fermions. In the weak-pairing phase, the topologically non-trivial phase,
the Cooper pairs are not strongly bound to each other, with wavefunctions
which now exhibit long-range behaviour. Hence, not much energy is required
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to occupy a state or creating a quasiparticle in the ground state, leading to
an odd number of fermions in the ground state. The system is gapped in
both the cases.

Though the topologically non-trivial weak-pairing phase seems intriguing,
what is more fascinating is the ground state at the transition µ = 0, being
degenerate between the occupied and unoccupied ground states. This is
evident as a quasiparticle cannot simultaneously occupy both the single-
particle states of the paired ground state, k and −k at k = 0. Thus a
degeneracy exists at k = 0 with occupied and unoccupied states. Therefore
the system at the phase-transition point µ = 0 supports two-fold degenerate
ground states with even and odd number of particles [58]. Notably, adding
an odd number of quasiparticles does not require any additional energy as
the states of even and odd particles are degenerate. Whereas a conventional
superconductor is non-degenerate and the ground state only supports Cooper
pairs with even number of electrons. Adding an electron here costs non-zero
energy.

Given these observations, we shall treat the Hamiltonian(4.10) following
two special cases, the trivial case of strong-pairing where µ < 0 and the
non-trivial case for µ = 0 at which the system undergoes a transition to the
weak-pairing phase.

1 The trivial case: µ < 0 and t = |∆| = 0. Then (4.10) becomes

H = −µ
N∑
i=0

(
1

2
+ iγ1,jγ2,j). (4.12)

Clearly the Majorana operators coupled together belong to the same physical
site j, evident from (4.7). There is an even number of fermions present in the
ground state of the 1D chain and adding a single electron costs a finite energy
|µ|. The superconducting gap is preserved in this trivial strong-pairing phase.

2 The non-trivial case: µ = 0 and t = |∆| 6= 0. Then (4.10) becomes

H = −2it
N−1∑
i=0

(γ1,j+1γ2,j). (4.13)

The Hamiltonian here pairs up Majorana operators belonging to physically
different sites j and j + 1. Now by defining new fermionic operators di =
(γ2,j + iγ1,j+1)/

√
2 and d†i = (γ2,j − iγ1,j+1)/

√
2 that couple the Majoranas

belonging to neighbouring local sites j and j + 1, the Hamiltonian (4.13)
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becomes

H = 2t
N−1∑
i=0

(d†idi −
1

2
). (4.14)

Similar to the previous case, the gap in the bulk of the system remains pre-
served and the cost of adding a fermion is 2t as seen above. The Hamiltonian
(4.14) is not very different from (4.12) and has only been rewritten in terms
of fermionic states obtained by superposition of Majorana fermion states of
nearest-neighbour sites. The two ways of pairing Majoranas, pertaining to
the Hamiltonians in (4.12) and (4.13), are illustrated in Figure 4.6 (a) and
4.6 (b) respectively.

Figure 4.6: Kitaev’s 1D spinless tight binding chain. (a) Trivial case in the
limit of µ 6= 0, t = ∆ = 0 where the Majoranas at the same lattice site are
paired up to form a fermion. (b) Non-trivial case in the limit of µ = 0, t = ∆
where the Majoranas at the nearest-neighbour site are coupled together to
represent a fermionic state [63]. Dotted lines depict the fermionic states
formed by combining two Majorana states. Note: unpaired Majorana states
γ1,1 and γ2,N at the ends of the 1D chain.

The remarkable outcome of the non-trivial case above is that when ob-
served carefully, one notices that the Majorana modes γ1,1 and γ2,N are miss-
ing from the Hamiltonian (4.13). These two unpaired Majorana fermions
present at the ends of this 1D spinless chain of electrons can be combined to
form a single fermionic state with operator,

cm = (γ1,1 + iγ2,N)/
√

2. (4.15)
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This fermionic state is highly non-local as the Majorana modes defining the
fermionic operator are localized at the far ends of the 1D chain. The energy
required to add or remove this fermion is zero and the ground state gives rise
to a two-fold degeneracy. The two ground states cm |0〉 = 0 and c†m |0〉 = |1〉
with even and odd parity respectively, are degenerate.

At the transition, where the 1D chain goes from topologically non-trivial
weak-pairing phase to topologically trivial strong-pairing phase, gapless edge
states with zero-energy Majorana fermion states appear at the boundary
between these two phases. It is not surprising why these gapless edge states
occur at the ends of the 1D chain. In the topologically non-trivial phase
with odd parity, the non-local fermion exists due to the presence of unpaired
Majorana states, Figure 4.6(b). To turn this into a trivial phase with even
parity, all one needs to do is but add a few more sites to the chain so that
the unpaired Majorana states so that they are paired up to a fermion as in
Figure 4.6(a). Thus it is at the ends of the 1D chain the transition between
two distinct topological phases occurs. As these phases are topologically
distinct, they cannot be smoothly deformed into one another and the bulk
energy gap closes at the boundaries, i.e. at the ends of the 1D chain. It
is important to add that additional Majorana fermion modes may appear if
there is a defect along the wire which can host the Majoranas.

The appearance of zero-energy Majorana modes at the ends of the 1D
chain is treated for the special case of µ = 0. The Majorana end states
continue to reside at the ends of the 1D chain as long as the system remains
in the topologically non-trivial phase µ > 0. In general for any µ 6= 0 and
t 6= ∆, no zero modes exist for the case of |µ| > 2t which is the trivial phase of
strong-pairing as in (4.12) with even parity and unpaired Majorana fermion
modes exist for |µ| < 2t, the topologically non-trivial phase with odd parity
[22]. Additional Majorana fermion modes occur at points of phase transition
called for by the change in chemical potential and hopping amplitude to
|µ| > 2t along the wire [81]. In the case of topologically non-trivial weak-
pairing phase, the unpaired Majorana modes are not just localized at the
ends, their wavefunctions decay exponentially well into the chain and start
overlapping. The interaction between the Majorana modes localized at the
ends i.e. the wavefunction overlap is given by w ∝ e−L/ξ, where L is the
length of the chain and ξ is the coherence length. If the chain is sufficiently
long, for L� ξ, the wavefunction overlap is negligible and the ground state
remains degenerate with unpaired Majorana modes localized to the ends.
Otherwise, the wavefunction overlap causes a splitting of the even and odd
degenerate ground states with |0〉 and |1〉 now differing by an energy w [23].
For the trivial case, ξ diverges. The factor w gains physical significance as
it gives the amplitude of tunneling of a fermionic quasiparticle across the
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chain [22]. The tunneling of an electron through the chain is viewed by way
of coupling the Majorana fermion pair of the incoming electron with the
unpaired Majorana zero-mode at the end of the chain.

To summarize our discussion, zero-energy Majorana modes are supported
at the ends of the 1D spinless p-wave chain of fermions in Kitaev’s toy model.
If one considers a T invariant p-wave superconductor, a spinful chain, the
fermions with spin up are paired together in a spin-up state and fermions
with down spin together form a spin-down state. As a result, the edge states
are merely doubled, with two Majorana zero-modes at the ends resulting in
zero-energy Dirac fermion modes at the end.

In 2D, Majorana fermion modes appear at the vortices of a chiral p+ ip
superconductor [58][59][82]. In T invariant helical superconductors, up spins
are paired in px + ipy state and down spins in px − ipy state, giving rise to
helical edge states [23]. Surprisingly, a 2D spinful px ± ipy superconducting
chain also supports isolated Majorana fermion states bound to half quantum
vortices [59].

4.5 Realization of a Topological Superconduc-

tor supporting Majorana modes

One of the ways to realize a topological superconductor is by inducing super-
conductivity through proximity effect in a topological insulator [57]. These
topological superconducting states host Majorana fermion modes at the edge
states in 2D and at the surface states in the case of 3D. A 2D topological
insulator is TR invariant and consequently these topological superconduct-
ing states preserve time-reversal symmetry giving rise to a pair of helical
edge states, i.e. Majorana Kramers pairs with the opposite spins moving
in counter-propagating directions along the edges. One can also engineer a
topological superconductor by replacing a topological insulator with a semi-
conductor provided the material has appreciable spin-orbit coupling [81][83].
In short, the essential ingredients required to realize a 1D spinless p-wave
superconductor using a semiconductor are, (i) a semiconducting wire with
strong spin-orbit coupling, (ii) a magnetic field that breaks time-reversal sym-
metry, and (iii) a conventional s-wave superconductor to induce proximity
effect.

Thus, let us consider a set-up with a 1D nanowire with strong spin-orbit
coupling such as InAs or InSb, coupled to a bulk s-wave superconductor such
as Nb, exposed to an external magnetic field. See Figure 4.7. Such a 1D wire
is represented by a Hamiltonian of the form
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Figure 4.7: Set-up for realization of a 1D spinless p-wave superconductor
[23].

Hwire =

∫
ψ†σHwire(x)ψσ dx, (4.16)

Hwire(x) =
k2
x

2m
− µ+ αkxσ

y + hσz. (4.17)

Taking ~ = 1, m is the effective mass of the electron, µ is the chemical
potential of the wire, α is the strength of spin-orbit interaction due to Rashba
spin-orbit coupling in the wire along the y-direction, and h is the strength of
the Zeeman field due to the magnetic field applied along the z-direction.

The 1D semiconducting nanowire proximity-coupled to a conventional s-
wave superconductor becomes superconducting as it acquires Cooper pairing
from the parent superconductor. The Hamiltonian describing the process
can be written as

H∆ =

∫
∆(ψ↑ψ↓ + h.c) dx, (4.18)

where ∆ is the pairing amplitude. Thus, the total effective Hamiltonian to
be considered is,

Heff = Hwire +H∆. (4.19)

It is the external magnetic field and the spin-orbit coupling that together
conspire in such a way as to transform s-wave proximity pairing into p-
wave pairing. To understand the physics of this phenomenon in detail, let us
consider the behaviour of the wire in (4.17) in the absence of superconducting
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(a) (b)

Figure 4.8: (a) Eigenspectrum (4.20) of a 1D nanowire with spin-orbit cou-
pling at h = 0. Blue and pink parabolas correspond to spins aligned along
directions −y and +y (going in and out of the surface as indicated) respec-
tively. (b) Band structure of the wire with a small applied magnetic field
h > 0, resulting in a gap and loss of spin degeneracy at k = 0.

pairing field, i.e. with ∆ = 0. The spin-orbit split energy spectrum of Hwire

in the absence of a magnetic field, h = 0 is sketched in Figure 4.4(a) with the
Rashba coupling aligning the spins along the y-direction. As seen in Figure
4.8 (a), the spin degeneracy is lifted everywhere except at the Kramer’s
point k = 0. This last remaining degeneracy can be lifted by applying a
magnetic field, which opens a gap in the spectrum as seen in Figure 4.8 (b).
Diagonalizing the Hamiltonian (4.17), one obtains the eigenenergies as

E±(kx) =
kx
2m
− µ±

√
(αkx)2 + h2. (4.20)

The band energies E+(kx) and E−(kx) correspond to upper and lower bands
respectively. Usually, with Zeeman splitting, the bands consisting of either
spin up or spin down states are separated by a gap. However, because spin-
orbit coupling is also present, the lower band E−(kx) consists of a mixture
of spin up and spin down states as illustrated in Figure 4.8(b).

Thus, spin is no longer a good quantum number and effective spin direc-
tion in the band depends on the momentum along the direction x resulting
in spin-momentum locking. The larger the applied field, the larger is the gap
and the spin canting, causing spins within each band to align more in the
z-direction as depicted in Figure 4.9(a). When the chemical potential µ lies
inside such a field-induced gap, the wire emerges spinless and by turning on
the superconducting pairing field, one induces spinless superconductivity in
the wire. Figure 4.9(b) shows the canting of spins along the z-direction with
respect to an increase in Zeeman energy h.
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Figure 4.9: (a) Energy bands under large magnetic field resulting in spinless
electronic states . (b) Gradual canting/tilting of the spin in the lower band,
with respect to increase in applied magnetic field, progressing towards a
spinless regime where the spins are oriented parallel or anti-parallel to the
field in z-direction.

Switching on the proximity-induced superconducting field ∆ > 0 only
influences electrons occupying the lower band as the chemical potential µ
resides in the gap and the upper band remains unoccupied. This leads to
single-branch BCS pairing of electrons in the lower band, wherein the s-wave
pairing field couples electrons with opposite spin directions. This leads to an
effective spinless p-wave pairing since spin in the lower band has become a
redundant degree of freedom, being locked to the momentum of the electron
(Figure 4.9 (a)). Only a pairing field that is weak compared to the ap-
plied magnetic field ∆ << h guarantees aforesaid intra-band p-wave pairing
ensuing in a superconducting state that is topological [23]. Said topologi-
cal superconducting state is associated with Majorana fermions and can be
mapped to the weak-pairing phase of Kitaev’s toy model.

If the chemical potential is large then the electrons begin to occupy the
upper band and one cannot simply ignore the upper band as before. Also a
larger pairing ∆ gap not only leads to single branch BCS pairing but also
causes inter-branch pairing akin to an FFLO state [84][85] where the Cooper
pairs acquire a non-zero centre of mass momentum. Coupling of electrons
in the upper and lower bands that carry opposite spin directions results
in inter-band s-wave pairing in addition to the previously discussed intra-
band p-wave pairing and when the former dominates the latter, the resulting
superconducting state is no longer topological and the wire becomes a normal
superconductor.

The phase transition between topological and trivial states can only arise
when the gap closes. The gap closing and the associated topological crite-
rion can be obtained by solving the Bogoliuobov de Gennes equations for the
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Hamiltonian in (4.18) obtaining the quasiparticle energies for the supercon-
ducting wire (4.19) [63]. It is found that the gap in the quasiparticle energy
spectrum closes exactly when the applied field is h =

√
∆2 + µ2 [23]. As

p-wave pairing occurs only when (∆ << h), it is evident that the condition
for topological superconductivity requires,

h >
√

∆2 + µ2. (4.21)

Having thus obtained a spinless p-wave superconducting wire, Kitaev’s model
predicts that it will host Majorana zero modes at its ends.

One can tune the various parameters to achieve a stable topological phase.
Adding a set of gate electrodes can help control and vary the chemical poten-
tial such that it lies within the gap. Though a large magnetic field assures a
topological superconducting state, a very large magnetic field makes the very
topological state prone to disorder. Moreover, if the Zeeman energy h dom-
inates the spin-orbit energy (Eso = 1

2
mα2), then the electrons may become

completely spin polarized, making it impossible to induce superconductivity.
See Figure 4.9(b) where the spins become fully aligned with increasing h.
A small h/α ensures that the spins are not completely aligned. It assures
proximity induced superconductivity, with the topological phase also being
less susceptible to disorder. Thus, a large spin-orbit coupling α is essential
for the topological phase to remain robust against perturbations [23]. With
larger spin-orbit coupling, one has the freedom to play with the strength
and direction of the magnetic field, increasing it in such a way that the
Zeeman-split induced gap remains large enough to accommodate the chem-
ical potential inside. If, however the pairing gap becomes larger, then the
wire enters a normal superconducting state, the trivial one. In conclusion, to
attain a stable robust topological phase, the Zeeman energy should be higher
than the superconducting pairing energy but less than the spin-orbit energy,
∆ << h << Eso.

Thus, a simple setup involving a semiconducting nanowire with spin-
orbit coupling, exposed to a magnetic field and in proximity to an s-wave
superconductor realizes a topological superconductor. By optimizing the pa-
rameters, a robust topological phase is obtained. Moreover, the Majorana
bound states localized at the ends of these topological superconductors are
robust to perturbations, exhibiting topological degeneracy. Though signa-
tures of Majorana fermions in 1D nanowires have been reported [70], their
topological properties await further investigation as fabrication and measure-
ment techniques pose a great challenge. If experimental ways were to attain
reproducible realizations of Majorana modes, it would herald the study and
demonstration of topological protection, and subsequently, in the long haul,
topological quantum computation.
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Chapter 5

Topological Kondo effect

While a topological superconductor achieved in a 1D nanowire hosts a pair
of Majorana fermion modes each localized at its ends, the minimal set-up
required to study the topological Kondo effect [1] requires four such Majo-
rana end modes. Therefore, two 1D nanowires are placed on top of an island
with a conventional parent bulk superconductor (see Figure 5.1). Once the
wire enters the topological superconducting phase1 , the superconducting is-
land now supports four Majorana modes localized at the ends of the wires,
three of which are connected to normal metal leads. The spinless conduc-
tion electrons on the island are now weakly coupled to these metal leads.
Once this mesoscopic set-up is connected to ground by a capacitor, the finite
charging energy of the superconducting island takes a crucial role in the in-
vestigation of Majorana fermion modes. If C is the total capacitance of the
superconducting island, the bare charging energy is given by Ec = e2

2C
. It is

the minimum energy required for tunneling into the system and no current
flows at temperatures and voltages below Ec. The effective energy required
to add N electrons to the superconducting island is governed by the bare
charging energy term in the Hamiltonian, (5.1)

Hc = Ec

(
N − Qg

e

)2

. (5.1)

Here N = 2nc, ‘nc’ being the total number of Cooper pairs on the island.
Qg is the gate charge due to the gate voltage Vg across the capacitor, and e
is the electronic charge. With the bare charging energy setting the energy
scale of the system, the effective charging energy gives the total electrostatic
energy needed to charge the mesoscopic system with N electrons.

1supported by the combined action of a strong Rashba spin-orbit coupling and a trans-
verse magnetic field, cf. the discussion in the previous chapter
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Figure 5.1: The topological Kondo effect set-up consists of two similar wires
‘a’ and ‘b’ (in pink) deposited on an s-wave superconductor. The ends of
the wires are connected to three leads marked green and when they enter the
topological phase, a total of four Majorana bound states are localized at the
ends of the two wires (indicated by a yellow bubble).

5.1 Role of charging energy in the energy

spectrum of a superconductor

An approach to understand the role of charging energy is by looking into the
superconducting ground state. In a conventional superconductor the ground
state consists of paired electron states, a.k.a. the Cooper pairs separated from
the single-electron quasiparticle states by a superconducting energy gap. It
does not require any energy to add a Cooper pair of charge 2e, however, in
order to add a single electron of charge e, an additional energy to overcome
the superconducting pairing gap is needed such that the unpaired electron
can occupy one of the quasiparticle states; cf. Figure 5.2(a). Therefore, to
describe the ground state energy of the superconducting island with an added
parity term ∆N , the above equation (5.1) can be rewritten as

E0(N) = Ec

(
N − Qg

e

)2

+ ∆N , (5.2)

∆N =

{
0 when N is even

∆ when N is odd.
(5.3)

The ground state is degenerate with paired (even number of electron) states,
while the excited states consist of odd number of electron states, separated
from the ground state by a gap. Nevertheless, in any system the ground
state is degenerate only in the thermodynamic limit (as N → ∞) with an
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infinitely large system of particles, with the degenerate states being classified
by a well-defined phase φ of the superconductor. Then the ground state is
represented by a BCS wave function, |BCS, φ〉, φ ∈ [0, 2π], with a coherent
superposition of states with all possible Cooper pairs. But for a mesoscopic
system with a finite number of particles, the ground state is non-degenerate
due to finite-size effects [42]. Therefore, with the charging energy governing
the addition of electrons to the superconducting island, it is evident from the
expression in (5.2) that electronic states with varying N are non-degenerate.
As portrayed in the energy spectrum of superconductor in Figure 5.2(b),
the non-degenerate ground states of different number of electrons are still
separated from odd states by an energy gap ∆.

However there exists a degeneracy between states N−2 and N (assuming
N is even) when the gate charge, Qg

e
, is fixed such that it takes a value equal

to N − 1. With an increase in energy levels the next degeneracy point is
attained between N − 4 and N + 2, as seen in Figure 5.3. This degeneracy is
governed by the gate charge Qg which in turn is controlled by the gate voltage

and only for odd values, i.e. Qg

e
= 2nc−1, such degeneracy is observed (with

nc, the number of Cooper pairs). The effective charging energy E0(N) thus
gets minimized to the bare, finite charging energy Ec by increasing the gate
charge by Qg

e
= 2nc − 1 lifting the Coulomb blockade. The number of excess

Cooper pairs on the island is a staircase function of Qg

e
which jumps at

every 2nc − 1. Thus, an energy level degeneracy exists between two states
which differ by an even number of electrons, and a superposition of these
two states gives a coherent quantum state. In general, a degeneracy between
states N and N ± 1 can be obtained by changing the gate charge fraction to
Qg

e
= 2nc± 1. The superconducting island thus serves as a Cooper-pair box.

This can be realized experimentally and allows coherent manipulation of its
quantum state [86].

While the degenerate ground states in thermodynamic limit N → ∞ is
defined by a definite overall superconducting phase φ, the non-degenerate
states with a well-defined particle number N has an indefinite phase. Thus,
when fluctuations in Cooper-pair number are restricted, quantum fluctua-
tions of the superconducting phase φ are large. It is possible to project
out a definite N-particle state out of the usual BCS ground state using the
method employed by P.W.Anderson [87] by integrating the many-particle
ground state over all values of φ such that

|BCS,N〉 =

∫ 2π

0

e−iφN/2 |BCS, φ〉 dφ. (5.4)

From the above equation (5.4), one succeeds in obtaining states with a precise
particle number N (N must be even as the wavefunction includes only pairs).
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(a) (b)

Figure 5.2: Energy spectrum of a superconductor (a) without charging en-
ergy, (b) with charging energy, both with a pairing energy ∆.

Figure 5.3: Energy spectrum of a superconductor with charging energy ex-
hibiting energy-level degeneracy between states that differ by an even number
of electrons (with charge 2e,4e,.. etc.). Here the fraction of gate charge is
fixed to N − 1 (2nc − 1 in terms of Cooper pairs).

A Fourier transform of (5.4) yields a phase-number uncertainty relation [88].
Much alike the position x̂ and momentum p̂ operators, the superconducting
phase and number of extra Cooper pairs on the island can be associated with
conjugate quantum operators [42], φ̂ and n̂c, implying that

[n̂c, φ̂] = −i,

∆nc∆φ ≥
1

2
.

(5.5)

The Hamiltonian in (5.1) remains unaltered in the discrete charge basis
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representation and since the island has a definite number of Cooper pairs,
n̂c |nc〉 = nc |nc〉, with φ̂ = i∂/∂nc, as follows from (5.5). From the phase-
number uncertainty and the conjugation relation in (5.5), it can also be shown
that [88] [89]

[n̂c, e
±iφ̂] = ±e±iφ̂ (5.6)

From this the effect of acting with e±iφ̂ on the charge eigenstates can be
inferred as

eiφ̂ |nc〉 = |nc + 1〉 ,

e−iφ̂ |nc〉 = |nc − 1〉 .
(5.7)

Thus, the operator eiφ̂ raises the number of Cooper pairs on the island by 1,
while the operator e−iφ̂ removes a Cooper pair.

The significance of the charging energy falls into place with the number-
phase uncertainty relation as it dictates whether the superconducting island
behaves as a macroscopic quantum system or a mesoscopic quantum system.
In a weakly coupled system, when the charging energy is large, it allows
only a discrete transfer of charges 2e in exclusive Cooper pairs between the
leads across the superconducting island. In the case of a small island, at
most a single Cooper pair is transferred [86][90], thus operating in a well-
defined charge regime, exhibiting Coulomb blockade. In contrast, a very
small charging energy results in a coherent transfer of a macroscopic number
of Cooper pairs across the island, causing large fluctuations in the Cooper-
pair number resulting in macroscopic quantum tunneling, with the system
functioning in a well-defined phase regime [91].

5.1.1 Superconductor with a pair of Majorana fermion
bound states

The notions discussed hitherto do not take into account Majorana fermions
and how the presence of Majorana fermion bound states modify the low-
energy spectrum in the case of a topological superconductor. In the absence
of Majorana fermions, the lowest branch of the spectrum of the supercon-
ductor only consists of even states, but with a pair of zero-energy Majorana
bound states present, both even and odd states are possible. Since the un-
paired zero-energy Majorana bound states localized at either ends of the wire
forms a non-local fermion state, c†m = γ1 + iγ2, there is no energy expense
to occupy this state as it is not separated from the ground state by a finite
energy gap. While it costs an energy equal to the pairing energy gap ∆
to occupy an unpaired electron state in a normal superconductor as seen in
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equation 5.2, it costs zero energy to occupy the unpaired electron state in a
topological superconductor with zero-energy Majorana bound states. This
single electron quasiparticle state can no longer be ignored. Therefore, the
ground state illustrated in Figure 5.4(a) now includes both even and odd
states. When nm zero-energy Majorana fermion modes form nm/2 fermion
states that can be either occupied or empty, it results in a 2nm/2-fold ground
state degeneracy. However, parity of these Majorana states is related to the
total parity of the superconducting island with N fermions and when the
parity of the fermions is fixed, the resulting ground state exhibits 2(nm/2)−1-
fold degeneracy [23]. Thus, for any exotic effects to occur nm > 2 is required,
and ergo, the set-up of a topological Kondo effect consists of the minimal
nm = 4 Majorana zero modes (with nm = 3 being excluded since nm should
be even) [1].

(a) (b)

Figure 5.4: Energy spectrum of a superconductor with a pair of zero-energy
Majorana bound states (a) without charging energy, (b) with charging energy.

However, we have seen that for a system with finite charging energy,
consisting of a well-defined number of particles, the ground state is non-
degenerate and the energy spectrum with Majorana bound states now re-
sembles that of the lowest branch of Figure 5.2(b) but now containing both
even and odd states.

Parallel to the previous case, one can obtain a solution where both even
and odd states are degenerate by carefully tuning the value of gate charge.
The energy spectrum then exhibits degeneracy points whenever the gate
charge fraction is adjusted to half integers Qg

e
= N + 1

2
much alike the case

of a single electron box. Thus, a superconductor with zero-energy Majorana
fermion modes supports energy-level degeneracy between states that differ by
odd number of charges rather than even number of charges. This non-local
fermion state forms a two-level system in analogy to the single Cooper-pair
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box. In the same way, it can be used to store quantum information with an
added advantage of non-locality and topological protection.

Figure 5.5: Energy spectrum of a superconductor with a pair of zero-energy
Majorana fermion bound states exhibiting energy-level degeneracy between
even and odd states that differ by odd number of charges (e,3e,.. etc.).

If a zero-energy Majorana bound state appears at a position R along
the superconducting wire, then the quasiparticle operator of the Majorana
fermion bound state takes the form

γ =

∫
[ξR(x)e−i

φ
2ψ†(x) + ξ∗R(x)ei

φ
2ψ(x)]dx, (5.8)

where ξR(x) is a bound state envelope function centred at R that falls off ex-
ponentially with distance and characterizes wavefunction overlap. However,
the length of the wire is assumed to be larger than the coherence length such
that Majorana modes localized at the ends of the wire have essentially zero
wavefunction overlap, thus preserving the phenomenon of non-locality. ψ†(x)
and ψ(x) are electron creation and annihilation operators.

5.2 Electron transport via Majorana bound

states

Coupling the Majorana bound states to the metal leads makes it possible
to tunnel single electrons through the non-local fermion state. The finite
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charging energy of the system not only influences the energy spectrum of
the superconducting island, but also impacts tunneling of electrons through
the island. In a normal superconductor, tunneling of single electrons is im-
practical due to the pairing energy gap ∆ for single-particle excitations and
only Cooper pairs tunnel readily, resulting in a tunneling sensitive to parity
with a periodicity of 2e [92]. For any applied bias voltage V < EC < ∆,
quasiparticle excitations separated by a finite energy gap of ∆ are unim-
portant and only zero-energy Majorana fermions become the main focus in
tunneling. If the quasiparticle energy were less than the charging energy,
E∆ << EC , it will drastically alter the physics of the device, as the tunnel-
ing process via these quasiparticle states will compete with the tunneling of
electrons through Majorana bound states, resulting in quasiparticle poison-
ing of the device [93]. Hence, for realizing a stable topological Kondo effect,
it is important to have EC < ∆ in our present study.

The first step in recognizing tunneling of electrons from the leads to the
superconductor is by defining the electron operators of the superconductor
in terms of the Majorana fermion operators. Using (5.8) one has

ψ†(x) = ei
φ
2 [ξi(x)γ†i + ξj(x)γ†j ],

ψ(x) = e−i
φ
2 [ξi(x)γi + ξj(x)γj].

(5.9)

The above expression is different from (4.7) as it includes a bound state wave-
function term associated with the Majorana fermions, and the significance of
it becomes evident during tunneling. Here the Majorana wavefunction ξi(x)
and ξj(x) denote the Majorana bound states localized at the ends of wire
coupled to leads i and j respectively. As the Majorana wavefunction peaks
at the point of contact and falls of exponentially with distance, ξi(j) and
ξj(i) are zero.

A Majorana fermion is a superposition of a particle and a hole state,
and it is a misconception to recognize it as a particle as it makes no physical
sense with respect to being occupied or empty. One can wonder if a fermionic
state formed by combinations of these Majorana fermions has any physical
significance at all and doubt its occupancy. But it is the factor e±iφ/2 which
comes to the rescue. Similar to the phase operators defined in (5.7), eiφ/2

adds an electron and e−iφ/2 removes an electron. Thus, an electron tunneling
through the non-local fermion state appears as if it is being teleported since
it enters the superconducting island through a Majorana bound state at one
end and comes out of the Majorana bound state at the other end [94].

Consequently - an electron tunneling into superconducting wires a and
b shown in Figure 5.1 is represented by similar operators as above. If ‘ti’ is
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the tunneling probability of an electron hopping from a lead i (since only
three leads are connected, i=1,2,3) into the superconducting island, then the
effective Hamiltonian describing the transitions of electrons is obtained by
second-order perturbation theory as

HT =
∑
i 6=j

λ+
ijγ
†
i γjψ

†
jψi −

∑
j

λ−jjψ
†
jψj. (5.10)

Here, λ±ij = titj

(
1

U+

± 1

U−

)
and U± = E0(N ± 1) − E0(N), see Appendix

B for a detailed derivation. In [1], the effective tunneling Hamiltonian is
obtained by a Schrieffer-Wolff transformation, but here we follow an alter-
native approach involving time-dependent perturbation theory to calculate
the transition rates. The total Hamiltonian, including the leads, is given by,
Heff = Hleads +HT . The Hamiltonian of the conduction electrons in the leads,
Hleads, is assumed to be non-interacting for realization of topological Kondo
effects [1]. Hence, Hamiltonian HT with a finite charging energy Ec brings
about a transition between states |N〉 and |N ± 1〉 of the superconducting
island, corresponding to even and odd states respectively.

5.3 Emergence of Kondo effect

The charge fluctuations between states |N〉 and |N ± 1〉 in the supercon-
ducting island set-up leads to Coulomb blockade phenomenon which can be
captured by a multichannel Kondo model. To arrive at the precise Kondo
model, first the Majorana fermion operators in (5.10) are expressed in terms
of spin-1/2 operators,

σ1 ≡ iγ2γ3 , σ2 ≡ iγ1γ3 , σ3 ≡ −iγ1γ2. (5.11)

These operators, by virtue of the fermionic anticommutation relations (4.5),
obey the SU(2) spin algebra

[σi, σj] = iεijkσk. (5.12)

Now to attain a Kondo model from the tunneling Hamiltonian in (5.10),
HT → HKondo, the electron operators in (5.10) are represented by a spin
current Jα such that

Jα = i
∑
a,b

εαabψ
†
aψb. (5.13)

with a and b denoting the two wires and α = 1, 2, 3 indicating the three
leads coupled to the wire. Now on closer inspection one finds that Jα is
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nothing but a spin-1 representation of electrons as

Jα = i
∑
a,b

εαabψ
†
aψb ≡ Ψ†JαΨ. (5.14)

Here J symbolizes the matrices representing spin-1 electrons, analogous
to the Pauli matrices of spin-1/2 electrons, with Ψ serving as spin-1 elec-
tron operators. Therefore, the reformulation of the tunneling Hamiltonian,
HT → HKondo, maps it to a spin-1/2 two-channel Kondo model with spin-1
conduction electrons,

HKondo =
1

2

∑
α

λασαJα, (5.15)

where λα =
∑

a,b |εαab|λ
+
ab. As mentioned above, the spin-1/2 impurity two-

channel Kondo model of spin-1 conduction electrons is found to be equivalent
to a spin-1/2 impurity four-channel Kondo model of spin-1/2 conduction
electrons by way of their algebra, as both follow an SU(2)4 Kac-Moody
algebra [40].

It is evident why a minimal M = 3 coupling of leads is required as both
the spin-1 impurity Jα and spin-1/2 conduction electrons represented by
σα require 3 couplings in order to achieve the Kondo interaction in (5.15).
When considered as a topological qubit, the σα operators serve as Pauli
matrices [95]. Because the Kondo coupling λα should be set positive to realize
antiferromagnetic interaction, the value of the charging energy has important
consequence for the topological Kondo effect. The Kondo coupling term also
includes the tunneling amplitudes ti, which always remain positive with a
proper choice of the phase of electron fields. The role of charging energy
on the Kondo coupling term can be understood by expanding the term λ+

ij,
which results in

λ =
2

Ec

[
1− 4

(
N − Qg

e

)2
] . (5.16)

The charging energy E0 of the superconducting island is usually minimized
to facilitate addition of electrons. While the gate charge is set to fractional
values Qg

e
= N + 1

2
to obtain an energy-level degeneracy between even-odd

states and to achieve minimization of the charging energy, the fractional
values cause a blow-up of the coupling strength as is evident from (5.16).
For a positive λ the gate charge fraction should be minimized further such
that it is less than N + 1

2
. The straightforward way is to set the gate charge

fraction to be rather integers equal to N . Therefore, by tuning Qg

e
= N

ensures a positive antiferromagnetic Kondo coupling and also minimizes the
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charging energy E0 to the bare charging energy. The bare Kondo coupling
strength is then ∼ 2/Ec.

Since the signature of Majorana fermions is observed as zero-bias con-
ductance peaks [70], the signature of the Kondo effect can be recognized
by doing conductance measurements and studying its temperature depen-
dence. While the Coulomb blockade suppresses the linear conductance at
low temperatures, the Kondo effect enhances it. Therefore, an increase in
conductance occurs and ceases when any one of the three leads is decoupled,
serving as a smoking-gun signature of the Kondo effect.
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(a)

(b)

Figure 5.6: Piecewise linearized energy spectrum of a superconductor hav-
ing charging energy Ec with varying gate charge Qg/e for different N , (a)
is a conventional superconductor (cf. Figure 5.2 (b)) with the odd states
(dashed lines) separated from even states by a gap ∆. (b) A topological
superconductor with a pair of zero-energy Majorana fermions (cf. Figure 5.4
(b)).
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Chapter 6

Conclusion

In the past, the two-channel Kondo model had been conveniently expressed
in terms of Majorana fermion representation by way of the algebra they fol-
low, only because of its mathematical simplicity as explained in Chapter 3.
The converse mapping was not considered as the Majorana fermions of such
Kondo models did not carry any physical significance beyond their mathe-
matical usage. However, the advent of topological superconductors and the
possible appearance of Majorana fermions in condensed matter systems have
made this an interesting line of research. Now a novel Kondo effect has been
proposed through Majorana bound states appearing at the ends of a p-wave
superconductor owing to similar algebraic relations. The topological protec-
tion of these Majorana bound states extended to the Kondo effect makes it
robust against perturbations. Therefore, a topological Kondo effect may be
achieved by the topological degeneracy of Majorana fermions.

The topological Kondo effect, being of multichannel type, leads to a non-
Fermi liquid behaviour that is also robust against perturbations and is not
prone to disorder. The enhanced conductance of the mesoscopic device acts
as a signature of the topological Kondo effect. The Kondo effect can be easily
switched off by decoupling one of the leads or by changing the gate charge
such that the Kondo effect is not favoured by the effective charging energy.
Another clear signature of the topological Kondo effect is given by the local
density of states (LDOS) of the lead electrons close to the island which can be
directly measured by a scanning tunneling microscope (STM) [96]. Thus this
simple realization of the topological Kondo effect does not require fine tuning
of parameters, making it experimentally feasible with available technologies.
Further studies of the model can be made by coupling the superconducting
island to ferromagnetic leads [97]. By changing the charging energy and in
turn the Kondo coupling, the transition a ferromagnetic Kondo effect can
also be investigated [98].
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In conclusion, the topological Kondo effect breaks new ground for the
study of non-Fermi liquid physics. It also demonstrates the non-local nature
of Majorana fermions which is fundamental to the implementation of fault-
tolerant quantum computation systems.

57



Appendices

58



Appendix A

Unpaired Majorana fermions in
Kitaev’s 1D Toy model

The 1D spinless p-wave superconducting chain is described in the second
quantization language by the Hamiltonian as

H = −t
N−1∑
j=0

(c†jcj+1 + c†j+1cj)−
N−1∑
j=0

(∆∗c†jc
†
j+1 + ∆cj+1cj)− µ

N∑
j=0

c†jcj (A.1)

Where cj and c†j are the fermionic operators, i.e. the electron annihilation and
creation operator respectively, µ is the chemical potential associated with the
number operator c†jcj = nj, t is the hopping amplitude between neighbouring
sites in the chain and is the same for all sites throughout the chain. The
superconducting gap due to p-wave pairing ∆ can be written as ∆ = |∆|eiφ,
where φ is the superconducting phase (here p-wave superconducting pairing
phase) and eiφ is absorbed into the Majorana fermion operators as we define
the fermionic operators below,

cj = e−iφ/2(γ1,j + iγ2,j)/
√

2,

c†j = eiφ/2(γ1,j − iγ2,j)/
√

2.
(A.2)

From above, it is evident that Majorana fermions can be obtained by splitting
the fermions into real and imaginary parts. Hence,

γ1,j = (e−iφ/2c†j + eiφ/2cj)/
√

2,

γ2,j = i(e−iφ/2c†j − eiφ/2cj)/
√

2.
(A.3)

Thus γi,j is the Majorana operator residing at site j. As two Majorana
fermions are required for constructing a fermion, i = (1, 2) indicates the two
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Majoranas (at 1 and 2) combining to form a fermion at site j. Clearly the
above operators are hermitian and obey the Majorana fermionic relations

γα,i = γ†α,i,

{γα,i, γβ,j} = δijδαβ.

where, δxy =

{
0 when x 6= y

1 when x = y

(A.4)

It can be seen that the fermionic operators are defined similar to cj = (γ1,j +
iγ2,j)/

√
2 except for an additional phase φ. Now the Hamiltonian A.1 is

simplified to,

H = −t
N−1∑
j=0

(c†jcj+1 + c†j+1cj)− |∆|
N−1∑
j=0

(c†jc
†
j+1 + cj+1cj)− µ

N∑
j=0

c†jcj (A.5)

Now the terms in Kitaev Hamiltonian in terms of Majorana operators become

c†jcj+1 + c†j+1cj =
1

2
(γ1,j − iγ2,j)(γ1,j+1 + iγ2,j+1) +

1

2
(γ1,j+1 − iγ2,j+1)

(γ1,j + iγ2,j)

=
1

2
[(γ1,jγ1,j+1 +iγ1,jγ2,j+1−iγ2,jγ1,j+1 +γ2,jγ2,j+1)+(γ1,j+1γ1,j+iγ1,j+1γ2,j

− iγ2,j+1γ1,j + γ2,j+1γ2,j)]

=
1

2
[γ1,jγ1,j+1 + γ1,j+1γ1,j + γ2,jγ2,j+1 + γ2,j+1γ2,j − iγ2,j+1γ1,j+

iγ1,jγ2,j+1 − iγ2,jγ1,j+1 + iγ1,j+1γ2,j]

=
1

2
[{γ1,j, γ1,j+1}+ {γ2,j, γ2,j+1} − iγ2,j+1γ1,j + i(−γ2,j+1γ1,j)−

i(−γ1,j+1γ2,j) + iγ1,j+1γ2,j]

=
1

2
[0 + 0 + 2iγ1,j+1γ2,j − 2iγ2,j+1γ1,j].

The expression is reduced to

c†jcj+1 + c†j+1cj = i[γ1,j+1γ2,j − γ2,j+1γ1,j]. (A.6)
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Now the next part,

c†jc
†
j+1 + cj+1cj =

1

2
(γ1,j − iγ2,j)(γ1,j+1 − iγ2,j+1) +

1

2
(γ1,j+1 + iγ2,j+1)

(γ1,j + iγ2,j)

=
1

2
[(γ1,jγ1,j+1 − iγ1,jγ2,j+1 − iγ2,jγ1,j+1 − γ2,jγ2,j+1) + (γ1,j+1γ1,j+

iγ1,j+1γ2,j + iγ2,j+1γ1,j − γ2,j+1γ2,j)]

=
1

2
[γ1,jγ1,j+1 + γ1,j+1γ1,j − γ2,jγ2,j+1 − γ2,j+1γ2,j + iγ2,j+1γ1,j−

iγ1,jγ2,j+1 − iγ2,jγ1,j+1 + iγ1,j+1γ2,j]

=
1

2
[{γ1,j, γ1,j+1} − {γ2,j, γ2,j+1}+ iγ2,j+1γ1,j − i(−γ2,j+1γ1,j)−

i(−γ1,j+1γ2,j) + iγ1,j+1γ2,j]

=
1

2
[0− 0 + 2iγ2,j+1γ1,j + 2iγ1,j+1γ2,j].

Therefore the expression becomes

c†jc
†
j+1 + cj+1cj = i[γ2,j+1γ1,j + γ1,j+1γ2,j]. (A.7)

Now moving on to the third term

c†jcj = (
γ1,j − iγ2,j√

2
)(
γ1,j + iγ2,j√

2
) =

1

2
(γ1,jγ1,j + iγ1,jγ2,j − iγ2,jγ1,j + γ2,jγ2,j)

Since,

{γ1,j, γ1,j} = γ1,jγ1,j + γ1,jγ1,j = 1,

{γ1,j, γ2,j} = γ1,jγ2,j + γ2,jγ1,j = 0,

c†jcj =
1

2
(
1

2
+ iγ1,jγ2,j− i(−γ1,jγ2,j)+

1

2
) =

1

2
(1+2iγ1,jγ2,j) =

1

2
+ iγ1,jγ2,j
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Therefore,

c†jcj =
1

2
+ iγ1,jγ2,j

or

=
1

2
− iγ2,jγ1,j.

(A.8)

Now the Kitaev chain in terms of Majorana is obtained by substituting
(A.6),(A.7) and (A.8) in the Hamiltonian (A.5)

H = −t
N−1∑
j=0

(i[γ1,j+1γ2,j − γ2,j+1γ1,j])− |∆|
N−1∑
j=0

(i[γ2,j+1γ1,j + γ1,j+1γ2,j])

− µ
N∑
i=0

(
1

2
+ iγ1,jγ2,j),

H =
N−1∑
j=0

(i(−t−|∆|)γ1,j+1γ2,j + i(t−|∆|)γ2,j+1γ1,j).−µ
N∑
j=0

(
1

2
+ iγ1,jγ2,j)

Therefore, the Hamiltonian in terms of Majorana operators is given by

H = i
N−1∑
j=0

((t−|∆|)γ2,j+1γ1,j−(t+|∆|)γ1,j+1γ2,j)−µ
N∑
j=0

(
1

2
+iγ1,jγ2,j). (A.9)

For the case of µ = 0 and t = |∆|, (A.9) reduces to

H = −2it
N−1∑
j=0

(γ1,j+1γ2,j). (A.10)

Now define new set of fermionic operators such that,

di = (γ2,j + iγ1,j+1)/
√

2

, d†i = (γ2,j − iγ1,j+1)/
√

2.
(A.11)

Then

d†idi =
1

2
− iγ1,j+1γ2,j
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Hence (A.10) becomes

H = 2t
N−1∑
j=0

(d†idi −
1

2
). (A.12)

The unpaired Majorana fermions absent from the above Hamiltonian are
identified in Section 4.4 and combined to form a non-local fermion.
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Appendix B

Effective tunneling Hamiltonian
involving Majorana fermions

Electrons hopping into the superconducting wires a and b shown in Figure
4.1 are represented by electron operators in terms of the Majorana fermion
operators associated with the Majorana bound state at the end of the wires.
In wire a,

ψ†a = eiφ/2
[
ξ∗0(x)γ†0 + ξ∗1(x)γ†1

]
,

ψa = e−iφ/2 [ξ0(x)γ0 + ξ1(x)γ1] ,
(B.1)

where γ1(γ0) denotes the Majorana bound state at the end of wire a coupled
to lead 1 (not lead). While in wire b,

ψ†b = eiφ/2
[
ξ∗2(x)γ†2 + ξ∗3(x)γ†3

]
,

ψb = e−iφ/2 [ξ2(x)γ2 + ξ3(x)γ3] ,
(B.2)

where γ2(γ3) denotes the Majorana bound state at the end of wire b coupled
to lead 2 (lead 3). If tj is the tunneling probability of an electron tunneling
from lead j into a superconducting wire, then the tunneling processes at the
contact between lead 1 and wire a can be expressed as

Lead 1→Wire a = t1ψ
†
aψ1 = t1e

iφ/2ξ∗1(R1)γ†1ψ1,

Wire a→ Lead 1 = t1ψ
†
1ψa = ψ†1t1e

−iφ/2ξ1(R1)γ1,
(B.3)

where R1 is the coordinate of the contact (at which the Majorana wave
function ξ1 is also peaked). In general, for an electron hopping between a
lead and a superconductor, electron tunneling is given by

Lead j→Wire = tje
iφ/2ξ∗j (Rj)γ

†
jψj,

Wire→ Lead j = ψ†jtje
−iφ/2ξj(Rj)γj.

(B.4)
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B.1 Transition rates

In order to obtain the effective lead-lead tunneling Hamiltonian one needs
to consider the probability of electrons tunneling from one lead to another.
This is accomplished by employing the formula for second-order transition
of states, based on time-dependent perturbation theory [99],

T
(2)
j→k =

∑
l 6=j

〈k|HT |l〉〈l|HT |j〉
(Ej − El)

(B.5)

where, for notational simplicity, we have absorbed a factor of ~/2π into the

definition of the transition rate T
(2)
j→k. The tunneling of an electron from lead

j to lead k, involves two different intermediate states. Let us look at these
intermediate processes in detail.

Case A

The first case involves a two step process, with (i) an electron in lead j
at the Fermi level tunneling into the superconducting island, occupying the
first available energy level on the island and next, (ii) the tunneling from the
island into the lead k.

Step 1: Lead → Island

Tunneling from the lead into the superconducting island 〈l|HT |j〉 is described
using the states,

|j〉 = |Electron in lead j〉 ⊗ |Initial N electrons on the island〉 , along with

|l〉 = |Electron in the first available level on the island〉⊗
|N electrons on the island〉 .

Here N = 2n, where n is the number of Cooper pairs on the island. The
energy of the initial state |j〉 is the sum of the energy of an electron at the
Fermi level in the lead, and the charging energy E0(N) of N electrons on the
island (cf. (5.2). Energy in the initial state is EA

j = ε~k + E0(N). With the
same reasoning, the energy of the intermediate state, EA

l = E0(N + 1).
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Figure B.1: Tunneling of electron from lead ‘j’ to lead ‘k’ via superconducting
island.

Step 2: Island → Lead

The tunneling from the superconducting island to the lead, 〈k|HT |l〉, is ex-
pressed using the states,

|l〉 = |Electron in the first available level on the island〉⊗
|N electrons on the island〉 ,

|k〉 = |Electron in the other lead 〉 ⊗ |Initial N electrons on the island〉 .

Since the transition is independent of the energy of the final state, we com-
pute from B.5,

T
(2)
j→k(A) =

∑
l 6=j

〈k|HT |l〉〈l|HT |j〉
ε~k + E0(N)− E0(N + 1)

. (B.6)

Because an electron in a lead is at the Fermi level, we can put ε~k ≈ εF , and
write,

T
(2)
j→k(A) ≈

∑
l 6=j

〈k|HT |l〉〈l|HT |j〉
εF + E0(N)− E0(N + 1)

. (B.7)
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Choosing an energy scale such that εF = 0, we obtain

T
(2)
j→k(A) =

∑
l 6=j

〈k|HT |l〉〈l|HT |j〉
E0(N)− E0(N + 1)

. (B.8)

Case: B

The second case involves an electron on the superconducting island first
hopping to to one of the leads. This creates an empty level on the island,
allowing an electron in the other lead to jump into the island, making the
number of electrons on the superconducting island the same as that in the
initial state. The energy of the initial state is given by EB

j = E0(N) + ε~k.

Figure B.2: Tunneling of electron from superconducting island to lead ‘k’
and from lead ‘j’ to island.

Now the energy of the intermediate state is the charging energy of N − 1
electrons on the island plus the kinetic energies of TWO electrons in the leads.
Therefore, The energy of the intermediate state = EB

l = E0(N − 1) + 2ε~k
An expression for the transition is obtained similar to the first case as

T
(2)
j→k(B) =

∑
l 6=j

〈k|HT |l〉〈l|HT |j〉
E0(N) + ε~k − E0(N − 1)

. (B.9)
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Again putting ε~k ≈ εF = 0,

T
(2)
j→k(B) =

∑
l 6=j

〈k|HT |l〉〈l|HT |j〉
E0(N)− E0(N − 1)

. (B.10)

B.2 Tunneling of electrons between leads

Now using the tunneling probabilities computed above in B.4 and transition
probabilities in B.8 and B.10, the tunneling of a single electron between the
leads in the topological superconductor set-up is obtained in the following
way.

Consider first tunneling of an electron from lead 2 to lead 3, illustrated
in Figure 4.1. It involves two intermediate processes with one involving the
electron tunneling from lead 2 to wire b first, and from wire b towards lead
3, T

(2)
2→3(A). The other process involves first, tunneling from wire b to lead 3

and next, into wire b from lead 2, T
(2)
2→3(B).

T
(2)
2→3(A) =

〈3|HT |b〉〈b|HT |2〉
(E2 − Eb)

=
ψ†3t3e

−iφ/2ξ3(R3)γ3t2e
iφ/2ξ∗2(R2)γ†2ψ2

E0(N)− E0(N + 1)
.

Note ξi(Rj) = δij since Majorana modes localized at the ends of a wire
are assumed to have zero wave function overlap. Having thus neglected the
broadening of the localized wave function, we obtain

T
(2)
2→3(A) =

t2t3ψ
†
3γ3γ

†
2ψ2

E0(N)− E0(N + 1)
. (B.11)

Similarly,

T
(2)
2→3(B) =

〈b|HT |2〉〈3|HT |b〉
(Eb − E3)

=
γ3t2e

iφ/2ξ∗2(R2)γ†2ψ2ψ
†
3t3e

−iφ/2ξ3(R3)

E0(N)− E0(N − 1)

T 2
2→3(B) =

t2t3γ
†
2ψ2ψ

†
3γ3

E0(N)− E0(N − 1)
. (B.12)
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The sum of these two intermediate processes gives the process of electron
tunneling from lead 2 to lead 3,

T
(2)
2→3 = T

(2)
2→3(A) + T

(2)
2→3(B)

=
t2t3ψ

†
3γ3γ

†
2ψ2

E0(N)− E0(N + 1)
+

t2t3γ
†
2ψ2ψ

†
3γ3

E0(N)− E0(N − 1)

=
t2t3ψ

†
3γ3γ2ψ2

E0(N)− E0(N + 1)
+

t2t3γ2ψ2ψ
†
3γ3

E0(N)− E0(N − 1)
,

where we have used γ = γ† in the second line. We can also use the fermionic
anticommutation rules to simplify this further:

γ3γ2 = −γ2γ3

ψ2ψ
†
3 = −ψ†3ψ2,

T
(2)
2→3 =

t2t3(−γ2γ3)ψ†3ψ2

E0(N)− E0(N + 1)
+

t2t3γ2γ3(−ψ†3ψ2)

E0(N)− E0(N − 1)

= t2t3γ2γ3ψ
†
3ψ2

{
−1

E0(N)− E0(N + 1)
+

−1

E0(N)− E0(N − 1)

}
= t2t3γ2γ3ψ

†
3ψ2

{
1

U+

+
1

U−

}
.

(B.13)

where U± = E0(N ±1)−E0(N). Generalizing, we get the effective tunneling
between different leads as

T
(2)
i→j =

∑
i 6=j

titjγiγjψ
†
jψi

{
1

U+

+
1

U−

}
. (B.14)

For the case of i = j, let us consider the tunneling at lead 1 which involves
tunneling of an electron from lead 1 into wire a and tunneling back to lead
1 from wire a. An expression similar to the one above is obtained,

T
(2)
1→1 =

t21ψ
†
1γ1γ

†
1ψ1

E0(N)− E0(N + 1)
+

t21γ
†
1ψ1ψ

†
1γ1

E0(N)− E0(N − 1)
.

Since γ = γ† and γ2 = 1,

T 2
1→1 =

t21ψ
†
1ψ1

E0(N)− E0(N + 1)
+

t21ψ1ψ
†
1

E0(N)− E0(N − 1)
.
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Revoking the fermionic anti-commutation properties with ψ†1ψ1 + ψ1ψ
†
1 = 1,

the above expression becomes

T
(2)
1→1 =

t21ψ
†
1ψ1

E0(N)− E0(N + 1)
+

t21(1− ψ†1ψ1)

E0(N)− E0(N − 1)

= t21ψ
†
1ψ1

{
1

E0(N)− E0(N + 1)
+

−1

E0(N)− E0(N − 1)

}
+

t21
E0(N)− E0(N − 1)

(B.15)

It can be rewritten as

T
(2)
1→1 = −t21ψ

†
1ψ1

{
1

E0(N + 1)− E0(N)
+

−1

E0(N − 1)− E0(N)

}
+ const.

= −t21ψ
†
1ψ1

{
1

U+

− 1

U−

}
+ const.

(B.16)

In general,

T
(2)
j→j = −t2jψ

†
jψj

{
1

U+

− 1

U−

}
+ const. (B.17)

The effective tunneling Hamiltonian HT is thus given by

HT =
∑
i 6=j

titjγ
†
i γjψ

†
jψi

{
1

U+

+
1

U−

}
−
∑
j

t2jψ
†
jψj

{
1

U+

− 1

U−

}
+ const.

(B.18)

Introducing the constants λ±ij = titj

(
1

U+

± 1

U−

)
,

HT =
∑
i 6=j

λ+
ijγ
†
i γjψ

†
jψi −

∑
j

λ−jjψ
†
jψj. (B.19)

To conclude, the effective Hamiltonian of the system, Heff = Hleads +HT can
be written as,

Heff = Hleads +
∑
i 6=j

λ+
ijγ
†
i γjψ

†
jψi −

∑
j

λ−jjψ
†
jψj (B.20)

from which the Kondo Hamiltonian can be extracted as discussed in Section
5.3.
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