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Chapter 1

Introduction

The central concepts in this Master thesis is spin orbit induced topological insulators1,
RKKY interaction and spin-orbit effects. Spin orbit induced topological insulators are
a new class of materials that recently has been theoretically predicted and produced in
laboratory. An overview of topological insulators is given in chapter 2 and a simple
tight binding model is used in chapter 3 to derive the bulk band structure of the two
dimensional spin orbit induced topological insulator.

This is followed by a chapter in which it is shown how the spin-orbit interaction,
or Thomas term, arises in the non-relativistic limit of the Dirac equation. One reason
that the spin orbit interaction is derived here is that it is this term that is responsible for
the band structure in the spin orbit induced topological insulators. Secondly, another
interaction called the Rashba interaction also is a kind of spin orbit interaction that
follows from this derivation, and this interaction is similar in form to an effect that
occurs on the surface of the three dimensional topological insulator.

In chapter 5 an interaction called the RKKY interaction, which is a special type
of interaction between two localized spins that is mediated by a surrounding ”electron
sea” is derived. This is followed by a final chapter where a general method for solving
such problems when the ”electron sea” has a linear spectrum. The motivation for these
two last chapters are that the electrons on the surface of a three dimensional topological
insulator satisfies a linear spectrum, and thus is a special case of such a system.

1I choose here to use the term spin orbit induced topological insulators instead of topological insulators
because this makes it possible to differentiate between these and the quantum Hall systems that also will be
briefly described later.
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Chapter 2

Topological insulators -
Overview

2.1 Introduction

In recent years a new type of material, spin-orbit induced topological insulators, has
attracted a large interest in the community of condensed matter physicists. This class
of materials has the special property that they are insulators in the bulk, but allows
conducting states to exist on the boundary. This is interesting for several reasons,
among them that this could allow for ”electrical manipulation of spins and spin currents
with little or no dissipation”[8].

Both two and three dimensional versions of these materials have been theoreti-
cally predicted[2] and subsequently produced in laboratories[9, 15], and the two di-
mensional versions has close analogies with the quantum Hall effect[8]. In this chapter
an overview of some of the essential properties of these new types of materials as well
as related properties of quantum Hall insulators is given. This chapter does in no way
try to give a complete description of the topological insulators, neither is it intended
to give detailed theoretical descriptions of why the phenomenas occur. The purpose of
this chapter is instead to give an introduction to some of the most important properties,
and to give a hint on the analogies and difference between the different systems.

2.2 The quantum Hall insulator

An early example of a class of topological insulators is provided by the quantum Hall
insulators[8, 5]. In these systems a strong magnetic field gives rise to Landau quanti-
zation, where each electron falls into one of several degenerate and widely separated
energy levels. See figure 2.1. As long as none of these energy levels coincides with
the Fermi energy, the bulk of the material is in an insulating state in which all Landau
levels below the Fermi surface are fully occupied and those above are empty.

In contrast, there exist conducting states at the edges of a quantum Hall insula-
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6 CHAPTER 2. TOPOLOGICAL INSULATORS - OVERVIEW

Figure 2.1: For strong magnetic fields, the energy spectrum in the bulk of a quantum
Hall insulator consists of Landau levels with large amounts of electrons in each level.
As the magnetic field is further increased the Landau levels are pushed upward, and
each time a Landau level is pushed above the Fermi energy it gets emptied of electrons.
Those levels that lies below the Fermi energy is therefore fully occupied (blue), while
those above are empty (red). In this way there is an energy gap between the highest
occupied and lowest unoccupied Landau level, as long as the Fermi energy not happens
to fall within one of the Landau levels. The later happens at those critical values of the
magnetic field strength at which the levels are emptied.
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Figure 2.2: In the Quantum Hall effect the bulk electrons are trapped in filled Landau
levels. There is however edge states in which electrons can propagate in one direction.
Because the states only can propagate in one direction, they are insensitive to scattering
from impurities. This results in very precise quantization of the resistance for the
system.

tor. These states do however only allow for conduction in one direction and forbids
backscattering. This in turn leads to a very precise quantization of the resistance for
the system, so precise that it allows for an international standard of resistance to be
based on it[1]. See figure 2.2.

2.3 Two dimensional quantum spin Hall insulator
The two dimensional quantum spin Hall insulator has many similarities with the quan-
tum Hall insulator. Just as the quantum Hall insulator, the two dimensional quantum
spin Hall insulator has an insulating bulk and conducting edge states. But in contrast
to the quantum Hall insulator, it has two sets of edge states that propagates in opposite
directions. See figure 2.3. Further these sets of edge states has a definite spin direction,
each opposite to the other. In this way there is two conduction channels at the edge
of a two dimensional quantum spin Hall insulator, where in one channel spin up elec-
trons are conducted in one direction, while in the other channel spin down electrons
are conducted in the opposite direction.

Similar to the edge states on a quantum Hall insulator, the edge states on the quan-
tum spin Hall insulator are protected against scattering. At least this is true as long
as there not is any magnetic scatterers along the edge. In this case there do exist con-
duction channels in both direction, but for an electron to be scattered into the opposite
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Figure 2.3: Similarly to the quantum Hall insulator, the two dimensional quantum spin
Hall insulator is gaped in the bulk. However, in contrast to the quantum Hall insulator
there exists two sets of edge states. One for each spin direction, and these propagates
in opposite directions.

direction it has to reverse it’s spin, which would require scattering against magnetic
impurities.

The band structure that supports the quantum spin Hall insulator state is however
quite different from that of the quantum Hall insulator. While the later band structure
consists of Landau levels induced by an external magnetic field, the important part of
the former one can be described by two bands that are intrinsic to the material itself. To
understand the important parts of these, imagine two parabolic bands that bends away
from each other, one with even and one with odd parity. Further imagine that they
overlap each other so that they cross at some two points in k-space. At these points
the two pure parity bands combine to form gaps, and the result is two bands like those
depicted in figure 2.4. This kind of band structure is called an inverted band structure
with a negative mass gap, and an important parameter related to this is labeled M

B . In
terms of the description given here, this parameter describing the amount of overlap of
the odd and even parity states. As M

B makes a transition from M
B < 0 to M

B > 0 the
even and odd states begins to overlap and the inverted band structure that supports the
edge states appear. It is however also important that the band gap not is to large, so
there is an upper limit MB < 4 that also has to be satisfied in order to get the quantum
spin Hall state[2].

The effect that creates this kind of band structure in the quantum spin Hall in-
sulators is a strong spin-orbit interaction[9, 10, 2, 12], an interaction that is derived
in chapter 4. In these materials two bands constructed from p-like and s-like orbitals,
with odd and even parity respectively, corresponds to the odd and even bands described
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Figure 2.4: The bulk band structure in a spin Hall insulator can be thought of as con-
sisting of two bands, one with even and one with odd parity, that overlaps each other.
But where the two bands intersect, they combine to form a gap at the intersection of
the pure parity bands. Each color refers to a definite parity.

above. Normally the bands do not overlap, as in the case of the material CdTe. But
for some special types of materials, for example HgTe, the spin-orbit interaction is so
strong that the p-like band is shifted so much in energy that the two bands overlap and
creates the situation in figure 2.4.

One of the advantages of the quantum spin Hall insulator over the quantum Hall
insulator is that the property is intrinsic to the material. While the quantum Hall effect
requires a strong external magnetic field to be applied perpendicular to the material,
the quantum spin Hall effect is achieved simply by the right choice of material.

2.4 Three dimensional topological insulator
The three dimensional quantum spin Hall insulator[15, 4, 6, 16, 12, 7] is very simi-
lar to the two dimensional version. The main difference from the description there is
obviously that it is three dimensional, and that it therefore has a two dimensional sur-
face on which the surface states propagates. This means that the notion of two spin
channels with opposite spin and propagation directions not makes sense here. Two
spins with opposite direction does however propagate in opposite directions on these
surfaces too. The relation between the spin and propagation direction is such that
the spin direction lies in the surface direction but is perpendicular to the propagation
direction[15, 4, 16, 7], as displayed in 2.5. Moreover, as also depicted in the same
figure, the surface states has a cone like energy spectrum. Altogether the spectrum on
the surface of a topological insulator can be written as

H = ~vF (kxσy − kyσx). (2.1)

It is this property of the three dimensional topological insulator that serves as motiva-
tion for the derivation of the RKKY interaction between two localized spin in a two
dimensional system with linear spectrum in chapter 6.
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Figure 2.5: The energy spectrum on the surface of a three dimensional topological
insulator, as seen in the ”side” and ”top” view. The energy spectrum is a cone, and for
each k the spin is perpendicular to the k-vector as shown in the top view. From the top
view it is clear that counter propagating spins is pointing in opposite direction.



Chapter 3

Bulk band structure in a 2D
spin orbit induced topological
insulator

3.1 Introduction
In this chapter a simple model for the bulk band structure in the two dimensional spin
orbit induced topological insulator is derived to display the main building blocks that
are involved in this construction. The model starts from a tight binding model on a
square lattice with two orbitals per lattice site, where one of the orbitals has odd parity
and the other has even parity. The one with odd parity has higher energy than the one
with even parity. This system is a simplification of for example HgTe-CdTe quantum
wells which essentially has a band structure constructed from two orbitals per lattice
site, one with even and one with odd parity[2].

3.2 Orbitals and parity
Before the tight binding model can be constructed there is a few things that has to be
settled. The atoms which the lattice is constructed from are supposed to bind to each
other through sharing s- and p-orbitals. The electrons are therefore supposed to be able
to occupy the s- and p-orbitals on each lattice site. However, because the system is
two-dimensional, the p orbital with m=0 (as measured with an axis perpendicular to
the plane) will have its orbital ”pointing” out of the plane. This orbital is therefore not
assumed to contribute to the binding as it would give a minimal overlap with orbitals
on neighboring lattice sites. The electrons are therefore assumed to occupy only the
s-orbitals and p-orbitals with m = ±1. Moreover the strong spin-orbit interaction
will split the m = ±1 orbitals into two different energy levels, one with the spin of
the electron parallel with the angular momentum, and one anti-parallel. Of these two
possibilities, only the parallel is assumed to be involved in the binding. This gives a
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Figure 3.1: The s- and p-orbitals have different parity. The s-orbital is spherically
symmetric, while the p-orbital has an angular dependence that goes as eimφ. Viewed
from +z.

total of two s-orbitals and two p-orbitals contributing to the binding, namely the two
spin up and down configurations of the s-orbital, the spin up m = 1 p-orbital and the
spin down m = −1 p-orbital.

The s-orbital is spherically symmetric, and has therefore even parity. But the p-
orbitals are proportional to a factor eimφ where φ is the polar coordinate in the x, y-
plane. This means that the parity of the p-orbital is odd. For our purposes the values
of eimφ at the angels 0, π2 , π and 3π

2 will be of interest because these are the angels
at which the overlap integrals between the neighboring orbitals has to be evaluated.
Theses properties are depicted in figure 3.1

3.3 Overlap integrals
To get the hopping amplitudes for the tight binding model, the overlap integrals be-
tween neighboring orbitals has to be evaluated. These will not be evaluated here, but
will be left as arbitrary parameters. It is however assumed that the overlap between
orbitals with opposite spins are zero1. The relation between many of the remain-
ing parameters can be found from symmetry arguments. The main characteristics of
the overlap integrals are depicted in figure 3.2. Apart from the information given in
that picture, the only remaining relations needed to write down all the overlap inte-
grals are the value of the overlap integrals 〈s((x,y)|H|s(x+a,y)〉, 〈p((x,y)|H|p(x+a,y)〉,
〈s((x,y)|H|p(x+a,y)〉 and 〈p(x,y)|H|s(x+a,y)〉, as the rest of the information can be de-
duced from the symmetry relations depicted in the figure. But note that the relation
〈s(x,y)|H|p(x+a)〉∗ = 〈p(x+a,y)|H|s(x,y)〉 = 〈p(x,y)|H|s(x−a,y)〉 has to be satisfied
which reduces the four independent parameters to three independent parameters. As
already stated, these overlap integrals will not be evaluated, but given as arbitrary pa-
rameters. Lets call these

S = 〈s(x,y)|H|s(x+a,y)〉,
P = 〈p(x,y)|H|p(x+a,y)〉,
A = 〈s(x,y)|H|p(x,y)〉.

(3.1)

1This might be an exact result, but I don’t know how to show this.



3.4. TIGHT BINDING ON A SQUARE LATTICE 13

From these parameters, together with the symmetry arguments the following over-
lap integrals follows

Spin up and m = 1:

〈s(x,y)|H|s(x+a,y)〉 = 〈s(x,y)|H|s(x,y+a)〉 = 〈s(x,y)|H|s(x−a,y)〉 =

= 〈s(x,y)|H|s(x,y−a)〉 = S,

〈p(x,y)|H|p(x+a,y)〉 = 〈p(x,y)|H|p(x,y+a)〉 = 〈p(x,y)|H|p(x−a,y)〉 =

= 〈p(x,y)|H|p(x,y−a)〉 = P,

〈s(x,y)|H|p(x+a,y)〉 = −i〈s(x,y)|H|p(x,y+a)〉 = −〈s(x,y)|H|p(x−a,y)〉 =

= i〈s(x,y)|H|p(x,y−a)〉 = A,

〈p(x,y)|H|s(x+a,y)〉 = i〈p(x,y)|H|s(x,y+a)〉 = −〈p(x,y)|H|s(x−a,y)〉 =

= −i〈p(x,y)|H|s(x,y−a)〉 = −A∗.

(3.2)

Spin down and m = -1:

〈s(x,y)|H|s(x+a,y)〉 = 〈s(x,y)|H|s(x,y+a)〉 = 〈s(x,y)|H|s(x−a,y)〉 =

= 〈s(x,y)|H|s(x,y−a)〉 = S,

〈p(x,y)|H|p(x+a,y)〉 = 〈p(x,y)|H|p(x,y+a)〉 = 〈p(x,y)|H|p(x−a,y)〉 =

= 〈p(x,y)|H|p(x,y−a)〉 = P,

〈s(x,y)|H|p(x+a,y)〉 = i〈s(x,y)|H|p(x,y+a)〉 = −〈s(x,y)|H|p(x−a,y)〉 =

= −i〈s(x,y)|H|p(x,y−a)〉 = A∗,

〈p(x,y)|H|s(x+a,y)〉 = −i〈p(x,y)|H|s(x,y+a)〉 = −〈p(x,y)|H|s(x−a,y)〉 =

= i〈p(x,y)|H|s(x,y−a)〉 = −A.

(3.3)

These overlap integrals, or hopping amplitudes, are depicted and more easily seen in
figure 3.3. In addition to the overlap integrals considered above, the matrix elements

S̃ = 〈s(x,y)|H|s(x,y)〉,
P̃ = 〈p(x,y)|H|p(x,y)〉,

(3.4)

are needed for the complete model. These are the on site energy contributions associ-
ated with placing an electron in the corresponding orbitals.

3.4 Tight binding on a square lattice

With all the relations arrived at in the previous section the tight binding Hamiltonian
can be written down. Because the up and down spin orbitals not couple to each others
the Hamiltonian can be split into two parts, H↑ and H↓. From the two matrix elements
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Figure 3.2: In this figure the nearest neighbor overlaps are depicted. The matrix ele-
ment and a schematic view of the overlap is given, together with an equation for the
relative phase between the orbitals in the overlap regions. The phase dependence is that
depicted in figure 3.1, and the complex conjugation comes from the bra-expressions.
The phase dependence on φ gives relative signs between some of the hopping am-
plitudes. As depicted in the picture, the s-s and p-p overlaps has the same phase in
all directions. But the s-p and p-s hoppings acquires a phase e±iφ as the hopping in
different directions are considered.
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Figure 3.3: Hopping amplitudes between neighboring lattice sites. The complex con-
jugation of the whole expression depends on whether spin up or spin down orbitals are
considered.

above and figure 3.3, the tight binding Hamiltonian is seen to be

H↑ =
∑
i

S̃c†i,sci,s +
∑
j∈J

(
Sc†i,sci+j,s +

A

a
(jx + ijy)c†i,sci+j,p

)
+

+P̃ c†i,pci,p +
∑
j∈J

(
Pc†i,pci+j,p +

A∗

a
(−jx + ijy)c†i,pci+j,s

) ,

H↓ =
∑
i

S̃c†i,sci,s +
∑
j∈J

(
Sc†i,sci+j,s +

A∗

a
(jx − ijy)c†i,sci+j,p

)
+

+P̃ c†i,pci,p +
∑
j∈J

(
Pc†i,pci+j,p +

A

a
(−jx − ijy)c†i,pci+j,s

) ,

(3.5)

where i = (x, y) is the lattice index and J = {(a, 0), (−a, 0), (0, a), (0,−a)}.
Now denote the probability amplitude that an electron is in the s-orbital on site

(x, y) with φs(x, y) and in the p-orbital on site (x, y) with φp(x, y). In the limit A = 0
the tight binding Hamiltonian above would have been solved by plane wave solutions
on the form φks(x, y) ∝ ei(kxx+kyy) and φkp(x, y) ∝ ei(kxx+kyy). The solutions
would in other words be solutions of the s- and p-bands. When A is non zero the s-
and p-bands does however mix. To see this mixing explicitly, the Hamiltonian can be
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rewritten in the ”plane wave-pure orbital”-basis. The result is2

H↑ =
∑
k

(
S̃c†kscks + S

(
eikxa + e−ikxa + eikya + e−ikya

)
c†kscks+

+A
(
eikxa − e−ikxa + ieikya − ie−ikya

)
c†ksckp+

+P̃ c†kpckp + P
(
eikxa + e−ikxa + eikya + e−ikya

)
c†kpckp+

+A∗
(
−eikxa + e−ikxa + ieikya − ie−ikya

)
c†kpcks

)
,

H↓ =
∑
k

(
S̃c†kscks + S

(
eikxa + e−ikxa + eikya + e−ikya

)
c†kscks+

+A∗
(
eikxa − e−ikxa − ieikya + ie−ikya

)
c†ksckp+

+P̃ c†kpckp + P
(
eikxa + e−ikxa + eikya + e−ikya

)
c†kpckp+

−A
(
eikxa − e−ikxa + ieikya − ie−ikya

)
c†kpcks

)
.

(3.6)

This is more compactly written as

H↑ =
∑
k

((
S̃ + 2S (cos(kxa) + cos(kya))

)
c†kscks+

+2iA (sin(kxa) + i sin(kya)) c†ksckp+

+
(
P̃ + 2P (cos(kxa) + cos(kya))

)
c†kpckp+

+2iA∗ (− sin(kxa) + i sin(kya)) c†kpcks

)
,

H↓ =
∑
k

((
S̃ + 2S (cos(kxa) + cos(kya))

)
c†kscks+

+2iA∗ (sin(kza)− i sin(kya)) c†ksckp+

+
(
P̃ + 2P (cos(kxa) + cos(kya))

)
c†kpckp+

−2iA (sin(kxa) + i sin(kya)) c†kpcks

)
.

(3.7)

To further rewrite this expression, define

S − P = 2B,

S̃ − P̃ + 4S − 4P = 2M,

A(k) = 2iA (sin(kxa) + i sin(kya)) ,

ε(k) =
S̃ + P̃

2
+ (S + P ) (cos(kxa) + cos(kya))

(3.8)

2Evaluate the matrix elements 〈φk′s|H|φks〉, 〈φk′p|H|φkp〉, 〈φk′s|H|φkp〉, 〈φk′p|H|φks〉 with the
Hamiltonian in the lattice site basis to arrive at this expression. The of diagonal elements are zero because
of the sum over i, and the sum over k and k′ in the momentum-basis therefore reduces to a sum over k. The
momentum-basis states has to be assumed to be normalized so that

∑
i〈φk′s|φks〉 =

∑
i〈φk′p|φkp〉 = 1.
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The expression then becomes

H↑ =
∑
k

(
(ε(k) +M − 2B(2− cos(kxa)− cos(kya))) c†kscks +A(k)c†ksckp+

+ (ε(k)−M + 2B (2− cos(kxa)− cos(kya))) c†kpckp +A∗(k)c†kpcks

)
,

H↓ =
∑
k

(
(ε(k) +M − 2B (2− cos(kxa)− cos(kya))) c†kscks −A

∗(k)c†ksckp+

+ (ε(k)−M + 2B (2− cos(kxa)− cos(kya))) c†kpckp −A(k)c†kpcks

)
.

(3.9)

One further definition

M(k) = M − 2B(2− cos(kxa)− cos(kya)), (3.10)

gives the expression

H↑ =
∑
k

(
(ε(k) +M(k)) c†kscks +A(k)c†ksckp+

+ (ε(k)−M(k)) c†kpckp +A∗(k)c†kpcks

)
,

H↓ =
∑
k

(
(ε(k) +M(k)) c†kscks −A

∗(k)c†ksckp+

+ (ε(k)−M(k)) c†kpckp −A(k)c†kpcks

)
.

(3.11)

In matrix notation this is

H = ε(k)I +


M(k) A(k) 0 0
A∗(k) −M(k) 0 0

0 0 M(k) −A∗(k)
0 0 −A(k) −M(k)

 . (3.12)

Now looking back at the definitions it is easy to see that M(k) = M(−k) and A(k) =
−A(−k). This means that the Hamiltonian as well can be written as

H = ε(k)I +


M(k) A(k) 0 0
A∗(k) −M(k) 0 0

0 0 M(−k) A∗(−k)
0 0 A(−k) −M(−k)

 . (3.13)

3.5 Summary
The tight binding model considered gives the following Hamiltonian

H = ε(k)I +


M(k) A(k) 0 0
A∗(k) −M(k) 0 0

0 0 M(−k) A∗(−k)
0 0 A(−k) −M(−k)

 , (3.14)
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where3

M(k) = M − 2B (2− cos(kxa)− cos(kya)) ,

A(k) = 2iA (sin(kxa) + i sin(kya)) ,

ε(k) =
S̃ + P̃

2
+ (S + P ) (cos(kxa) + cos(kya)) ,

M =
S̃ − P̃

2
+ 2S − 2P,

B =
S − P

2
,

S = 〈s(x,y)|H|s(x+a,y)〉,
P = 〈p(x,y)|H|p(x+a,y)〉,
A = 〈s(x,y)|H|p(x,y)〉,
S̃ = 〈s(x,y)|H|s(x,y)〉,
P̃ = 〈p(x,y)|H|p(x,y)〉.

(3.15)

3Note that this result appears to differ slightly from given in for example [10] in that there we have
M(k) = M − 2Ba



Chapter 4

Spin-orbit interaction

4.1 Introduction
When a charged particle moves in an electric field, the charge interacts with the electric
field in a momentum dependent way. In the non-relativistic limit this interaction is
described by a Hamiltonian called the Thomas term, or the spin-orbit interaction. Here
this Thomas term will be derived, closely following the derivation given in section 3.3
in J.J. Sakurai’s ”Advanced quantum physics”[13].

Starting from the relativistic Dirac equation and pulling out the first corrections in
the non-relativistic limit one arrives at the non-relativistic Schrödinger equation with
some terms added. Among these extra terms there will be one term that reads

HThomas = −e~σ · (E× p)

4m2c2
. (4.1)

This is the Spin-orbit interaction. The reason that it is called the Spin-orbit interaction
is that in the case of an electron orbiting an atom with a spherically symmetric potential,
the equation can also be written

HThomas = HSO = − 1

2m2c2r

dV

dr
S · L. (4.2)

This has exactly the same form as the spin-orbit interaction that otherwise is added
ad-hoc to the non-relativistic equation. Strictly speaking the spin-orbit interaction is a
special case of the Thomas-term. However, in condensed matter physics all kinds of
Thomas terms are generally called spin-orbit interaction.

As one special case of the Thomas term, the Rashba interaction is also derived in
this chapter. This interaction is one example of an interaction that is referred to as a
spin-orbit interaction in condensed matter physics, but which more appropriately would
be called a Thomas term. The Rashba interaction describes the interaction between a
moving charge in a uniform electric field, and in the case this field is oriented along the
z-direction, the interaction can be written as

HRashba =
e~2E

4m2c2
(σxky − σykx). (4.3)

19
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4.1.1 Outline of the derivation
Writing down the Dirac equation in matrix notation the structure of the Dirac equation
as two two-component spinors that interacts with each other through a first order dif-
ferential equation will appear. This much resembles the way the electric and magnetic
fields interact with each other through first order differential equations in Maxwell’s
theory. The two-component spinors will be called ΨA and ΨB and will together make
up the four-component spinor Ψ = (ΨA,ΨB) of the Dirac equation. Just like for
the electric and magnetic fields in Maxwell’s theory the two two-compont spinors can
then be substituted into each others differential equation in order to obtain two un-
coupled second order equations. The two fields therefore ends up being coupled only
through possible boundary condition. The ΨB field will further show to go to zero in
the non-relativistic limit, leaving ΨA as the non-relativistic solution. Consulting the
normalization condition for Ψ, the first order correction to ΨA from the non-zero value
of ΨB will then be found. Finally, after inserting the first order corrected ΨA into it’s
second order equation the non-relativistic Shrödinger equation with some correction
terms is arrived at. Among the correction terms is the Thomas term, which also is
called the spin-orbit interaction.

4.2 Derivation of the spin-orbit interaction

4.2.1 Dirac equation
As discussed in the outline of the derivation, the Dirac equation can be written in the
form of two coupled first order differential equations. To see how this comes about, the
Dirac equation will here be written down, transfered into matrix notation, and finally
the two coupled equations explicitly extracted.

To begin with the Dirac equation can be written as1

i~γµ
∂

∂xµ
Ψ = mcΨ, (4.4)

where Ψ is a four component spinor and γµ can be represented by the matrices

γ0 =

[
1 0
0 −1

]
, γi =

[
0 σi
−σi 0

]
. (4.5)

Notice that each entry in the matrix is a two-by-two matrix, the 1’s are unit matrices.
Making the substitution ∂

∂xµ →
∂
∂xµ + ie

~cAµ in order to account for interactions with
the electromagnetic field this expression becomes

γµ
(
i~

∂

∂xµ
− e

c
Aµ

)
Ψ = mcΨ. (4.6)

In the matrix representation this is[
i~c

∂
∂t −

e
cA0 −i~σ · ∇+ e

cσ ·A
i~σ · ∇ − e

cσ ·A −i~c
∂
∂t + e

cA0

] [
ΨA

ΨB

]
= mc

[
ΨA

ΨB

]
, (4.7)
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where the first and last two components of Ψ has been grouped together into two-
component spinors labeled ΨA and ΨB .

From this equation it is seen that the Dirac equation can be written as two coupled
first order equations that reads2

1

c

(
mc2 − i~ ∂

∂t
+ eA0

)
ΨA =

(
−i~σ · ∇+

e

c
σ ·A

)
ΨB ,

1

c

(
mc2 + i~

∂

∂t
− eA0

)
ΨB =

(
i~σ · ∇ − e

c
σ ·A

)
ΨA.

(4.8)

The first step of writing the Dirac equation as a set of two coupled first order differential
equations is thereby done.

4.2.2 Eigenmode analysis and the vanishing of ΨB for small ener-
gies

Now that the two coupled equations are arrived at, the next step is to simplify the
expression a bit in the following way. Because

Ψ = Ψ(x)e−iEt/~ (4.9)

is an eigenfunction to the time derivative, the Dirac equation (4.4) can actually be ana-
lyzed for a single E and then solved generally by superposition of such solutions. The
explicit expression of the factor e−iEt/~ carries over to the ΨA and ΨB expressions.
This results in a problem where the time derivatives are replaced by −iE~ , and only the
space coordinates of the sought for solutions ΨA and ΨB are of importance:

1

c

(
mc2 − E + eA0

)
ΨA =

(
−i~σ · ∇+

e

c
σ ·A

)
ΨB ,

1

c

(
mc2 + E − eA0

)
ΨB =

(
i~σ · ∇ − e

c
σ ·A

)
ΨA.

(4.10)

The E that is introduced here is of course the energy of the corresponding mode and
the equations arrived at are the equations for the position space eigenfunctions.

Now note that as E − eA0 → mc2 the equation becomes

0 =
(
−i~σ · ∇+

e

c
σ ·A

)
ΨB ,

2mcΨB =
(
i~σ · ∇ − e

c
σA

)
ΨA.

(4.11)

For this to hold ΨB must approach zero in the same limit, for the right hand side of
the second equation goes to zero as v → 0. As long as ΨB is very small, which it will
be close to this limit, it does not affect the full differential equation for ΨA in (4.11)
very much. The ΨA expression can therefore be said to contain all relevant information

2I find it quite amusing to see that the time derivative of ΨA depends on the space derivatives of ΨB
and vice versa, just as for E and B in Maxwell’s equations. Corresponding to the source term in Maxwell’s
equation does however the field itself do here, and there is a ”source” term for both ΨA and ΨB .
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and the interaction with the ΨB part can be seen as a perturbation. However, before
treating it as a perturbation there remains one step, to decouple the equations. Because
even though ΨB is very small in the second equation, it is multiplied by 2mc and might
through the first equation carry over a significant influence of ΨA upon itself.

Before proceeding to the decoupling it is time to comment on how the limit E −
eA0 → mc2 relates to the non-relativistic physics. One could imagine that E is far
away from mc2 but that eA0 is just so large as to cancel this contribution. However,
the case that will be interesting here is when A0 is small and E is close to mc2. This
is exactly the limit that we expect in non-relativistic physics, where the total energy
consists mainly of the mass term and the electric fields are weak.3

4.2.3 Decoupling the equations
Having performed the simplification above, it is now time to decouple the equations by
substituting one of the expressions into the other. Doing this for both the expressions
gives(

−i~σ · ∇+
e

c
σ ·A

) c2

mc2 + E − eA0

(
i~σ · ∇ − e

c
σ ·A

)
ΨA =

=
(
mc2 − E + eA0

)
ΨA,(

i~σ · ∇ − e

c
σ ·A

) c2

mc2 − E + eA0

(
−i~σ · ∇+

e

c
σ ·A

)
ΨB =

=
(
mc2 + E − eA0

)
ΨB .

(4.12)

Both these equations are exact, but as ΨA contains all the interesting information in
the non-relativistic limit the second equation can be dropped from now on. The ΨB

function will however, as said, be incorporated as a first order perturbation. To do this
the second of the two coupled relations will be used to express ΨB in terms of ΨA.
The equations used to describe the evolution of the system will therefore be the first of
the equations above and the second of the coupled equations, giving the set(

−i~σ · ∇+
e

c
σ ·A

) c2

mc2 + E − eA0

(
i~σ · ∇ − e

c
σ ·A

)
ΨA =

=
(
mc2 − E + eA0

)
ΨA,

ΨB =
c

mc2 + E − eA0

(
i~σ · ∇ − e

c
σ ·A

)
ΨA

(4.13)

4.2.4 Expanding in the non-relativistic limit and restricting to the
case A = 0

Even though the differential equations now have been decoupled and the equation gov-
erning the evolution of ΨB has been dropped, the remaining equation (4.13) is still

3I have not checked this, but I guess that the gauge term in the exponential will put a strict requirement
on E to be close to mc2 for this approximation to hold. But if this is not so, then the derivation actually is
a bit more general than here. Allowing for the option of fine tuning the electromagnetic potential so that the
same approximation is valid even at higher energies.
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exact. It is now time to expand this equation around E− eA0 = mc2. In the first equa-
tion terms to first order will be kept. In the second equation ΨB is however assumed to
be small already at zeroth order because ΨB is close to zero, so that expression is only
expanded to zeroth order. After expansion the expression becomes(

−i~σ · ∇+
e

c
σ ·A

) 1

2m

(
1− E − eA0 −mc2

2mc2

)
×

×
(
i~σ · ∇ − e

c
σ ·A

)
ΨA =

(
mc2 − E + eA0

)
ΨA,

ΨB =
1

2mc

(
i~σ · ∇ − e

c
σ ·A

)
ΨA.

(4.14)

Switching to non-relativistic energy E(NR) = E −mc2 the expression becomes(
−i~σ · ∇+

e

c
σ ·A

) 1

2m

(
1− E(NR) − eA0

2mc2

)
×

×
(
i~σ · ∇ − e

c
σ ·A

)
ΨA = −

(
E(NR) − eA0

)
ΨA,

ΨB =
1

2mc

(
i~σ · ∇ − e

c
σ ·A

)
ΨA.

(4.15)

The expression is becoming increasingly complex. Moreover the effects that are of
interest here will be how an electric field influences an electron, not the magnetic field.
Therefore the derivation will from this point on be restricted to the case A = 0. To
further clean up the expressions −i~∇ will from now on be denoted p. The equations
then are(

σ · p
2m

(
1− E(NR) − eA0

2mc2

)
σ · p + eA0

)
ΨA = E(NR)ΨA,

ΨB = −σ · p
2mc

ΨA.

(4.16)

4.2.5 Including ΨB as a perturbation
At E − eA0 = mc2 physics has been seen to be described by ΨA. As this limit is left,
ΨB is however expected to play an increasing role. It is now time to see how this is
incorporated into the equations.

First note that the normalization condition for Ψ is

1 =

∫
Ψ†Ψd3x =

∫ (
Ψ†AΨA + Ψ†BΨB

)
d3x, (4.17)

and that by using the first and zeroth order expansions of ΨA and ΨB (4.16), this
expression becomes

1 =

∫
ΨA

(
1 +

p2

4m2c2

)
ΨAd

3x. (4.18)

The wave function that to second order in p satisfies this normalization condition is

Ψ =

(
1 +

p2

8m2c2

)
ΨA, (4.19)
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which strongly indicates that this might be the wave function that to this order describes
the system. To the same order this expression can also be written

ΨA =

(
1− p2

8m2c2

)
Ψ. (4.20)

Using this together with the first equation in (4.16) and multiplying the whole result by(
1− p2

8m2c2

)
, the expression becomes(

1− p2

8m2c2

)(
σ · p
2m

(
1− E(NR) − eA0

2mc2

)
σ · p + eA0

)
×

×
(

1− p2

8m2c2

)
Ψ =

(
1− p2

8m2c2

)
E(NR)

(
1− p2

8m2c2

)
Ψ.

(4.21)

Multiplying this out and ignoring most terms with higher order than p2

c2 this is4(
p2

2m
− σ · p

2m

E(NR) − eA0

2mc2
σ · p + eA0 −

p4

8m3c2
− p2eA0

8m2c2
− eA0p

2

8m2c2

)
Ψ =

= E(NR)

(
1− p2

4m2c2

)
Ψ.

(4.22)

The non-relativistic Schrödinger equation begins to be visible. At least the p2

2m and eA0

terms that are expected are there, and further the p4

8m3c2 term can be recognized as the
first relativistic correction to the kinetic energy. After some manipulations in the next
section the other terms will show up to give two other relativistic corrections, one of
them the Thomas term.

4.2.6 Manipulating the expression and extracting the Thomas term
In the last section an expression that at least plausibly was the non-relativistic limit of
the Dirac equation was derived. After some manipulations in this section the plausi-
bility will be further strengthened. Because among the terms not realized as obvious
non-relativistic terms, one term called the Thomas term will appear which in the case
of an electron in a spherically symmetric potential will turn out to be the spin-orbit
interaction, a term that has to be added ad-hoc in non-relativistic quantum physics.

But before starting the manipulation, a few things has to be settled. First of all eA0

is nothing other than the the electric potential V (x). Secondly the relations

[σ · p, eA0] = [σ · p, V (x)] = i~σ · ∇V (x) = i~σ ·E (4.23)

and5

[σ · p,σ ·E] = −i~∇ ·E− 2iσ · (E× p) (4.24)

4Notice that the p4 term that is kept really not should be dropped because it only is divided by c2.
5Consult the appendix to see how to arrive at this expression
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will be used.
Having arrived at these commutation relations, it is now time to manipulate (4.22).

First of all the second term becomes

σ · p
2m

E(NR) − eA0

2mc2
σ · p = E(NR) p2

4m2c2
− eA0p

2

4m2c2
− ie~σ ·E

4m2c2
σ · p. (4.25)

Now, to be able to use the commutation relations above to manipulate the fifth term,
write p2 as (σ · p)

2 and perform the commutation in two steps:

p2eA0 = σ · peA0σ · p + ie~σ · pσ ·E =

= eA0p
2 + ie~σ ·Eσ · p+ ie~σ · pσ ·E =

= eA0p
2 + 2ie~σ ·Eσ · p + e~2∇ ·E + 2e~σ · (E× p) .

(4.26)

Replacing the non commuted terms in (4.22) with these the expression becomes(
p2

2m
+ eA0 −

p4

8m3c2
− e~2∇ ·E

8m2c2
− e~σ · (E× p)

4m2c2

)
Ψ =

= E(NR)Ψ.

(4.27)

The fifth term here is the Thomas term. To see that this really gives the spin-orbit
interaction for an electron in a spherically symmetric potential write

E = −dV (r)

dr

r

r
,

r× p = L,
(4.28)

which is valid in such a situation. The Thomas term can then be written

HThomas = −e~σ · (E× p)

4m2c2
=

e~
4m2c2r

dV (r)

dr
r× p =

e~
4m2c2r

dV (r)

dr
L, (4.29)

which is exactly the spin-orbit interaction that otherwise is added ad-hoc to the non-
relativistic equation.

4.3 Rashba interaction
The Thomas term is the general expression that can be used to calculate how the motion
of a charged particle couples to an electric field in the non-relativistic limit. When
making calculations it might however turn out to be a good idea to have expressions
that are special cases of this expression. The spin-orbit interaction derived above is one
such expression that is valid for charged particles in spherically symmetric potentials.
Here another special case that later will be used is derived, the Rashba interaction.

The Rashba interaction describes how a charged particle interacts with an electric
field of constant strength and direction. To derive the expression one simply has to
assume that the electric field of strength E is oriented in the ẑ direction:

E = Eẑ. (4.30)
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Now insert this electric field into the expression for the Thomas term to obtain

HRashba = −e~Eσ · (ẑ× p)

4m2c2
= i

e~2E

4m2c2

(
σy

∂

∂x
− σx

∂

∂y

)
. (4.31)

Denoting ki = −i ∂∂i this can be written

HRashba =
e~2E

4m2c2
(σxky − σykx) . (4.32)



Chapter 5

The RKKY interaction

5.1 Introduction
In this chapter field theoretical methods will be used to derive the RKKY interaction,
an indirect interaction between two localized spins that is mediated by conduction elec-
trons. It relies heavily on the presentation of quantum field theory given by Michael
Peskin and Daniel Shroeder in ”An Introduction to Quantum Field Theory”[11]. Their
presentation is however relativistic while this calculation is non-relativistic. Among the
difference from their calculations will be that the Hamiltonian here is non-relativistic,
spinors has two instead of four components and the expansion of the position space cre-
ation and annihilation operators are expanded in eigenfunctions of the non-relativistic
Hamiltonian. Another book that has been very useful is Gerald Mahan’s book ”Many-
Particle Physics”[3], which was a good reference when trying to translate the language
in condensed matter physics articles into the language used in ”An Introduction to
Quantum Field Theory”. Further it was Mahan’s book that inspired me to try to calcu-
late the energy by the method used here.

5.1.1 Description of the interaction
The RKKY interaction between two spins can be understood in the following way.
Start with a conducting material in its ground state and add a localized spin to it. The
localized spin could for example be an impurity atom with a bound but unpaired elec-
tron. Before the spin is added the ground state is a solution to some Hamiltonian H0

of the system, but after adding the spin the ground state will be the solution to a new
Hamiltonian that includes the effect of the interaction between the localized spin and
the conduction electrons. In the Kondo model such an interaction is accounted for by
adding

HKondo = ψ†(r)(JS) · σψ(r), (5.1)

to the ordinary Hamiltonian. Here r is the position of the localized spin and

JS = (JxSx, JySy, JzSz) (5.2)

27
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is a vector where Sα are the expectation value of the spin components of the local-
ized spin, and the J terms has been included to account for the possibility of different
coupling strength in different directions.

The form of this Hamiltonian can be understood if we imagine that the operators
where classical fields and write∫

S2

d2s|ψs(r)|2s · (JS), (5.3)

where s is a classical spin1 of the conduction field. In this expression it is seen how
|ψ(r)|2 denotes the particle density of electrons with spin s at r, and how it gives
an energy term that is proportional to that density and the scalar product between the
classical spins. There is two differences between these two expressions. The first is
that the former consists of quantum operators, while the other is that the spin degrees of
freedom has been absorbed into the creation and annihilation operators of the quantum
expression.

Now add a second spin to the system, but do not immediately bother about how the
second spin disturbs the ground state. Instead concentrate on another effect, how the
correction of the ground state due to the first spin alters the energy needed to place the
second spin where it is placed. If the first spin had not been present the ground state
would have been different and thus the energy associated with adding the ”second”
spin at some site would have been different from the case when the first spin disturbs
the ground state. This energy will also depend on the direction of the two spins and in
this way the two electrons indirectly interacts with each other through the conduction
electrons. The same argument with the notion of first and second spin interchanged
will also give a similar contribution of the energy from adding the first spin.

The RKKY interaction derived here is the main energy contribution to the system
from this kind of interaction. It will be the term arising from calculating the energy
change of the two spins that is due to the first order correction of the ground state from
the other spin. One could imagine a more general expression for the RKKY interaction
where also higher order interactions between the two localized spins are included, these
higher order terms are however not considered here.

5.1.2 The idea behind the derivation
The idea behind the derivation that follows will be to start with the ground state of the
Hamiltonian that not includes the localized spins and evolve this state from −∞ → 0
with the full Hamiltonian, treating the Kondo term as a perturbation. Then multiply the
ground state by the Hamiltonian corresponding to the energy that is wanted to calculate,
and finally multiply by the Hermitian conjugate of the evolved ground state. That is, if
the unperturbed ground state is denoted by |G〉 and the perturbed ground state by |I〉
we will evolve |G〉 → |I〉, then sandwich the Hamiltonian H that corresponds to the
energy we want to calculate between the evolved states to get

E = 〈I|H|I〉. (5.4)
1Here I mean for example a magnetic dipole of fixed strength arising from a small current carrying loop,

which is representable by a three dimensional vector with its tip on the unit sphere.
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Figure 5.1: Integration contour for the energy integral in the calculation of HRKKY .

The energy calculated in this way would be the total energy of the system, and because
the RKKY interaction is just one part2 of this energy, the full energy expression will be
written down and then the RKKY terms will be extracted.

After the expression for the RKKY interaction has been extracted the expression is
rewritten in terms of Green’s functions and the final expression becomes

HRKKY =

=
i

π

∫
Γ

dE
∑
i 6=j

Tr[(JSi) · σG(Rij)(JSj) · σG(−Rij)],
(5.5)

where Γ is the contour in figure (5.1.2), Rij is the vector between the two localized
spins, and

G(Rij) =

∫
d2k

(2π)2

1

E −H0
e−ik·Rij . (5.6)

5.1.3 The particle picture
The calculations that follows will be in a wave picture of quantum physics. Creation
and annihilation operators can with the wave picture in mind be seen as correcting the
Fourier coefficients in the mathematical description of the system, rather than really
creating and annihilating particles. A correction that has to be done because we start
with a false ground state. It is however very interesting to see what an analysis of the
same derivation with the particle picture in mind3 has to say. In this framework one can
interpret the interaction as arising from creation of electron-hole pairs at one of the lo-
calized spins, which then propagates to the other localized spin where they recombine.

2First order correction to the energy needed to place the localized spins at their sites, arising from the
perturbation of the ground state by the other spin.

3It is up to the reader to read the derivation that follows with a particle picture in mind.
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5.2 Derivation of the RKKY interaction
Now that the preliminaries are settled the total Hamiltonian of the system can be written
down. If H0 is the Hamiltonian for the conduction electrons and HKondo is the Kondo
Hamiltonian (5.1), then the total Hamiltonian can be written as

H = H0 +
∑
i

HKondo(ri), (5.7)

where i runs over the indices of the two localized spins. Writing out the Kondo term
this is

H = H0 +
∑
i

ψ†(ri)(JSi) · σψ(ri). (5.8)

To not be forced to explicitly write out the summation sign through the derivation that
follows we now define

H2Kondo =
∑
i

ψ†(ri)(JSi) · σψ(ri), (5.9)

so that the Hamiltonian can be written as

H = H0 +H2Kondo. (5.10)

5.2.1 Interaction picture
Now the problem is to be formulated in the interaction picture. To do this we begin
with the Shrödinger equation in the Schrödinger representation,

∂ψ(t)

∂t
= Hψ(t). (5.11)

Knowing the initial condition at some time t = t0, the solution to the Shrödinger
equation above can be written as

ψ(t) = e−iH(t−t0)ψ(t0). (5.12)

Further, the following calculation4

∂

∂t
eiH0(t−t0)e−iH(t−t0)ψ(t0) = eiH0(t−t0) (iH0 − iH) e−iH(t−t0)ψ(t0) =

= −ieiH0(t−t0)H2Kondoe
−iH0(t−t0)eiH0(t−t0)e−iH(t−t0)ψ(t0),

(5.13)

4There is a slight asymmetry in the derivation performed here. It is important to realize that eiH0(t−t0)

is the inverse of e−iH0(t−t0) and that the derivation therefore places iH0 on the right hand side of the
exponential. For the same reason iH is placed to the left of e−iH(t−t0). The asymmetry is however
not present if the Hamiltonian is time invariant, as the Hamiltonian then commutes with the exponen-
tial. The asymmetry is most easily understood if the exponential is written down as e−iH(t−t0) =
(1 − iH(t − dt)dt)...(1 − iH(t0 + dt)dt)(1 − iH(t0)dt). Some more information about the expo-
nentiation of Hamiltonians is provided in the section on Dyson expansion that follows.
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shows that we can write

∂ψ̂(t)

∂t
= −iĤ2Kondo(t)ψ̂(t), (5.14)

where

ψ̂(t) = eiH0(t−t0)e−iH(t−t0)ψ(t0),

Ĥ2Kondo(t) = eiH0(t−t0)H2Kondoe
−iH0(t−t0).

(5.15)

Going over to bracket notation, these equation are written as

∂

∂t
U(t, t0)|ψ(t0)〉 = −iĤ2Kondo(t)U(t, t0)|ψ(t0)〉, (5.16)

where
U(t, t0) = eiH0(t−t0)e−iH(t−t0). (5.17)

Especially we will be interested in the equation

∂

∂t
U(t, t0)|G〉 = −iĤ2Kondo(t)U(t, t0)|G〉, (5.18)

where |G〉 is the ground state of H0. This gives us the equation

∂U(t, t0)

∂t
= −iĤ2Kondo(t)U(t, t0), (5.19)

which completes our reformulation of the problem in the interaction picture.

5.2.2 Dyson expansion
The expression above is a compact formulation of the problem. An exact solution to it
would be an exact solution to the whole system of conduction and localized electrons.
To solve this is however not so easy, neither is it what we are trying to do. We are not
interested in the solution to the whole system, rather in a specific part of the energy
that arises from this solution. In the introduction I said that we were interested in the
first order correction of the wave function from one electron and how it affects the
energy associated with the other, and vice versa. But what do we mean by first order
correction to the wave function? That is what will be explained in this section. The first
order correction refers to the first order term in the Dyson expansion of the problem,
and we will see here what that means.

In a system where the Hamiltonians varies with time, the exponential expressions
involving the Hamiltonian above does not make much sense if we don’t know what
they really mean. A much more elusive way of writing down the solution, which also
is required to really understand what the exponentials means in case of time dependent
Hamiltonians, is to write the solution of (5.19) as

U(t, t0) = U(t0, t0)−i
∫ t

t0

dτĤ2Kondo(τ)U(τ, t0) = 1−i
∫ t

t0

dτĤ2Kondo(τ)U(τ, t0),

(5.20)
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which after iterative insertion of U(τ, t0) becomes

U(t, t0) =

∞∑
n=0

(−i)n
∫ t

t0

dt1...

∫ tn−1

t0

dtnĤ2Kondo(t1)...Ĥ2Kondo(tn). (5.21)

This is the Dyson expansion of the solution, and the first order correction is the term
with n = 1. Now we have seen what the first order correction is and have come one
step closer to the calculation we are about to do. But first it would be nice to see how
the exponential form fits together with this. Therefore we use the notion of a time
ordering operator which puts the operators in time order (latest time to the left) and
writes the above equation as

U(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t

t0

dt1...

∫ t

t0

T
[
Ĥ2Kondo(t1)...Ĥ2Kondo(tn)

]
. (5.22)

What we have done is to extend all integral limits to t now that we don’t have to worry
about the time order explicitly, at the same time we have introduced a factor of 1

n! and
these two modifications cancels each other. Looking at this last expression it is very
similar in form to the expansion of an exponential. Therefore we define

e
−i

∫ t
t0
Ĥ2Kondodt =

∞∑
n=0

(−i)n

n!

∫ t

t0

dt1...

∫ t

t0

dtnT
[
Ĥ2Kondo(t1)...Ĥ2Kondo(tn)

]
,

(5.23)
and keeps in mind that the left hand side is an abbreviation of the right hand expression.
Further we note that as long as the Hamiltonians are time invariant the time ordering
operator is unimportant. The integrations can then easily be performed and we arrive
at the expression

U(t, t0) = e−iĤ2Kondo(t−t0) =

∞∑
n

(−i)n

n!
Ĥ2Kondo(t− t0)n. (5.24)

Now we have seen how the solution of the Schrödinger equation in the interaction
picture can be expanded into Dyson series where corrections of different order can be
calculated. We have also connected this solution method with the method of multiply-
ing the ground state with an exponential of a Hamiltonian and given much more sense
to such expressions. Giving the method validity also for time dependent Hamiltonian
as long as it is seen as an abbreviation of the Dyson series expansion.

5.2.3 Constructing the ground state
Assume that the the ground state |G〉 of H0 is known. Is there then a way in which
the ground state |I〉 of H can be determined? The idea of the following construction
will be to start with the ground state at some time t′ < 0, introduce the perturbation
H2Kondo into the system and evolve it until t = 0. Assuming that the overlap between
|I〉 and |G〉 is nonzero and introducing a term that causes all energy states that are
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higher than the new ground state to decay, this procedure allows us to calculate |I〉. The
derivation will be done in the Heisenberg picture but the result can then be translated
to the interaction picture as soon as it is done.

To see how this is done, expand the ground state of H0 in eigenstates |J〉 of H and
evolve it from t′ → 0,

eiHt
′
|G〉 = eiEIt

′
〈I|G〉|I〉+

∑
J 6=I

eiEJ t
′
〈J |G〉|J〉. (5.25)

However, making a slight redefinition of t′ so that the t′ above lies along the line 1 + iε
in the complex plane, the expression becomes

eiH(1+iε)t′ |G〉 = eiEI(1+iε)t′〈G|I〉|I〉+
∑
J 6=I

eiEJ (1+iε)t′〈J |G〉|J〉. (5.26)

The effect of this is to make the egeinstates decay with the rate e−EJε from t = t′ to
t = 0. The state that will decay slowest is |I〉 and by a renormalization of the evolved
state, that will be done in a moment, we can remove the decay of |I〉 completely.
Leaving the rest of the states decaying slightly slower, but still decaying. For t′ → −∞
(i.e. giving the system a long time to settle down to adopt to the new Hamiltonian) the
expression can therefore be written as

eiH(1+iε)t′ |G〉 = eiEI(1+iε)t′〈G|I〉|I〉. (5.27)

After a rearrangement this reads5

|I〉 = (eiEI(1+iε)t′〈G|I〉)−1eiH(1+iε)t′ |G〉, (5.28)

and the corresponding bra expression reads

〈I| = (eiEI(1−iε)t′〈G|I〉)−1〈G|e−iH(1+iε)t′ . (5.29)

The perturbed ground state is now expressed in terms of the unperturbed one and it is
seen how the new ground state is arrived at through evolving the unperturbed ground
state for a long time with the perturbed Hamiltonian and letting the states decay pro-
portionally to their energy.

5.2.4 Calculating expectation values
Now, to calculate any expectation value of an operator at t = 0, simply sandwich it
between the brackets in the ordinary way, which gives

< Ô >= 〈I|Ô|I〉 = (e−iEI(1−iε)t′〈G|I〉)−2〈G|U(t′, 0)ÔU(0, t′)|G〉. (5.30)

The effect of the normalization factor in front of the expression will be to cancel terms
in the rest of the expression that arises from terms corresponding to disconnected Feyn-
man diagrams.6 Therefore, as long as it is kept in mind that only terms corresponding

5This is the renormalization mentioned above
6For a more thorough description of how this comes about, consult section 4.2 and 4.4 in ”An Introduction

to Quantum Field Theory”[11]
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to fully connected Feynman diagrams should be calculated, the expression can with a
slight abuse of notation be written as

< Ô >= 〈I|Ô|I〉 = 〈G|U(t′, 0)ÔU(0, t′)|G〉. (5.31)

5.2.5 Expanding the ground state to first order

The expressions above are exact. Now it is time to begin to approximate and find the
terms that we are interested in calculating. Therefore begin by expressing the correction
of the ground state up to first order7

|I〉 = (1− i
∫ 0

−∞
dt1Ĥ2Kondo(t1))|G〉. (5.32)

The corresponding bra expression is

〈I| = 〈G|(1 + i

∫ 0

−∞
dt1Ĥ2Kondo(t1)), (5.33)

5.2.6 Finding the RKKY interaction

The energy we are interested in calculating resides inside H2Kondo and we therefore
begin by writing down the full expression for this energy and filters in a moment out
the part that is the RKKY term. The expectation value for the H2Kondo Hamiltonian is

< Ĥ2Kondo(0) >= 〈I|Ĥ2Kondo(0)|I〉. (5.34)

To first order correction in the ground state this is

< Ĥ2Kondo(0) >= 〈G|
(

1 + i

∫ 0

−∞
dt1Ĥ2Kondo(t1)

)
Ĥ2Kondo(0)×

×
(

1− i
∫ 0

−∞
dt1Ĥ2Kondo(t1)

)
|G〉 =

= 〈G|
(
Ĥ2Kondo(0) + i

∫ 0

−∞
dt1Ĥ2Kondo(t1)Ĥ2Kondo(0)−

−i
∫ 0

−∞
dt1Ĥ2Kondo(0)Ĥ2Kondo(t1) + ...

)
|G〉,

(5.35)

where ... denotes terms with higher order than 2 in Ĥ2Kondo. By introducing the loop
ordering operator Tl, that orders the operators so that those with largest integration

7From now on t′ is sent to −(1 + iε)∞ and all calculations are performed along the line (1 + iε)t , but
the prefactor is not explicitly written out. −∞ therefore actually means −(1 + iε)∞.
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parameter stands to the left, we can rewrite this expression as

< Ĥ2Kondo(0) >= 〈G|
(
Ĥ2Kondo(0)− i

∫ −∞
0

dt1Ĥ2Kondo(t1)Ĥ2Kondo(0)−

−i
∫ 0

−∞
Ĥ2Kondo(0)Ĥ2Kondo(t1)

)
|G〉 =

= 〈G|
(
Ĥ2Kondo(0)− i

∫
−∞→0→−∞

dt1Tl

[
Ĥ2Kondo(t1)Ĥ2Kondo(0)

])
|G〉.

(5.36)

The first term is just the energy contribution that arises from putting two spins into
the unperturbed ground state without taking into consideration the modification of the
ground state. We are interested in the part of the energy shift that arises from the first
order correction of the wave function and that is given by the second term. So lets call
that term Ĥ2Kondo,FOC(0)8

< Ĥ2Kondo,FOC(0) >= −i〈G|
∫
loop

dt1Tl

[
Ĥ2Kondo(t1)Ĥ2Kondo(0)

]
|G〉, (5.37)

where loop means integration over −∞ → 0 → −∞. Explicitly writing out the
Ĥ2Kondo expressions we have

< Ĥ2Kondo,FOC(0) >=

= −i〈G|
∫
loop

dt1Tl

∑
i,j

ψ̂†(ri, t1)
(

ˆJSi

)
· σ̂ψ̂(ri, t1)ψ̂†(rj , 0)

(
ˆJSj

)
· σ̂ψ̂(rj , 0)

 |G〉.
(5.38)

Finally we are ready to make the final reduction of this expression to obtain the RKKY
interaction. We do not bother about how the energy of inserting a spin is influenced by
the first order correction of the ground state due to itself, but only how that energy is af-
fected by the first order correction arising from the other spin. Therefore we restricting
the summation to i 6= j and call this term HRKKY (0). The RKKY interaction energy
is therefore given by

< ĤRKKY (0) >=

= −i〈G|
∫
loop

dt1Tl

∑
i 6=j

ψ̂†(ri, t1)
(

ˆJSi

)
· σ̂ψ̂(ri, t1)ψ̂†(rj , 0)

(
ˆJSj

)
· σ̂ψ̂(rj , 0)

 |G〉.
(5.39)

5.3 Manipulating the expression
Having arrived at the RKKY interaction it is time to turn it into an expression that can
be calculated. However, before we can do this we have to go through some notation

8FOC for First Order Correction.
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Figure 5.2: Blue and red arrows, representing high and low energy configuration of
the spin for a conduction electron. The first two figures shows how the direction for
the high and low levels can depend on the k-vector associated with the electron. The
third figure shows how the high and low energy configuration of the spin can vary with
position. The direction could also depend on both k and the position at the same time.

that will enable us to make the manipulations that then follows. Therefore begin by
denoting the eigenstates of the unperturbed Hamiltonian with u(s)ψsn, where n is an
index that runs over the momentum-position degrees of freedom, s is a spin index and
u(s) is a two component spinor. In the case that is going to be treated later the energy is
dependent on the spin direction, moreover the quantization axis that separates the two
spin states into lower and higher energy states will depend on the n index. The state
referred to as s =↑ should throughout this derivation therefore be understood to have a
spin up in a direction that is dependent on n. To be completely general the quantization
direction could also depend on the position, and as long as this is kept in mind the
derivation is valid for such cases too (see figure (5.3)). One only has to be careful to
not take any intermediate step in the derivation, fix quantization axis and expect to be
able to use the expression to calculate the RKKY interaction energy. Any intermedi-
ate state is however obviously valid to use for evaluating the RKKY interaction if the
variable spin quantization axis is taken into account. The final expression derived will
be expressed in such a way that the quantization axis can be chosen in a single and
arbitrary direction and makes it the most suitable for actual calculations.
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5.3.1 Expansion of operators
Now that the notion of the eigenstates are clear, the operators we are about to use can
be expanded in this basis. For the creation and annihilation operators we have

ψ(xi) =
∑
n,s

asnu(s)ψsn(ri),

ψ†(ri) =
∑
n,s

as†n u
†(s)ψsn(ri),

(5.40)

where as†n and asn are the creation and annihilation operators of the corresponding
eigenstates, and they satisfies the anti-commutation relations

{as†m , at†n } = {asm, atn} = 0,

{as†m , atn} = δnmδst.
(5.41)

The reason for including the summation over the spins inside the definition of ψ(xi)
and ψ†(xi) used in (5.1) was that the spin direction could be dependent on n. However,
now that we have this in mind we write out the summation explicitly. In this basis the
Hamiltonian also becomes

H0 =
∑
n,s

Esna
s†
n a

s
n. (5.42)

Further the ground state |G〉 of the unperturbed Hamiltonian is written as

|G〉 =
∏

En<εF ,s

as†n |0〉. (5.43)

These are general expansions for the expansion in the eigenbasis of the unperturbed
Hamiltonian. The expansions of the creation and annihilation operators in the free
electron basis is also interesting. Comparing it with the expression above is also useful
for understanding the notation because we switch between summation and integration
notation. Summation in the first for the general nature of the n index which is hard to
account for in an integral notation, and integration in the one that follows because it is
a notion that will be used for the actual calculations later. With free electrons as basis
the expansion can be written

ψ(ri) =

∫
d2k

(2π)2

∑
s

asku(s)eik·ri ,

ψ†(ri) =

∫
d2k

(2π)2

∑
s

as†k u
†(s)e−ik·ri .

(5.44)

The summation is replaced by an integral, but the anti-commutation relations must
also be redefined to agree with the normalization of the integrals. The new anti-
commutation relations are

{ak†m , a
t†
l } = {ask, atl} = 0,

{as†k , a
t
l} = (2π)2δ(k − l)δst.

(5.45)
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5.3.2 The explicit expression

At last it is time to manipulate the expression into a form suitable for performing calcu-
lations. This will be done in four steps. First (5.39) will be expressed explicitly in the
expansion of its operators and ground state, then the integral will be divided into two
parts just as before the loop order operator was introduced and each integral calculated
alone. Finally the two results will be combined into the complete solution.

So lets begin with writing out the terms involved explicitly

< ĤRKKY (0) >= −i〈0|
∏

Ek<εF ,r

ark

∫
loop

dt1Tl

∑
i 6=j

eiH0t1×

×
∑
p,t

at†p u
†(t)ψt†p (ri)(JSi) · σ

∑
q,u

auqu(u)ψuq (ri)e
−iH0t1×

×
∑
P,v

av†P u
†(v)ψv†P (rj) (JSj) · σ

∑
Q,w

awQu(w)ψwQ(rj)

 ∏
El<kF ,s

as†l |0〉

(5.46)

Now it is time to divide the calculation into two parts, what follows is the calculation for
the case t1 ∈ [0,−∞] followed by the case t1 ∈ [−∞, 0]. That is the late and early part
of the time loop respectively. These two parts will be denoted < ĤRKKY (0) >[0,−∞]

and < ĤRKKY (0) >[−∞,0] to distinguish them from < ĤRKKY (0) >.

5.3.3 The late expression, [0,−∞]

When t1 ∈ [0,−∞] the operator ordering is the same as inside the loop ordering
expression above, because t = t1 then is ”after” t = 0. Simply removing the loop
ordering operator from the expression we have

< ĤRKKY (0) >[0,−∞]=

= −i〈0|
∏

Ek<εF ,r

ark

∫ −∞
0

dt1
∑
i 6=j

eiH0t1×

×
∑
p,t

at†p u
†(t)ψt†p (ri)(JSi) · σ

∑
q,u

auqu(u)ψuq (ri)e
−iH0t1×

×
∑
P,v

av†P u
†(v)ψv†P (rj) (JSj) · σ

∑
Q,w

awQu(w)ψwQ(rj)
∏

El<kF ,s

as†l |0〉 =

(5.47)
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Now insert the identity e−iH0t1eiH0t1 between at†p and auq and move the exponentials
next to these operators

= −i〈0|
∏

Ek<εF ,r

ark

∫ −∞
0

dt1
∑
i 6=j

×

×
∑
p,t

eiH0t1at†p e
−iH0t1u†(t)ψt†p (ri)(JSi) · σ×

×
∑
q,u

eiH0t1auq e
−iH0t1u(u)ψuq (ri)×

×
∑
P,v

av†P u
†(v)ψv†P (rj) (JSj) · σ

∑
Q,w

awQu(w)ψwQ(rj)
∏

El<kF ,s

as†l |0〉 =

= −i〈0|
∏

Ek<εF ,r

ark

∫ −∞
0

dt1
∑
i 6=j

×

×
∑
p,t

at†p e
iEtpt1u†(t)ψt†p (ri)(JSi) · σ

∑
q,u

auq e
−iEuq t1u(u)ψuq (ri)×

×
∑
P,v

av†P u
†(v)ψv†P (rj) (JSj) · σ

∑
Q,w

awQu(w)ψwQ(rj)
∏

El<kF ,s

as†l |0〉.

(5.48)

For this to be non zero we see that awQ has to annihilate a state below the Fermi level
so that EQ ≤ εF . Further av†P can recreate the same state, but that corresponds to a
disconnected Feynman diagram which we ignore9, so the only other possibility is that
it creates a state above the Fermi level so that EP > εF . auq then has to destroy the
state created by av†P . This means that we have to have q = P and t = w. Finally a
similar argument gives us that p = Q and u = v. The arguments given are the same
as removing the ground states and operators from the expression and inserting δpQδtw

9Reread the section ”Calculating expectation values” and consult the note given there if this is unclear.
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and δqP δuv into the P and Q sums. Which after summation gives us10

< ĤRKKY (0) >[0,−∞]=

−i
∫ −∞

0

dt1
∑
i 6=j

∑
Etp<εF ,t

eiE
t
pt1u†(t)ψt†p (ri)(JSi) · σ×

×
∑

Euq>εF ,u

e−iE
u
q t1u(u)ψuq (ri)u

†(u)ψu†q (rj) (JSj) · σu(t)ψtp(rj) =

= −i
∫ −∞

0

dt1
∑
i6=j

∑
Etp<εF ,t

∑
Euq>εF ,u

ei(E
t
p−E

u
q )t1u†(t)ψt†p (ri)×

×(JSi) · σu(u)ψuq (ri)u
†(u)ψu†q (rj) (JSj) · σu(t)ψtp(rj) =

=
∑
i 6=j

∑
Etp<εF ,t

∑
Euq>εF ,u

1

Etp − Euq
u†(t)ψt†p (ri)(JSi) · σu(u)ψuq (ri)×

×u†(u)ψu†q (rj) (JSj) · σu(t)ψtp(rj) =

= − 1

4πi

∫
Γ

dE
∑
i6=j

∑
p,t

∑
q,u

1

E − Etp
u†(t)ψt†p (ri)(JSi) · σu(u)×

×ψuq (ri)
1

E − Euq
u†(u)ψu†q (rj) (JSj) · σu(t)ψtp(rj) =

= − 1

4πi

∫
Γ

dE
∑
i6=j

∑
p,t

∑
q,u

u†(t)(JSi) · σ
1

E − Euq
ψu†q (rj)ψ

u
q (ri)×

×u(u)u†(u) (JSj) · σ
1

E − Etp
ψt†p (ri)ψ

t
p(rj)u(t) =

(5.49)

The Γ-contour integrated along here is that shown in figure (5.1.2).
Denoting the unperturbed Hamiltonian expressed in momentum-position-spin space

coordinates (i.e. with derivatives, position coordinates and spin matrices) with H̃0 this
can be written

= − 1

4πi

∫
Γ

dE
∑
i 6=j

∑
p,t

∑
q,u

u†(t)(JSi) · σ
1

E − H̃0

ψu†q (rj)ψ
u
q (ri)×

×u(u)u†(u) (JSj) · σ
1

E − H̃0

ψt†p (ri)ψ
t
p(rj)u(t) =

(5.50)

10In the second step a convergence factor eεt1 has to be added to the integral to assure that the integral
converges and not oscillates in the integration limit−∞. This is to get rid of oscillating terms similar to those
that are ignored in the calculation of δ(x) = 1

2π

∫∞
−∞ eikxdk and is similar to require that the wave function

we actually are considering is L2 convergent. Also, the third step actually is a bit more involved than it at
first sight might appear. To arrive at the fourth expression an integration along the Γ-contour is performed.
The antisymmetric relations Etp < εF , Euq > εF and term 1

Ep−Eq
are replaced by the symmetric term

1
E−Etp

1
E−Euq

. To to do this the relations
∫
Γ dE

1
E−Etp

1
E−Euq

= 0 for Etp, E
u
q < εF and Etp, E

u
q > εF ,∫

Γ dE
1

E−Etp
1

E−Euq
= 1

Etp−Euq
for Etp < εF and Euq > εF ,

∫
Γ dE

1
E−Etp

1
E−Euq

= 1
Euq −Etp

for

Etp > εF and Euq < εF , and 1
Euq −Etp

↔ 1
Eup−Etq

under interchange of Etp − Euq .
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Now that the Hamiltonian acts on the states instead of having the energy explicitly
written out it is no longer important to expand the solution in an eigenbasis. Therefore
the spin quantization axis from now on can be chosen to point in a single arbitrary
direction and the waves can be expanded in the free electron basis which is much easier
to use for calculation. Going over to free electron expansion the expression becomes

= − 1

4πi

∫
Γ

∑
i 6=j

∑
t,u

u†(t)(JSi) · σ
∫

d2q

(2π)2

1

E − H̃0

eiq·(ri−rj)×

×u(u)u†(u) (JSj) · σ
∫

d2p

(2π)2

1

E − H̃0

e−ip·(ri−rj)u(t) =

= − 1

4πi

∫
Γ

∑
i 6=j

∑
t

u†(t)(JSi) · σ
∫

d2q

(2π)2

1

E − H̃0

eiq·(ri−rj)×

× (JSj) · σ
∫

d2p

(2π)2

1

E − H̃0

e−ip·(ri−rj)u(t) =

= − 1

4πi

∫
Γ

∑
i6=j

Tr[(JSi) · σG(−Rij) (JSj) · σG(Rij)],

(5.51)

where Rij = ri − rj, and

G(Rij) =

∫
d2k

(2π)2

1

E −H0
e−ik·Rij . (5.52)

5.3.4 The early expression, [−∞, 0]

When t′ ∈ [−∞, 0] the operators at t1 should stand to the right of the operators at
t = 0. In this case the expression becomes

< ĤRKKY (0) >[−∞,0]= −i〈0|
∏

Ek<εF ,r

ark

∫ 0

−∞
dt1
∑
i 6=j

×

×
∑
P,v

av†P u
†(v)ψv†P (rj) (JSj) · σ

∑
Q,w

awQu(w)ψwQ(rj)e
iH0t1×

×
∑
p,t

at†p u
†(t)ψt†p (ri)(JSi) · σ

∑
q,u

auqu(u)ψuq (ri)e
−iH0t1

∏
El<kF ,s

as†l |0〉 =

(5.53)

Mimicking the calculation above this becomes

= − 1

4πi

∫
Γ

∑
i 6=j

Tr[(JSi) · σG(−Rij) (JSj) · σG(Rij)]. (5.54)

5.3.5 The final answer
Now that both contributions are calculated, all that remains is to add these together.
The result is

< ĤRKKY (0) >=
i

2π

∫
Γ

∑
i 6=j

Tr[(JSi) · σG(−Rij) (JSj) · σG(Rij)], (5.55)
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where Rij = ri − rj , and

G(Rij) =

∫
d2k

(2π)2

1

E −H0
e−ik·Rij . (5.56)

This is the final expression for the RKKY interaction energy, applicable to any Hamil-
tonian H0. Something that ain’t obvious from this expression but can be seen in (5.49)
is that the states far from the Fermi surface are suppressed (Etp is bellow the Fermi
energy and Euq above, therefore the term Etp − Euq that divides the third expression
becomes large if any of them ain’t close to that energy). In calculations the Hamilto-
nian H0 can therefore be approximated by the Hamiltonian around the Fermi energy.
An exception occurs however if the density of states increases as fast or faster than the
energy difference from the Fermi energy.



Chapter 6

General method for reducing
RKKY-interaction problems

6.1 Introduction
The Hamiltonian derived in chapter 5 describes the effective spin interaction between
two localized spins on a two dimensional surface, where the interaction is mediated by
the conduction electrons that surrounds both the spins. The set of equations that was
derived there was

HRKKY =
i

2π

∫
Γ

dE
∑
i6=j

Tr [(JSi) · σG(−Rij)(JSj) · σG(Rij)] ,

G(R) =

∫
d2k

(2π)2
G(k)e−ik·R,

G(k) =
1

E −H
,

(6.1)

where H is the Hamiltonian that describes the motion of the surrounding conduction
electrons.

In this chapter a general method for reducing this set of equations, for a large class
of Hamiltonians, to a new set of equations on the form

HRKKY = S1ΦS2, (6.2)

is given. Here Φ is a three by three matrix with entries consisting of terms with at most
one-dimensional integrals. Which should be compared with the five dimensional inte-
gral in the original Hamiltonian1. In some cases the entries can be further analytically
integrated to give analytically obtained values. In the other cases the entries are on a
simple enough form to allow straight forward and quick numerical integration. The

1One energy integral, and two momentum integrals for each Green’s function

43
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requirement on H is that it is on the form

H = C + σTAK, (6.3)

where A is a constant 3x3-matrix with linearly independent second and third column,
and KT = (1,k). This kind of Hamiltonian is able to describe a large set of conduction
electron settings. For example a linear spectrum, spin-orbit interactions, interactions
between a magnetic field and a spin, and many more types of interactions gives linear
terms, as well as superpositions of such interactions, which makes the method quite
general.2 This derivation builds upon that given in [14].

6.2 Step 1: Rewriting the Green’s function
From 6.1 the momentum space Green’s function with 6.3 inserted is seen to be

G(k) =
1

E − C − σTAK
. (6.4)

The first step in the reduction process is to rewrite this so that the sigma matrices
appears above the division sign instead of below. This is done by multiplying the
expression from above and below by E − C + KTATσ, which gives3

G(k) = (E − C + KTATσ)×

× 1

(E − C)2 −KTATσσTAK + (E − C)(KTATσ − σTAK)
.

(6.5)

First it is easy to see that

E(KTATσ − σTAK) = 0. (6.6)

Further σTσ is an anti-symmetric matrix of matrices, with identity matrices on the
diagonal. For some anti-symmetric matrix a without diagonal entries, the middle ex-
pression below the division sign can therefore be written as

KTATσσTAK = KTATAK + KTATaAK. (6.7)

But because of the structure of a, the second term is zero. The momentum space
Green’s function can therefore be written

G(k) =
E − C + KTATσ

(E − C)2 −KTATAK
, (6.8)

where the identity matrix that multiplies each expression below the division sign has
been factored out and inverted to allow the two expressions to be written on top of each
other.

2Even though I haven’t examined this case, I find it quite likely that the method also can be extended to
parabolic spectrum. Giving the method almost universal applicability in two-dimensional systems.

3Note that these are matrix equations, this is the reason that the first term on the right hand side not is on
top of the division expression, but to the left of it.
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Now that the momentum Green’s function has been brought to a form where all
sigma matrices are above the division sign it is possible to write the momentum space
function as

G(k) = GI(k) +Gx(k)σx +Gy(y)σy +Gz(z)σz, (6.9)
where

GI(k) =
E − C

(E − C)2 −KTATAK
,

Gx(k) =
(AK)x

(E − C)2 −KTATAK
,

Gy(k) =
(AK)y

(E − C)2 −KTATAK
,

Gz(k) =
(AK)z

(E − C)2 −KTATAK
.

(6.10)

Because the position space Green’s functions are the Fourier transforms of the mo-
mentum space Green’s functions, this division of the Green’s function is carried over
into position space. The position space Green’s functions can therefore be written as

G(R) = GI(R) +Gx(R)σx +Gy(R)σy +Gz(R)σz, (6.11)

where

GI(R) =

∫
d2k

(2π)2
GI(k)e−ik·R,

Gx(R) =

∫
d2k

(2π)2
Gx(k)e−ik·R,

Gy(R) =

∫
d2k

(2π)2
Gy(k)e−ik·R,

Gz(R) =

∫
d2k

(2π)2
Gz(k)e−ik·R.

(6.12)

6.3 Step 2: Factoring out the numerator outside of the
integral

The four components of the position space Green’s function obtained above, becomes
with the expressions for the momentum space Green’s functions inserted

GI(R) =

∫
d2k

(2π)2

E − C
(E − C)2 −KTATAK

e−ik·R,

Gx(R) =

∫
d2k

(2π)2

(AK)x
(E − C)2 −KTATAK

e−ik·R,

Gy(R) =

∫
d2k

(2π)2

(AK)y
(E − C)2 −KTATAK

e−ik·R,

Gz(R) =

∫
d2k

(2π)2

(AK)z
(E − C)2 −KTATAK

e−ik·R.

(6.13)
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The first step in evaluating these is to factor out the numerator out of the integral.
But for the x−, y− and z-component the numerator depends on AK, which in turn
depends on k, and this forbids the term to be factored out of the integral. But noting
that replacing the AK term in the numerator by

AK→ AK = A(1, i
∂

∂x
, i
∂

∂y
), (6.14)

makes the differentiation act on the exponential and brings down the same factor in
front of it. The only difference is that this differential operator can be brought out of
the integral so that the expression can be written as

GI(R) = (E − C)I0,

Gx(R) = (AK)xI0,

Gy(R) = (AK)yI0,

Gz(R) = (AK)zI0,

(6.15)

where

I0 =

∫
d2k

(2π)2

e−ik·R

(E − C)2 −KTATAK
. (6.16)

6.4 Step 3: Transforming K

The next step in the evaluation of the momentum integrals is to change integration
variable. To do this, define

K̃ = TAK, (6.17)

where T is a rotation matrix that makes TA lower triangular.4 Further label the entries
in K̃ by

K̃T = (k̃0, k̃). (6.18)

Because T is a rotation Matrix it satisfies TTT = I. Using this together with K̃2 =
k̃2

0 + k̃2, the integral I can be written as

I0 =

∫
d2k

(2π)2

e−ik·R

(E − C)2 − k̃2
0 − k̃2

. (6.19)

Because the second and third column of A are linearly independent and T is a rotation
matrix, the second and third column of TA are linearly independent as well. This
property makes it possible to find a matrix M and a constant vector n such that

k = Mk̃ + n. (6.20)

4This is always possible, think of the three columns as three vectors. I is always possible to find a rotation
that rotates the third vector into the z-direction and the second vector into the y, z-plane.
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Using this expression, I can be rewritten as

I0 = det(M)e−iR·n
∫

d2k̃

(2π)2

e−ik̃·R̃

(E − C)2 − k̃2
0 − k̃2

, (6.21)

where
R̃T = RTM. (6.22)

6.5 Step 4: Integrating over the momentum
It is now time to perform the momentum integral. Switching to polar coordinates,
noting that the denominator in the integral is constant for constant k̃, and using the
relation5

J0(k̃R̃) =

∫ π

π

dθ

2π
e−ik̃R̃ sin(θ), (6.23)

the angular coordinate can be integrated out to give

I0 = det(M)e−in·R
∫ ∞

0

dk̃

2π

k̃J0(k̃R̃)

(E − C)2 − k̃2
0 − k̃2

. (6.24)

The J0(k̃R̃) in these equations are the zeroth order Bessel function of first kind, and in
what follows the first order Bessel function of first kind, J1(k̃R̃), the Bessel function
of first and second order of the second kind, Y0(k̃R̃) and Y1(k̃R̃), as well as a set of
related Hankel functions will be used. Before preceding with the calculation a few
properties of these functions will therefore be presented.

First of all the Bessel functions of first kind, Jm, can be analytically continued to
the whole complex plane. When doing the same for the Bessel function of second kind,
Ym, a branch cut has to be introduced. In this case it is suitable to place this branch
cut along the negative x-axis. Next the Hankel functions of first and second kind are
defined as6

H(1)
m (k̃R̃) = Jm(k̃R̃) + iYm(k̃R̃),

H(2)
m (k̃R̃) = Jm(k̃R̃)− iYm(k̃R̃),

(6.25)

and the branch cuts in Ym are carried over to these Hankel functions. From this expres-
sion it is clear that J0(k̃R̃) can be written as

J0(k̃R̃) =
1

2

(
H

(1)
0 (k̃R̃) +H

(2)
0 (k̃R̃)

)
. (6.26)

Now keep in mind that the integral in I is performed along the positive x-axis.
This allows the branch cut in H(2)

0 (k̃R̃) to be turned around in the upper half plane
until it coincides with the positive x-axis, as long as H(2)

0 (k̃R̃) is evaluated on the
lower branch, see figure 6.1. After the branch cut has been turned in this way, the

58.411.1 in Tables of integrals, series, and products by I.S. Gradshteyn and I.M. Ryzhik.
68.405 in Tables of integrals, series, and products by I.S. Gradshteyn and I.M. Ryzhik.
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Figure 6.1: The red line shows the branch cut for the two Hankel functions, while the
blue line shows the path that J0, and therefore H(1)

0 and H(2)
0 will be integrated over.

If the branch cut for H(2)
0 is turned around in the upper half plane and the value of

H
(2)
0 is evaluated on the lower branch there will be no difference in its value because

the branch cut never sweeps over the path where H(2)
0 is evaluated.

relation7

H(2)
m (k̃R̃) = (−1)1+mH(1)

m (−k̃R̃) (6.27)

can be used to give

J0(k̃R̃) =
1

2

(
H

(1)
0 (k̃R̃)−H(1)

0 (−k̃R̃)
)
. (6.28)

Because H(1)
0 (k̃R̃) and H(2)

0 (k̃R̃) now has opposite branch cuts, H(2)
0 (k̃R̃) is evalu-

ated on the lower branch cut, and H(2)
0 (k̃R̃) = −H(1)

0 (−k̃R̃) maps the lower branch
of H(2)

0 (k̃R̃) onto the upper branch of H(1)
0 (−k̃R̃). This expression for J0(k̃R̃) has to

be thought of as being evaluated on the upper branch of H(1)
0 (k̃R̃) whenever there is a

choice of branch. See figure 6.2.
With these considerations I can be written

I0 = det(M)e−in·R
∫ ∞

0

dk̃

4π

k̃H
(1)
0 (k̃R̃)

(E − C)2 − k̃2
0 − k̃2

−
∫ ∞

0

dk̃

4π

k̃H
(1)
0 (−k̃R̃)

(E − C)2 − k̃2
0 − k̃2

.

(6.29)
After a change of variables, k̃ → −k̃, in the second integral this becomes

I0 = det(M)e−in·R
∫ ∞
−∞

dk̃

4π

k̃H
(1)
0 (k̃R̃)

(E − C)2 − k̃2
0 − k̃2

. (6.30)

Now the integrand goes quickly enough to zero as k̃ → ∞ in the upper half plane to
make a similar integral along the the path k̃R̃ → ∞ go to zero. This allows I to be

78.476.8 in Tables of integrals, series, and products by I.S. Gradshteyn and I.M. Ryzhik.
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Figure 6.2: On the left hand side the integration path for H(2)
0 is shown. When H(2)

0 is
replaced by H(1)

0 by relation (6.27) the integration has to be performed along the path
on the right hand side

evaluated with residue calculus, where the important poles are those in the upper half
plane. Therefore the expression is rewritten as

I0 = det(M)e−in·R
∫ ∞
−∞

dk̃

8π

 H
(1)
0 (k̃R̃)√

(E − C)2 − k̃2
0 − k̃

− H
(1)
0 (k̃R̃)√

(E − C)2 − k̃2
0 + k̃

 ,

(6.31)

which reveals the simple poles at k̃ = ±
√

(E − C)2 − k̃2
0 . Residue calculus then

gives8

I0 =

{
i det(M)e−in·R

4 H
(1)
0 ( ∗

√
(E − C)2 − k2

0R̃) if Im(E) > 0,

− i det(M)e−in·R

4 H
(1)
0 (− ∗

√
(E − C)2 − k2

0R̃) if Im(E) < 0.
(6.32)

6.6 Step 5: Taking the derivative of the momentum in-
tegral

Now that I has been evaluated it is time to step back to equation 6.15 and evaluate the
derivatives in these expressions. Using the relation9

dH
(1)
0 (x)

dx
= −H(1)

1 (x), (6.33)

8In this step some care has to be taken about the imaginary part of E. The only entry inside the square
root expression that is complex is E, which takes values in the first or fourth quadrant of the complex plane
(see the definition of Γ). The square roots taken in these expression has to be considered to be defined so that
it gives the same imaginary sign as E has. The square root is therefore marked with an asterisk to remind
that the square root has to be taken in this way.

9??? in Tables of integrals, series, and products by I.S. Gradshteyn and I.M. Ryzhik.
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it is straight forward to check that 6.15 together with 6.32 can be written as

GI(R) = (E − C)I0,

Gx(R) = (AG)x,

Gy(R) = (AG)y,

Gz(R) = (AG)z,

(6.34)

where

GT = (I0, nxI0 + i
∂R̃

∂x
I1, nyI0 + i

∂R̃

∂y
I1), (6.35)

and

I0 =

{
i det(M)e−in·R

4 H
(1)
0 ( ∗

√
(E − C)2 − k2

0R̃) if Im(E) > 0,

− i det(M)e−in·R

4 H
(1)
0 (− ∗

√
(E − C)2 − k2

0R̃) if Im(E) < 0,

I1 =

 − i
∗
√

(E−C)2−k̃20 det(M)e−in·R

4 H
(1)
1 ( ∗

√
(E − C)2 − k̃2

0R̃) if Im(E) > 0,

− i
∗
√

(E−C)2−k̃20 det(M)e−in·R

4 H
(1)
1 (− ∗

√
(E − C)2 − k̃2

0R̃) if Im(E) < 0.

(6.36)

It is also easy to see that inversion of R gives

GI(−R) = (E − C)I0∗,

Gx(−R) = (AG∗)x,
Gy(−R) = (AG∗)y,
Gz(−R) = (AG∗)z,

(6.37)

where10

G∗ = (I0∗, nxI0∗ −
∂R̃

∂x
I1∗, nyI0∗ −

∂R̃

∂y
I1∗), (6.38)

and

I0∗ =

{
i det(M)ein·R

4 H
(1)
0 ( ∗

√
(E − C)2 − k2

0R̃) if Im(E) > 0,

− i det(M)ein·R

4 H
(1)
0 (− ∗

√
(E − C)2 − k2

0R̃) if Im(E) < 0,

I1∗ =

 −
i ∗
√

(E−C)2−k̃20 det(M)ein·R

4 H
(1)
1 ( ∗

√
(E − C)2 − k̃2

0R̃) if Im(E) > 0,

− i
∗
√

(E−C)2−k̃20 det(M)ein·R

4 H
(1)
1 ( ∗

√
(E − C)2 − k̃2

0R̃) if Im(E) < 0.

(6.39)

10The reason for the minus signs before the differentiations in this expressions stems from the introduction
of K in 6.14. When R is inverted, the derivatives has to be multiplied by−1 for the substitution to be valid.
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6.7 Step 6: Evaluating the trace and sum expression

Now that the components of the position space Green’s functions has been evaluated,
it is time to evaluate the trace and sum expression in 6.1. That is, the expression

TS =
∑
i6=j

Tr [(JSi)σG(−R)(JSj)σG(R)] . (6.40)

A glance at the equations from step 5 together with 6.11, reveals that this also can be
written as

TS = −det2(M)

16

∑
i 6=j

Tr [(JSi) · σF∗(R)(JSj) · σF (R)] , (6.41)

where11

F (R) = (E − C)K0 + (AF) · σ,
F∗(R) = (E − C)K0 + (AF∗) · σ,

(6.42)

and

F = (K0, nxK0 + i
∂R̃

∂x
K1, nyK0 + i

∂R̃

∂y
K1),

F∗ = (K0, nxK0 − i
∂R̃

∂x
K1, nyK0 − i

∂R̃

∂y
K1),

K0 =

 H
(1)
0 ( ∗

√
(E − C)2 − k̃2

0R̃) if Im(E) > 0,

−H(1)
0 (− ∗

√
(E − C)2 − k̃2

0R̃) if Im(E) < 0,

K1 =

 − ∗
√

(E − C)2 − k̃2
0H

(1)
1 ( ∗

√
(E − C)2 − k̃2

0R̃) if Im(E) > 0,

− ∗
√

(E − C)2 − k̃2
0H

(1)
1 (− ∗

√
(E − C)2 − k̃2

0R̃) if Im(E) < 0.

(6.43)

The evaluation of TS now is a simple but tedious exercise in algebra, and the result
is

TS = −det2(M)

16
S1ΦS2, (6.44)

where

Φ = Φ00K
2
0 + ΦEC

00 (E − C)2K2
0 + ΦEC

01 (E − C)K0K1 + Φ11K
2
1 , (6.45)

11It is implicitly assumed that (E − C)K0 is multiplied by the unit matrix.



52CHAPTER 6. GENERAL METHOD FOR REDUCING RKKY-INTERACTION PROBLEMS

Φ00 = 4

 J2
x(φ2

1 − φS) 2JxJyφ1φ2 2JxJzφ1φ3

2JxJyφ1φ2 J2
y (φ2

2 − φS) 2JyJzφ2φ3

2JxJzφ1φ3 2JyJzφ2φ3 J2
z (φ2

3 − φS)

 ,
ΦEC

00 = 4

 J2
x 0 0
0 J2

y 0
0 0 J2

z

 ,
ΦEC

01 = 8

 0 −JxJyϕ3 JxJzϕ2

JxJyϕ3 0 −JyJzϕ1

−JxJzϕ2 JyJzϕ1 0

 ,
Φ11 = 4

 J2
x(2ϕ2

1 − ϕS) 2JxJyϕ1ϕ2 2JxJzϕ1ϕ3

2JxJyϕ1ϕ2 J2
y (2ϕ2

2 − ϕS) 2JyJzϕ2ϕ3

2JxJzϕ1ϕ3 2JyJzϕ2ϕ3 J2
z (2ϕ2

3 − ϕS)

 ,

(6.46)

and

φi = ai1 + ai2nx + ai3ny,

φS =

3∑
i=1

φ2
i ,

ϕi = ai2
∂R̃

∂x
+ ai3

∂R̃

∂y
,

ϕS =

3∑
i=1

ϕ2
i .

(6.47)

6.8 Step 7: Simplification of the energy integrals

The final step in this process is to integrate out the energy. Here the energy integral is
simplified, but the actual integration is not carried out analytically for all cases. This is
the only step where an analytical step in the evaluation of HRKKY not has been found
for all cases. But in any way the integrals obtained here are on a simple enough form
to allow for straight forward numerical integration.

From 6.1 and the equations obtained in step 6 it can be seen that the solution to the
problem is

HRKKY = −S1

(
i

2π

det2(M)

16

∫
Γ

dEΦ

)
S2. (6.48)

In this step the integrals over the components of Φ are therefore simplified.
From 6.45 it can be seen that there is four integrals that needs to be evaluated, these

are ∫
Γ

dEK2
0 ,

∫
Γ

dE(E − C)2K2
0 ,

∫
Γ

dE(E − C)K0K1,

∫
Γ

dEK2
1 . (6.49)

First these integrals are divided into their two parts along Γ1 in the upper complex
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plane, and along Γ2 in the lower complex plane.12

∫
Γ

dEK2
0 =

∫
Γ1

dẼẼ√
Ẽ2 + k̃2

0

sgn(E − C)H
(1)2
0 (ẼR̃)+

+

∫
Γ2

dẼẼ√
Ẽ2 + k̃2

0

sgn(E − C)H
(1)2
0 (−ẼR̃),

∫
Γ

dE(E − C)2K2
0 =

∫
Γ1

dẼẼ

√
Ẽ2 + k̃2

0sgn(E − C)H
(1)2
0 (ẼR̃)+

+

∫
Γ2

dẼẼ

√
Ẽ2 + k̃2

0sgn(E − C)H
(1)2
0 (−ẼR̃),∫

Γ

dE(E − C)K0K1 = −
∫

Γ1

dẼẼ2H
(1)
0 (Ẽ)H

(1)
1 (ẼR̃)+

+

∫
Γ2

dẼẼ2H
(1)
0 (−ẼR̃)H

(1)
1 (−ẼR̃),∫

Γ

dEK2
1 =

∫
Γ1

dẼẼ3√
Ẽ2 + k̃2

0

sgn(E − C)H
(1)2
1 (ẼR̃)+

+

∫
Γ2

dẼẼ3√
Ẽ2 + k̃2

0

sgn(E − C)H
(1)2
1 (−ẼR̃),

(6.50)

where for notational convenience the abbreviation13

Ẽ =
∗
√

(E − C)2 − k̃2
0, (6.51)

has been introduced.

Next, the earlier stated relation

H(2)
m (−ẼR̃) = (−1)1+mH(1)

m (ẼR̃), (6.52)

12Strictly these are equalities in the limit δ → 0. Compare with the definition of
∫
Γ̃i

and the corresponding
footnote below.

13Note that this almost is a change of variables, but not quite. The reason for this is that the sign ofE−C
still is important, and the paths Γ1 and Γ2 has sections on both sides of E = C that maps onto the same Ẽ
values.
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is used to rewrite the expressions as

∫
Γ

dEK2
0 =

∫
Γ1

dẼẼ√
Ẽ2 + k̃2

0

sgn(E − C)H
(1)2
0 (ẼR̃)+

+

∫
Γ2

dẼẼ√
Ẽ2 + k̃2

0

sgn(E − C)H
(2)2
0 (ẼR̃),

∫
Γ

dE(E − C)2K2
0 =

∫
Γ1

dẼẼ

√
Ẽ2 + k̃2

0sgn(E − C)H
(1)2
0 (ẼR̃)+

+

∫
Γ2

dẼẼ

√
Ẽ2 + k̃2

0sgn(E − C)H
(2)2
0 (ẼR̃),∫

Γ

dE(E − C)K0K1 = −
∫

Γ1

dẼẼ2H
(1)
0 (ẼR̃)H

(1)
1 (ẼR̃)−

−
∫

Γ2

dẼẼ2H
(2)
0 (ẼR̃)H

(2)
1 (ẼR̃),∫

Γ

dEK2
1 =

∫
Γ1

dẼẼ3√
Ẽ2 + k̃2

0

sgn(E − C)H
(1)2
1 (ẼR̃)+

+

∫
Γ2

dẼẼ3√
Ẽ2 + k̃2

0

sgn(E − C)H
(2)2
1 (ẼR̃).

(6.53)

Taking the limit iδ → 0, and using the relations

H(1)
m (ẼR̃) = Jm(ẼR̃) + iYm(ẼR̃),

H(2)
m (ẼR̃) = Jm(ẼR̃)− iYm(ẼR̃),

(6.54)

some algebra gives that these can be written as

∫
Γ

dEK2
0 = 4i

∫
A

dẼẼ√
Ẽ2 + k̃0

J0(ẼR̃)Y0(ẼR̃) + 2

∫
B

dẼẼ√
Ẽ2 + k̃2

0

H
(1)2
0 (ẼR̃)

(6.55)

Turning back the branch cut for H(2)
m to the negative real axis and taking the limit of



6.8. STEP 7: SIMPLIFICATION OF THE ENERGY INTEGRALS 55

Γi → Re(Γi), this can further be written∫
Γ

dEK2
0 =

∫
Γ̃1

dẼẼ√
Ẽ2 + k̃2

0

H
(1)2
0 (ẼR̃)−

∫
Γ̃2

dẼẼ√
Ẽ2 + k̃2

0

H
(2)2
0 (ẼR̃),

∫
Γ

dE(E − C)2K2
0 =

∫
Γ̃1

dẼẼ

√
Ẽ2 + k̃2

0H
(1)2
0 (ẼR̃)−

−
∫

Γ̃2

dẼẼ

√
Ẽ2 + k̃2

0H
(2)2
0 (ẼR̃)∫

Γ

dE(E − C)K0K1 =

= −
∫ √C2−k̃20
√

(Ec+C)2−k̃0
dẼẼ2

(
H

(1)
0 (ẼR̃)H

(1)
1 (ẼR̃)−H(2)

0 (ẼR̃)H
(2)
1 (ẼR̃)

)
,∫

Γ

dEK2
1 =

∫
Γ̃1

dẼẼ3√
Ẽ2 + k̃2

0

H
(1)2
1 (ẼR̃)−

∫
Γ̃2

dẼẼ3√
Ẽ2 + k̃2

0

H
(2)2
1 (ẼR̃).

(6.56)

where

Γ̃1 =

[
EC ,Re(

√
E2
F − k̃2

0)

]
∪ [0, ia] ∪

[
ib, |k̃0|

]
,

a = |k̃0| if EF > 0,

a = −
√
E2
F − k̃2

0 if − |k̃0| < EF < 0,

a = 0 if EF < |k̃0|,
b = i|k̃0| if EF < 0,

b =
√
E2
F − k̃2

0 if 0 < EF < |k̃0|,
b = 0 if EF > |k̃0|,∫

Γ̃1

=

∫ √Ec−k̃20
0

+

∫ EF

√
C2−k̃20

+2

∫ 0

i|k̃0|
,

∫
Γ̃1

= 2

∫ √C2−k̃20

0

+

∫ EF

√
C2−k̃20

+2

∫ 0

−i|k̃0|
.

∫
Γ̃1

= 2

∫ √C2−k̃20

0

+

∫ EF

√
C2−k̃20

+2

∫ 0

i|k̃0|
,

∫
Γ̃1

= 2

∫ √C2−k̃20

0

+

∫ EF

√
C2−k̃20

+2

∫ 0

−i|k̃0|
.

(6.57)

Finally, by using the expressions

H(1)
m (ẼR̃) = Jm(ẼR̃) + iYm(ẼR̃),

H(2)
m (ẼR̃) = Jm(ẼR̃)− iYm(ẼR̃),

(6.58)
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the integrals becomes ∫
Γ

dEK2
0 = 4i

∫
Γ̃

dẼẼ√
Ẽ2 + k̃2

0

J0(ẼR̃)Y0(ẼR̃),

∫
Γ

dE(E − C)2K2
0 = 4i

∫
Γ̃

dẼẼ

√
Ẽ2 + k̃2

0J0(ẼR̃)Y0(ẼR̃),∫
Γ

dE(E − C)K0K1 =

= −2i

∫ √(EF−C)2−k̃20
√
C2−k̃20

dẼẼ2
(
J0(ẼR̃)Y1(ẼR̃) + J1(ẼR̃)Y0(ẼR̃)

)
,∫

Γ

dEK2
1 = 4i

∫
Γ̃

dẼẼ3√
Ẽ2 + k̃2

0

J1(ẼR̃)Y1(ẼR̃).

(6.59)

where ∫
Γ̃

= 2

∫ √C2−k̃20

0

+

∫ √(Ẽ−C)2−k̃20
√
C2−k̃20

. (6.60)

For one of these integrals further integration has been found to be possible. This is for∫
Γ

dE(E − C)K0K1. (6.61)

Using the relations14

∂

∂x
(xmJm(x)) = xmJm−1(x),

∂

∂x
(xmYm(x)) = xmYm−1(x),

(6.62)

the integral becomes

∫
Γ

dE(E − C)K0K1 = −2i

[
Ẽ2

R̃
J1(ẼR̃)Y1(ẼR̃)

]√(EF−C)2−k̃20

√
C2−k̃20

. (6.63)

6.9 Summary of the method
Due to that each step was explained and justified at the same place above, the method
seems a bit lengthy. Therefore the important steps and results are collected and sum-
marized here in an algorithmic way that should be enough for carrying out the actual
computations.

Find the constant C and matrix A that allows the Hamiltonian to be written as

H = C + σTAK, (6.64)
14???
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where K = (1,k).
Find the rotation matrix T that makes TA lower triangular and define

K̃ = TAK, (6.65)

and label the entries in K̃ by K̃T = (k̃0, k̃).
Find the matrix M and vector n that gives

k = Mk̃ + n. (6.66)

Define
R̃T = RTM. (6.67)

The Hamiltonian describing the two interacting spins are now given by

HRKKY =
i

2π

det2(M)

16
J (Ψαα+ Ψββ + Ψγγ + Ψδδ) J (6.68)

where

J =

 Jx 0 0
0 Jy 0
0 0 Jz

 ,
Ψα = 4

 φ2
1 − φS 2φ1φ2 2φ1φ3

2φ1φ2 φ2
2 − φS 2φ2φ3

2φ1φ3 2φ2φ3 φ2
3 − φS

 ,
Ψβ = 4

 1 0 0
0 1 0
0 0 1

 ,
Ψγ = 8

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 ,
Ψδ = 4

 2ϕ2
1 − ϕS 2ϕ1ϕ2 2ϕ1ϕ3

2ϕ1ϕ2 2ϕ2
2 − ϕS) 2ϕ2ϕ3

2ϕ1ϕ3 2ϕ2ϕ3 2ϕ2
3 − ϕS

 ,

(6.69)

φi = ai1 + ai2nx + ai3ny,

φS =

3∑
i=1

φ2
i ,

ϕi = ai2
∂R̃

∂x
+ ai3

∂R̃

∂y
,

ϕS =

3∑
i=1

ϕ2
i .s

(6.70)
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and

α = 4i

∫
Γ̃

dẼẼ√
Ẽ2 + k̃2

0

J0(ẼR̃)Y0(ẼR̃),

β = 4i

∫
Γ̃

dẼẼ

√
Ẽ2 + k̃2

0J0(ẼR̃)Y0(ẼR̃),

γ = −2i

[
Ẽ2

R̃
J1(ẼR̃)Y1(ẼR̃)

]√(EF−C)2−k̃20

Ẽ=
√
C2−k̃20

,

δ = 4i

∫
Γ̃

dẼẼ3√
Ẽ2 + k̃2

0

J1(ẼR̃)Y1(ẼR̃),

∫
Γ̃

= 2

∫ √C2−k̃20

0

+

∫ √(E−C)2−k̃20
√
C2−k̃20

.

(6.71)



Appendix A

Appendix

A.1 Evaluation of commutation relation in spin-orbit
derivation

[σ · p,σ ·E] = −i~ (∇ ·E + σxσy (∂xEy + Ey∂x − Ex∂y) +

+σxσz (∂xEz + Ez∂x − Ex∂z) + σyσz (∂yEz + Ez∂y − Ey∂z) +

+σyσx (∂yEx + Ex∂y − Ey∂x) + σzσx (∂zEx + Ex∂z − Ez∂x) +

+σzσy (∂zEy + Ey∂z − Ez∂y)) =

= −i~ (∇ ·E + iσz (∂xEy − ∂yEx + 2Ey∂x − 2Ex∂y) +

+iσy (∂zEx − ∂xEz − 2Ez∂x + 2Ex∂z) +

+iσx (∂yEz − ∂zEy + 2Ez∂y − 2Ey∂z)) =

= −i~ (∇ ·E + iσ · (∇×E)− 2iσ · (E×∇)) =

= −i~∇ ·E− 2iσ · (E× p)

(A.1)

59
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