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Introduction

Summary
Over the past decade, much work has gone into classifying topological insulators and topological
superconductors. These are exotic types of crystalline materials characterized by their ability to
support robust surface states, which allow the formation of an electric or spin current along the
surface of the crystal. Interestingly, the surface states are topologically protected from destructive
interference and the surface current is therefore extremely robust. Experimental dfficulties have
led researchers to look at periodic driving as a way of inducing topologically nontrivial behaviour
in otherwise trivial systems. Such Floquet topological insulators and superconductors have been
experimentally observed and are currently being classified. In this thesis, we perform a homotopy
classification of particle-hole symmetric Floquet topological insulators and as an important by-
product, we achieve a classification of Floquet topological superconductors.

History
The history of topological quantummatter starts in 1980 with von Klitzing’s experimental discovery
of the quantum Hall effect [19]. Subjecting an ultracold two-dimensional crystalline material to
a perpendicular magnetic field may cause an electric current to form along the crystal boundary,
and as the magnetic field strength is increased, the Hall conductance becomes quantized:

σH = e2

h
ν, ν = 0, 1, 2, 3, . . . ,

where e is the elementary charge and h is Planck’s constant. Remarkably, the quantized Hall con-
ductance was found to be "insensitive to the geometry of the device", displaying a robustness that
had never before been observed. The theoretical explanation came two years later, in 1982, when
Thouless, Kohomoto, Nightingale, and de Nijs were able to derive the quantized Hall conductance
and proved the integer factor ν to be a topological invariant [34]. For his discovery, von Klitzing
was awarded the 1985 Nobel prize.

It was Haldane who discovered [13] that topological phenomena can arise even without a macro-
scopic magnetic field. Instead, Haldane’s graphene model for the quantum Hall effect relies on time
reversal symmetry breaking. Switching on a magnetic field is one way to break time reversal sym-
metry but it is not the only way, so Haldane’s model put the quantum Hall effect in a more
general setting. The next major breakthrough came 17 years later, in 2005, when Kane and Mele
proposed a graphene model of the quantum spin Hall effect [15]; spin is an intrinsic form of angular
momentum that in the case of electrons take on two values called spin up and spin down. Kane
and Mele’s model can be described as two copies of Haldane’s model for the ordinary quantum
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Hall effect, one in which spin up-electrons propagate in one direction and one in which spin down-
electrons propagate in the opposite direction. Each copy induces an electric current around the
crystal boundary and though the net charge current vanishes, a net spin current survives. The
model is characterized by a Z2 topological invariant and does not break time reversal symmetry.
Today, topological quantum matter is a major research area within condensed matter physics and
Thouless, Haldane, and Kosterlitz were awarded the 2016 Nobel prize for their contributions.

The search for topological materials has revealed hundreds of potential candidates, some of
which have been experimentally verified, but this is just a small proportion of the total number of
known crystalline structures [6]. To make things worse, many of the known candidate materials
are difficult to engineer. In an attempt to solve this problem, researchers are examining the
possibilities of inducing topological behaviour in otherwise trivial systems by means of a periodic
driving interaction, as the dynamical evolution of a quantum system is relatively easy to control.
Not only have such Floquet topological materials been observed in a number of settings [22, 23, 35],
their topological features are in a sense richer than that of their static counterparts [26].

Outline
Chapter 1 provides the reader with an introduction to quantum mechanics, primarily aimed at
mathematicians and with particular focus on the time-evolution operator that encapsulates the
dynamical evolution of a time-dependent quantum system. Chapter 2 deals with crystal lattices,
band theory, topological insulators and topological invariants, Chern numbers being an important
example. In Chapter 3, we discuss periodically driven (Floquet) systems and quasienergy bands,
before introducing the concept of particle-hole symmetry and describing its relation to super-
conductivity. The remainder of this final chapter is then devoted to the classification of Floquet
topological insulators with particle-hole symmetry. We use a general classification scheme originally
developed by Rudner [26] and which has later been applied to time-reversal invariant systems [8].
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1

Quantum Mechanics

“One of the faults of mathematicians is: when physicists give them an equation, they take
it absolutely seriously.”

– Henry McKean

A hallmark of 20th century physics, quantum mechanics is perhaps the most successful scientific
theory in history, having correctly predicted and explained a plethora of phenomena and experi-
mental results with unprecedented accuracy. Its abstract mathematical framework and often un-
intuitive interpretations, on the other hand, makes quantum mechanics a difficult subject to learn.
In this introductory chapter, we have chosen a rather formal and concise approach aimed mainly
at mathematicians, although physics students should have no problem following the discourse.
Relevant parts of the mathematical framework are formally introduced, their properties rigorously
proven and their connections to physics presented as a series of postulates. It is difficult to build
a solid foundation in just a few pages, however, so interested readers are strongly encouraged to
read the more comprehensive introductions given in the standard literature [12, 27, 31].

The chapter ends with a detailed analysis of the time-evolution operator used to evolve quantum
systems in time. We prove results on convergence, unitarity, and other important properties which
are conventionally left unproven in the physics literature.

1.1 Basic notions
When studying physical phenomena such as electrical conduction in crystals, any attempt to
include all relevant parameters and interactions from the get-go is sure to fail, the system would
simply be too complex. Physicists therefore restrict their attention to a few “relevant” parameters
and interactions while putting aside those which do not significantly contribute to the overall
dynamics, including most environmental effects or lattice vibrations at low temperatures. When a
simple system is well understood, previously ignored parameters can be reintroduced, expanding
the theory to more realistic scenarios and improving correspondence with experimental results. A
(dynamical) quantum system can therefore be viewed as a universe of its own, subject only to
those interactions and environmental effects that one has chosen to include or that arise naturally,
and the mathematical object used to model such systems is a complex Hilbert space.
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1. Quantum Mechanics

Postulate 1. Any quantum system is described by a corresponding complex Hilbert space H.
Quantum states are represented by elements of H.

This postulate is rather vague as the contextual meaning of the words described and represented
has not been adequately explained. One reason, in addition to the author’s inexperience, is that
no one quite knows how quantum mechanics should be interpreted; we can work out mathematical
details and correctly predict the outcomes of experiments but the true workings of nature are
ultimately unknown. Nevertheless, it is possible to justify the use of complex Hilbert spaces in
physics, see for example J.J. Sakurai’s exposition of the Stern-Gerlach experiment [27].

Our analysis of topological insulators will be conducted for finite-dimensional Hilbert spaces,
but most of the material presented in this introductory chapter is equally valid in the more general
separable case and will therefore be presented without explicit mention to the dimensionality.

Definition (bra, ket). Let H be a complex Hilbert space with dual space H∗.

1. A ket vector, or ket, is an element |ψ〉 ∈ H,

2. A bra vector, or bra, is an element 〈ψ| ∈ H∗.

Kets are used to represent quantum states and the two terms are often used interchangably,
but the relationship is not precisely one-to-one. We will discuss this in more detail later on but
the short story is that multiplication by scalar, |ψ〉 7→ λ |ψ〉, does not change the underlying state.

By duality, any bra vector 〈ψ| can be treated as the conjugate transpose of a ket vector |ψ〉
and vice versa, and the inner product on H is denoted by juxtaposition of bras with kets1

|φ1〉 ∈ H, |φ2〉 ∈ H 7→ 〈φ1|φ2〉 ∈ C.

Bras and kets can also be multiplied to form operators2

〈φ1| ∈ H∗, |φ2〉 ∈ H 7→ |φ2〉 〈φ1| ∈ Hom(H).

The beauty of Dirac notation is its associativity: the expression

|φ1〉 〈φ2|φ3〉

can be interpreted both as the operator |φ1〉 〈φ2| acting on the ket |φ3〉, and as the ket |φ1〉
multiplied by the scalar 〈φ2|φ3〉, and both of these interpretations yield the same element of H.
Expressions involving several bras and kets can therefore be interpreted in many different ways -
a very powerful fact, as illustrated by the following example.

Example 1. Let {|ψn〉} be an orthonormal basis for H and note that the identity operator on H
takes the matrix form

1 =
∑
n

|ψn〉 〈ψn| .

Any ket |φ〉 ∈ H can be written as a linear combination

|φ〉 = 1 |φ〉 =
∑
n

|ψn〉 〈ψn|φ〉 =
∑
n

cn |ψn〉 ,

1Dirac notation is completely analogous to writing u for (column) vectors and u† for dual (row) vectors, where the
dagger † is used to denote conjugate transpose. The inner product 〈φ1|φ2〉 is therefore analogous to the expression

u · v = u†v

for the inner product between vectors u,v.
2This is analogous to column vectors u and row vectors v† being multiplied to form matrices uv†.

2



1. Quantum Mechanics

where cn = 〈ψn|φ〉 is the n’th coordinate, and the inner product on H can be evaluated as3

〈φ|χ〉 = 〈φ|1|χ〉 = 〈φ|
(∑

n

|ψn〉 〈ψn|

)
|χ〉 =

∑
n

〈φ|ψn〉 〈ψn|χ〉 =
∑
n

〈ψn|φ〉∗ 〈ψn|χ〉 .

It should be noted that associativity fails to hold in certain situations. Consider, for example,
the expression 〈ψ|A|φ〉 where A is an arbitrary operator on H. This expression can be interpreted
as the scalar product between |ψ〉 and A |φ〉, or as the scalar product between A† |ψ〉 and |φ〉, but
the latter interpretation presupposes the existence of the Hermitian adjoint A†. As associativity is
commonly used to cleverly rewrite expressions both when proving new results and when performing
calculations, Dirac notation can be tricky to use when studying unbounded operators on infinite-
dimensional spaces or other operators for which the existence of adjoints is not guaranteed, but
rest assured: every operator relevant to our purposes does have a Hermitian adjoint. In fact, most
of the interesting operators used in quantum mechanics are self-adjoint (Hermitian):

A = A†

Hermitian operators are key objects for translating mathematical results back into physical terms.
The most important operator in quantum mechanics is the Hamiltonian, a Hermitian operator
that describes the energy structure of the system in question and that completely determines the
dynamical evolution of the quantum states, as we shall see in the next section.

Example 2. Consider a quantum system H describing an electron in orbit about a nucleus. The
electron energy depends on the distance r between the electron and the nucleus but, as anyone
familiar with the term electron shell will recall, only a discrete set of distances r are allowed, hence
only a discrete set of energies are allowed. These energies turn out to be the eigenvalues of the
Hamiltonian operator

H = p2

2me
+ V (r),

where p is the momentum operator, me is the electron mass, and V (r) is the Coulomb potential.
The energy spectrum thus coincides with the functional analytical spectrum of the Hamiltonian.

This connection between observables and eigenvalues of Hermitian operators is general.

Postulate 2. Every observable property is represented by a Hermitian operator, the eigenvalues
of which determine the possible observable values.

We use the word observable to denote both the observable property per se - such as position,
momentum, or energy - and the Hermitian operator that represents it. The correspondence between
observables and Hermitian operators is not one-to-one, however, as there are Hermitian operators
which are not observables. The strive towards understanding observables has resulted in a number
of important functional analytical notions such as C∗-algebras, illustrating one of the many ways
in which the histories of quantum mechanics and functional analysis are intertwined.

Our next result is useful when studying observables in finite-dimensional systems.
3This is the Dirac analogue of the relation more commonly expressed as

u · v =
∑
n

unv
∗
n,

the difference being that Dirac’s inner product is antilinear in the first argument rather than in the second.
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1. Quantum Mechanics

Proposition 1. Denote by MN (C) the set of complex N ×N -matrices. The subset

HN (C) =
{
A ∈MN (C) : A = A†

}
of Hermitian N ×N -matrices forms a vector space over R. Furthermore, dimRHN (C) = N2.

Proof. The set MN (C) is known to be a complex vector space and is therefore also a real vector
space, so it suffices to prove that the subset HN (C) is closed under addition and multiplication by
real scalar. Indeed, for all α1, α2 ∈ R and all H1, H2 ∈ HN (C),

(α1H1 + α2H2)† = α∗1H
†
1 + α∗2H

†
2 = α1H1 + α2H2. (1.1)

The dimension can easily be computed in the case N = 2 by noting that any Hermitian 2×2-matrix
has to be on the form

H =
(

α γ + iδ
γ − iδ β

)
= α

(
1 0
0 0

)
+ β

(
0 0
0 1

)
+ γ

(
0 1
1 0

)
+ δ

(
0 i
−i 0

)
where α, β, γ, δ ∈ R. In other words, the four Hermitian matrices on the right-hand side span
H2(C) and as they are clearly linearly independent, they constitute a basis. The corresponding
basis in the case N = 3 is

Diagonal entries:

1 0 0
0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 0
0 0 1

 ,

Off-diagonal, real parts:

0 1 0
1 0 0
0 0 0

 ,

0 0 1
0 0 0
1 0 0

 ,

0 0 0
0 0 1
0 1 0

 ,

Off-diagonal, imaginary parts:

 0 i 0
−i 0 0
0 0 0

 ,

 0 0 i
0 0 0
−i 0 0

 ,

0 0 0
0 0 i
0 −i 0

 ,

and we can easily extend this pattern to arbitrary N . As we need N different matrices to represent
the diagonal entries and N2−N

2 different matrices both for the real parts and the imaginary parts
of the N2 −N off-diagonal entries, the dimension is

dimRHN (C) = N + N2 −N
2 + N2 −N

2 = N2.

Remark 1. The space HN (C) is not a complex vector space, as the second equality in Eq. (1.1)
does not hold for arbitrary complex scalars.

Corollary 1. The Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
,

form a basis for the space of traceless Hermitian 2× 2-matrices. Together with the identity matrix

σ0 =
(

1 0
0 1

)
,

they form a basis for H2(C).
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1. Quantum Mechanics

The Pauli matrices are important in quantum mechanics for a number of reasons, including:

1. Many problems in quantum mechanics are difficult to solve analytically and quickly become
computationally demanding. Progress can then be made by restricting attention to the two
lowest energy states, called the ground state and the first excited state, thereby obtaining a
2-dimensional Hilbert space and a Hamiltonian that can be expressed using Pauli matrices.

2. Multiplying the Pauli matrices by i yields a basis for the real space of traceless anti-Hermitian4
2 × 2-matrices, which constitute the defining representation of the Lie algebra su(2). The
Pauli matrices can therefore be used to study the observables angular momentum and spin,
both of which are understood in terms of irreducible representations of SU(2).

Next up is the ever important spectral theorem [10].

Spectral Theorem. Let A be a compact5 Hermitian operator on a Hilbert space H. Then H
admits an orthonormal basis {|an〉} consisting of eigenstates of A. Moreover, for every |ψ〉 ∈ H,

A |ψ〉 =
∑
n

an |an〉 〈an|ψ〉 ,

where an is the eigenvalue corresponding to the eigenket |an〉.

The spectral theorem allows us to write any Hermitian operator A on the simple form

A =
∑
n

an |an〉 〈an| , (1.2)

although the notation is slightly different in the special case of the Hamiltonian

H =
∑
n

En |En〉 〈En| ,

as we prefer the letter E to the letter H when working with energies.
Returning to the electron in nuclear orbit, we now know that the eigenvalues En of the Hamil-

tonian H determine the possible electron energies, but what determines the actual energy? Surely,
the electron can only have a definite energy at any given time? This is where it gets interesting,
because the answer to the last question is no; the electron can be in a superposition

|ψ〉 = 〈E1|ψ〉 |E1〉+ 〈E2|ψ〉 |E2〉+ · · ·

of energy states, in which case the energy has no definite value. When the electron is in the state

|ψ〉 = 1
2 |E1〉+

√
3i
2 |E2〉 ,

for example, any device that measures the electron energy has a 25% probability of returning
the value E1 and a 75% probability of returning the value E2. One way to interpret this strange
finding would be that nature does not “decide” upon a particular energy until the energy is somehow
measured, although this interpretation only raises the question of what constitutes a measurement.
Attempts to resolve this measurement problem have spawned a large number of interpretations of
quantum mechanics, perhaps the most popular of which are the Copenhagen and many worlds
interpretations, but the problem ultimately remains unresolved [7, 29].

4An operator A is called anti-Hermitian, or skew-Hermitian, if A† = −A.
5Compactness is automatically satisfied in the finite-dimensional case.
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1. Quantum Mechanics

In this thesis, we choose the popular shut up and calculate approach that most students of
quantum mechanics eventually end up taking: as long as our postulates and mathematical results
can be used to predict the outcomes of experiments, we do not spend too much time worrying
about why they can. So let us get back to the action.
Postulate 3. Performing a measurement of an observable A, in the state represented by |ψ〉, yields
the measured value an with probability P (an) = | 〈an|ψ〉 |2.

We will take a somewhat closer look at this postulate in a moment.
Quantum mechanics has been developed in order to understand how nature works at very

small scales but it can in principle be applied even at macroscopic scales. It is therefore possible
to test quantum mechanical predictions by comparing them with those of classical mechanics.
The quantum analogue of a classical dynamical variable a(t) turns out to be the state-dependent
expectation value

〈A〉 = 〈ψ|A|ψ〉
of the corresponding observable A; the expectation values of position x and momentum p in the
quantum harmonic oscillator, for instance, can be proven [37] to satisfy Newton’s equations

d
dt 〈x〉 = 1

m
〈p〉 , and d

dt 〈p〉 = −mω2 〈x〉 = −V ′(〈x〉).

Proposition 2. The quantum mechanical definition of expectation value, 〈A〉 = 〈ψ|A|ψ〉, coincides
with the standard definition of the expectation value of a discrete random variable A:

〈A〉 =
∑
n

anP (an),

where P (an) = | 〈an|ψ〉 |2 is the state-dependent probability associated with the outcome an.
Proof. By the spectral theorem,

〈ψ|A|ψ〉 = 〈ψ|
(∑

n

an |an〉 〈an|

)
|ψ〉 =

∑
n

an 〈ψ|an〉 〈an|ψ〉 =
∑
n

an| 〈an|ψ〉 |2 =
∑
n

anP (an).

Example 3. We return once more to the electron in nuclear orbit. Assuming the electron to be
in the state

|ψ〉 = 1
2 |E1〉+

√
3i
2 |E2〉 ,

the energy expectation value can be computed either directly from the definition,

〈ψ|H|ψ〉 =
(

1
2 〈E1| −

√
3i
2 〈E2|

)
H

(
1
2 |E1〉+

√
3i
2 |E2〉

)
=

= 1
4 〈E1|H |E1〉 −

√
3i
4 〈E1|H |E2〉+

√
3i
4 〈E2|H |E1〉+ 3

4 〈E2|H |E2〉 =

= 1
4E1 〈E1|E1〉︸ ︷︷ ︸

1

−
√

3i
4 E2 〈E1|E2〉︸ ︷︷ ︸

0

+
√

3i
4 E1 〈E2|E1〉︸ ︷︷ ︸

0

+3
4E2 〈E2|E2〉︸ ︷︷ ︸

1

= 1
4E1 + 3

4E2,

or using Proposition 2:

〈ψ|H|ψ〉 =
∣∣∣∣12
∣∣∣∣2 E1 +

∣∣∣∣√3i
2

∣∣∣∣2 E2 = 1
4E1 + 3

4E2.
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1. Quantum Mechanics

Observant readers may have spotted two potential problem with Postulate 3: First, the ket |ψ〉
is implicitly assumed to be normalized, or the total probability

∑
n P (an) =

∑
n | 〈an|ψ〉 |2 = 〈ψ|ψ〉

would not be unity. Second, the state-dependent probabilities P (an) should not depend on which
ket we choose to represent the state. Both of these problems are addressed by the next and last
postulate of this chapter, which ensures that the probabilities are well-defined.

Postulate 4. Two kets represent the same state iff they are scalar multiples of each other.

Because of this postulate, kets are often assumed to be normalized and states are viewed as
elements of the projective Hilbert space H/C. As stated in the beginning of this section, the terms
normalized ket and state are often used interchangably despite not being equivalent since states
are invariant under U(1) gauge transformations

|ψ〉 7→ eiθ |ψ〉 , θ ∈ R,

whilst kets are not. This is no stranger than treating a matrix as being equivalent to the basis-
independent linear transformation that it represents, which is completely fine in most situations as
long as one remembers the distinction. Gauge theory, essentially the study of Lie group actions on
H that leave the underlying physics unchanged, is an important tool for extracting physics hidden
within abstract mathematics.

1.2 The Schrödinger equation
Let us venture into the realm of quantum dynamics by examining how states evolve in time. It is
ironic that, even though the probabilistic nature of quantum mechanics prevents us from predicting
with absolute certainty the outcomes of experiments, the probabilities themselves evolve according
to a deterministic equation: any state |ψ〉 = |ψ(t)〉 satisfies the Schrödinger equation6

∂t |ψ(t)〉 = −iH(t) |ψ(t)〉 (1.3)

where H(t) is the Hamiltonian operator at the time t.

Example 4. Consider an arbitrary quantum system H with static Hamiltonian H. The energy
eigenstates |En〉 form an orthonormal basis in H, as per the spectral theorem, so any state |ψ(t)〉
can be written on the form

|ψ(t)〉 =
∑
n

〈En|ψ(t)〉 |En〉 =
∑
n

cn(t) |En〉 ,

where the coordinate functions are defined as cn(t) := 〈En|ψ(t)〉. By the Schrödinger equation,∑
n

ċn(t) |En〉 = ∂t |ψ(t)〉 = −iH |ψ(t)〉 = −i
∑
n

cn(t)H |En〉 = −i
∑
n

Encn(t) |En〉 ,

which implies the coordinate-wise relations

ċn(t) = −iEncn(t), n = 1, 2, 3, . . . .

These are ordinary differential equations with solutions

cn(t) = cn(0)e−iEnt, n = 1, 2, 3, . . . ,
6We set ~ = 1 throughout.
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1. Quantum Mechanics

hence the state can be written on the form

|ψ(t)〉 =
∑
n

cn(0)e−iEnt |En〉 =
∑
n

e−iEnt |En〉 〈En|ψ(0)〉 =: U(t) |ψ(0)〉 ,

since cn(0) = 〈En|ψ(0)〉. Note that the time-evolution operator

U(t) =
∑
n

e−iEnt |En〉 〈En| = e−iHt

is independent of the initial state |ψ(0)〉.

The time-evolution operator U(t) is among the most important mathematical objects in the
study of Floquet topological insulators but it is much more difficult to construct for time-dependent
Hamiltonians H(t) than for static ones, as both energies and instantaneous eigenstates now depend
on time as well. The rest of this section is devoted to its construction as well as its properties.

Begin by observing that the Schrödinger equation (1.3) can be rewritten on the form

∂tU(t) |ψ(0)〉 = −iH(t)U(t) |ψ(0)〉 ,

for any choice of initial state |ψ(0)〉, so the time-evolution operator must satisfy the equation

∂tU(t) = −iH(t)U(t) (1.4)

with initial condition U(0) = 1. The time-evolution operator is constructed by solving Eq. (1.4)
and because of the similarity between this equation and the standard ODE for exponential growth,
we expect the solution to be an exponential operator on the form

U(t) = e
−i
∫ t

0
H(s) ds

.

Indeed, this is precisely what we found in the case of a static system in Example 4. The time-
evolution operator of a more general system will turn out to be an infinite series that behaves
similarly to the above exponential operator, but the two will not be equal.

By choosing a basis and integrating both sides of Eq. (1.4) element-wise, we obtain the relation

U(t) = 1− i
∫ t

0
H(t1)U(t1) dt1 (1.5)

which may be iteratively expanded by writing U(t1) in terms of Eq. (1.5):

U(t) = 1− i
∫ t

0
H(t1)

[
1− i

∫ t1

0
H(t2)U(t2) dt2

]
dt1 =

= 1 + (−i)
∫ t

0
H(t1) dt1 + (−i)2

∫ t

0
H(t1)

∫ t1

0
H(t2)U(t2) dt2dt1. (1.6)

The last term can be simplified, as matrix multiplication and element-wise integration commutes:

H(t1)
∫ t1

0
H(t2)U(t2) dt2 =

∫ t1

0
H(t1)H(t2)U(t2) dt2,

a straightforward consequence of the fact that the matrix elements Hij(t1) are independent of the
integration variable t2. Eq. (1.6) for U(t) can therefore be rewritten as

U(t) = 1 + (−i)
∫ t

0
H(t1) dt1 + (−i)2

∫ t

0

∫ t1

0
H(t1)H(t2)U(t2) dt2dt1,

8



1. Quantum Mechanics

and we expand this formula iteratively, using Eq. (1.5), to obtain the formal power series

U(t) = 1 +
∞∑
n=1

(−i)n
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
H(t1) · · ·H(tn) dtn · · · dt1. (1.7)

Everything on the right-hand side can in principle be calculated so it is not necessary to proceed
beyond this point, but we shall try to find a more elegant expression for U(t). To this end, note
that the n’th integral in Eq. (1.7) is taken over the set7

[0, t]nσ =
{

(t1, . . . , tn) ∈ [0, t]n : tσ(1) ≥ · · · ≥ tσ(n)
}
, σ ∈ Sn, (1.8)

for σ = e, in which the time-variables are arranged in (right to left) chronological order. Because
products of operators act from right to left, the integrandH(t1) · · ·H(tn) is chronologically ordered,
too. This enables us to rewrite Eq. (1.7) by introducing a time-ordering operator T that gives
chronological order a higher priority than left-right order in products of time-dependent operators:
given a product A(t1)B(t2), we set

T {A(t1)B(t2)} =
{
A(t1)B(t2), t1 ≥ t2
B(t2)A(t1) t1 < t2

,

with the obvious extension to products of more than two operators. The time-ordering operator
allows us to calculate the integral∫

[0,t]n
T {H(t1) · · ·H(tn)} dtn · · · dt1

as a sum of n! integrals with time-ordered integrands:∫
[0,t]n

T {H(t1) · · ·H(tn)} dtn · · · dt1 =
∑
σ∈Sn

∫
[0,t]nσ

H(tσ(1)) · · ·H(tσ(n)) dtn · · · dt1

= n!
∫

[0,t]ne
H(t1) · · ·H(tn) dtn · · · dt1.

The last equality follows because each of the n! integrals coincide, which can be seen by relabeling
the integration variables and the order of integration. We may therefore rewrite Eq. (1.7) as

U(t) = 1 +
∞∑
n=1

(−i)n

n!

∫
[0,t]n

T {H(t1) · · ·H(tn)} dtn · · · dt1. (1.9)

By pretending that T can be factored outside the infinite series, which is nothing more than abuse
of notation, it is even possible to write the time-evolution operator on exponential form:

U(t) = 1 + T
∞∑
n=1

(−i)n

n!

∫
[0,t]n

H(t1) · · ·H(tn) dtn · · · dt1 =

= 1 + T
∞∑
n=1

(−i)n

n!

(∫ t

0
H(t1) dt1

)
· · ·
(∫ t

0
H(tn) dtn

)
=

= T
∞∑
n=0

(−i)n

n!

(∫ t

0
H(s) ds

)n
= T e−i

∫ t
0
H(s) ds

.

7Here, Sn denotes symmetric group of n elements. The n-cube [0, t]n can be split into n! equally sized, triangular
sections defined by the relations tσ(1) ≥ · · · ≥ tσ(n), so that [0, t]n =

⋃
σ∈Sn

[0, t]nσ .

9



1. Quantum Mechanics

Writing U(t) = T e−i
∫ t

0
H(s) ds for the time-evolution operator is convenient, though misleading,

and highlights the fact that U(t) often does behave similarly to an exponential operator. On the
other hand, one must not forget about the abuse of notation; calculations involving U(t) should
be conducted using a power series representation such as Eq. (1.7) or Eq. (1.9).

Remark 2. If the Hamiltonian happens to commute with itself at different times, meaning that
the commutator

[
H(t1), H(t2)

]
vanishes for all times t1, t2, then the time-ordering operator need

not be invoked and the time-evolution operator U(t) truly becomes an exponential operator:

U(t) = e
−i
∫ t

0
H(s) ds

.

We summarize the above construction in the form of a theorem.

Theorem 1. The time-evolution operator is given by

U(t) = T e−i
∫ t

0
H(s) ds = 1 +

∞∑
n=1

(−i)n
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
H(t1) · · ·H(tn) dt1 · · · dtn.

1.2.1 Properties of the time-evolution operator
Now that we have constructed U(t), let us look at some of its properties, starting with convergence.
The Hamiltonian is an element of the space B(H) of bounded linear operators on the N -dimensional
Hilbert space H, and we equip B(H) with the norm

‖A‖ = N max
i,j
|Aij |, A ∈ B(H),

given some fixed basis for H; convergence in this norm will imply convergence in any norm as all
norms on the finite-dimensional space B(H) are equivalent [10]. We chose this particular norm
because it implies both the Schwarz inequality

‖AB‖ ≤ ‖A‖‖B‖, A,B ∈ B(H), (1.10)

and the triangle inequality for integrals,∥∥∥∥∫ t

0
A(s) ds

∥∥∥∥ ≤ ∫ t

0
‖A(s)‖ ds, (1.11)

for all integrable, time-dependent operators A(t).

Theorem 2. If the Hamiltonian H(t) is continuous in time, the time-evolution operator

U(t) = T e−i
∫ t

0
H(s) ds = 1 +

∞∑
n=0

(−i)n
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
H(t1) · · ·H(tn) dtn · · · dt1

converges uniformly in [0, T ] for any T ≥ 0.

Proof. By the continuity of H(t) and the inverse triangle inequality,∣∣‖H(t+ ε)‖ − ‖H(t)‖
∣∣ ≤ ‖H(t+ ε)−H(t)‖ → 0, ε→ 0,

so the norm ‖H(t)‖ is a continuous function of time and therefore attains a maximum CT on every
compact time-interval [0, T ]:

CT := max
t∈[0,T ]

‖H(t)‖.

10



1. Quantum Mechanics

Denoting by SN (t) the partial sum8

SN (t) = 1 +
N∑
n=0

(−i)n
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
H(t1) · · ·H(tn) dtn · · · dt1,

and applying the inequalities (1.10) & (1.11), we find that

‖SN (t)− SM (t)‖ =

∥∥∥∥∥
N∑

n=M+1

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
H(t1) · · ·H(tn) dtn · · · dt1

∥∥∥∥∥ ≤
≤

N∑
n=M+1

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
‖H(t1)‖ · · · ‖H(tn)‖ dtn · · · dt1 ≤

≤
N∑

n=M+1
CnT

[∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
1 dtn · · · dt1

]
=

N∑
n=M+1

CnT t
n

n! ≤
N∑

n=M+1

CnTT
n

n! ,

which tends to 0 as M,N → ∞, independently of t ∈ [0, T ]. The partial sum SN (t) thus forms a
Cauchy sequence in N that converges uniformly in the Banach space B(H).

Corollary 2. If the Hamiltonian H(t) is continuous in time, the time-evolution operator U(t) is
uniformly continuous in [0, T ] for all T ≥ 0.

Proof. The uniform convergence of U(t) in [0, T ] implies that, for every ε > 0, there exists a natural
number Nε,T such that ‖U(t)− SN (t)‖ < ε/3 for all N > Nε,T and all t ∈ [0, T ]. Consequently,

‖U(t+ δ)− U(t)‖ ≤ ‖U(t+ δ)− SN (t+ δ)‖︸ ︷︷ ︸
<ε/3

+‖SN (t+ δ)− SN (t)‖+ ‖SN (t)− U(t)‖︸ ︷︷ ︸
<ε/3

< ε

for small enough δ, the partial sum SN (t) clearly being continuous in time. We conclude that U(t)
is continuous, thus also uniformly continuous, on the compact interval [0, T ].

The above results were proven for finite time intervals [0, T ] but the parameter T can be chosen
freely and is in that sense unimportant, so we do not always mention the parameter T explicitly.

Proposition 3. The time-evolution operator U(t) is unitary for all times.

Proof. We need to show that9
U(t)†U(t) = 1

for all times t ≥ 0, a property that is trivially true for U(0) = 1. It suffices to prove that U†U is
time-independent, which follows from the Schrödinger equation ∂tU = −iHU combined with the
observation that differentiation commutes with taking the conjugate transpose:

∂t
(
U†U

)
=
(
∂tU

)†
U + U†

(
∂tU

)
=
(
− iHU

)†
U + U†

(
− iHU

)
= iU†HU − iU†HU = 0.

8The subscript N denotes an arbitrary natural number, as is standard when discussing convergence of sequences,
and should not be confused with the dimension dimH = N .

9We do not need to prove that U(t)U(t)† = 1 since left- and right-inverses of finite-dimensional operators coincide.
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1. Quantum Mechanics

These results show that U(t) behaves nicely despite its rather ugly appearence; messing with
the time-ordering might be the only way to make the time-evolution operator behave badly.
Translations t 7→ t + t0, for example, preserve time-ordering and are perfectly valid, allowing
us to define time-evolution starting from an arbitrary reference time t′:

U(t, t′) := T e−i
∫ t
t′
H(s) ds

.

We end this chapter by proving that time can be evolved in successive steps.

Proposition 4. The time-evolution operator U(t) = U(t, 0) satisfies

U(t, 0) = U(t, t′)U(t′, 0) (1.12)

for all finite times t ≥ t′ ≥ 0.

Proof. By choosing a basis for H and writing linear operators on matrix-form, the equation{
∂tV (t) = −iH(t)V (t), T > t > t′

V (t′) = U(t′, 0) (1.13)

defines a linear system of first-order differential equations on the open interval T > t > t′ ≥ 0.
Such systems are known to have unique solutions, but Eq. (1.13) is satisfied by both

V1(t) = U(t, 0), and V2(t) = U(t, t′)U(t′, 0),

so the two operators must agree:

U(t, 0) = U(t, t′)U(t′, 0), T > t ≥ t′.

As the final time T > t′ can be chosen arbitrarily large, the proposition follows.
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2

Topological Materials

In this chapter, we introduce basic tools needed for mathematical analysis of topological crystalline
materials. We begin with a discussion about crystal lattices, reciprocal lattices, crystal momentum
and the (first) Brillouin zone, before giving a mathematical introduction to band theory. Next, we
cover a number of important concepts such as the Berry phase, connection, and curvature, as well as
Chern numbers and their relation to the quantized Hall conductance in the QHE. The chapter ends
with a discussion about the classification of topological insulators and superconductors according
to different symmetries, which is the topic of our next and final chapter.

2.1 Crystalline lattices and the Brillouin zone
Metals, semiconductors, and many other important kinds of materials in condensed matter physics
and chemistry are crystalline, meaning that they consist of atoms or molecules arranged in highly
symmetric periodic arrangements called lattices (Figure 2.1). Crystalline materials have been
extensively studied over the past two centuries as they are ubiquitous, easy to model, and have an
enormous number of interesting applications.

(a) Hexagonal lattice (b) Square lattice

Figure 2.1: Two different 2-dimensional Bravais lattices.

Since the discovery of the quantum Hall effect and robust edge currents, physicists have also
become interested in the topological properties of crystals, an interest that has only grown as more
and more materials with such properties have been discovered. Topological phenomena have been
studied in the contexts of several important research areas, including superconductors, semimetals,

13



2. Topological Materials

and quantum computation. When designing a quantum computer, for example, a main problem
has been designing information-storing qubits that are insensitive to the effects of decoherence, i.e.
destructive interaction with the environment that results in information loss. One way to solve
this problem would be to design qubits using topologically protected stationary states located at
the edges of a 1D topological quantum wire.

Definition. Given a basis a1, . . . , ad for Rd, the set

Ba = {n1a1 + · · ·+ ndad | n1, . . . , nd ∈ Z}

is called a d-dimensional Bravais lattice, or simply a lattice. The elements of a Bravais lattice are
called lattice vectors, or sites, and the primitive vectors a1, . . . , ad are said to generate the lattice.

The number of atoms in a typical crystal is so large, and interactions between distant particles
so small, that it makes no practical difference whether the crystal is finite or infinite when studying
particles located deep inside the crystal bulk. Infinite Bravais lattices are thus good approximations
of real crystals. Nevertheless, the crystal boundary has to be taken into consideration at some point
and will become increasingly important as we go along.

Given an arbitrary lattice Ba, we can construct a reciprocal lattice Bb through the requirement
that ai · bj = 2πδij for each pair of primitive vectors ai ∈ Ba and bj ∈ Bb. If the sites in one
lattice represent positions of ions or molecules in physical space, then the sites in the reciprocal
lattice represent crystal momentum, a discrete analogue of ordinary momentum. Lattice position
and crystal momentum are basically discrete Fourier transforms of each other, just as ordinary
position and momentum are related by a continuous Fourier transform1.

Proposition 5. If Ba is a 2-dimensional Bravais lattice generated by the primitive vectors

a1 = a

(
cos θ1
sin θ1

)
, a2 = a

(
cos θ2
sin θ2

)
,

for some lattice constant a > 0, then its reciprocal lattice Bb is generated by the primitive vectors

b1 = 2π
a sin(θ2 − θ1)

(
sin θ2

− cos θ2

)
, b2 = 2π

a sin(θ2 − θ1)

(
− sin θ1

cos θ1

)
.

Proof. It suffices to check that ai · bj = 2πδij for i, j = 1, 2, a straightforward task.

Example 5. A uniform grid of mutually identical ions defines a translationally invariant Bravais
lattice with one ion per lattice site. If we assume the lattice to be perfectly rigid, meaning that
the ions cannot move relative to each other, a lone electron positioned at r ∈ Rd will interact with
the lattice ions through the Coulomb potential

V (r) = −
∑
i

e2

4πε0
1

‖r −Ri‖2
,

1The position operator x in an infinite-dimensional 1D system H = L2(R) is given by multiplication by x whilst
the momentum operator is given by p = −i∂x. The roles of these operators can be switched by letting them act on
an arbitrary Schwartz class function ψ ∈ H and applying a Fourier transform:

p̂ψ = −i
∫ ∞
−∞

∂xψ(x)e−ipx dx = i

∫ ∞
−∞

ψ(x)∂xe−ipx dx = p

∫ ∞
−∞

ψ(x)e−ipx dx = pψ̂(p),

a similar calculation yielding x̂ψ = −i∂pψ̂(p). The position and momentum operators in H are thus distributional
Fourier transforms of each other, as the Schwartz class is dense in L2(R), and analogous versions of this result can
be shown in other quantum systems.
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2. Topological Materials

the lattice vector Ri ∈ Ba denoting the fixed position of the i’th ion. The electron cannot possibly
know where it is located inside this infinite, translationally invariant lattice, so moving the electron
to a different region should have no effect on its dynamics. In other words, we expect the Coulomb
potential to inherit the translational symmetry of the lattice. Indeed,

V (r +Rj) = −
∑
i

e2

4πε0
1

‖r +Rj −Ri‖2
=
[
Ri′ := Ri −Rj

]
=

= −
∑
i′

e2

4πε0
1

‖r −Ri′‖2
= V (r),

for each lattice site Rj ∈ Ba.

The above example illustrates an important fact, namely that a fairly large number of physical
properties and phenomena share the translational invariance of the lattice. Crystalline materials
can therefore be studied by restricting attention to a suitable neighbourhood inside the crystal,
such as a Wigner-Seitz cell.

Definition. Let Ba be a d-dimensional Bravais lattice. The Wigner-Seitz cell around a site R is
the locus of points in Rd with shorter distance to R than to any other site R′:

WS(R) :=
{
r ∈ Rd

∣∣∣∣ min
R′∈Ba

‖r −R′‖2 = ‖r −R‖2

}
.

The Wigner-Seitz cell around k = 0 in reciprocal space is called the (first) Brillouin zone.

Different Wigner-Seitz cells are clearly related by translation,

WS(R′) =WS(R) +R′ −R,

and together they tile Rd. Local physics look the same in one cell as it does in any other cell, so
we might as well identify different cells with each other by defining an equivalence relation

r ∼ r′ ⇐⇒ r′ − r ∈ Ba

and moving to the quotient WS(0)/ ∼.

Example 6. The square Bravais lattice in Figure 2.1b is generated by the primitive vectors

a1 = a

(
1
0

)
, a2 = a

(
0
1

)
.

Its reciprocal lattice is therefore the square lattice generated by

b1 = 2π
a

(
1
0

)
, b2 = 2π

a

(
0
1

)
,

with (first) Brillouin zone

BZ =WS(k = 0) =
[
−π
a
,
π

a

]
×
[
−π
a
,
π

a

]
.

Both quotient spaces R2/ ∼ and BZ/ ∼ are homeomorphic to the 2-torus T2 = S1 × S1.
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Topological insulators and other solid state systems are often studied by looking at the dynamics
of a single electron moving in a lattice devoid of other electrons, as the resulting theory can then
be applied to each electron in a non-interacting system. It may seem strange to assume that
electrons do not interact with each other, but it leads to a significantly simpler theory that still
manages to correspond well with experiments in a large number of situations. The assumption
can even be justified from a theoretical standpoint, as the Pauli exclusion principle and screening
of the Coulomb interaction significantly reduces the likelihood of collisions between electrons [18].
Furthermore, electron-electron interactions can always be taken into consideration later on as a
correction to the non-interacting theory. We will therefore focus on single-particle Hamiltonians.

To be precise, our focus will be on crystalline materials in two spatial dimensions, described by
a single-particle bulk momentum-space Hamiltonian H(k) in an N -dimensional quantum system.
The crystal momenta k = (kx, ky) are assumed to live inside a square Brillouin zone

BZ = [−π, π]× [−π, π]

that we often identify with the 2-torus.

2.2 Band theory
Given an arbitrary Hamiltonian H = H(x) that depends on some real parameter x, representing
for example time and crystal momentum, we want to understand what happens to each individual
energy eigenvalue En(x) as the parameter x is varied. This simple question is surprisingly difficult
to answer in general, an important point that we will soon talk more about, but some conclusions
can be drawn. A good start is that continuity of H(x) implies continuity in the spectral metric [16]

d(H(x), H(x′)) = min
σ∈SN

max
n
|En(x)− Eσ(n)(x′)| (2.1)

that provides a meaningful distance between the spectrum of H(x) and that of H(x′).

Figure 2.2: The spectrum of a continuously time-dependent Hamiltonian H(t) can be considered
a (multivalued) continuous function of time. Its graph is known as the energy band structure.
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The band structure is informally defined as the graph of the spectrum of H(x). As the name
suggests and as Figure 2.2 clearly shows, the band structure is composed of a number of bands,
which are the individual eigenvalues En(x) considered as continuous functions of x. The idea of
bands seems natural but rigorously proving their existence and examining their properties turns
out to be very difficult. The problem is that of ordering the eigenvalues: we cannot prove, say, that
the difference |En(x)−En(x′)| vanishes alongside |x− x′| unless we also know which eigenvalue is
the n’th one for each parameter x′ in a neighbourhood of x.

A natural choice would be to order the eigenvalues by size, i.e. to choose the ordering

n ≥ m if and only if En(x) ≤ Em(x) (2.2)

for every x. This ordering is guaranteed to produce continuous bands, as

|En(x)− En(x′)| ≤ max
n
|En(x)− En(x′)| = d

(
H(x), H(x′)

)
,

due to the fact that σ = e minimizes Eq. (2.1) for this particular ordering. It is not recommended
to use this size-based ordering, however, as differentiability or higher degrees of smoothness will
be lost whenever two bands cross. The bands E1 and E2 in Figure 2.3, for example, are defined
using Eq. (2.2) but it would clearly have been better to set E1(x) = cos(x) and E2(x) = sin(x).

Figure 2.3: Bands constructed using Eq. (2.2) are continuous but rarely differentiable.
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Another problem is that bands do not always inherit smoothness from the Hamiltonian, as
illustrated in the following example by the legendary Kato [16].

Example 7. The Hermitian operator

H(x1, x2) =
(
x1 x2
x2 −x1

)
is totally differentiable in x1, x2 and diagonalizable for all real numbers x1, x2, but its eigenvalues

E±(x1, x2) = ±
√
x2

1 + x2
2

are not totally differentiable at x1 = x2 = 0.

At this point, it should be clear that band theory can be subtle and tricky. Fortunately, some
regularity can still be guaranteed for most physically relevant operators [16].

Kato’s theorem. Let A = A(x) be a linear operator on an N -dimensional complex Hilbert space,
defined for x ∈ [0, 1]d. Denote by S(x) the unordered N -tuple of eigenvalues an(x) of A(x):

S(x) =
(
a1(x), . . . , aN (x)

)
, x ∈ [0, 1]d.

If the operator A is continuous on [0, 1]d, then there exists N continuous functions

An : [0, 1]d → C, n = 1, . . . , N,

such that
S(x) =

(
A1(x), . . . , AN (x)

)
, x ∈ [0, 1]d.

In other words, the full spectrum of A can be split into N continuous bands An. If the operator A(x)
is diagonalizable and partially differentiable, and if the unordered N -tuple S(x) is differentiable2,
then the bands An are also partially differentiable.

Both Hermitian and unitary operators are diagonalizable, and differentiability ofS(x) can often
be justified. Kato’s theorem therefore applies to a large number of observables, the time-evolution
operator, and many other operators that arise naturally in quantum mechanics. Furthermore, most
of the Hamiltonians one encounters in practice are highly regular so we may assume partial differ-
entiability without significantly restricting our theory. Observe that the time-evolution operator
inherits partial differentiability from the Hamiltonian.

We now know that the energy of any electron in a non-interacting system lies inside an energy
band, but not all energies are equally probable, the electron will most often be found in the lowest
energy state called the quantum ground state. Furthermore, the Pauli exclusion principle dictates
that no pair of electrons can occupy the same state, so adding more electrons to the system has the
effect of filling up the avaliable energies from the bottom up; the M -particle ground state is then
defined as the state in which the M lowest energies of the single-particle Hamiltonian are filled.
These ideas can be expressed mathematically using the framework of second quantization, which
we shall discuss in the next chapter. For example, creation and annihilation operators c†nk and cnk
are used to create or annihilate an electron at crystal momentum k in the n’th energy band.

The number of electrons in a system is more or less constant, so the ground state is often
well-defined and so is the Fermi level EF that measures the work required to add another electron

2S(x) is differentiable at a point x if it can be represented in a neighbourhood of x by N functions µ1, . . . , µN
which are differentiable at x. This is a relatively weak assumption since S(x) =

(
µ1(x), . . . , µN (x)

)
is unordered.
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Figure 2.4: The electrical properties of a crystalline material depends on the location of the
Fermi level EF in relation to the energy bands. If the Fermi level lies inside a band, electrons
are easily excited and the system becomes metallic; if the Fermi level lies inside a large band gap,
excitations are rare and the system becomes insulating. Here, “width is the density of available
states for a certain energy in the material listed” [38].

to the system. Crystalline materials are categorized as metals, semimetals, semiconductors, and
insulators, according to the position of the Fermi level in relation to the energy bands (Figure 2.4).
Indeed, electrical conduction is a manifestation of electrons jumping between different energy states
and every energy state below the Fermi energy is occupied, whilst every energy state above the
Fermi level is unoccupied, so the position of the Fermi level is an indication of the ease with which
electrons can be excited. If the Fermi level lies inside an energy band, for example, an electron
near the Fermi level can easily be excited to higher energy states (inside the same band), leading to
good electrical properties. If the Fermi level lies in the middle of a sizeable band gap, on the other
hand, electrons are rarely excited and the electrical properties are poor; the system is insulating.
We are interested in insulating band structures so the Fermi level is assumed to lie at the center
of a sizeable band gap, and all energies are assumed to be rescaled so that EF = 0.

Curiously, superconductors also have an insulating band structure and are therefore included in
our analysis. What happens in a superconductor is that vibrations in the crystal lattice induce an
attractive interaction between electrons, causing some of the electrons near the Fermi energy and
with opposite crystal momentum ±k to pair up. The collective behaviour of such a Cooper pair
is that of a single bosonic3 quasiparticle and since bosons are unaffected by the Pauli principle,
there is nothing to prevent all of the Cooper pairs from condensing into the same ground state,
a process that lowers the energy of each paired electron and creates an energy gap between these
and normal electrons. This gap does not prevent conduction like in an insulator, but protects the
current-carrying Cooper pairs from interactions which normally cause resistivity. The current is
therefore allowed to flow freely, without resistance.

We end this section with an important result about time-dependent quantum systems.

Adiabatic theorem. A quantum system can be changed over time without disturbing the state,
provided that the change occurs slowly enough. In other words, the probability density function

P (En(t)) = | 〈En(t)|ψ(t)〉 |2

in a gradually changing quantum system is approximately time-independent.
3Particles can be categorized into bosons and fermions. Most elementary particles (e.g. electrons and protons)

are fermions while the list of bosons contain photons, the Higgs boson, a number of quasiparticles such as phonons
and Cooper pairs, et cetera. These two categories obey different statistics, have different spin properties, and the
Pauli exclusion principle applies only to fermions.
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Proof. We present a standard proof of this theorem. As the instantaneous eigenstates |En(t)〉 form
an orthonormal basis for each time t, it is possible to write an arbitrary state |ψ(t)〉 on the form

|ψ(t)〉 =
∑
m

cm(t)e−iθm(t) |Em(t)〉 , where θm(t) =
∫ t

0
Em(s) ds,

so its time-derivative evaluates as

∂t |ψ(t)〉 =
∑
m

e−iθm(t)
(
ċm(t)− icm(t)θ̇m(t) + cm(t)∂t

)
|Em(t)〉 =

=
∑
m

e−iθm(t)
(
ċm(t) + cm(t)∂t

)
|Em(t)〉 − i

∑
m

cm(t)e−iθm(t)Em(t) |Em(t)〉 =

=
∑
m

e−iθm(t)
(
ċm(t) + cm(t)∂t

)
|Em(t)〉 − iH(t) |ψ(t)〉 .

By Schrödinger, ∂t |ψ(t)〉 = −iH(t) |ψ(t)〉 so the two remaining terms cancel each other out:∑
m

ċm(t)e−iθm(t) |Em(t)〉 = −
∑
m

cm(t)e−iθm(t) ∣∣Ėm(t)
〉
,

where
∣∣Ėm(t)

〉
:= ∂t |Em(t)〉. Left-multiplication by 〈En(t)| therefore yields the relation

ċn(t) = −
∑
m

cm(t)e−i
(
θm(t)−θn(t)

) 〈
En(t)

∣∣Ėm(t)
〉
.

Now observe that if m and n correspond to different energies, Em(t) 6= En(t), then

0 = ∂t 〈En(t)|H(t)|Em(t)〉 =
〈
Ėn(t)

∣∣H(t)
∣∣Em(t)

〉︸ ︷︷ ︸
Em(t)〈Ėn(t)|Em(t)〉

+ 〈En(t)|Ḣ(t)|Em(t)〉+
〈
En(t)

∣∣H(t)
∣∣Ėm(t)

〉︸ ︷︷ ︸
En(t)〈En(t)|Ėm(t)〉

and in a similar way, the identity ∂t 〈En(t)|Em(t)〉 = ∂tδmn = 0 implies the relation〈
Ėn(t)

∣∣Em(t)
〉

= −〈En(t)| Ėm(t). (2.3)

Combining the two equations above, we obtain the expression

〈
En(t)

∣∣Ėm(t)
〉

= 〈En(t)|Ḣ(t)|Em(t)〉
En(t)− Em(t) (m 6= n)

which holds whenever the energy eigenvalue En(t) is a simple eigenvalue. The time-derivative ċn(t)
can then be written on the form

ċn(t) = −cn(t)
〈
En(t)

∣∣Ėn(t)
〉
−
∑
m6=n

cm(t) 〈En(t)|Ḣ(t)|Em(t)〉
En(t)− Em(t) e−i

(
θm(t)−θn(t)

)
.

If the system changes gradually enough, in the sense that Ḣ(t) is small compared to the energy
differences En(t)− Em(t), then the second term becomes negligible and we conclude that

cn(t) ≈ cn(0)e−
∫ t

0
〈En(s)|Ėn(s)〉 ds.
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The inner product
〈
En(t)

∣∣Ėn(t)
〉
is purely imaginary by Eq. (2.3), so the initial coefficient cn(0)

only changes by a phase factor and the time-dependent probability distribution

P (En(t)) = | 〈En(t)|ψ(t)〉 |2

becomes approximately static. In particular, a slowly changing system prepared in the n’th eigen-
state

|ψ(0)〉 = cn(0) |En(0)〉

will stay in the n’th eigenstate4
|ψ(t)〉 = cn(t) |En(t)〉

for all times.

2.3 Topological insulators
What distinguishes topological insulators from ordinary insulators is the existence of topologically
protected surface states, which in the 2D case are known as chiral edge states. These are robust
electronic channels localized to the crystal boundary and which propagate in a single direction [9],
thereby allowing a stable edge current to form, just as in the quantum Hall effect. Furthermore, the
chiral edge states are not eigenstates of the insulating bulk Hamiltonian H(k), which is constructed
under an explicit assumption (translational invariance) that fails to hold near the boundary. The
number of chiral edge states, however, can be obtained from the bulk Hamiltonian and is invariant
under adiabatic deformations; homotopies which do not close the band gap. This relation between
bulk Hamiltonian and the number of chiral edge states is called the bulk-boundary correspondence.

The mathematical starting point is a Hamiltonian H = H(x) that depends continuously on a
collection of parameters, x, living inside some parameter manifoldM. In our case, x will be either
crystal momentum (Chapter 2) or a combination of crystal momentum and time (Chapter 3), and
the parameter manifold will be the 2-torus and the 3-torus, respectively. The basic idea is that
a topologically nontrivial parameter manifold can induce topological behaviour in a material. In
contrast, we would not expect to find topological behaviour in a system with topologically trivial
parameter manifold such as Rn.

2.3.1 Berry phase
Let us follow the standard approach [3, 4, 32, 33] by looking at the behaviour of an initial state

|ψ(x0)〉 = |En(x0)〉

that is transported adiabatically5 along an arbitrary curve C : [0, T ] → M, t 7→ x(t) in the
parameter manifold. By the adiabatic theorem, the system will stay in the instantaneous eigenstate

|ψ(x(t))〉 = eiθn(x(t)) |En(x(t))〉 (2.4)

for all times, and we can find an explicit expression for θn through a combination of Schrödinger,

−iEn |En〉 = −iH |ψ〉 = ∂t |ψ〉 = −i∂θn
∂t
|En〉+ ∂t |En〉 ,

4This is strictly speaking an approximation rather than an equality, but the difference is negligible to physicists.
5That is, slowly enough for the adiabatic theorem to apply.
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and left-multiplication by 〈En|, yielding the differential equation ∂θn
∂t = En − i 〈En| ∂t |En〉 with

initial condition θn(x0) = 0. Integrating both sides of course gives us the exact solution

θn(x(t)) =
∫ t

0
En(x(s)) ds−

∫ t

0
i 〈En(x(s))|∂t|En(x(s))〉 ds.

The first term on the right-hand side is the dynamical phase associated with the time-evolution
and the second term is known as the Berry phase

γn(t) =
∫ t

0
i 〈En(x(s))| ∂s |En(x(s))〉ds.

States are elements of the projective Hilbert spaceH/C so we are tempted to dismiss the dynamical
phase and the Berry phase as being physically irrelevant, but this would be a mistake. Physical
phenomena are typically insensitive to global gauge transformations |ψ〉 7→ eiξ |ψ〉 for any constant
scalar ξ but a phase that changes alongside the state can have cumulative, observable consequences,
the prototypical example being the Berry phase γn(C) := γn(T ) of a closed curve (x(T ) = x(0)).

The Berry phase can be rewritten as a line integral

γn(C) =
∮
C
An(x) · dx

of the Berry connection An(x) = i 〈En(x)| ∇x |En(x)〉. Applying a general gauge transformation
|ψ(x)〉 7→ eiξ(x) |ψ(x)〉 transforms the Berry connection by An(x) 7→ An(x)−∇xξ(x), hence

γn(C) 7→ γn(C) + ξ(x(T ))− ξ(x(0)).

At this point, we run into a problem with multi-valuedness. Let us illustrate with an example [33].

Example 8. The negative energy eigenstate |E−〉 of a gapped two-band model

H(k) = d(k) · σ =
(

dz(k) dx(k)− idy(k)
dx(k) + idy(k) −dz(k)

)
can be written in spherical coordinates as6

|E−(φ, θ)〉 =
(

sin
(
θ
2
)
e−iφ

− cos
(
θ
2
) ) .

This state is multi-valued at the north pole θ = 0 where the azimuth φ is allowed to take any value
and though the problem can be solved by a gauge transformation |E−(φ, θ)〉 7→ eiφ |E−(φ, θ)〉,
this just makes the state multi-valued at the south pole θ = π instead. It is impossible to make
this state single-valued over its entire parameter manifold, no suitable gauge exists. It is possible,
however, to make the state single-valued in a neighbourhood of any given point.

If we assume the state |En〉 to be single-valued on a closed curve C, we can conclude that

eiξ(T )) |En(T )〉 = eiξ(0) |En(0)〉 = eiξ(0) |En(T )〉

from which it follows that ξ(x(T ))− ξ(x(0)) = 2πm for some integer m. In other words, the Berry
phase over a closed curve is gauge invariant mod 2π and the phase factor eiγn(C) is gauge invariant.

6We follow the physics convention of using θ for the polar angle and φ for the azimuth.

22



2. Topological Materials

Working directly with states is difficult due to problems with multi-valuedness, so we would
prefer a different way to calculate the Berry phase. To this end, define the Berry curvature [33]

Fn = 1
2

(
∂Anj
∂xi

− ∂Ani
∂xj

)
︸ ︷︷ ︸

Fn
ij

dxi ∧ dxj .

The Berry curvature can be defined globally on the manifold M = BZ, without worrying about
multi-valuedness [33]. It is also invariant under gauge transformations |ψ(x)〉 7→ eiξ(x) |ψ(x)〉, since

∂Anj
∂xi

7→
∂
[
Anj − ∂jξ(x)

]
∂xi

=
∂Anj
∂xi

− ∂2ξ(x)
∂xi∂xj

and the contribution from the second term vanishes:
∂Anj
∂xi

− ∂Ani
∂xj

7→
(
∂Anj
∂xi

− ∂2ξ(x)
∂xi∂xj

)
−
(
∂Ani
∂xj

− ∂2ξ(x)
∂xj∂xi

)
=
∂Anj
∂xi

− ∂Ani
∂xj

.

Now suppose that the state is single-valued and smooth on a surface S in the parameter manifold,
as well as on its (positively oriented) boundary C = ∂S. Stoke’s theorem then implies that∮

C
An(x) · dx =

∫
S
Fn. (2.5)

We have already seen that single-valuedness is a gauge dependent property so the above equality
cannot be expected to hold in any other gauge, as Stoke’s theorem would not be applicable.
Another reason is, of course, that the line integral on the left-hand side is gauge invariant mod 2π
whereas the surface integral on the right-hand side is gauge invariant full stop. What the Berry
curvature offers, then, is a gauge invariant way of calculating a particular value of the Berry phase.

The Berry curvature can be globally defined on the parameter manifold M = BZ and can
therefore be integrated over the entire manifold. Just like the famous Gauss-Bonnet theorem
relates the Gaussian curvature K of a boundaryless manifoldM to its Euler characteristic χ,

1
2π

∫
M
K = χ,

the Chern theorem relates the Berry curvature Fn to the Chern number of the n’th energy band:

1
2π

∫
BZ

Fn = νn.

The Chern number νn is an integer topological invariant that, in a sense, captures the problem with
multivaluedness that we discussed above: Suppose that the state (2.4) can be made single-valued
and smooth over the entire Brillouin torus BZ. Any contractible, closed curve C divides the torus
into two surfaces S1 and S2 satisfying ∂S1 = ∂S2 = C, and Stoke’s theorem implies the relation∫

S1

Fn =
∮
C
An(x) · dx = −

∫
S2

Fn,

where the minus sign on the right-hand side stems from the curve being positively oriented for one
of the surfaces and negatively oriented for the other. The Chern number then equals

νn = 1
2π

∫
BZ

Fn = 1
2π

∫
S1

Fn + 1
2π

∫
S2

Fn = 0.
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Now suppose that the state can be made single-valued and smooth on S1 in one gauge, and on S2
in another gauge. Stoke’s theorem can then be applied in each gauge separately to show that

νn = 1
2π

∫
BZ

Fn = 1
2π

∫
S1

Fn + 1
2π

∫
S2

Fn = 1
2π

(∮
C
An1 (x) · dx−

∮
C
An2 (x) · dx

)
︸ ︷︷ ︸

2πm

= m

for some integer m. This is because the Berry connections A1 and A2 are related by the gauge
transformation that takes us from the gauge for S1 to the gauge for S2, so the two line integrals
define the same Berry phase mod 2π. Once again, the minus sign stems from the orientation.

We now know that the Berry curvature Fn can be integrated over the Brillouin zone to yield
an integer topological invariant νn, but what does this have to do with physics? In short, the
quantized Hall conductance σH in the QHE equals7 [28]

σH = −e
2

h
ν,

where

ν =
N−∑
n=1

νn

is the sum of the Chern numbers of the occupied bands n = 1, . . . , N−.
The Berry curvature is also important for classifying the ground state, as we will explain in the

following recount of references [9, 28]. The quantum ground state corresponding to a single-particle
Hamiltonian H(k), at some fixed crystal momentum k, can be described by the spectral projector

P (k) =
N−∑
n=1
|En(k)〉 〈En(k)| ,

where the sum is taken over the N− = N−(k) occupied bands8. We use it to define the Q matrix

Q(k) = 1− 2P (k) =
N∑
n=1

δn |En〉 〈En| , δn =
{
−1 , n ≤ N−
+1 , n > N−

the eigenvalues of which are −1 for the occupied bands and +1 for the unoccupied bands. This
unitary operator is invariant under unitary transformations of the N± (un)occupied bands and is
therefore an element of the quotient space U(N)/U(N−) × U(N+). In general, the numbers N±
depend on the choice of crystal momentum k but the only way for them to change is if at least
one band crosses the Fermi level, so the presence of a sizeable band gap ensures that the numbers
stay constant throughout the Brillouin zone. The Q-matrix then becomes a map

Q : BZ → U(N)/U(N+)× U(N−)

which, if continuous, allows the classification of ground states in terms of the homotopy group9

πd
(
U(N)/U(N+)× U(N−)

)
'
{

Z , d even
0 , d odd , (2.6)

7We have set ~ = 1, so h = 2π in our units.
8Similarly, the number of unoccupied bands is denoted by N+(k) = N −N−(k).
9The isomorphism holds “for large enough N±” [9].
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where d is the spatial dimension of the crystal lattice, in our case d = 2. A more detailed explanation
of this kind of classification procedure is given in the next chapter. The homotopy class of the
Q-matrix in d = 2l spatial dimensions is thus characterized by an integer topological invariant,
which is called the l’th Chern number and given by the integral

Chl = − 1
22l+1

1
l!

(
i

2π

)l ∫
M

tr
[
Q
(
dQ
)2l
]

= 1
l!

(
i

2π

)l∫
BZd

tr
(
F l
)
.

Here,M is the d-dimensional Brillouin zone and the Berry curvature

F = dA+A2

is the N ×N -matrix form

Fmn = 1
2

(
∂Aky
∂kx

− ∂Akx
∂ky

+
[
Akx ,Aky

])mn
dkx ∧ dky, 1 ≤ m,n ≤ N (d = 2)

defined in terms of the non-abelian Berry connection

Amn = Amnkx dkx +Amnky dky = 〈Em| ∂kx |En〉dkx + 〈Em| ∂ky |En〉dky, 1 ≤ m,n ≤ N.

Example 9. Consider a two-band model

H(k) = d(k) · σ := dx(k)σx + dy(k)σy + dz(k)σz =
(

dz(k) dx(k)− idy(k)
dx(k) + idy(k) −dz(k)

)
,

with energies E±(k) = ±|d(k)| and a Fermi energy EF = 0. The Berry connection becomes

A = Akxdkx +Akydky =
(
A++
kx

A+−
kx

A−+
kx

A−−kx

)
dkx +

(
A++
ky

A+−
ky

A−+
ky

A−−ky

)
dky.

where A+−
kx

= 〈E+|∂kx |E−〉 and the other components are defined analogously. The trace of the
commutator [Akx ,Aky ] vanishes and we are working in dimension d = 2, so the differential form
to be integrated is

tr(F) = F++ + F−− = 1
2

(
∂A++

ky

∂kx
−
∂A++

kx

∂ky

)
dkx ∧ dky + 1

2

(
∂A−−ky
∂kx

−
∂A−−kx
∂ky

)
dkx ∧ dky.

It is sometimes useful to think of topological phases as homotopy classes of the ground state.
Consider for example a deformation (homotopy) of one ground state U0 into the ground state U1
of another system10, both with the same numbers N± of (un)occupied bands:

Us(k) : [0, 1]×BZ → U(N)/U(N+)× U(N−).

The homotopy Us is only well-defined if the numbers N± remain constant throughout the de-
formation, which is just another way of saying that the energy gap must remain open. If the two
ground states cannot be continuously deformed into each other without closing the gap, then they
belong to different homotopy classes and are therefore in different topological phases.

10Of course, what we are really deforming are the Q-matrices Q0 and Q1, not the ground states per se.
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2.3.2 Symmetry classes
Multiparticle quantum systems are notoriously difficult to study and computational approaches
quickly become unfeasible, as even microscopic systems can contain billions of particles and each
particle adds more dimensions to the Hilbert space. A common way to significantly reduce the
computational complexy involved is to use a so-called mean field approximation, in which the
countless particle-particle interactions are replaced by a statistical mean interaction. Each particle
can then be studied individually and the multiparticle system becomes a composition of non-
interacting single-particle systems. Insight about electronic properties of a crystal, ignoring lattice
dynamics, can thus be gained by studying the dynamics of a single electron.

Due to the stochastic nature of mean fields, Hamiltonians describing such non-interacting single-
electron systems can be studied from the perspective of random matrix theory. Seminal work
by Altland & Zirnbauer [2] has led to the complete classification of such matrices according to
the presence or absence of three fundamental symmetries: time-reversal invariance, particle-hole
symmetry, and chiral symmetry. We shall not go into detail about how these symmetries are
normally defined, on the level of second quantization, as they can also be expressed in terms of
operators acting on the first-quantized Hamiltonian that is more familiar to us. For example, chiral
symmetry is characterized by the existence of a linear unitary operator Γ such that [25]

ΓH(t, k)Γ† = −H(−t, k).

Both time-reversal invariance (Θ) and particle-hole symmetry (P) come in two flavours, determined
by what happens when the same symmetry operator is applied twice: the different possibilities are
Θ2 = ±1 and P2 = ±1. Chiral symmetry only comes in one flavour, Γ2 = +1, and can only exist
either in the absence of other symmetries, or in the presence of both time-reversal invariance and
particle-hole symmetry; presence of two symmetries implies presence of all three. Counting up the
possibilities, we find that there are ten distinct combinations of symmetries with different flavours,
and each combination defines one symmetry class.

An interesting property of topological insulators is that different symmetry classes and spatial
dimensions correspond to different kinds of topological invariants, making it possible to classify
such materials by their symmetries. Much work has gone into this classification, and has culminated
in the periodic table of topological insulators shown in Table 2.1.

class\d Θ P Γ 0 1 2 3 4 5 6 7
A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z
AI + 0 0 Z 0 0 0 2Z 0 Z2 Z2
BDI + + 1 Z2 Z 0 0 0 2Z 0 Z2
D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0

DIII - + 1 0 Z2 Z2 Z 0 0 0 2Z
AII - 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII - - 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 - 0 0 0 2Z 0 Z2 Z2 Z 0
CI + - 1 0 0 0 2Z 0 Z2 Z2 Z

Table 2.1: Periodic table of topological insulators and superconductors; d denotes the spatial
dimension and (A, AIII, . . ., CI) denotes the ten Altland-Zirnbauer symmetry classes of fermionic
Hamiltonians, which are characterized by the presence/absence of time-reversal (Θ), particle-hole
(P), and chiral (Γ) symmetry of different types denoted by ±1. The entries “Z”, “Z2”, and “0”
represent the presence/absence of non-trivial gapped bulk topological insulators/superconductors,
and when they exist, types of these states. (Table and caption taken from ref. [9].)

26



2. Topological Materials

Example 10.

(a) The 2D quantum Hall effect corresponds to symmetry class A and is thus described by an
integer topological invariant, namely the Chern number ν that determines the quantized Hall
conductance. The quantum Hall effect has no analogue in odd dimensions.

(b) In the 2D quantum spin Hall effect, two spin-polarized currents flow in opposite directions
along the boundary. This effect arises in 2D time-reversal invariant systems with Θ2 = −1
(symmetry class AII) and is therefore described by a Z2 topological invariant, which has a
physical interpretation as the number of helical edge modes (mod 2) [9].
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3

Floquet Topological
Superconductors

If topological behaviour can be induced in quantum systems through translational invariance and
the nontrivial torus topology of the Brillouin zone, as was discussed in an earlier section, it makes
sense to look for topological phenomena in systems with other types of invariance or periodicity.
Especially interesting are Floquet topological insulators, which employ periodic driving to induce
novel topological behaviour not found in more conventional static systems [21, 26], and which
have been realized in acoustic [22], photonic [23], and solid state [35] systems. A homotopy-based
classification scheme for Floquet topological insulators has been developed and applied to systems
without symmetry [26] as well as to time-reversal invariant systems [8]. Our mission in this final
chapter is to explain the classification scheme and to apply it to particle-hole symmetric systems.
As a by-product, we achieve a classification of Floquet topological superconductors.

3.1 Floquet and quasienergy
Driving a system means actively interfering with the system in a manner that affects its energy
levels over time, for example by applying a time-dependent magnetic field or by simply pumping in
additional energy. The corresponding Hamiltonian can generally be written as the sum of a static,
non-driven term and a time-dependent driving term:

Hfull(t, k) = H0(k) +H(t, k).

The driving is often described as either weak or strong, depending on how much it affects the overall
dynamics: weak driving is used to analyse how a given system reacts to a small, time-dependent
perturbation, whilst strong driving is more often used to control and direct the behaviour of
a system. In both cases, one term in the Hamiltonian can be considered the main term and
studied separately, after which the other term is added as a perturbation. To apply our results
to real systems, one may therefore treat our general, time-periodic Hamiltonian either as the full
Hamiltonian or specifically as the driving term in a strongly driven system.
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We are interested in periodically driven systems, i.e. systems with a time-periodic Hamiltonian
H(t+ T, k) = H(t, k)

with driving period T . Floquet theory, the branch of mathematics that deals with periodic linear
systems of ordinary differential equations, can be applied to find the instantaneous eigenstates

|En(t, k)〉 = e−iεn(k)t |un(t, k)〉 , n = 1, . . . , N,
where |un(t, k)〉 are time-periodic Floquet waves. Whenever the adiabatic theorem holds,

U(T, k) |En(t, k)〉 = |En(t+ T, k)〉 = e−iεn(k)(t+T ) |un(t+ T, k)〉 = e−iεn(k)T |En(t, k)〉 ,
so the instantaneous eigenstates are eigenstates of the Floquet operator U(T, k). As it turns out, the
concept of energy is ill-defined in driven systems so the time-dependent Hamiltonian is replaced by
the Floquet operator that evolves time stroboscopically, one driving period at a time. The unitary
Floquet operator is diagonalizable, so Kato’s theorem implies the existence of bands

λn(k) = e−iεn(k)T

which are continuous and partially differentiable, and the same is true of the quasienergy bands

εn(k) = − T

2πφ
−1(λn(k)),

defined in terms of the diffeomorphism φ : R/Z → T, x 7→ e2πix. Quasienergies play a role
analogous to that of ordinary energies in static systems and are defined mod 2π/T .

The notation εn(k) will most often be used to denote real-valued representatives lying in the
quasienergy Brillouin zone (−π/T, π/T ], just like the 2π-periodic crystal momenta kx and ky are
almost always assumed to lie in the interval (−π, π].

Figure 3.1: An example of a quasienergy band structure [26], which shares many similarities
with energy band structures in static systems. Quasienergies are different from ordinary energies,
however, in that they are defined mod 2π/T . It is therefore possible for a quasienergy band to
extend beyond the top of the band structure (ε = π/T ) and appear again at the bottom (ε = −π/T ).
In this example, the quasienergies have been expressed in units of the driving frequency ω.
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Example 11. If the Hamiltonian H(t, k) is either time-independent or diagonal for each (t, k),
one can define the time-evolution operator U(t, k) without invoking the time-ordering operator T .
The corresponding Floquet operator U(T, k) then simplifies to

U(T, k) = e
−i
∫ T

0
H(s,k) ds

,

and the quasienergies εn(k) become the time-averaged energy content of the n’th energy band:

εn(k) = 1
T

∫ T

0
En(s, k) ds,

of course taken mod 2π/T . Such a concrete interpretation does not exist in general but, as we will
see later on, the Floquet spectrum does provide physical information.

3.2 Particle-Hole Symmetry
Conduction in a crystal lattice is a manifestation of electrons being transported between different
lattice sites. Each site can only support a finite number of electrons before it gets filled and
conduction to that site stops, so it makes sense to think about the lattice sites as being occupied
by a number of electrons and a complementary number of electron holes, representing the lack of
an electron. Transportation of electrons in one direction is then equivalent to transportation of
holes in the opposite direction, as illustrated in Figure 3.2.

Figure 3.2: A negatively charged electron (filled circle) moving in one direction is equivalent to
a positively charged electron hole moving in the opposite direction.

Switching the roles of electrons and holes in a quantum system H creates a new quantum
system H′, identical to the original system in every way except for the particle-hole role-reversal,
and the two are related by an invertible particle-hole operator P : H → H′ mapping electron (hole)
eigenstates in H to hole (electron) eigenstates in H′:

H(t, k) |En〉 = En |En〉 ⇒ H ′(t,−k)P |En〉 = −EnP |En〉 , (3.1)

where H (H ′) is the Hamiltonian associated with H (H′). In a particle-hole symmetric system,

H = H′ and H = H ′.

Assuming H = H ′ in Eq. (3.1), left-multiplication by 〈Em| P† yields the relation

−Em 〈Em|P†P|En〉 = 〈Em|P†H(t,−k)P|En〉 = −En 〈Em|P†P|En〉 ,

which tells us that the particle-hole operator preserves the orthogonality relation between pairs of
eigenstates |Em〉 and |En〉 with different energy levels. If all of the energy levels are distinct, the
states P |E1〉 , . . . ,P |EN 〉 form an orthonormal basis in H and we conclude that the particle-hole
operator P is unitary. The beauty of this fact is that it holds for any time t and crystal moment k,
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so the particle-hole operator is guaranteed to be unitary unless there are band crossings at every
single point (t, k) ∈ [0, T ]× BZ, which would make for a highly erratic and physically unrealistic
band structure. We thus assume, without loss of significant generality, that P is unitary.

Unfortunately, the particle-hole operator cannot be linear as that would break the underlying
U(1) gauge invariance of our electron system1. We still retain some degree of linearity, however,
as the particle-hole operator is antilinear unitary - antiunitary for short.

Definition. An operator P : H → H is said to be antiunitary if

〈φ|P†P|ϕ〉 = 〈ϕ|φ〉 = 〈φ|ϕ〉∗

for all |φ〉 , |ψ〉 ∈ H.

Readers unfamiliar with antilinear operators need not worry, as the following lemma shows that
antilinear unitary operators have a very simple form: they are linear unitary operators multiplied by
the complex conjugation operator K that conjugates coordinates. More precisely, any antiunitary
operator can be written on the form P = PK2 = PK, where P = PK is linear unitary.

Lemma 1. A linear operator P is unitary if and only if P = PK is antiunitary.

Proof. Let |ψ1〉 , |ψ2〉 , |ψ3〉 , . . . be an orthonormal basis in H and expand |φ〉 , |ϕ〉 ∈ H as

|φ〉 =
∑
n

〈ψn|φ〉 |ψn〉 , |ϕ〉 =
∑
n

〈ψn|ϕ〉 |ψn〉 .

The defining property of the complex conjugation operator is that it conjugates coordinates,

|ψ∗〉 := K |ψ〉 = |ψ〉∗ =
(∑

n

〈ψn|ψ〉 |ψn〉

)∗
=
∑
n

〈ψn|ψ〉∗ |ψn〉 =
∑
n

〈ψ|ψn〉 |ψn〉 ,

so if P is unitary, then

〈φ| K†P †PK |ϕ〉 = 〈φ∗|P †P |ϕ∗〉 = 〈φ∗|ϕ∗〉 =
∑
n

〈ϕ|ψn〉 〈ψn|φ〉 = 〈ϕ|1 |φ〉 = 〈ϕ|φ〉 ,

which means that P = PK is antiunitary. The proof of the other direction is analogous.

By unitarity and Eq. (3.1),

〈Em|H(t, k)|En〉 = Enδmn = En 〈Em|P†P|En〉 = −〈Em|P†H(t,−k)P|En〉 ,

so the operators H(t, k) and −P†H(t,−k)P have the same eigenkets and the same eigenvalues,
and are therefore equal.

Definition. A system is said to have particle-hole symmetry (PHS) if there exists an antiunitary
particle-hole operator P = PK acting on the Hamiltonian by

PH(t, k)P† = −H(t,−k),

for all (t, k).
1In the language of second quantization, the particle-hole operator switches the roles of creation and annihilation

operators: Pc†
k
P† = c−k. Antilinear operators conjugate complex phases, PeiθP−1 = e−iθ, and thereby preserve

the underlying invariance under U(1) gauge transformations c†
k
7→ eiθc†

k
.
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The energy band structure of a PHS Hamiltonian is odd in crystal momentum, as implied by
Eq. (3.1), but we cannot say the same about the individual energy bands. This is because the
particle-hole operator need not preserve band indices.

Example 12. The toy Hamiltonian

H(k) =
(

sin(k) i cos(k)
−i cos(k) sin(k)

)
, (k = kx)

has PHS under P = σxK, and smooth energy bands E±(k) = sin(k)± cos(k). The band structure
is evidently odd in crystal momentum (Figure 3.3) but the individual energy bands are not.

Figure 3.3: The band structure of a PHS Hamiltonian H(k) is odd in k.

3.2.1 Relation to superconductivity
We touched upon second quantization in the previous chapter but only very briefly, so let us give
a more detailed introduction before explaining the relation between particle-hole symmetry and
superconductivity. First recall the existence of creation and annihilation operators c†nk and cnk
which act on a multiparticle state |ψ〉 to create or annihilate an electron at crystal momentum k
and energy En(k). It is impossible for more than one electron to occupy the same energy state,
due to the Pauli exclusion principle, and any attempt to create an electron at an already occupied
energy has the effect of killing the state (c†nk |ψ〉 = 0). The same is true if one attempts to annihilate
an electron at an already unoccupied energy (cnk |ψ〉 = 0). The following operator can therefore
be used to check the occupation of the corresponding energy level:

c†nkcnk |ψ〉 =
{
|ψ〉 , if the energy level En(k) is occupied,
0 , if the energy level En(k) is unoccupied,
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and by extension, the number operator N̂ :=
∑
n,k c

†
nkcnk determines the total occupation number:

N̂ |ψ〉 =
∑
n,k

c†nkcnk |ψ〉 =
( ∑

occupied
levels

1
)
|ψ〉 .

The probability distribution of the number operator N̂ tends to have a sharp peak around 〈N̂〉,
which tells us that the total number of electrons in a typical quantum system is more or less fixed.

Excitations, collisions, and similar kinds of processes are represented by operators c†mlcnk which
annihilates an electron in one energy state and creates an electron in another energy state, and one
can prove that fermionic creation and annihilation operators satisfy the anti-commutation relations{

cml, c
†
nk

}
= δmnδlk, and

{
cml, cnk

}
=
{
c†ml, c

†
nk

}
= 0.

The unoccupied vacuum state |0〉 is defined as an eigenvector N̂ |0〉 = 0 of the number operator,
and the quantum ground state is constructed by filling every energy level up to the Fermi energy:

|gs〉 :=
∏

En(k)≤EF

c†nk |0〉 .

Let us now look at how superconductors are described in second quantization, following section III.
of ref. [28]. In the absence of spin2, a superconducting single-band Hamiltonian can be written as3

H =
∑
k

E(k)c†kck + 1
2
∑
k,l

V (k, l)c†kc
†
−kc−lcl,

where V (k, l) is a pairing interaction between electrons with crystal momentum k, l, and the
operators c†−kc

†
k and c−lcl respectively represent creation and annihilation of a Cooper pair. Rather

than studying this Hamiltonian directly, we make an approximation [33]

c†kc
†
−kc−lcl ≈ c

†
kc
†
−k〈c−lcl〉+ 〈c†kc

†
−k〉c−lcl

and observe that 〈c†kc
†
−k〉 = 〈c−kck〉∗. If we now define a pair interaction ∆(k) =

∑
l V (k, l) 〈c−lcl〉,

we obtain an approximate Hamiltonian that is free from interactions between different Cooper pairs:

H ≈
∑
k

E(k)c†kck + 1
2
∑
k

(
∆(k)c†kc

†
−k + ∆(k)∗c−kck

)
. (3.2)

Note that the above Hamiltonian allows for individual Cooper pairs to be added to or removed
from the system, so a superconductor does not have a fixed occupation number 〈N̂〉.

The above Hamiltonian can be rewritten on the more succinct Bogoliubov-de-Gennes form

H ≈ 1
2
∑
k

ψ†kHBdG(k)ψk + 1
2
∑
k

E(k), (3.3)

where
ψk =

(
ck
c†−k

)
, and HBdG(k) =

(
E(k) ∆(k)

∆(k)∗ −E(−k)

)
.

2Spin is an intrinsic form of angular momentum that we ignore partly for simplicity, partly because we are mainly
interested in topological p-wave superconductors where both electrons in a Cooper pair have the same spin.

3The sum exists because the number of crystal momenta is strictly speaking finite. Our use of a continuous
Brillouin zone BZ ' T2 is a well-established simplification within condensed matter physics that has proven to
work in practice. Also, the single band index n = 1 is superfluous and has been dropped.
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The easiest way to show this relation is to start with the right-hand side of Eq. (3.3) and prove that
it equals the right-hand side of Eq. (3.2). Ordinary matrix multiplication yields the expression

ψ†kHBdG(k)ψk = E(k)c†kck + ∆(k)c†kc
†
−k + ∆(k)∗c−kck − E(−k)c−kc†−k

for any fixed value of k, hence the sum over k can be rewritten in the following way:

1
2
∑
k

ψ†kHBdG(k)ψk = 1
2
∑
k

(
E(k)c†kck + ∆(k)c†kc

†
−k + ∆(k)∗c−kck − E(−k)c−kc†−k

)
=

= 1
2
∑
k

(
E(k)

(
c†kck − ckc

†
k

)
+ ∆(k)c†kc

†
−k + ∆(k)∗c−kck

)
.

The anti-commutation relation {ck, c†l } = δkl implies that c†kck − ckc
†
k = 2c†kck − 1, so

1
2
∑
k

ψ†kHBdG(k)ψk = 1
2
∑
k

(
E(k)

(
2c†kck − 1

)
+ ∆(k)c†kc

†
−k + ∆(k)∗c−kck

)
=

=
∑
k

E(k)c†kck + 1
2
∑
k

(
∆(k)c†kc

†
−k + ∆(k)∗c−kck

)
− 1

2
∑
k

E(k),

which is precisely what we set out to prove. The constant term 1
2
∑
k E(k) does not contribute to

the overall dynamics and can therefore be dropped, so the full Hamiltonian H is approximated as

H ≈ 1
2
∑
k

ψ†kHBdG(k)ψk,

and we observe that the BdG Hamiltonian is particle-hole symmetric under P = σxK:

PHBdG(k)P−1 = −HBdG(−k).

Furthermore, applying a Bogoliubov transformation [28] puts the above Hamiltonian on the form

H ≈
2∑

n=1

∑
k

En(k)α†nkαnk,

where En(k) are the eigenvalues of the BdG Hamiltonian and α†nk, αnk satisfy the definition of
fermionic creation and annihilation operators. The Hamiltonian H thus approximates a system of
non-interacting Bogoliubov quasiparticles, each described by the single-particle Hamiltonian HBdG.

The story is much the same in a superconducting system with n = 1, . . . , N bands En. Higher-
dimensional analogues of the calculations performed above show [28] that H approximates a system
of non-interacting fermionic quasiparticles, each of which is described by a BdG Hamiltonian of
dimension 2N × 2N . In other words, superconductors have the same type of band structure as
particle-hole symmetric single-particle Hamiltonians and will therefore be covered by our analysis.

3.3 Probing the quasienergy gap
It is finally time to describe the classification scheme developed by Rudner and colleagues [26],
starting with a system with trivial Floquet operator U(T, k) = 1. The corresponding time-evolution
operator is periodic not only in crystal momentum, but also in time,

U(t+ T, k) = U(t, k)U(T, k) = U(t, k).
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and thereby defines a continuous map U : T3 → U(N). Recall that the torus T3 = S1 × S1 × S1

simply consists of three copies of the unit circle so by setting two of the three parameters t, kx, ky
to 0, the time-evolution operator becomes a continuous loop S1 → U(N) based at U(0, 0) = 1

and thus represents a homotopy class in the fundamental group π1(U(N)) ' Z. This immediately
implies the existence of three integer topological invariants - specifically three winding numbers [8]

wCi [U ] = 1
2πi

∫
Ci

d log detU, i = t, kx, ky,

one for each of the three loops

Ct = S1 × {0} × {0}, Ckx = {0} × S1 × {0}, Cky = {0} × {0} × S1, (3.4)

with the obvious orientations. Two of these winding numbers vanish for any Floquet system since4

wCi [U ] = 1
2πi

∫ π

−π

∂i detU(0, i)
detU(0, i) di =

[
U(0, i) = 1

]
= 0, i = kx, ky,

but the third one, wCt [U ], does not vanish in general. We refer to it simply as the winding
number and though it does not have a natural physical interpretation, it is interesting for purely
mathematical reasons. The winding number will be studied in greater detail in Section 4.4.

A natural next step in the search for (additional) topological invariants is to look at higher
homotopy groups πd of the unitary group U(N). The second homotopy group is trivial, however,
and the dimension of our parameter manifold T3 prevents us from relating the time-evolution to
any homotopy group higher than π3. Fortunately, there is a π3 ' Z topological invariant that is
not only useful for classification purposes, but which also has an important physical interpretation.

The elements of π3(U(N)) are homotopy classes of continuous maps S3 → U(N), so the idea
is to construct a quotient q : T3 → S3 and then find a continuous map Ũ : S3 → U(N) that is
unique up to homotopy and satisfies U = Ũ ◦ q, as per the following commutative diagram.

S3

T3 U(N)

Ũq

U

The process is best illustrated by stepping down to a lower dimension: a common way of
constructing the 2-torus is to take the unit square I = [0, 1] × [0, 1] and identify opposite edges
with each other, by means of the quotient map

q(x, y) =


(x, y) , 0 < x < 1 and 0 < y < 1,
(0, y) , x ∈ {0, 1} and 0 < y < 1,
(x, 0) , 0 < x < 1 and y ∈ {0, 1},
(0, 0) , x ∈ {0, 1} and y ∈ {0, 1}.

We have illustrated the quotient q(I) ' T2 in Figure 3.4a. The curves

C1, C2 : [0, 1]→ T2

defined by C1(x) = (x, 0) and C2(y) = (0, y) can then be composed to a loop C1C2C−1
1 C

−1
2 around

the “boundary” in Figure 3.4a and if we collapse this loop to a point, the torus becomes a sphere.
4The notation (0, i) is short-hand for (0, i, 0) and (0, 0, i), depending on whether i = kx or i = ky .
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C1
C1

C2

C2

(a)

C1

C2

(b)

Figure 3.4: One way to construct the 2-torus is to glue together opposite edges on a square. The
loop C1C2C−1

1 C
−1
2 then traces around the edge and if we collapse it to a point, we get the 2-sphere.

The story is much the same in three dimensions: the 3-torus can be constructed from the unit
cube and the three loops Ct, Ckx , Cky defined in Eq. (3.4) are composed into a loop

L = CtCkxCkyC−1
t C−1

kx
C−1
ky
,

which is then collapsed to form the 3-sphere [8], using the quotient map

q(x) =
{

0, x ∈ L
x, x 6∈ L

We view the elements q(x) as equivalence classes [x], which makes for cleaner notation.

Lemma 2. The quotient map q : T3 → S3 is closed.

Proof. For any closed set V ⊂ T3, the preimage

q−1(q(V )
)

=
{
V , 0 /∈ V
V ∪ L , 0 ∈ V

is also closed in T3, so the definition of quotient topology immediately implies that the image q(V )
is closed in S3. In other words, q maps closed sets to closed sets.

The time-evolution operator U is homotopic to a map that is constant on L [8] and we are only
interested in homotopy-invariant behaviour, so we may assume without loss of generality that U
is constant on L. The map Ũ we talked about above is then defined as

Ũ : S3 → U(N)
[x] 7→ U(x)

Lemma 3. The map Ũ is continuous.

Proof. First note that Ũ is well-defined, because the only equivalence class [x] with more than one
member is [0] = q(L), and we have already assumed that U is constant on L.

For any set V ⊂ T3, the inverse images of U and Ũ are related by

Ũ−1(V ) = q
(
U−1(V )

)
and the continuity of U means that U−1(V ) is closed in T3 whenever V is closed in U(N). The
lemma now follows from the fact that q is a closed map.
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The map Ũ : S3 → U(N) is a representative of some homotopy class in π3(U(N)) ' Z and
provides us with our last and most important topological invariant [17]

deg(U) := 1
8π2

∫
T3

tr
(
U†∂tU

[
U†∂kxU,U

†∂kyU
])

dkx ∧ dky ∧ dt, (3.5)

which we call the degree of the time-evolution [8].
Now that we have established the existence of two topological invariants, namely the winding

number and the degree, we must answer an important question: where is the physics in all of this?
Is there an observable difference between two topologically distinct time-evolution operators? The
answer is yes. In a system with trivial Floquet operator U(T, k) = 1, which has a single, large
quasienergy gap at ε = π/T , the degree counts the number of chiral edge states inside the gap [26]:

deg(U) = nedge(π/T ).

A system with non-trivial Floquet operator does not have a time-periodic time-evolution operator,
so we can construct neither winding number nor degree. In fact, even if the degree could be
computed, we would not know how to interpret it in terms of chiral edge states since the Floquet
spectrum may contain more than one quasienergy gap. Both of these problems can be solved by
constructing a family of quasienergy gap-dependent auxiliary operators [8, 26]

Vε : T3 → U(N),

such that Vε is homotopic to the time-evolution operator of a system with trivial Floquet operator.
Both the winding number and the degree are then well-defined topological invariants and the degree
can be interpreted as the number of chiral edge states in the gap at ε:

deg(Vε) = nedge(ε).

3.3.1 Construction of Vε
The idea is to construct a gap-dependent effective Hamiltonian Heff

ε (k) that acts as a logarithm of
the Floquet operator U(T, k) = e−iTH

eff
ε (k), and then define Vε as the product

Vε(t, k) = U(t, k)eitH
eff
ε (k).

To construct the effective Hamiltonian, let λn(k) = e−iεn(k)T denote the eigenvalues of the Floquet
operator, with corresponding eigenkets |ψn(k)〉. Suppose ε ∈ R lies in a quasienergy gap, meaning
that e−iεT 6= e−iεn(k)T for every band n and each crystal momentum k, and let ε define a branch
of the complex logarithm:

lnε
(
e−iϕT

)
= −iϕT, ε < ϕ < ε+ 2π

T
.

We then define the gap-dependent effective Hamiltonian as the Hermitian operator

Heff
ε (k) := i

T

N∑
n=1

lnε
(
λn(k)

)
|ψn(k)〉 〈ψn(k)| .

The complex logarithm picks out a representative of each quasienergy εn(k) in a manner that
depends on the choice of complex branch - or, equivalently, on the choice of quasienergy gap. Note
that ε and ε′ define the same effective Hamiltonian if and only if they lie in the same gap:

Heff
ε (k) = Heff

ε′ (k) ⇐⇒ lnε
(
λn(k)

)
= lnε′

(
λn(k)

)
for n = 1, . . . , N.
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One may easily confirm that the effective Hamiltonian exponentiates to the Floquet operator:

U(T, k) = e−iTH
eff
ε (k),

so the effective Hamiltonian satisfies the desired criteria.

Lemma 4. The operator Vε is unitary and time-periodic.

Proof. Unitarity follows because U(t, k) is unitary and Heff
ε (k) is Hermitian:

V †ε (t, k)Vε(t, k) =
(
e−itH

eff
ε (k)U†(t, k)

)(
U(t, k)eitH

eff
ε (k)

)
= e−itH

eff
ε (k)eitH

eff
ε (k) = 1,

and time-periodicity is equally straightforward:

Vε(t+ T, k) = U(t+ T, k)ei(t+T )Heff
ε (k) = U(t, k)U(T, k)eiTH

eff
ε (k)︸ ︷︷ ︸

1

eitH
eff
ε (k) = Vε(t, k).

Lemma 5. If the projections Pn(k) = |ψn(k)〉 〈ψn(k)| are continuous in k, then Vε is continuous.

Proof. The time-evolution operator is continuous in time and so is the exponential eitHeff
ε (k),

‖ei(t+δt)H
eff
ε (k) − eitH

eff
ε (k)‖ ≤ ‖eitH

eff
ε (k)‖‖eiδtH

eff
ε (k) − 1‖ → 0, δt→ 0.

The same is therefore true of the product Vε(t, k) = U(t, k)eitHeff
ε (k).

Continuity in crystal momentum is more subtle. Since the quasienergy gap εmust lie in-between
different bands λn, any pair of points in the same band must lie on the same side of the branch
cut, so the quasienergy representatives εn(k) := i

T lnε
(
λn(k)

)
are continuous functions BZ → R.

Assuming that the projectors Pn(k) are continuous, we obtain the estimate

‖Heff
ε (k + δk)−Heff

ε (k)‖ =

∥∥∥∥∥∑
n

(
εn(k + δk)Pn(k + δk)− εn(k)Pn(k)

)∥∥∥∥∥ ≤
≤
∑
n

|εn(k + δk)− εn(k)|‖Pn(k)‖+
∑
n

|εn(k + δk)| ‖Pn(k + δk)− Pn(k)‖

which vanishes in the limit δk → 0, proving that the effective Hamiltonian is continuous in crystal
momentum; the same is then true of the exponential eitHeff

ε (k) and, by extension, Vε.

Remark 3. It is stated without proof in ref. [8] that the effective Hamiltonian becomes smooth
whenever H(t, k) is smooth, but we have been unable to rigorously prove this result or to back it up
by independent sources. On the other hand, the projections originate from the Floquet operator

U(T, k) =
∑
n

λn(k) |ψn(k)〉 〈ψn(k)| =
∑
n

λn(k)Pn(k)

which is known to inherit smoothness from the Hamiltonian H(t, k) and this may very well be
enough to prove that Vε is continuous. It would have been interesting to look further into the
matter, given more time. The above Lemma can be considered a partial result and the rest of our
analysis shall be conducted under the assumption that Vε is continuous.

Even though the integral expression (3.5) for the degree contains partial derivatives, we only
need continuity for deg Vε to be well-defined. This is because any continuous map T3 → U(N)
is homotopy-equivalent to a smooth map, by the Whitney Approximation Theorem [20], and the
degree can be calculated using this smooth representative.

39



3. Floquet Topological Superconductors

3.3.2 Mirror-symmetry in the spectrum

ε

−ε

0π
T

Figure 3.5: The mirror-symmetric gapped Floquet spectrum of a PHS Hamiltonian.

Everything we have done thus far is known, we have not done anything new, so let us change that by
examining the effect that particle-hole symmetry has on our theory. The following proposition tells
us that interchanging particles and holes does not have any particular effect on the time-evolution,
other than reversing crystal momentum.

Proposition 6. Suppose that the Hamiltonian H(t, k) has particle-hole symmetry under P = PK.
Then the time-evolution operator U(t, k) satisfies

PU(t, k)P−1 = U(t,−k).

Proof. Consider the partial sum

SN (t, k) = 1 +
N∑
n=1

(−i)n
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
H(t1, k) · · ·H(tn, k) dt1 · · · dtn

and recall that limN→∞ SN (t, k) = U(t, k). The anti-unitary operator P flips the sign of the
imaginary unit i and commutes with integration, so it follows that

PSN (t, k)P−1 = 1 +
N∑
n=1

(+i)n
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
PH(t1, k)P−1︸ ︷︷ ︸
−H(t1,−k)

· · · PH(tn, k)P−1︸ ︷︷ ︸
−H(tn,−k)

dt1 · · · dtn =

= 1 +
N∑
n=1

(−i)n
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
H(t1,−k) · · ·H(tn,−k) dt1 · · · dtn = SN (t,−k).

Letting N →∞ concludes the proof.

Lemma 6. The quasienergy band structure of a particle-hole symmetric system is mirror-symmetric
under ε 7→ −ε (cf. Figure 3.5). Furthermore, the effective Hamiltonian transforms like

PHeff
ε (k)P−1 = −Heff

−ε−2π/T (−k).

under the particle-hole operator P.
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Proof. Let |ψn(k)〉 denote the n’th eigenstate of the Floquet operator U(T, k), with corresponding
eigenvalue λn(k) = e−iεn(k)T . As the Floquet operators at k and −k are related by particle-hole
symmetry, PU(T, k)P−1 = U(T,−k), we can extract the spectrum at −k from the spectrum at k:

U(T,−k)P |ψn(k)〉 = PU(T, k) |ψn(k)〉 = Pλn(k) |ψn(k)〉 = λn(k)∗P |ψn(k)〉 ,

so the eigenstates of U(T,−k) are on the form

|ψm(−k)〉 = P |ψn(k)〉 , (3.6)

with eigenvalues
e−iεm(−k)T = λm(−k) = λn(k)∗ = eiεn(k)T .

The quasienergy band structure is therefore mirror-symmetric, proving our first claim. A direct
consequence of this result is that the existence of a gap at ε implies the existence of a gap at −ε.

Now choose a branch point ε ∈ R, assumed to lie inside a quasienergy gap, and let

εn(k) := i

T
lnε
(
λn(k)

)
, n = 1, . . . , N,

be real-valued representatives of the quasienergies at k. By definition, these representatives satisfy

ε < εn(k) < ε+ 2π
T

⇐⇒ −ε− 2π
T

< −εn(k) < −ε,

so we can force the relation5
εm(−k) = −εn(k)

by defining the representatives εm(−k) at crystal momentum −k using the branch point −ε− 2π
T :

εm(−k) := ln−ε−2π/T
(
λm(−k)

)
, m = 1, . . . , N.

This branch point corresponds to the same position on the unit circle as −ε, and is therefore
guaranteed to lie inside a quasienergy gap. Our second claim now follows from a short calculation:

Heff
−ε−2π/T (−k) := i

T

N∑
m=1

ln−ε−2π/T
(
λm(−k)

)
|ψm(−k)〉 〈ψm(−k)| =

=
N∑
m=1

εm(−k) |ψm(−k)〉 〈ψm(−k)| =

=
N∑
n=1
−εn(k)P |ψn(k)〉 〈ψn(k)| P−1 =

= − P

(
N∑
n=1

εn(k) |ψn(k)〉 〈ψn(k)|
)
P−1 = −PHeff

ε (k)P−1.

5The band index pairing m↔ n is completely determined by Eq. (3.6).
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Theorem 3. The operator Vε transforms as

PVε(t, k)P−1 = V−ε−2π/T (t,−k)

under the particle-hole operator P.

Proof. A straightforward calculation shows that

PVε(t, k)P−1 = PU(t, k)P−1PeitH
eff
ε (k)P−1 =

= U(t,−k)P
( ∞∑
n=0

intn

n! H
eff
ε (k)n

)
P−1 =

= U(t,−k)
∞∑
n=0

(−i)ntn

n!
(
PHeff

ε (k)P−1)n =

= U(t,−k)
∞∑
n=0

(−i)ntn

n!

(
−Heff

−ε−2π/T (k)
)n

=

= U(t,−k)eitH
eff
−ε−2π/T (−k) = V−ε−2π/T (t,−k).

Particle-hole symmetry thus provides a link between the gaps at ε and −ε− 2π
T .

3.4 Topological invariants
It is time to examine how our topological invariants behave under particle-hole symmetry.

3.4.1 The winding number
As was discussed above, the gap-dependent winding number wCt [Vε] does not have a clear physical
interpretation but is still interesting from a mathematical point of view, so it is worthwhile to
spend at least a small amount of time examining its properties. First of all, to see why the winding
number must be an integer, suppose detVε(t, 0) = eiθ(t) for some real-valued differentiable θ. Then

wCt [Vε] = 1
2πi

∫
Ct
d log detVε = 1

2πi

∫ T

0

1
detVε(t, 0)

∂ detVε(t, 0)
∂t

dt =

= 1
2πi

∫ T

0
e−iθ(t)

(
i
∂θ(t)
∂t

eiθ(t)
)

dt = 1
2π

∫ T

0

∂θ(t)
∂t

dt = θ(T )− θ(0)
2π .

Both θ(T ) and θ(0) must be integer multiples of 2π because Vε(T ) = Vε(0) = 1 has determinant 1,
so we end up with an integer value for the winding number. In fact, something even stronger can
be said: quasienergies are defined mod 2π/T so it would make no sense to differentiate between
gaps at quasienergies ε and ε + 2π/T . As pointed out in ref. [8], this makes the (gap-dependent)
winding number of a periodically driven system well-defined only when considered mod N .

Proposition 7. The winding numbers corresponding to gaps at ε and ε+ 2π
T are related by

wCt [Vε+2π/T ] = wCt [Vε] +N,

where N is the dimension of the underlying Hilbert space.
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Proof. First observe that Heff
ε+2π/T (k) = Heff

ε (k) + 2π
T 1, which implies the relation

det
(
Vε+2π/T

)
= det

(
Vε
)

det
(
e2πi tT 1

)
= det

(
Vε
)
e2πiN t

T .

The winding number of Vε+2π/T can therefore be rewritten on the form

wCt [Vε+2π/T ] = 1
2πi

∫
Ct
d log det

(
Vε+2π/T

)
=

= 1
2πi

∫ T

0

1
det
(
Vε+2π/T

) ∂ det
(
Vε+2π/T

)
∂t

dt =

= 1
2πi

∫ T

0

1
det
(
Vε
)
e2πiN t

T

(
∂ det

(
Vε
)

∂t
e2πiN t

T + 2πiN
T

det
(
Vε
)
e2πiN t

T

)
dt =

= 1
2πi

∫ T

0

1
det
(
Vε
) ∂ det

(
Vε
)

∂t
dt+ 1

2πi

∫ T

0

2πiN
T

dt =

= 1
2πi

∫
Ct
d log det

(
Vε
)

+N = wCt [Vε] +N,

which was to be proven.

Proposition 8. The gap-dependent winding number in a particle-hole symmetric system satisfies

wCt [Vε] = −wCt [V−ε−2π/T ].

Proof. The proof is most clear when detVε(t, 0) = eiθ(t) for some real-valued differentiable θ. Then

det
(
V−ε−2π/T

)
= det

(
PVεP−1) = det

(
PV ∗ε P

−1) = det
(
V ∗ε
)

= det
(
Vε
)∗ = e−iθ(t),

so the corresponding winding number simplifies to

wCt [V−ε−2π/T ] = 1
2πi

∫ T

0

1
det
(
V−ε−2π/T

) ∂ det
(
V−ε−2π/T

)
∂t

dt =

= 1
2πi

∫ T

0
eiθ(t)

(
−i∂θ(t)

∂t
e−iθ(t)

)
dt = −θ(T )− θ(0)

2π = −wCt [Vε].

Without the modifying factor 1
2πi , the winding number would be purely imaginary and conjugating

the determinant would conjugate the winding number as well, leading to a change in sign; the
modifying factor makes the winding number real-valued but the additional minus-sign remains.
The general case therefore follows immediately from the equality det

(
V−ε−2π/T

)
= det

(
Vε
)∗.

Together, Propositions 7 & 8 give us the particle-hole symmetry relation

wCt [Vε] + wCt [V−ε] = N,

which is independent of the choice of gap ε and need not be taken mod N . A curious special case
of this relation is that any system with a gap at ε = 0 has winding number wCt [V0] = N/2, which
is only possible if the Hilbert space dimension N is even. This result may seem surprising but it
actually strengthens a similar result that could have been obtained earlier: In any particle-hole
symmetric system of odd dimension, there is an odd number of (not necessarily distinct) bands λn
so at least one of them must be its own particle-hole symmetric partner at k = 0, in the sense of
setting n = m in Eq. (3.6). The corresponding eigenvalue λn(0) = λn(0)∗ is then real-valued and
closes the gap at either ε = 0 or ε = π/T , so an odd-dimensional system cannot be gapped at both
of these quasienergies. What the stronger result wCt [V0] = N/2 says is that an odd-dimensional
system cannot be gapped at ε = 0.
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3.4.2 The degree
Recall that the degree is a π3(U(N)) ' Z topological invariant given by the integral

deg(V ) = 1
8π2

∫
T3

tr
(
V †∂tV

[
V †∂kxV, V

†∂kyV
])

dkx ∧ dky ∧ dt (3.7)

for maps V : T3 → U(N). As was discussed earlier, the gap-dependent degree is our most important
topological invariant due to its interpretation as the number of chiral edge states traversing the
chosen quasienergy gap: deg Vε = nedge(ε). Establishing a relation between the degrees of Vε and
V−ε−2π/T would therefore enable us to draw concrete conclusions about the underlying physics.
It is difficult to see how the expression (3.7) behaves under transformations of V , however, so we
rewrite it on a simpler form as the integral

deg(V ) = 1
24π2

∫
T3
V ∗χ, (3.8)

of the differential form6 V ∗χ = tr (Θ ∧Θ ∧Θ), where Θ = V −1dV .

Lemma 7. The integrals (3.7) and (3.8) coincide.

Proof. We begin by examining the differential 3-form V ∗χ. By definition,

Θ = V −1dV = V †dV = V †
(
∂V

∂kx
dkx + ∂V

∂ky
dky + ∂V

∂t
dt
)
,

and a tedious but straightfoward calculation shows that

Θ ∧Θ =
[
V †V ′kx , V

†V ′ky
]
dkx ∧ dky +

[
V †V ′kx , V

†V ′t
]
dkx ∧ dt+

[
V †V ′ky , V

†V ′t
]
dky ∧ dt.

An equally tedious but equally straightforward calculation then yields the expression

Θ∧Θ∧Θ =
(
V †V ′t

[
V †V ′kx , V

†V ′ky
]

+ V †V ′kx
[
V †V ′ky , V

†V ′t
]

+ V †V ′ky
[
V †V ′t , V

†V ′kx
])

dkx∧dky ∧dt,

which we can rewrite as(
V †∂tV

[
V †∂kxV, V

†∂kyV
]

+V †∂kxV
[
V †∂kyV, V

†∂tV
]

+V †∂kyV
[
V †∂tV, V

†∂kxV
])

dkx ∧ dky ∧ dt.

This expression is on the form A
[
B,C

]
+B

[
C,A

]
+ C

[
A,B

]
for

A := V †∂tV, B := V †∂kxV, C := V †∂kyV,

meaning that the three terms are cyclic permutations of each other. As the trace is a linear function
which is invariant under cyclic permutations, it follows that

tr
(
A
[
B,C

]
+B

[
C,A

]
+ C

[
A,B

])
= 3 tr

(
A
[
B,C

])
,

proving the relation

V ∗χ = tr (Θ ∧Θ ∧Θ) = 3 tr
(
V †∂tV

[
V †∂kxV, V

†∂kyV
])

dkx ∧ dky ∧ dt.

Consequently,
1

24π2

∫
T3
V ∗χ = 1

8π2

∫
T3

tr
(
V †∂tV

[
V †∂kxV, V

†∂kyV
])

dkx ∧ dky ∧ dt.

6The notation V ∗χ comes from ref. [8] and emphasizes that V ∗χ is the pullback along V of a 3-form χ on U(N).
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Let us keep the ball rolling by presenting a number of additional, equally important results.

Lemma 8. The 3-form V ∗χ is a real 3-form.

Proof. The equality

0 = ∂t1 = ∂tV
†V = ∂V †

∂t
V + V †

∂V

∂t

implies that A = V †∂tV is anti-Hermitian:

V †
∂V

∂t
= −∂V

†

∂t
V = −

(
∂V

∂t

)†
V = −

(
V †

∂V

∂t

)†
,

and the same holds for B = V †∂kxV and C = V †∂kyV . The commutator of two anti-Hermitian
matrices is easily seen to be anti-Hermitian, so the trace

tr
(
A
[
B,C

])
= tr

([
B,C

]
A
)

= tr
((
A
[
B,C

])†) = tr
(
A
[
B,C

])∗
is real-valued and we conclude that

V ∗χ = 3 tr
(
A
[
B,C

])
dkx ∧ dky ∧ dt

is a real 3-form.

Lemma 9. The degree satisfies

deg V1V2 = deg V1 + deg V2,

for any pair of maps V1, V2.

Proof. See [8] for details.

Corollary 3.

(a) The degree is invariant under particle-hole transformations:

degPV P−1 = deg V,

for all maps V : T3 → U(N)

(b) The degree satisfies
deg Vε+2π/T = deg Vε

for any quasienergy ε.

Proof.

(a) Let P be the unitary part of the particle-hole operator P = PK. Then

degP−1 = degPP−1 − degP = deg1︸ ︷︷ ︸
=0

−degP = −degP,

so the degree simplifies to

degPV P−1 = degPV ∗P−1 = degP + deg V ∗ − degP = deg V ∗ = deg V,

where the last equality follows from the reality of the 3-form V ∗χ.
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(b) The maps Vε+2π/T and Vε are clearly related by

Vε+2π/T (k, t) = Vε(k, t)e
2πit
T 1 = Vε(k, t)e

2πit
T 1,

which implies that
deg Vε+2π/T = deg Vε + deg e2πit/T

1,

and it is not difficult to see that the second term vanishes.

After this series of lemmas and corollaries, we arrive at our main result.

Theorem 4. The degree of a particle-hole symmetric Floquet topological insulator satisfies

deg Vε = deg V−ε

for any gap ε. The numbers of chiral edge states at quasienergies ±ε are therefore equal.

We find this succinct result beautiful as it reflects the mirror-symmetry in the Floquet spectrum.
It is also natural in hindsight, since any electronic state at quasienergy ε should be accompanied
by a hole state at quasienergy −ε and the system is not allowed to change when we interchange
the roles of electrons and holes. In other words, our result captures the defining characteristics of
particle-hole symmetry and helps validate the conceptual accuracy of the underlying theory.

Before ending this chapter, let us briefly discuss Chern numbers. Suppose that ε and ε′ represent
two distinct gaps such that ε < ε′ and observe that the product V −1

ε Vε′ has the simple form

V −1
ε Vε′ =

(
e−itH

eff
ε (k)U(t, k)−1

)(
U(t, k)eitH

eff
ε′ (k)

)
= exp

[
it
(
Heff
ε′ (k)−Heff

ε (k)
)]
,

where
Heff
ε′ (k)−Heff

ε (k) =
∑
n

[
lnε′

(
λn(k)

)
− lnε

(
λn(k)

)]
Pn(k).

Assuming that |ε′−ε| < 2π/T , the coefficient functions lnε′
(
λn(k)

)
− lnε

(
λn(k)

)
vanish identically

for all bands outside the interval (ε, ε′) whilst the (intermediate) bands located inside the interval
experience a 2π/T phase difference between the two logarithms, leading to the simplified expression

Heff
ε′ (k)−Heff

ε (k) = 2π
T

∑
intermediate

bands

Pn(k).

That is, the product V −1
ε Vε′ only depends on those bands which lie inside the interval (ε, ε′). With

this in mind, we are not surprised to learn that the change in the number of chiral edge states,

Cε,ε′ = nedge(ε′)− nedge(ε) = deg Vε′ − deg Vε = deg V −1
ε Vε′ ,

equals the total Chern number of the intermediate bands [26]. Theorem 4 therefore enables us to
make some observations about the Chern numbers of a particle-hole symmetric system.

Corollary 4. The total Chern number of all bands in the interval (−ε, ε) vanishes, for any gap ε.

Proof. Theorem 4 immediately implies that

C−ε,ε = deg Vε − deg V−ε = 0.
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The above results do not provide any tools with which to study Chern numbers of individual
bands, we can only calculate the total Chern number of all bands in an interval (ε, ε′) between two
gaps ε, ε′. It is still possible to draw interesting conclusions, however, by restricting attention to arcs
Aε,ε′ which we define as the union of all bands located between two adjacent gaps ε, ε′. For example,
the Floquet spectrum shown in Figure 3.6 consists of three arcs, each with a corresponding Chern
number, even though the total number of individual bands may be much larger. Observe that if
Aε,ε′ is an arc, then so is A−ε′,−ε due to the mirror symmetry of the Floquet spectrum and we call
these two arcs complementary. If ε and −ε are adjacent and distinct gaps, which can only happen
in a system which is gapless at either ε = 0 or ε = π/T , then the arc Aε,−ε is self-complementary.

±ε1

ε2

−ε2

Aε2,−ε2

Aε1,ε2

A−ε2,−ε1

Figure 3.6: Chern numbers Cε,ε′ can be calculated for each arc Aε,ε′ , defined as the union of all
quasienergy bands located between two adjacent gaps with respective midpoint ε, ε′. Each arc Aε,ε′
is complementary to another arc A−ε′,−ε and the two coincide if ε′ = −ε.

Corollary 5. Complementary arcs have opposite Chern numbers:

C−ε′,−ε = −Cε,ε′ .

In particular, self-complementary arcs have vanishing Chern numbers.

Proof. Let ε1, . . . , εM denote the midpoint of each gap on the upper half of the unit circle, so that

0 ≤ ε1 < ε2 < · · · < εM ≤
π

T
.

The corresponding midpoints of gaps on the lower half of the unit circle are simply −ε1, . . . ,−εM .
A system which is gapless at ε = 0 has a single, self-complementary arc A−ε1,ε1 in the interval
(−ε1, ε1) and its Chern number C−ε1,ε1 vanishes per Corollary 4. If the system is gapped at ε = 0,
on the other hand, then ε1 = 0 and the interval (−ε1, ε1) is empty. The larger interval (−ε2, ε2)
contains two additional arcs Aε1,ε2 and A−ε2,−ε1 which are complementary to each other, and it is
easy to see that

C−ε2,−ε1 + C−ε1,ε1︸ ︷︷ ︸
0

+Cε1,ε2 = C−ε2,ε2 = 0,

which proves that C−ε2,−ε1 = −Cε1,ε2 . The result now follows by repeating the same argument
iteratively for each successively larger interval (−ε3, ε3), . . . , (−εM , εM ).
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3.5 Discussion
Our focus in this final chapter has been on periodically driven systems with particle-hole symmetry.
We proved that any such system has a mirror-symmetric Floquet spectrum consisting ofN = dimH
quasienergy bands and a finite number of quasienergy gaps. Inside each gap, which we denote by ε,
there may exist a number of chiral edge states and our main result says that these numbers reflect
the mirror-symmetry in the spectrum:

nedge(ε) = nedge(−ε).

In other words, any chiral edge state inside a quasienergy gap ε is accompanied by another chiral
edge state inside the quasienergy gap −ε, and we argued that this is a natural result given the
defining characteristics of particle-hole symmetry.

The gap-dependent winding number wCt [Vε] was proven to be a ZN -valued quantity that in
some cases provides information about the underlying Hilbert space. For example, we showed that
an odd-dimensional particle-hole symmetric system cannot be gapped at quasienergy ε = 0. The
question whether the winding number has a physical interpretation remains unanswered but we
do not believe such an interpretation exists. It should be possible, for example, to add “physically
irrelevant” quasienergy bands with vanishing Chern numbers, in a way that preserves particle-hole
symmetry and does not create any new gap. However, the process of adding additional bands
increases the Hilbert space dimension and thereby changes the winding numbers. We think that
quantities which depend on the Hilbert space dimension are unlikely to carry physical information.

One way to extend our work in this thesis would be to analyse what happens when “irrelevant”
bands are either added or removed. It is conceivable for such an analysis to reveal surprising
properties of periodically driven systems, as the 2π/T periodicity of the quasienergy spectrum blurs
the lines between low and high quasienergies; between occupied and unoccupied bands. Rigorous
analysis of these questions cannot be conducted within the context of homotopy theory, but require
more sophisticated techniques which are able to compare systems of different dimensions.
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