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Majorana Fermions and Topological Superconductivity
1D Topological classification of CII phases
DANIEL ERKENSTEN
Department of Physics
Chalmers University of Technology

Abstract
In the last decades, topology has established itself as a fundamental principle in con-
densed matter physics. Not only does topology explain the incredible robustness of
certain physical quantities such as the Hall conductivity, but as a result of the bulk-
boundary correspondence it also accounts for robust exotic fermionic edge states, e.g.
Majorana zero modes in superconductors. In this thesis the field of topological quan-
tum matter is reviewed with particular emphasis on one-dimensional non-interacting
superconducting systems and symmetry-protected topological phases. By taking off
from Kitaev’s model of p-wave superconductivity and the tenfold classification of
topological superconductors and insulators, we also investigate the notion of gapless
phases of matter addressing the issue what happens at a topological phase transition
in one dimension. For the symmetry classes BDI and CII, which both are known to
host topological superconductors in 1D, we obtain an N×Z-classification of gapless
phases. In addition to the conventional topological Z-invariant, the other classi-
fication is provided by conformal field theory, a framework frequently used when
studying critical phenomena.

Keywords: topological superconductors, Majorana zero modes, Majorana bound
states, symmetry classes, gapless phases of matter
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1
Introduction

1.1 Background and motivation
Recently, the notion of unconventional phases of matter has become an established
area of research ranging from topological insulators to superconductivity. As ev-
idenced by the 2016 Nobel Prize in Physics to Thouless, Kosterlitz and Haldane
for their groundbreaking discoveries in the field of topological quantum matter and
topological phase transitions, there is a consensus that the experimental signature
of these exotic phases of matter has been well-established [1]–[3]. On the one hand
topology is an abstract branch in mathematics which manifests itself through topo-
logical invariants, summarized in the statement that geometrical objects remain the
same under continuous deformations. On the other hand it has lately turned up
as a buzzword in the condensed matter physics community as a way of describing
measurable quantities which are robust under smooth perturbations.

In this thesis, we focus on non-interacting one-dimensional topological systems with
particular emphasis on topological superconductors. Such systems are interesting
not only because of their peculiar topological properties but also since they are
associated with the emergence of so called Majorana zero edge modes (MZMs),
quasiparticle excitations interpreted as Majorana fermions - particles which are
their own anti-particles [4]. This statuates a prime example of the bulk-boundary
correspondence, which establishes a direct connection between the bulk topological
invariant and edge states at the boundary [5]. The concept of Majorana fermions was
introduced by Ettore Majorana already in 1937 but still the particles are nowhere
to be found in nature [6]. In particular, all fermions in the theory we use to classify
particles, the Standard Model, are Dirac fermions although it has been widely
debated whether neutrinos are in fact Majorana fermions [7].1 Moreover, establish-
ing the existence of Majorana fermions would be consistent with supersymmetric
theories in particle physics, where the Majoranas are suggested as superpartners to
the spin-0 and spin-1 bosons respectively [6], [7]. However, the main motivation
of looking for Majoranas in condensed matter systems is of practical rather than
fundamental nature. This is since the robustness of the topologically protected zero
modes can be of potential use in future technological applications. In particular,
in two spatial dimensions they are non-abelian anyons and demonstrate interesting

1For almost a quarter of a century particle physicists believed that the neutrinos were Weyl
fermions, i.e. massless and real fermions. However, this changed in the beginning of the 1960s
when the consequences of the neutrinos having small but non-zero masses were investigated. Since
the discovery of neutrino oscillations it has now been proven that neutrinos are massive [8].
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1. Introduction

exchange statistics2, which points to the fact that simple exchange operations in
physical space can generate complex motions in the quantum-mechanical infinite-
dimensional Hilbert space [9][12] . Moreover, since complex fermion modes can
be decomposed into two real Majorana modes in the same way a complex number
can be expressed in terms of its real and imaginary part, the spatial separation
of Majorana modes is protected by the fermionic degree of freedom, enabling the
Majoranas to store information non-locally. These properties in combination with
the modes being insensitive to external noise due to topological protection, make
the condensed matter version of Majoranas constitute robust building blocks of a
topological quantum computer [13].3

In this work, we will (perhaps unfortunately) not provide a recipe for the construc-
tion of a topological quantum computer using Majoranas but only be concerned with
the existence of Majorana edge modes in one-dimensional systems and their relation
to topological invariants and symmetries. More precisely, we would like to get an
understanding for the robustness of Majorana edge modes when a system undergoes
a phase transition from one type of topological superconductor to another. When
it comes to systems with an energy gap, the existence of topological invariants is
neatly summarized in the so called tenfold classification of topological insulators and
superconductors, associating Hamiltonians with a combination of the discrete sym-
metries T (time-reversal symmetry), P (particle-hole symmetry) and C (sublattice
symmetry) to a particular topological invariant [16][17]. In fact, the conventional
understanding is that only systems with a non-zero bulk energy gap can support
topological edge modes, but this has recently been questioned by Verresen, Jones
and Pollmann who have established a classification for gapless Hamiltonians in the
BDI symmetry class [18]. As much as this thesis serves to review the compelling field
of topological quantum matter it thus also serves to provide some new insights on
other gapless one-dimensional BdG chains4 and extend the work done by Verresen

2The term anyon coined by Frank Wilczek is often used when a particle does not obey solely
fermionic (Fermi-Dirac) or bosonic (Bose-Einstein) exchange statistics but rather something in
between. Typically, exchanging two anyons gives rise to a complex phase eiθ such that |ψ1ψ2〉 =
eiθ|ψ2ψ1〉. Clearly, the anyon demonstrates Fermi-Dirac statistics when θ = π and Bose-Einstein
statistics when θ = 2π. However, in two spatial dimensions Majorana modes are non-abelian
anyons and therefore not only does the exchange of particles induce a complex phase, but the
internal states |ψ1〉 and |ψ2〉 are affected as well [9]. Note that non-abelian exchange statistics is
impossible in three spatial dimensions, since then the exchange of two particles is topologically
equivalent to having the particles fixed, i.e. any loop can be deformed into a point. In one spatial
dimension the particles have to pass through each other upon an exchange, which is an ill-defined
operation in an interacting system. There have been successful attempts to cheat these topological
constraints by allowing particles to move along discrete 1D paths in a higher-dimensional space,
by e.g. Alicea et al. in [10], [11].

3The Russian-American physicist Alexei Kitaev proposed the construction of a topological quan-
tum computer based on anyonic excitations already in the early 2000s [14]. However, this con-
struction did not rely on the anyonic excitations being Majoranas. A couple of years later Kitaev
demonstrated the existence of Majorana edge modes in a spinless p-wave superconductor, pioneer-
ing the field of topological superconductivity with his model [15]. The Kitaev model will be of
substantial importance in this thesis.

4In this language, a BdG chain is described by a Hamiltonian which respects particle-hole
symmetry.
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1. Introduction

et al to other symmetry classes. Due to its striking resemblance with the BDI-case,
particular emphasis is put on Hamiltonians in the symmetry class CII.

1.2 Thesis outline
In the next chapter a minor introduction to topology and its relation to condensed
matter systems and Hamiltonians is provided. Topological invariants and topo-
logical phases of matter are given special attention, the latter culminating in the
motivation of symmetry protected topological phases of matter, of immense impor-
tance in the remainder of the thesis. In Chapter 3, the concept of symmetries in
physics is briefly discussed and the importance of the discrete charge-conjugation
(particle-hole), chiral (sub-lattice) and time-reversal symmetries is highlighted. In
particular, taking combinations of these symmetries gives rise to symmetry classes,
forming the basis for the tenfold classification of topological insulators and super-
conductors. Having discussed symmetries and topological invariants in detail it is in
order to provide some examples in which these concepts are illustrated. Therefore,
Chapter 4 is devoted to toy models and realizations of topological quantum systems.
Here, particular emphasis is put on Kitaev’s one-dimensional model of topological
superconductivity, since this is a key ingredient when discussing gapless systems in
the BdG and chiral symmetry classes. In the following chapter, gapless topological
superconductors in the BDI-class is discussed in terms of Kitaev chains and the work
by Verresen, Jones and Pollmann is reviewed. In the final chapter, Chapter 6, the
extension and generalization of Verresen et al’s results to the symmetry class CII
is investigated. The discussion on gapless systems requires knowledge of conformal
field theory, critical systems and phase transitions and therefore short introductions
to these vast subjects are included as appendices. When it comes to prerequisites,
the reader is assumed to be somewhat comfortable with superconductivity, second
quantization and many-body theory in general.
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2
Hamiltonians and Topology

The study of topological quantum matter dates back to the discovery of the Integer
Quantum Hall Effect in 1980 [19]. Before the concepts of topology and topological
invariants entered the minds of condensed matter theorists, mathematicians were
well-acquainted with them since centuries ago.1 In this concise chapter, we provide
the bare minimum of mathematical rigor when it comes to the vast topic of topology
and demonstrate its connection to physics through Berry phases and Berry curva-
tures. This culminates in a discussion of topological phases of matter. It turns out
that, by imposing symmetries on the quantum system, one arrives at the concept of
symmetry protected topological phases (SPTs) which have been studied extensively
the latest years [24], [25].

2.1 A short note on topology
Although topology has established itself as a fundamental principle in unconven-
tional phases of quantum matter in condensed matter physics systems nowadays, it
has its origin in abstract mathematics. Topology can be summarized as the study
of geometric properties which remain invariant under smooth continuonus deforma-
tions, for instance stretching and twisting. The canonical examples of objects with
a non-trivial topology are the sphere and the 1-torus. These objects can not be
continuously deformed into one another and are as such part of topologically distinct
equivalence classes. This can easily be seen by counting the number of holes, g, in
the objects, as illustrated in Figure 2.1. This number, also referred to as the genus
can not be changed under smooth continuous deformations and is therefore said to
be a topological invariant. Topologically distinct objects necessarily have different
topological invariants.

1This is, historically, not the whole truth. In fact, topology and physics has been closely
connected since the 19th century. Some fundamental examples concern Lord Kelvin’s vortex theory
of atoms in the late 1800s [20], the geometrical interpretation of the Schwarzschild singularity in
general relativity in 1916 [21] and the discovery of the observable effects of the electromagnetic
vector potential through the Aharanov-Bohm effect in 1959 [22]. More recently, topology has
played a vital role in the construction of so called topological quantum field theories [23].
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2. Hamiltonians and Topology

Figure 2.1: A sphere has genus g = 0 and a (flat) torus has genus g = 1 leaving the
objects in different equivalence classes. Hence, a topologist does not differ between
an orange and an apple or a doughnut and a coffee cup.

Formally, a topological invariant can be expressed as an integral of a geometri-
cal quantity. The Gauss-Bonnet theorem provides a connection between the local
(Gaussian) curvature and the global topology of a two-dimensional Riemann sur-
face and gives an integral representation of the topological invariant. Assuming the
surface, S, to be closed and orientable it follows that∫

S
κdS = 2πχ(S) = 2π(2− 2g) , (2.1)

with κ being the Gaussian curvature2 and χ(S) the Euler characteristic3. It is
easily checked that the theorem holds for a sphere with curvature κ = 1

r2 and g = 0.
Remarkably, by continuously deforming the sphere, that is, changing the local Gaus-
sian curvature at a number of points, the surface integral of the curvature remains
unchanged and since the Euler characteristic is an integer it is also a topological
invariant.

This is all we will say about topology in mathematics. Now, we turn our at-
tention to physics and in particular the concepts of Berry curvature and the Berry
phase, the latter being an analogue of the Gauss-Bonnet theorem arising in adiabatic
quantum mechanics. Although not as short as the note above, we only scratch the
surface when it comes to topological invariants in physics. For a detailed treatment
of topology in physics, see the canonical work by Nakahara [26].

2The Gaussian curvature can be seen as an intrinsic measure of curvature which depends only
on distances measured on the surface. It can be further expressed as κ = κ1κ2, with κ1, κ2 being
the principal curvatures at a given point. These quantities measure the maximum and minimal
bending at each point of the surface.

3The concept of Euler characteristic was in fact historically introduced by Euler in another
setting. In 1751, he observed that by triangulating a sphere onto V vertices, E edges and F faces
one can combine these quantities as V − E + F = 2. More generally, for any surface the Euler
characteristic can be written as χ = V −E+F independent of how the triangulation is performed.
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2. Hamiltonians and Topology

2.2 Berry curvature
The concept of Berry curvature and Berry phases was introduced by Michael Berry in
1984, who highlighted the fact that geometrical phases are of physical importance in
quantum mechanics [27]. We will here outline the derivation of such phases and make
a connection between such phases and topological invariants. To do so, we consider
a system described by some Hamiltonian H(~R) with ~R(t) = (R1(t), R2(t), ..., RD(t))
being a D-component vector of parameters.4 Assuming that ~R(t) varies slowly in
time compared to the energy scale E of the system, that is, the system undergoes
adiabatic evolution we may find instantenous eigenstates |n(~R(t))〉 and eigenvalues
En(~R(t)) from the time-independent Schrödinger equation:

H(~R(t))|n(~R(t))〉 = En(~R(t))|n(~R(t))〉 . (2.2)

There is a (local) gauge freedom in |n(~R(t))〉 → e−iϕn(~R(t))|n(~R(t))〉. Now, a general
quantum state |ψ〉 evolves in time according to the adiabatic theorem5

|ψ(t)〉 = e−iθn(t)|n(~R(t))〉 , (2.3)

due to the assumption that ~R(t) varies slowly. Note that we introduced the phase-
factor θn(t), which we want to investigate further. Returning to the time-dependent
Schrödinger equation and making use of the gauge freedom in the instantaneous
eigenstates we may write

H(~R(t))|ψ(t)〉 = i~
d

dt
|ψ(t)〉 ⇒ En(~R(t))|n(~R(t))〉 = ~θ′n(t)|n(~R(t))〉+ d

dt
|n(~R(t))〉i~ ,

where primes indicate derivatives with respect to time. Taking the inner product
with 〈n(~R(t))| then results in

En(~R(t)) = ~θ′n(t) + i~〈n(~R(t))| d
dt
n(~R(t))〉 . (2.4)

Now, rearranging terms and integrating the equation above with respect to time t
gives us an equation for the total phase θn(t):

θn(t) = 1
~

∫ t

0
dt′En(~R(t′))− i

∫ t

0
dt′〈n(~R(t′))| d

dt′
n(~R(t′))〉 . (2.5)

The first phase-term is due to the ordinary dynamic evolution. However, the second
term defines the Berry phase:

γn = i
∫ t

0
dt′〈n(~R(t′))| d

dt′
n(~R(t′))〉 . (2.6)

4Note that the letter R does not necessarily refer to position, but could really be any parameter.
5We provide a formulation of the adiabatic theorem here according to Griffiths [28]. Given

that a Hamiltonian, Hi, is prepared with the instantenous eigenstate |n〉 and, by smooth external
perturbations, changes gradually to Hf , a particle will remain in the instantenous eigenstate |n〉
of Hf→i. The original proof of the theorem was constructed by Born and Fock in 1928 [29].
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2. Hamiltonians and Topology

By invoking the chain rule such that d
dt′

= d

d~R

d~R
dt′

we may write

γn = i
∫
C
〈n(~R(t′))|∇~Rn(~R(t′))〉 · d~R , (2.7)

where C is a curve in the parameter space of ~R(t). The expression above is a
purely geometrical quantity in parameter space which essentially describes where
the quantum system is located in that space. The Berry phase is, in fact, purely
real. This is easily shown by using the fact d

d~R
〈n(~R(t))|n(~R(t))〉 = 0, i.e.

d

d~R
〈n(~R(t))|n(~R(t))〉 = 〈n(~R(t))| d

d~R
n(~R(t))〉+ 〈 d

d~R
n(~R(t))|n(~R(t))〉 = 0 ,

and therefore

〈n(~R(t))| d
d~R

n(~R(t))〉 = −〈 d
d~R

n(~R(t))|n(~R(t))〉 = −(〈n(~R(t))| d
d~R

n(~R(t))〉)∗ ,

and thus the quantity 〈n(~R(t))| d
d~R
n(~R(t))〉 is purely imaginary. Combined with a

factor of i (and an integration, see (2.7)) it defines the Berry phase, which then
is purely real. In particular, this means that the Berry phase vanishes when the
instantaneous eigenstates |n(~R(t))〉 are real. Returning to the expression for the
Berry phase we may also introduce the Berry connection, ~An(~R(t)), according to

~An(~R) = i〈n(~R)|∇~R|n(~R)〉 , (2.8)

such that
γn =

∫
C

~An(~R) · d~R . (2.9)

There is no coincidence that the Berry connection is denoted by the first letter of the
alphabet. This is since it bears a striking resemblance to the electromagnetic vector
potential ~A: if ~R is restricted to position space the objects even coincide. Recall
that the electromagnetic vector potential is not gauge invariant and transforms as

~A→ ~A+∇Λ , (2.10)

for some scalar function Λ under a gauge transformation. Similarly, by performing
the gauge transformation |n(~R)〉 → eif(~R)|n(~R)〉, the Berry connection transforms
as

~An(~R) = i〈n(~R)|∇~R|n(~R)〉 → i〈n(~R)e−if(~R)|i df
d~R

eif(~R)|n(~R)〉+ i〈n(~R)|∇~R|n(~R)〉

= −∇~Rf(~R) + i〈n(~R)|∇~R|n(~R)〉
= ~An(~R)−∇~Rf(~R) ,

that is, in the same way as the electromagnetic vector potential in (2.10) with
Λ = −f . Now, we have proven that the Berry connection is not a physical quantity.
Then, let us perform the gauge transformation on the Berry phase, γn, instead:

γn → γn −
∫
C
∇~Rf(~R) · d~R = γn + f(~R(0))− f(~R(T )) . (2.11)

8



2. Hamiltonians and Topology

It thus seems as if we could naively cancel the Berry phase completely by choosing
f(~R(T )) − f(~R(0)) = γn. However, if we demand the eigenstates to be single-
valued, this does not work for closed paths C. For such paths it follows from the
gauge transformation that f(~R(0)) − f(~R(T )) = 2πm, m being an integer. This
also means that the Berry phase is a gauge invariant (physical) quantity modulo 2π
when C is a closed path. Let us, in the following, restrict to this case. Then, we
may write

γn =
∮
C=∂S

~An(~R) · d~R =
∫
S
∇~R × ~An(~R) · d~S , (2.12)

by invoking Stokes’ theorem and introducing the surface S. The curl of the Berry
connection is given its own name, the Berry curvature and is defined by

~Fn(~R) = ∇~R × ~An(~R) . (2.13)

Note that ~Fn(~R) plays the same role in parameter space as the magnetic field ~B
does in position space. Then, the Berry phase, γn, is the analogue of the famous
Aharonov-Bohm phase in parameter space [22].
Now, we want to relate the Berry phase, Berry connection and Berry curvature to
topological invariants. It turns out that the Berry curvature is a crucial ingredient
in the Chern theorem:

ζ = 1
2π

∫
S

~Fn(~R) · d~S , (2.14)

where ζ ∈ Z is called the Chern number and S is a closed surface in ~R-space. The
Chern theorem relates the characteristic Chern number (denoted by ζ) of a fiber
bundle6 composed by γn and ~R to the curvature ~Fn. Note that this theorem is very
similar to the Gauss-Bonnet theorem, in which the Gaussian curvature plays the
role of ~Fn, cf. equation (2.1). In fact, the Chern theorem is often referred to as
a generalization of the aforementioned theorem. The Chern number ζ is really a
topological index and an invariant for a 2D manifold S. It is a crucial quantity when
it comes to quantization effects of a physical system. In particular, the robustness
of the Hall conductivity in the Integer Quantum Hall Effect (IQHE) on which much
of the research in topological quantum matter is based on, is explained by the fact
that the integer, n, in the Hall conductivity is a Chern number [30]. This will be
the topic of section 4.3 in the chapter on toy models and realizations.

In order to elaborate further on the connection between Berry phases and topo-
logical insulators and superconductors it is natural to consider the effect of the
Berry phase on crystalline solids. Then, we take the parameter space to be ~k-space
(more precisely, the first Brillouin zone) and the instantaneous eigenstates |n(~R)〉
are given by the Bloch factors |u(~k)〉 according to Bloch’s theorem. Therefore,

6A fiber bundle can be thought of as an object which is composed of a manifold (here often
referred to as a base space) and a set of tangent spaces, that is the fiber. Each point at the
manifold has a tangent space attached to it. A simple physical example of a fiber bundle concerns
the temperature of a surface. The two-dimensional surface described by the coordinates x and y
then constitute the base space and at every position coordinate one can measure a temperature,
which takes its values in an external (tangent) space.

9



2. Hamiltonians and Topology

the Berry connection or equivalently the Berry curvature (explicitly written out in
components) for the m:th band reads

~Am(~k) = i〈um(~k)|∇~k|um(~k)〉 ,FmIJ = ∂kIAmkJ − ∂kJA
m
kI
, I, J = 1...d , (2.15)

d being the dimension of the parameter space. Now, the corresponding Berry phase,
γm, is given by the phase acquired by the wavefunction when ~k sweeps over the first
Brillouin zone:

γm =
∮
C

~Am(~k) · d~k . (2.16)

For 1D systems the expression above collapses to

γ(1D)
m =

∫ π

−π
dkAm(k) = i

∫ π

−π
〈um(k)| d

dk
um(k)〉dk , (2.17)

assuming the lattice constant a to be equal to unity. This specific case of a Berry
phase in momentum space in one spatial dimension defines the so called Zak phase,
after Joshua Zak who first applied the concept of Berry phase on crystalline solids
in 1989 [31].

2.3 Chern numbers and the need for symmetry
Let us go back to (2.14) and try to motivate the Chern theorem. By specifying the
parameter space to be momentum space:

ζ = 1
2π

∫
~F(~k) · d~S , (2.18)

and restricting ourselves to two spatial dimensions, i.e. ~k = (kx, ky) we may compute
a Chern number for the m:th energy band according to

ζ(m) = 1
2π

∫
2DBZ

dkxdkyFmxy(~k) . (2.19)

The integral is carried out on the two-dimensional periodic Brillouin zone (2DBZ)
and is as such only non-zero if the Berry connection, ~Am(~k), has singularities on
the domain. However, such singularities can be easily avoided by means of a gauge
transformation:

~Am(~k)→ ~Am(~k)− ~∇~kfm(~k) , (2.20)
and hence, by virtue of Stokes’ theorem

1
2π

∫
dkxdkyFmxy(~k)→ 1

2π

∫
∂2DBZ

d~k · ~∇~kfm(~k) = ζ ∈ Z , (2.21)

since eif(~k) is a unique function on ∂2DBZ, φ(~k) = 2πζ, ζ being an integer [32]. In
particular, the total Chern number of a two-dimensional band insulators is easily
obtained by summing the contributions from each band up to the Fermi energy, EF :

ζ =
∑

m,Em<EF

ζ(m) . (2.22)
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2. Hamiltonians and Topology

Being a Chern number, ζ constitutes a fundamental example of a topological invari-
ant and characterizes topological phases of matter. There was no coincidence we
chose to work in a two-dimensional parameter space. This is since the Chern number
is only well-defined in even dimensions d = 2s, s ∈ N.7 Surely, we must be able
to have quantum systems with non-zero topological invariants also in odd dimen-
sions. As discussed above, the connection between Chern numbers and topological
phases of matter was first established through the Integer Quantum Hall Effect.
However, the quantum Hall phases of matter have turned out not to be the only
phases of matter which are topologically interesting. By imposing symmetries on
the physical system a completely different kind of topological phases of matter and
invariants emerges, which can not be described by Chern numbers. For instance, if
time-reversal symmetry, T , is naively implemented in a 2D quantum Hall system it
immediately follows that the Chern number vanishes:

ζ = 1
2π

∫
dkxdky

∑
m

Fmxy(~k) T−→ − 1
2π

∫
dkxdky

∑
m

Fmxy(−~k) = −ζ , (2.23)

since
AkI (~k) T−→ AkI (−~k) ,FIJ(~k) T−→ −FIJ(−~k) , (2.24)

easily verified from the construction in (2.15). Hence, time-reversal has to necessar-
ily be broken in quantum Hall systems in order to get a non-zero Chern number.
This does not imply that symmetries must be absent in topological quantum matter.
On the contrary, we have established that allowing for systems with certain sym-
metries forces us to abandon quantum Hall phases and Chern numbers, requiring
us to investigate new exotic topological phases of matter.

This leads us to the concept of symmetry protected topological phases of mat-
ter (SPTs). Still, the topological phase may be characterized by a Z-invariant
although it is more restricted in the sense that it is insensitive only to perturbations
which respect certain symmetries.8 In particular, as we will argue extensively in the
next chapter, the symmetries of a physical system are encoded in the Hamiltonian,
H, and given that the perturbation respects the same symmetries as H, the system
will remain in a topological phase. However, if that is not the case the system will
be rendered trivial. Excluding the section on the Quantum Hall Effect in Chapter
4, the majority of the thesis serves to investigate these phases further. First, we
need to be more specific on which symmetries (besides time-reversal symmetry, T )
are considered relevant in this context. This is the topic of the next chapter.

7In general (even) dimension d = 2s the Chern theorem is expressed in the language of differen-
tial forms as ζ(s) = 1

2s!
∫

BZ Tr(F s), with ζ(s) ∈ Z being the s:th Chern number and F s = F ∧ ...∧F ,
F = FIJdkI ∧ dkJ being a differential two-form [33].

8Formally, if only symmetry preserving deformations are allowed, two distinct SPT phases
cannot be deformed into each other without going through a phase transition. On the other hand,
if symmetry breaking perturbations are allowed, the phases can be deformed to the same trivial
(non-topological) product state.
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3
Symmetries

Nature as we know it exhibits symmetry. Restricting to physical systems, a sym-
metry is often defined as something which remains invariant under a transformation
of the system. Such transformations can be either continuous or discrete and are
well described by the language of group theory. For instance, the statement that
the speed of light is constant in all reference frames, which is the foundation of the
theory of special relativity, is encoded in the Poincaré group. Similarly, electro-
magnetism exhibits gauge symmetry with (gauge) group U(1). These continuous
symmetries are often considered the most fundamental when discussing symmetries
in physics, but they will not be of much use to us in this thesis. This is since the
symmetry-protected topological phases that appear in condensed matter systems
are associated with exclusively discrete symmetries. Three discrete symmetries will
be of particular interest and are seen to alter the topological properties dramati-
cally: time-reversal symmetry, T , particle-hole symmetry, P , and chiral (sublattice)
symmetry, C.1 Therefore, each of the symmetries has been given their own section
below. Note that a combination of these symmetries are manifest in a topologi-
cal system in general. This will be the subject of the last section in this chapter
and will eventually lead to the ten-fold classification of topological insulators and
superconductors.

3.1 Time-reversal symmetry, T
It should come as no surprise that time-reversal symmetry, T , is manifest if a time-
dependent physical system remains the same if the system is run backwards in
time. Macroscopically, the universe is said to break time-reversal symmetry due to
the fact that time-reversal symmetry implies the conservation of entropy and the
entropy of the universe is not conserved due to the second law of thermodynamics.2
Quantum mechanically, the story is different and observables, S, which are odd
under a time-reversal symmetry transformation, i.e. T ST −1 = −S are for instance
S = p (momentum) or S = l (angular momentum), meanwhile S = x (position) is
even under time-reversal. In fact, using these properties and demanding that the
canonical commutation relation [x, p] = i~ holds under T it follows that T must be

1Note that the notation T , P and C for the different symmetries is obviously conventional.
Another popular notation is T (time-reversal), C (particle-hole) and S (chiral/sublattice).

2In his thought experiment in 1871, James Clerk Maxwell famously claimed to have chal-
lenged the second law of thermodynamics with his Maxwell demon. Although it has remained a
thought experiment it certainly spurred the interest in information theory, which has become a
well-established area of research in physics [34].
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3. Symmetries

an anti-unitary operator:

T [x, p]T −1 = T iT −1~ = −[x, p]⇒ T iT −1 = −i , (3.1)

i.e. T can be represented as an anti-unitary operator

T = UK , (3.2)

where U is a unitary operator and K is the complex-conjugation operator with
K2 = 1. This can be made more general by invoking Wigner’s theorem which states
that any symmetry operation S can be represented by a unitary operator S = U
or an anti-unitary operator S = UK. It is these kind of operators which preserve
the norms of inner products. However, inner products may still not be invariant
under symmetry transformations. In particular, an anti-unitary symmetry operation
performs complex-conjugation on inner products. Thankfully, it is the norms of the
inner products which are the measurable observables, that is, probabilities [35].
The characteristic symmetries of a physical system sit in the Hamiltonian, H, often
expressed in momentum space as a function of k. In particular, since T is anti-
unitary it follows that it must commute with the single-particle Bloch Hamiltonian
according to

T H(k)T −1 = H(−k) . (3.3)
Moreover, due to the fact that performing a time reversal symmetry transformation
involves taking a complex conjugate a purely real Hamiltonian must exhibit time-
reversal symmetry. Now, this does not imply that all Hamiltonians which are time-
reversal symmetric have to be real, but it certainly puts constraints on the entries
in H, when represented as a matrix.3
A peculiar feature of time-reversal symmetry which is of immense relevance for the
physics in the system, is that it comes in two flavors. Either T 2 = +1 or T 2 = −1.
This can be proven by requiring that applying T twice on a physical state gives
back the same state up to a phase:

T 2 = α1 , α = eiϕ . (3.4)

Invoking the representation in (3.2) then leads to

T 2 = UU∗ = α1⇒ U = αUT , (3.5)

or
U = αUα , (3.6)

from which we deduce that the diagonal matrix of phases, α1, must have entries ±1
and therefore T 2 = ±1. Remarkably, considering T as a single-particle operator,

3This is not the case with regular unitary symmetries. A unitary symmetry transformation U
simply brings the Hamiltonian matrix to a block-diagonal form and has in general no impact on the
topology of the system. Of interest are instead the remaining anti-unitary symmetries which act
non-trivially on the irreducible representations of the Hamiltonian. Additionally, such symmetries
remain unaffected by introducing disorder and impurities in the Hamiltonian [36]. Since we have
picked a matrix representation of the Hamiltonian it is implicitly understood that we are dealing
with a single-particle Hamiltonian. The action of T on the full many-body Hamiltonian will be
addressed in section 3.4.
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bosonic systems (integer spin) or spinless fermionic systems have T 2 = +1 and half-
integer spin systems have T 2 = −1. A system with spin 1

2 constitutes an important
example in this discussion. Recall that the spin s changes sign under T . Then a
time-reversal symmetry transformation can be represented by a rotation π about
some axis, which we choose to be the y-axis:4

T = e−iπ
σy
2 K , (3.7)

where σy is the second Pauli matrix.5 However, the unitary part of the operator can
be written in a nicer way by making use of the Taylor series of an exponential:

e−iπ
σy
2 =

∞∑
n=0

1
n! (−

iπσy
2 )n = 1− 1

2(πσy2 )2 + 1
4!(

πσy
2 )4 − iπσy

2 + i

3!(
πσy
2 )3 + ...

= cos(π2 )1− i sin(π2 )σy = −iσy ,

where we recognized the Taylor series for the sine and the cosine and made use of
the fact that the Pauli matrices square to unity. Clearly, with T = −iσyK it follows
that T 2 = −1.6 Hamiltonians with this kind of time-reversal symmetry then fulfill
the condition

− iσyH∗(k)iσy = H(−k) , (3.8)
which gives a crucial consequence for the energy levels of the system, namely they are
(at least) two-fold degenerate. Systems with T 2 = −1 exhibit a so called Kramer’s
degeneracy.7 This will also be reflected in the topological properties of the system.
In particular, Kramer’s degeneracy forces the topological invariant to only take even
(integer) values, which makes it a so called 2Z invariant. It also shows up in other
time-reversal symmetric (spinful) systems with Z2-invariants [37]. Moreover, this
has a consequence that the edge state states of a spinful system always come in
pairs. It is simple to show Kramer’s degeneracy by using a proof of contradiction.
That is, we assume that |ψ〉 and T |ψ〉 are the same states up to a phase, eiθ. Then,
it must follow that

T 2|ψ〉 = T eiθ|ψ〉 = e−iθT |ψ〉 = e−iθeiθ|ψ〉 = |ψ〉 ⇒ −|ψ〉 = |ψ〉 , (3.9)

and the last equality only holds for |ψ〉 = 0. Thus, the states |ψ〉 and T |ψ〉 have to
be different states and in a time-reversal symmetric system |ψ〉 and T |ψ〉 have the
same energy.

4This is not an arbitrary choice. By demanding that the spin ~s = (σx2 ,
σy
2 ,

σz
2 ) is odd under

time-reversal one gets the constraints UσxU−1 = −σx, −UσyU−1 = −σy and UσzU
−1 = −σz,

that is U has to commute with σy and anti-commute with σx and σz. Then, since every 2×2 matrix
U can be written as a linear combination of Pauli matrices such that U = ασx + βσy + γσz + δ1
and invoking the constraints it follows that the coefficients α, γ and δ are eliminated and we are, in
fact, left with U = βσy. The remaining constant β is determined from UU† = 1 and often choosen
to be ±i.

5The Pauli matrices should be familiar to the reader, but here is a reminder:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

6One has to be careful when taking the square. Consider for instance T = iK. Taking the
square gives T 2 = iKiK = i(−i)K2 = +1, and not −1 as one would perhaps think naively.

7The degeneracy is also referred to as Kramer’s degeneracy theorem, stated by the Dutch physi-
cist Hendrick Anton Kramers in 1930.
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3.2 Chiral (sub-lattice) symmetry, C
Consider a physical system in which we may split all degrees of freedom into two
different groups, A and B. This is the situation in for instance graphene, where the
hexagonal lattice can be divided into two distinct sublattices, or in the SSH-model
presented in section 4.1. Then, the corresponding (single-particle) Hamiltonian is
off-diagonal according to

H =
(

0 HAB

H∗AB 0

)
, (3.10)

assuming HAA = HBB = 0. Now, introducing the diagonal (Pauli) matrix σz such
that σz = +1 on site A and σz = −1 on site B the sublattice symmetry transforma-
tion is given by

σzHσz = −H , (3.11)

i.e. the sublattice symmetry C can be represented by σz and is clearly unitary and
hermitian. Thus, it also means that C anti-commutes with the Hamiltonian H.8
Moreover, the chiral symmetry, in contrast to T (and P as we shall see), only comes
in one flavor:

C2 = 1 . (3.12)

The sublattice symmetry has an impact on the eigenstates to the Hamiltonian in

(3.10). In particular, given that
(
ψA
ψB

)
is an eigenstate to H with energy E it

follows by sublattice symmetry that
(
ψA
−ψB

)
is also an eigenstate to H but with

energy −E. From this fact we deduce that the energy spectrum of a sublattice
symmetric Hamiltonian is symmetric around zero energy, i.e. the number of states
below the zero level is equal to the number of states above the zero level. In other
words, chiral symmetry influences the topological properties of the system.

3.3 Particle-hole symmetry, P
Particle-hole symmetry is often discussed in relation to superconducting systems. In
a superconductor, so called Cooper pairs of electrons are created and annihilated due
to electron-phonon interactions. This process is described by a (BCS) Hamiltonian
[38]:

HBCS =
N∑
i,j

Hijc
†
icj + 1

2(∆ijc
†
ic
†
j + h.c.) , (3.13)

where Hij are matrix elements in a real matrix H and ∆ij is a superconducting order
parameter which describes the formation and annihilation of Cooper pairs of elec-
trons at site i and j of the lattice. By introducing a vector C = (c1, ...cN , c

†
1, ..., c

†
N)T ,

8Note that the chiral symmetry is not implemented as an ordinary symmetry in the single-
particle Hilbert space due to the fact that it anti-commutes rather than commutes with the Hamil-
tonian, H. However, in the Fock space of many-body Hamiltonians Hmp, the situation is different
and the chiral symmetry commutes with Hmp. This issue is addressed in the next section.

16



3. Symmetries

the Hamiltonian above can be rewritten in a Bogoliubov-de Gennes-form:

H = 1
2C
†HBdG(k)C , (3.14)

where HBdG is the Bogoliubov-de Gennes Hamiltonian given by:

HBdG(k) =
(
H ∆
−∆∗ −H∗

)
. (3.15)

Now, HBdG, is an example of a particle-hole symmetric Hamiltonian which acts
on the vector C, whose first half is composed by fermionic annihilation operators
and second half of fermionic creation operators of electrons. The latter can also be
interpreted as annihilation operators of holes doubling the degrees in the system
resulting in an emergent particle-hole symmetry. The particle-hole symmetry P is
represented by an anti-unitary operator defined as

P = σxK , (3.16)

where K is the complex-conjugation operator which appears also in T . Performing
a P-transformation of HBdG gives then

PHBdG(k)P−1 = −HBdG(−k) , (3.17)

i.e. P anti-commutes with the single-particle Hamiltonian. It should be noted that

HBdG is symmetric around zero energy. This can be shown by assuming that
(
u
v

)

is an eigenstate of HBdG with energy E. Then, it follows that P
(
u
v

)
=
(
v∗

u∗

)
is also

an eigenstate but with energy −E.9

9Note that the eigenstates of a superconducting Hamiltonian are not purely electronic eigen-
states, but are rather described by a superposition of electrons and holes which is referred to as
Bogolons or Bogoliubov quasiparticles.

17



3. Symmetries

3.4 A word on multi-particle Hamiltonians versus
single-particle Hamiltonians

The observant reader should have noticed that the symmetry operators P , T and
C act on the single-particle Hamiltonian, that is the Bloch Hamiltonian or the
Bogoliubov-de Gennes Hamiltonian in the case of superconductors, rather than
the full multi-particle Hamiltonian. We also saw that the symmetry operators are
either unitary or anti-unitary which has the consequence that the symmetries ei-
ther commute or anti-commute with the single-particle Hamiltonian. It may seem
counter-intuitive that this is what defines the Hamiltonian to be invariant under
some symmetry transformation. However, in the multi-particle language the story
is different and all the symmetry operators commute with the Hamiltonian, in agree-
ment with physical intuition. Let us consider a generic multi-particle Hamiltonian
written in second quantization acting in Fock space:

Hmp =
∑
A,B

Ψ†AHABΨB , (3.18)

with HAB being matrix elements of the single-particle Hamiltonian. Now, by de-
manding the symmetry operators to commute with the multi-particle Hamiltonian,
the peculiar (anti)-commutation relations with the single-particle Hamiltonian fol-
low by acting with P and T on the creation and annihilation operators:

T ΨAT −1 =
∑
B

(UT )ABΨA ,

PΨAP−1 =
∑
B

(U∗P )ABΨ†A ,

where we expressed T = UTK and P = UPK, UT and UP being unitary. Moreover,
T is anti-unitary and T iT −1 = −i. Having this in mind, we are ready to perform
the full symmetry transformations on Hmp:10

T HmpT −1 = T Ψ†AT −1T HABT −1T ΨBT −1 = (U∗T )ACΨ†CH∗AB(UT )BDΨD = Ψ†CHCDΨD ,

and by comparing the left-hand side and right-hand side we deduce that

(U∗T )ACH∗AB(UT )BD = HCD , (3.19)

which can be summarized in
U †TH

∗UT = H , (3.20)
that is, the time-reversal symmetry operator commutes with the single-particle
Hamiltonian. Similarly,

PHmpP−1 = (UP )ADΨDHAB(U∗P )BCΨ†C
= −Ψ†C(U t

P )DAHAB(U∗P )BCΨD

= Ψ†CHCDΨD ,

10Summation over A and B is implied.
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where, in the second step, we made use of the fact that Ψ and Ψ† are Grassmann-
variables and non-commuting quantities, {Ψ,Ψ†} = 0. The letter "t" denotes trans-
pose. This leaves us with

− (U t
P )DAHAB(U∗P )BC = HCD ↔ U t

PHU
∗
P = −H t . (3.21)

Taking the complex conjugate of both sides yields the peculiar anti-commutator
between P and H:

U †PH
∗UP = −H† = −H , (3.22)

since H is assumed hermitian. Similarly, one can show that the chiral symmetry
operator C = PT = US, US = UTU

∗
C acting on the single-particle Hamiltonian gives

rise to the anti-commutator relation

CHC−1 = −H , (3.23)

which is proven by demanding the (anti-unitary) chiral symmetry to commute with
the many-body Hamiltonian [C, Hsp] = 0 [39].
We have thus, perhaps affront to our physical intuition, unraveled the mystery that
some symmetries are seen to anti-commute rather commute with the single-particle
Hamiltonian. Hence, one has to be careful and distinguish between the action of
a symmetry operator acting on a single-particle Hamiltonian and the action on a
many-body Hamiltonian.

Let us also comment on the difference between the square of symmetry operators
in the single-particle langugage and the multi-particle language. In the previous
subsections we have seen that particle-hole symmetry and time-reversal symmetry
come in two flavors, P2 = ±1 and T 2 = ±1. This is valid in the single-particle
picture, but in the many-body picture the corresponding statement for P2 = T 2 =
−1 is that

T 2
mp = P2

mp = (−1)NF , (3.24)
where NF is the number of fermions in the system. This can be justified by seeing
the many-body Fock space as being composed by NF single-particle Hilbert spaces.
Then, T 2

mp is formed by taking NF tensor products of T 2 = −1 resulting in (3.24).11

Finally, it is in order to discuss the breaking of symmetries when moving from a
many-body picture to a single-particle picture. Consider a generic fermionic many-
body Hamiltonian in second quantization. Such a Hamiltonian always commutes
with the fermionic parity12

Pf = (−1)NF , (3.25)
11The argument is quite superficial. Of course, the tensor products have to be taken in such a

way that they respect anti-symmetrization in the many-body Hilbert space.
12This can be be explained by the fact that the creation operators and annihilation operators

always come in pairs in the non-interacting Hamiltonian, i.e. only terms of the type cc†, cc and c†c†
are allowed. This is due to locality: consider a Hamiltonian which is odd in the number of fermionic
operators,Hn = cn+c†n, and assume that there exists a state |ψ〉 such that 〈ψ|Hn|ψ〉 = ξ 6= 0, with ξ
being a fixed number. Then, if locality is enforced we require the condition lim|n−m|→∞〈HnHm〉 =
〈Hn〉〈Hm〉 to hold. However, the right-hand side is a finite number but the left-hand side is anti-
commuting in n and m, giving a contradiction.
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and therefore it is often an implicitly assumed symmetry in the literature. However,
not all fermionic Hamiltonians commute with the particle number NF , that is have a
U(1) symmetry expressing charge conservation or particle number conservation. In
particular, mean-field superconducting Hamiltonians of BCS-type necessarily break
U(1) symmetry through its superconducting order parameter ∆, see equation (3.13).
Moreover, in the single-particle language the breaking of U(1)-symmetry is reflected
in a particle-hole symmetric BdG Hamiltonian. However, the particle-hole symme-
try is really a result of performing a Bogoliubov transformation and introducing
redundant degrees of freedom into the system. Thus, in some sense the particle-hole
symmetry of the BdG-Hamiltonian is artificial and very similar to a gauge symmetry.

Now, it might seem strange that we have not discussed the U(1) symmetry before in
the context of single-particle Hamiltonians. Whenever the U(1) symmetry expresses
particle number conservation in the many-body langauge it is, however, a trivial
symmetry in the single-particle langugage. This is so since the U(1)-symmetry is
generated by a scalar, 1, when acting on a single-particle Hamiltonian, Hsp.

3.5 A glimpse of the ten-fold classification of
topological insulators and superconductors

Returning to the single-particle picture, we summarize the previous sections by
listing the most fundamental properties of the (single-particle) symmetries T , P
and C:13

Time− reversal symmetry T : anti-unitary , [T , Hsp] = 0, , T 2 = ±1 ,
Particle− hole symmetry P : anti-unitary , {P , Hsp} = 0, ,P2 = ±1 ,

Chiral/sublattice symmetry C = T P : , unitary , {C, Hsp} = 0, , C2 = 1 .

Note that we have indicated that C = T P , meaning that whenever particle-hole
symmetry and time-reversal symmetry is apparent in a system so is sublattice sym-
metry. However, C can also appear by its own if both P and T are absent. Given
these facts it is quite straightforward to count the number of ways the symmetries
C, P and T can be combined into different symmetry classes. Since P and T both
can appear in three different ways (square to +1, square to −1, or be absent), there
are 32 − 1 = 8 different combinations in which anti-unitary symmetries can appear.
Then the remaining combinations are those of solely unitary symmetries, i.e. where
only C appears or where all three symmetries are absent. In total, this gives 10
different symmetry classes, which is used to form the ten-fold classification of non-
interacting topological insulators and superconductors. In Table 3.1, these classes
are given along with their names or Cartan label. Interestingly, the names of the
different symmetry classes comes from an elegant classification of symmetric spaces
due to Elie Cartan in 1927 [40]. More than eighty years later the explicit connection
to topological quantum matter was made when Schnyder, Ludwig, Furusaki and

13The fermionic parity, Pf , could in principle be included as well but it is trivial in the sense
that NF = 1.
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Ryu completed and summarized the classification of topological invariants in the
ten-fold way, see section 4.4 and Table 4.1 [17].14

class C P T
A - - -
AI - - 1
AII - - -1
BDI 1 1 1
C - -1 -
CI 1 -1 1
CII 1 -1 -1
D - 1 -
DIII 1 1 -1
AIII 1 - -

Table 3.1: The ten Cartan symmetry classes forming the basis for the tenfold
classification of topological insulators and superconductors. ±1 indicate the square
of the operators T , P or C and − denote that symmetries are absent. Note that the
complete table involve topological invariants in different dimensions as well. This
will be addressed in section 4.4.

14Already in 1996, Altland and Zirnbauer classified mesoscopic systems in contact with super-
conductors using Cartan’s classification of symmetric spaces [41]. In particular, they identified
that the systems could be associated with the symmetry classes C, CI, D and DIII. Therefore,
although Schnyder et al. put together the complete puzzle, the tenfold classification table of TSCs
and TIs is sometimes referred to as the Altland-Zirnbauer table.
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4
Famous Toy Models and

Realizations

Having introduced the concepts of discrete symmetries in condensed matter physics
and topological invariants it is fruitful to consider toy models and realizations which
statuate prime examples of topological insulators and superconductors. In the first
two sections, perhaps the most famous toy models in the field of topological quantum
matter are investigated: the SSH model and Kitaev’s Majorana chain. Although
the models are simple and considered in a non-interacting setting in one spatial
dimension, they exhibit remarkable topological properties and give a basic under-
standing for topological band insulators and superconductors. The discussion of toy
models is followed by an introduction to the Integer Quantum Hall Effect (IQHE)
which culminates in the TKNN-invariant, connecting the quantized Hall conductiv-
ity to topology and Chern numbers. Finally, we return to the tenfold classification
of topological insulators and superconductors, and associate the investigated toy
models and IQHE with particular symmetry classes and topological invariants.

4.1 SSH model
The one-dimensional Su-Schrieffer-Heeger model constitutes the most simple yet
non-trivial example of a topological insulator, that is, a model which is insulating in
the bulk but which supports conducting edge states. It describes spinless fermions
hopping on a lattice with staggered (alternating) hopping amplitudes.1 In Figure
4.1, the lattice structure and hopping is apparent. In particular, we are considering
N unit cells with each unit cell hosting two atoms at different atomic sites A (filled
ovals) and B (unfilled ovals). The hopping can occur intercell or intracell, that is,
atoms can jump from a site A(B) to a site B(A) either in its own unit cell or to
the next unit cell. The intracell hopping amplitude is described by the parameter
v = t+ δt and the intercell hopping amplitude by the parameter w = t− δt, so that
for δt 6= 0, v 6= w. We assume these parameters to be real and larger than zero and
neglect interactions between electrons.2

1In fact, this type of hopping is energetically favourable and occurs in nature due to a phe-
nomenon called Peierls instability [5].

2If we allow v and w to be complex, i.e. v = |v|eiφ1 and w = |w|eiφ2 the phases can be gauged
away by redefining the basis states. However, if we consider v and w to be real the Hamiltonian
HSSH in (4.1) is time-reversal symmetric with T 2 = +1.
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v w
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Figure 4.1: Illustration of the SSH model. The A(B) atoms are denoted by a filled
(unfilled) circle and the parameters v and w describe intracell hopping (thick line)
and intercell hopping (thin line) respectively. Each unit cell n = 1...N hosts an
A-site and a B-site.

By introducing fermionic ladder operators cA,i, c†A,i and cB,i, c
†
B,i at the sites A and

B we are able to write down the SSH Hamiltonian:

HSSH =
N∑
i=1

(t+ δt)c†A,icB,i +
N−1∑
i=1

(t− δt)c†A,i+1cB,i + h.c. , (4.1)

where h.c. denotes Hermitian conjugate. Note that this Hamiltonian does not take
spin into account, which obviously is needed to describe a real fermionic system.
In fact, the SSH model was developed in 1979 to describe soliton excitations in
the carbon-based polymer polyacetylene [42]. To do so, Su, Schreiffer and Heeger
had to take two copies of their model, one copy for each fermionic spin degree of
freedom. Since this chapter is mainly about toy models of topological systems it is
justified for us to consider the spinless SSH chain.

By inspection of Figure 4.1 it is evident that the SSH model has a bulk and a
boundary. However, if we allow the number of unit cells to be very large, i.e.
N → ∞, that is the thermodynamic limit, only the bulk becomes important. By
setting periodic boundary conditions and close the bulk part into a ring it is possible
by Bloch’s theorem and translation invariance to translate the Hamiltonian into a
momentum space Hamiltonian. For brevity, we will drop the sublattice index A and
B on the fermionic ladder operators and instead let cA,i → ci and cB,i → di. In
terms of these operators the SSH Hamiltonian reads

HSSH =
N∑
j=1

(t+ δt)c†jdj +
N−1∑
j=1

(t− δt)c†j+1dj + h.c. . (4.2)

Now, expressing each degree of freedom, cj and dj via the Fourier transform gives

cj = 1√
N

N∑
k=1

eijk 2π
N ck , (4.3)

dj = 1√
N

N∑
k=1

eijk 2π
N dk , (4.4)

assuming the lattice spacing a = 1. Note that the expressions include the factor 2π
N
,

taking into account the fact that the momentum k is in the first Brillouin zone.
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Note that 1 ≤ k ≤ N . However, due to periodicity the range can be extended. For
instance, −k can equivalently be interpreted as N − k. Fourier transforming the
first term of the SSH Hamiltonian in (4.2) gives us

N∑
j=1

c†jdj = 1
N

N∑
j=1

N∑
k=1

N∑
k′=1

eij(k′−k) 2π
N c†kdk′ = 1

N

N∑
k=1

N∑
k′=1

Nδk′−k,0c
†
kdk′ =

N∑
k=1

c†kdk ,

where the sum over j evaluates to a Kronecker delta due to
N∑
j=1

eij(k′−k) 2π
N = Nδk,k′ . (4.5)

Similarly, for the second term,
N−1∑
j=1

c†j+1dj = 1
N

N−1∑
j=1

N∑
k=1

N∑
k′=1

eij(k′−k) 2π
N e−ik 2π

N c†kdk′ =
N∑
k=1

e−ik 2π
N c†kdk ,

and thus the Fourier-transformed total Hamiltonian reads

H̃SSH =
N∑
k=1

(t+ δt)(c†kdk + d†kck) +
N∑
k=1

(t− δt)(e−ik 2π
N c†kdk + eik 2π

N d†kck) . (4.6)

Next, introduce k′ = 2π
N
k such that k′ ∈ [2π

N
, 2π] (for N large this is the first Brillouin

zone) and relabel k′ → k. Then, we may write the expression above neatly in matrix
form:

H̃SSH =
∑

k∈1BZ

(
c†k, d

†
k

)( 0 t+ δt+ e−ik(t− δt)
t+ δt+ eik(t− δt) 0

)
︸ ︷︷ ︸

=H(k)

(
ck
dk

)
. (4.7)

Now, H(k) can be written more neatly using Euler’s formula and the definition of
the Pauli matrices:

H(k) =
(

0 t+ δt+ e−ik(t− δt)
t+ δt+ eik(t− δt) 0

)

= (t+ δt+ (t− δt) cos(k))
(

0 1
1 0

)
+ (t− δt) sin(k)

(
0 −i
i 0

)
= ~d · ~σ ,

with ~σ = (σx, σy, σz) being Pauli matrices acting on the sublattice index (A and B)
and ~d = (dx, dy, dz) such that

dx = v + w cos(k) , dy = w sin(k) , dz = 0 , (4.8)

with v = t + δt and w = t − δt. The expression H(k) = ~d · ~σ is in fact a general
way of writing the Bloch Hamiltonian for a two-level system. This is since the Pauli
matrices constitute a basis for all 2× 2 hermitian matrices. However, often a fourth
component is included in ~d and ~σ, i.e. ~d = (d0, dx, dy, dz) and ~σ = (σ0, σx, σy, σz)
where σ0 is the 2 × 2 identity matrix. The piece d0σ0 in the Bloch Hamiltonian is
however regarded as constant and has no impact on the topological properties of
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the system.
Having expressed the SSH Hamiltonian in terms of the Bloch Hamiltonian
H(k) = ~d ·~σ it is now in order to investigate its symmetries. Due to the construction
of the SSH chain depicted in Figure 4.1 there is a sublattice symmetry, C, associated
with the atoms at site A and the atoms at site B. Recall, from (3.11) in the chapter
on symmetries, that the condition

σzH(k)σz = −H(k) , (4.9)

needs to hold for the SSH Hamiltonian for chiral symmetry to be manifest. This is
clearly the case for our Hamiltonian:

σzH(k)σz = σz(dxσx + dyσy)σz = −idxσyσz + idyσxσz = −(dxσx + dyσy) = −H(k) ,

where we made use of the su(2)-algebra [σi, σj] = 2iεijkσk, εijk being the totally
anti-symmetric Levi-Civita symbol. Note that if dz 6= 0 sublattice symmetry would
be violated. This proves that two-level Bloch Hamiltonians of the form H(k) = ~d ·~σ
need to be off-diagonal and have dz = 0 in order to exhibit chiral symmetry. H(K)
is also invariant under a time-reversal symmetry T which, in the absence of spin,
acts simply as complex conjugation. Consequently, particle-hole symmetry, being
the product of chiral and time-reversal symmetry, is apparent as well.

4.1.1 Topological invariant of the SSH model
It turns out that, given dz = 0, it is particularly simple to extract a topological
invariant for the SSH model directly from the Bloch Hamiltonian, H(k). First,
we need to comment on the fact that the system is in general gapped. The band
structure of the SSH Hamiltonian is easily read off from H(k) as

E±(k) = |~d| = ±
√
v2 + w2 + 2vw cos(k) , (4.10)

since the Pauli matrices square to unity. In particular, we identify an energy band
gap, ∆, from the two energy bands in (4.10) such that

∆ = min(E+)−max(E+) = 2|v − w| (4.11)

Note, that whenever the gap is non-zero (v 6= w) the SSH chain describes an insu-
lator. At the gap-closings the system is conducting. In Figure 4.2, the two bands,
E+(k) and E−(k), are shown for different choices of parameters v and w. Note that
equation (4.10) is symmetric in the hopping parameters, and therefore the dispersion
relations in a) and c) of Figure 4.2 are identical. We have here omitted the (rather
uninteresting) cases with v = 0 or w = 0, which gives a constant dispersion relation
for all k. Clearly, case b) has a gap-closing at the points k = ±π. We refer to such
a system as gapless. This is fundamentally different from the gapped cases a) and
c) not only in the sense that the system is conducting rather than insulating but it
will also have more exotic consequences when it comes to topological properties.
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−π π
k

a): v < w (δ < 0) b): v = w (δ = 0) c): v > w (δ > 0)

−π π
k
−π π

k

Figure 4.2: Dispersion relations E+(k) ( ) and E−(k) ( ) of the SSH model
for different values of the hopping parameters v and w. To generate the case a) we
used the parameters v = w

2 (and the reverse relationship w = v
2 for case c) ) and

the parameters v = w for case b). Note that the cases a) and c) have a non-zero
band-gap, ∆ 6= 0, but case b) demonstrates a gap-closing for k = ±π.

Since k runs from −π to π or equivalently 0 to 2π, the vector ~d(k) (with components
given in equation (4.8)) traces out a circle in the dx, dy-plane. This is easily seen
from equation (4.8):

dx = v + w cos(k)⇒ (dx − v)2 = w2 cos2(k) , (4.12)
dy = w sin(k)⇒ d2

y = w2 sin2(k) , (4.13)

which by adding the two equations give the equation for a circle with radius w
centered in (v, 0):

(dx − v)2 + d2
y = w2 . (4.14)

This is a special property of the SSH model but not a generic feature in a two-band
Bloch Hamiltonian. In general, the path ~d traces out does not need to be a circle
but only a closed loop which avoids the origin when the system is gapless. The fact
that dz = 0 enables us to extract the topological invariant of the SSH model as a
winding number, ν, an integer which counts how many times the closed loop winds
around the origin in the dx, dy-plane. Depending on the relationship between the
parameters v and w, it is possible to get three distinct (interesting) cases. These are
indicated in Figure 4.3. The case a) corresponding to v > w or equivalently δt < 0
has a non-zero winding number, that is, it is topologically non-trivial. Similarly,
the case c) has zero winding number and such a phase is called trivial. The phase
between case a) and case c) is perhaps the most interesting. Since the origin is a
point on the circle it becomes impossible to define a winding number ν in case b).
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dx

dy

dx

dy

dx

dy

a): v < w (δ < 0) b): v = w (δ = 0) c):v > w (δ > 0)

ν = 1 ν =? ν = 0

Figure 4.3: The three limiting cases a), b) and c) yield three topologically distinct
phases. The case a) has a non-zero winding number, corresponding to a non-trivial
topological phase and in case c) the winding number is zero, corresponding to a
trivial phase. Case b) is peculiar and the fact that the loop goes through the origin
makes the winding number undefined. The direction of the curve is indicated as
anti-clockwise.

The winding numbers in the three cases a), b) and c) should be compared with the
notion of the system being gapped or gapless. By comparing Figures 4.2 and 4.3
we note that the winding number, ν, becomes undefined at the topological phase
transition, at which the system also becomes gapless. This is a generic feature
in topological systems and attempts to resolve the issue will be addressed in the
next chapter. Generally, moving from one topological phase to another requires a
gap-closing. However, a system can also undergo a phase transition between two
gapless phases as we also shall see in the next chapter.

The graphical approach to extract the topological invariant of the SSH model is
not in any way general and relies heavily on the fact that there is no dz-component
in the Bloch Hamiltonian. It is clear that we need to find a more systematic way
of extracting topological properties and winding numbers in one spatial dimension.
Following the logic of Asboth et al. [5], we will make use of an analytic expression
for the winding number, ν, in terms of an integral. By introducing the normalized
vector ~e~d = ~d

|~d| , which is the projection of ~d onto the unit circle, the winding number
can be written as [5]

ν = 1
2π

∫
~e~d ×

d

dk
~e~d dk , (4.15)

where k is one-dimensional momentum. In the case of the SSH model (which, as we
have seen, has an off-diagonal Bloch Hamiltonian with dz = 0), the integral can be
rewritten as

ν = 1
2πi

∫ 2π

0
dk

d

dk
(log(h(k))) , (4.16)

where h(k) can be read off from the Bloch Hamiltonian H(k) as

H(k) = dxσx + dyσy =
(

0 dx − idy
dx + idy 0

)
=
(

0 h(k)
h∗(k) 0

)
. (4.17)
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Details on how to get from the general expression in (4.15) to (4.16) can be found in
Appendix A. The quantity h(k) is a complex number and can as such be expressed
as h(k) = |h(k)|eiarg(h). Therefore, the logarithm of h(k) is given by log(h(k)) =
log|h| + iarg(h). When evaluating the integral in (4.16), the branch cut of the
logarithm is shifted in a way that the derivative with respect to k is always well-
defined. Moreover, the integral is ensured to be real since |h(k = 0)| = |h(k = 2π)|.
However, it still looks quite tedious. Therefore, we do the standard procedure when
dealing with a difficult integral: perform an analytical continuation of the integral
to the complex plane.3 Since k ∈ [0, 2π] it makes sense to do the change of variables
z = eik, where z goes around the unit circle. Now, with slight abuse of notation,
h(k) becomes h(z = eik) and

ν = 1
2πi

∫ 2π

0
dk

d

dk
(log(h(k))) →︸︷︷︸

z=eik

1
2πi

∮
|z|=1

dz
d

dz
(log(h(z))) . (4.18)

The new formula we have arrived at is very neat:

ν = 1
2πi

∮
|z|=1

dz
h′(z)
h(z) , (4.19)

since Cauchy’s famous argument principle comes in hand here:

1
2πi

∮
|z|=1

dz
h′(z)
h(z) = NZ −NP , (4.20)

where NZ is the number of zeros h(z) has inside the unit circle |z| = 1 and NP is the
number of poles inside the unit circle taking multiplicity into account. Note that
the winding number, once again, becomes ill-defined and breaks down when h(z)
has zeros or poles on the unit circle. Writing h(k) as a function of z forces us to
reconsider the cases a), b) and c) in Figure 4.3 again:

h(z = eik) = dx − idy = v + w

2 (eik + e−ik)− w

2 (eik − e−ik)

= v + w
1
z
,

using dx = v + w cos(k) and dy = w sin(k) and Euler’s formula. Apparently, there
is a pole at z = 0 regardless of the parameters v and w, that is NP = 1 (neglecting
the case w = 0). However, for the zeros we have to distinguish between the three
cases a), b) and c):

a) : v < w , h(z) = 0⇒ z0 = −w
v
, |z0| > 1, NZ = 0 ,

b) : v = w , h(z) = 0⇒ z0 = −1, |z0| = 1, NZ =? ,

c) : v > w , h(z) = 0⇒ z0 = −w
v
, |z0| < 1, NZ = 1 ,

3Analytic continuation works whenever there is only one momentum variable k.
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where we note for case b) that v = w corresponds to having a zero on the unit circle.
Therefore, the winding number for the different cases becomes

a) : ν = 0− 1 = −1 ,
b) : ν =? ,
c) : ν = 1− 1 = 0 .

Clearly, these results are in agreement with the graphical analysis above, even though
the winding number for case a) is negative rather than positive. However, the sign
of ν is not physically relevant, it is only a matter of choosing the direction of the
enclosed curve to be anti-clockwise or clockwise.

4.1.2 Fermionic edge states in the SSH model
We have not yet made a physical interpretation of the non-zero winding numbers
of the SSH model obtained in the previous sections. This is provided by the bulk-
boundary correspondence, stating that a non-zero topological invariant implies the
existence of fermionic edge states [43]. As shown above, there are three distinct
cases to investigate: δ < 0, δ = 0 and δ > 0, with the case δ = 0 being a boundary
between the topological and non-topological phase of the model. Now, the analysis
of edge states is most easily done by specifying the value of the parameter δ. In
particular, we may choose δ = 0 or ±1 and get a representative for each case.
Then, since Hamiltonians within a topological phase are adiabatically connected, it
follows that the analysis holds for general values of the parameters. The parameter
choice δ = −1 corresponding to the topological phase of the model is particularly
convenient since the SSH Hamiltonian in (4.1) reduces to

HSSH = 2t
N−1∑
j=1

c†A,j+1cB,j + h.c. . (4.21)

Clearly, the fermionic operators c†A,1 and c
†
B,N are absent from the Hamiltonian. This

means that there exists a fermionic state that can be added to each end of the SSH
chain without energy cost. Tuning the parameter δ away from δ = −1 results in the
edge states overlapping and splitting apart in energy at a scale which is exponentially
small dependent on the length of the chain, N [44]. Similarly, δ = +1 results in the
Hamiltonian

HSSH = 2t
N∑
j=1

c†A,jcB,j + h.c. , (4.22)

indicating that there exists a strong bond between the sites in all unit cells n = 1...N .
Hence, no fermionic edge states appear, which also is reflected in the fact that the
winding number ν vanishes for positive values of the parameter δ, compare with
Figure 4.3.
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4.2 Kitaev’s model and Majorana edge states

Another model of vital importance when it comes to the discussion of topological
phases and invariants is the Kitaev model, constituting a prototype of a topological
superconductor in one spatial dimension [15]. However, the Kitaev model is also
of interest since it displays the existence of so called Majorana zero energy edge
modes (MZMs), which may be interpreted as Majorana fermions bound to a defect
at zero energy.4 It should be stated that such fermions are nowhere to be found
in nature and are not (as we know) part of the Standard Model. The idea of
Majoranas was considered by Ettore Majorana already in 1937, who came up with
a real wave equation similar to the Dirac equation describing fermionic particles
which were their own anti-particles [46].5 Back then the "zen particles"6 were merely
seen as a mathematical curiosity and Majorana received hardly any acclaim for his
discoveries.7 Today, engineering systems hosting Majoranas is a very active area of
research. It turns out that they tend to show up, although in the form of bound states
and zero modes, in condensed matter systems and more precisely in (topological)
superconductors [9]. The mathematical framework of superconductivity relies on so
called Bogoliubov quasiparticle excitations, formed by superpositions of negatively
charged electrons and positively charged holes causing them to be charge neutral and
fermionic. As argued by Beenakker, the Majorana nature of such quasiparticles can
be experimentally probed [45]. Chamon et al. took it one step further and claimed
that the Majorana fermions do not necessarily have to be confined to zero energy in
the form of MZMs in superconductors, but the full quantum field (similar to the real
field found by Majorana himself) emerges solely as a result of fermionic statistics
and superconductivity [47]. Hence, superconductors are suitable candidates when
it comes to finding Majorana fermions as well as MZMs. The latter will however
be of most interest to us due their robust nature in topological systems. The first
section below is therefore devoted to the exotic Majoranas and edge modes, which
play a key role in the Kitaev model. In particular, the intimate connection between
topology and Majorana edge states will become apparent.

4The MZMs are often referred to simply as Majorana fermions, but this is really a misnomer
since the zero modes are not fermions but rather non-abelian anyons [45].

5More precisely, he found a real solution ψ̃ to the equation (iγ̃µ∂µ − m)ψ̃ = 0, where the
γ-matrices are expressed in a basis where they are purely imaginary.

6This term for Majorana fermions is jokingly used by renowned physicists in the field, e.g. by
Beenakker and Frolov, who compare the particles with the Higgs boson commonly referred to as
the God particle. Since the Majorana zero modes have zero energy and charge and moreover are
massless making them immensely difficult to find in nature, the naming can probably be justified.

7In fact, the existence of Majorana particles has remained as elusive as Majorana himself, who
disappeared without a trace during a boat trip between Naples and Palermo less than a year after
he came up with his equation.
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4.2.1 Majorana edge modes
Using the regular fermionic ladder operators cn and c†n in second quantization8 we
may introduce another set of (real) operators γn and γ̃n such that9

cn = 1
2(γn + iγ̃n) , c†n = 1

2(γn − iγ̃n) , (4.23)

which are easily inverted as

γn = cn + c†n , γ̃n = i(c†n − cn) . (4.24)

The operators above are called Majorana operators and describe Majorana fermions,
which essentially have half the fermionic degrees of freedom of the electron. Due to
this fact, Majoranas must always come in pairs in a physical fermionic system (since
the Majorana modes must necessarily combine into a complex fermion). From the
construction, it is obvious that the operators are real, i.e. γn = γ†n and γ̃n = γ̃†n and
they also obey the (anti)-commutation relations:

{γn, γm} = {cn + c†n, cm + c†m} = 2δn,m ,

{γ̃n, γ̃m} = −{c†n − cn, c†m − cm} = 2δn,m ,

{γn, γ̃m} = i{cn + c†n, c
†
m − cm} = 0 ,

i.e. the operators γ and γ̃ anti-commute and square to unity independently. Now,
let us consider a system with n = N unit cells (sites), where each site can host one
fermion described by the fermionic operator c†n. Equivalently, due to the construction
above, the site hosts two different Majorana modes γn and γ̃n. The modes are
referred to as real and imaginary respectively, referring to how they transform under
complex conjugation, K:10

KγnK = γn ,Kγ̃nK = −γ̃n . (4.25)

Having made the distinction between the modes explicit, we are effectively consider-
ing the one-dimensional “domino model” in Figure 4.4. Conventionally, the modes
to the left in a unit cell are chosen to be real (γn) and the modes to the right are
imaginary (γ̃n).

8The operators c†n and cn are creation and annihilation operators which create or destroy a
fermion at a fermionic site n respectively. They obey the fermionic algebra {c†n, cm} = δn,m and
{c†n, c†m} = {cn, cm} = 0. We could also be more general and assign a spin index σ =↑, ↓ to the
operators. However, in this chapter (and the next) we will exclusively deal with spinless fermions
making such an index superfluous.

9The factors 1
2 in front are conventional.

10This should not be confused with the fact that the Majorana operators are real under hermitian
conjugation.
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γ1 γ̃1 γ2 γ̃2 γ3 γ̃3 γN γ̃N

n = 1 n = 2 n = 3

...

n = N

Figure 4.4: Schematic illustration of the domino model. Each fermionic site n
hosts one fermion or equivalently two Majoranas.

Now, interesting physics emerge if we try to pair up the Majoranas. Let us consider
two vastly different cases. In the first case, we pair up Majoranas intracell, that is
Majoranas only pair up with modes at the same site n. This is illustrated in Figure
4.5. Note that no Majoranas are isolated from each other.

γ1 γ̃1 γ2 γ̃2 γ3 γ̃3 γN γ̃N

n = 1 n = 2 n = 3

...

n = N

Figure 4.5: Pairing of Majoranas only occurs in the same unit cell n. This corre-
sponds to a topologically trivial phase and no Majorana edge modes appear.

This corresponds to a topologically trivial phase as we shall see later on. Assuming
that the energy cost of putting an electron at site n is given by µ, the corresponding
Hamiltonian is easily written down as

H0 = iµ

2

N∑
n=1

γ̃nγn . (4.26)

The subscript “0” will be given an explanation later. However, if we instead allow
ourselves to pair up the Majoranas intercell, that is the modes couple to adjacent
(nearest), neighboring, sites, the situation is radically different. See Figure 4.6.

γ1 γ̃1 γ2 γ̃2 γ3 γ̃3 γN−1 γ̃N−1 γN γ̃N

n = 1 n = 2 n = 3

...

n = N − 1 n = N

Figure 4.6: Pairing of Majoranas occur only between unit cells and adjacent sites
(nearest neighbors). Note that pairing in this fashion results in two Majorana edge
modes, γ1 and γ̃N .

Now, the Majorana modes γ1 and γ̃N are unpaired! This is evident also in the
Hamiltonian:

H1 = it
N−1∑
n=1

γ̃nγn+1 , (4.27)

where we introduced the hopping parameter t (resulting in an energy difference
2t between filled and unfilled states).11 Clearly, γ1 and γ̃N are absent from the

11The hopping parameter t can be real or complex.
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Hamiltonian, and therefore the edge modes can be added without any energy cost,
i.e. they are so called zero-energy Majorana modes orMajorana zero modes (MZMs).
In this case, we are thus considering a system with a gapped bulk flanked by two
zero-energy edge states. The two cases of the domino model in fact constitute
extreme limits of a more general model, the Kitaev model, which we consider in the
next section.

4.2.2 Kitaev’s model and the emergence of Majorana zero
modes

The Kitaev model is the most simple one-dimensional toy model of a topological su-
perconductor which illustrates the concept of Majorana edge modes and topological
phases. It was proposed by the Russian-American physicist Alexei Kitaev in 2001.
Kitaev considered the tight-binding Hamiltonian [15]12

HK = −µ
∑
n

c†ncn − t
∑
n

(c†n+1cn + c†ncn+1) +
∑
n

(∆cncn+1 + ∆∗c†n+1c
†
n) , (4.28)

where µ is the on-site energy (chemical potential), t is the nearest-neighbor hopping
amplitude and ∆ = |∆|eiθ is the (complex) superconducting pairing potential. Note
that (4.28), in contrast to the BCS-Hamiltonian describing superconductivity, does
not depend on spin or have an even superconducting order parameter.
In his derivation, Kitaev assumed the electrons to have one fixed spin direction,
which is equivalent to considering an effectively spinless system. This has the con-
sequence that the superconducting order parameter is odd under the exchange of
particles and holes, which makes the Kitaev model constitute a p-wave supercon-
ductor.13

We redefine our Majorana operators in (4.24) to get rid of the phase eiθ in ∆ ac-
cording to

γn = ei θ2 cn + e−i θ2 c†n , γ̃n = i(e−i θ2 c†n − ei θ2 cn) , (4.29)
which can be inverted as

c†n = eiθ/2
2 (γn − iγ̃n) , cn = e−iθ/2

2 (γn + iγ̃n) . (4.30)

12One can in fact derive this Hamiltonian directly from the superconducting BCS-Hamiltonian
HBCS =

∑
k(εk − µ)c†kck + (∆∗kc−kck + h.c.) (omitting the spin dependence), with εk = ~2k2

2m , by
putting it on a lattice. In practice moving from the continuum model to the lattice model involves
performing the substitutions k → sin(k) and k2 → 2(1 − cos(k)), with the expressions coinciding
at long wave lengths [48]. Then, by taking the inverse Fourier transformation from k-space to real
space and setting ~2

2m = t results in (4.28).
13To those with little knowledge of superconductivity but having some experience with quantum

mechanics, we provide an alternative explanation here. The total wavefunction of a spinful system,
ψ(r1, r2, σ1, σ2), can be decomposed into two parts, an orbital part, g(r1, r2), and a part taking
spin degrees of freedom into account, χ(σ1, σ2). By assuming the electrons to be spinless one is
left with the orbital part and due to the Pauli exclusion principle the total wavefunction has to be
anti-symmetric. In our case, g(r1, r2) = −g(r2, r1), i.e. the orbital wavefunction is odd under the
exchange of particles. Moreover, the superconducting order parameter ∆ is directly proportional
to g(r1, r2) and therefore ∆(k) = −∆(−k) (it does not matter if we consider the order parameter
in k-space rather than real space, the proportionality still holds).
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Inserting these relations into the Hamiltonian above then results in

HK = −µ2
∑
n

(1− iγ̃nγn)− it

2
∑
n

(γn+1γ̃n + γnγ̃n+1) + i|∆|
2

∑
n

γ̃nγn+1 + γnγ̃n+1

= iµ

2
∑
n

γ̃nγn + i

2(|∆|+ t)
N−1∑
n

γ̃nγn+1 + i

2(|∆| − t)
N−1∑
n

γnγ̃n+1 ,

where we made use of the fermionic (anti)-commutation relations and dropped the
constant term in the Hamiltonian. Now, it is in order to consider some special cases.
Note that for the case t = |∆| = 0 and µ 6= 0 the Hamiltonian becomes

H0K = iµ

2
∑
n

γ̃nγn , (4.31)

which is precisely the Hamiltonian H0 in (4.26), corresponding to the situation in
Figure 4.5 where there are no unpaired Majorana modes. For |∆| = t 6= 0 and µ = 0
we are instead left with

H1K = it
N−1∑
n=1

γ̃nγn+1 , (4.32)

which is precisely H1 in (4.27). We saw that this case corresponds to Figure 4.6 ,
where we have two unpaired Majorana edge modes γ1 and γ̃N . Now it seems that
µ = 0 and |∆| = t is a very exotic choice of parameters. However, it is possible to
tune µ up to 2t and the zero energy modes will still persist. In other words, the
Majorana modes are protected as long as the bulk energy gap is finite. When µ
takes the value 2t the first empty energy band (when µ < 2t) becomes populated,
in effect closing the band gap. The Majorana edge state levels will now mix with
the levels of the bulk states, making them recombine into ordinary electrons.
It will prove useful to express the Kitaev Hamiltonian in (4.28) in a Bogoliubov-de
Gennes fashion. That is, we write

HK = 1
2C
†HBdGC , (4.33)

where C = (c1...cN , c
†
1...c

†
N)T and HBdG is the 2N × 2N BdG Hamiltonian. HBdG

can be expressed in terms of Pauli matrices τ in particle-hole space acting on basis
states |n〉 = (0, ..., 1, ...0)T , which corresponds to the n:th site of the chain. Then,
it follows that

HBdG = −µ
∑
n

τz|n〉〈n| −
∑
n

(tτz + i∆τy)|n〉〈n+ 1|+ h.c. , (4.34)

which acts on basis states |n〉|τ〉, with τ = +1 for electronic states and τ = −1 for
hole states. Particle-hole symmetry is manifest in HBdG, i.e. PHBdGP−1 = −HBdG
with P = τxK. Now, we allow ourselves to connect the ends of the Kitaev chain
and form a “Kitaev ring”. This implies that the Hamiltonian exhibits translational
symmetry |n〉 → |n+1〉. In the presence of translational symmetry we invoke Bloch’s
theorem and express the BdG Hamiltonian in Fourier modes, i.e. in momentum
space. A state with momentum k is then given by

|k〉 = 1√
N

N∑
n=1

e−ikn|n〉 ⇒ |n〉 = 1√
N

N∑
k=1

eikn|k〉 , (4.35)
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where we let |k〉 obey periodic boundary conditions. Therefore, k is a conserved
quantum number taking values 2πp

N
with p = 0, 1.... For N large, k is more or less

continuous and restricted to take values in the first Brillouin zone. Let us substitute
(4.35) into the BdG Hamiltonian:

HBdG = −µτz
N

∑
n

∑
k

∑
k′

ei(k−k′)n|k〉〈k′| −
∑
n

∑
k

∑
k′

((tτz + i∆τy)ei(k−k
′)ne−ik|k〉〈k′|+ h.c.)

= −µτz
∑
k

|k〉〈k| −
∑
k

((tτz + i∆τy)e−ik + h.c.)|k〉〈k|

= −µτz
∑
k

|k〉〈k| −
∑
k

(
tτz(e−ik + eik) + i∆τy(e−ik − eik)

)
|k〉〈k|

=
∑
k

(−µ− 2t cos(k))τz|k〉〈k|+
∑
k

2∆ sin(k)τy|k〉〈k| ,

i.e.
H(k) = 〈k|HBdG|k〉 = −(µ+ 2t cos(k))τz + 2∆ sin(k)τy . (4.36)

This is the 2 × 2 Bloch Hamiltonian for the Kitaev model.14 Although the Hamil-
tonian formally looks very similar to the Bloch Hamiltonian of the SSH model in
(4.7) it is important to remember that they act on different single-particle degrees
of freedom. The Kitaev Bloch Hamiltonian acts in the space of real Majorana op-
erators, in contrast to the Bloch Hamiltonian of the SSH model which lives in the
space of complex fermionic operators. From the Bloch Hamiltonian, H(k), the band
structure is easily obtained from the secular equation det(H − EI) = 0 as

E(k) = ±
√

(2t cos(k) + µ)2 + 4|∆|2 sin2 k . (4.37)

Obviously, we do not expect any Majorana edge states since we are dealing with a
circular structure, but still the energy gap closes at k = 0 and k = π for µ = 2t and
µ = −2t respectively.

4.2.3 Integral representation of the topological invariant of
the Kitaev model

It is possible to extract the topological invariant ν for the Kitaev model using the
integral expression

ν = 1
2πi

∫ 2π

k=0

d

dk
(log(h(k)))dk , (4.38)

i.e. the one used to compute the winding number for the SSH model analytically.
Note that this required us to have a Bloch Hamiltonian H(k) which is off-diagonal.
This is not the case for the Kitaev model in the basis implied by the construction
in section 4.2.2. Recall that the Bloch Hamiltonian for the Kitaev model was there
given by

H(k) = ~h · ~τ = (−µ− 2t cos(k))τz + 2∆ sin(k)τy =
(
−µ− 2t cos(k) −2i∆ sin(k)

2i∆ sin(k) µ+ 2t cos(k)

)
,

14We could of course also Fourier transform (4.28) directly (as we did for the SSH model) instead
of introducing basis states and arrive at the BdG Hamiltonian in (4.36).
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where τz and τy act on the particle-hole degrees of freedom (since the fermions are
assumed to be spinless). We will also restrict to the case where the superconductivity
parameter ∆ and the hopping parameter t are real. This implies that time-reversal
symmetry is manifest in the Hamiltonian (with T 2 = 1 for T = K) and thus the
Kitaev chain can be placed in symmetry class BDI, rather than D.15 In particular,
as we shall see, this greatly simplifies the calculation of the topological invariant of
the model. In general, finding the topological invariant of the Kitaev model involves
computing a Pfaffian, but choosing the parameters to be real enables us to use the
winding number definition in (4.38) instead. Before doing so, we have to recast the
Bloch Hamiltonian into the off-diagonal form

H(k) =
(

0 h(k)
h(−k)∗ 0

)
. =

(
0 hx − ihy

hx + ihy 0

)
. (4.39)

Note that we have ~h = (0, hy, hz) and therefore we want to rotate hy and hz to the
x− y-plane, i.e. hz → hx. The unitary transformation

U = e− iπ2~Sy = e− iπ4 τy , (4.40)

which performs a rotation by π
2 around the y-axis does the trick. This gives us

H̃(k) = UH(k)U † = e− iπ4 τyH(k)e iπ4 τy . (4.41)

This object looks quite complicated. However, note that we may write

e− iπ4 τy =
∞∑
n=0

(−iπ4 τy)n
1
n! = 1− iπ

4 τy + (−iπ4 )2 1
2! + (−iπ4 )3 1

3!τy + ...

= 1− (π4 )2 1
2! + ...︸ ︷︷ ︸

=cos(π4 )

−iτy (π4 − (π4 )3 1
3! + ...)︸ ︷︷ ︸

=sin(π4 )

= cos(π4 )− i sin(π4 )τy .

In a matrix representation, it reads

U = e− iπ4 τy = 1√
2

(
1 −1
1 1

)
. (4.42)

Now, the transformation reduces to computing a product of matrices to find H̃(k):

H̃(k) = 1
2

(
1 −1
1 1

)(
hz −ihy
ihy −hz

)(
1 1
−1 1

)

= 1
2

(
hz − ihy −ihy + hz
hz + ihy −ihy − hz

)(
1 1
−1 1

)

=
(

0 hz − ihy
hz + ihy 0

)
,

15Assigning a Hamiltonian to a certain symmetry class is a matter of choice and highly dependent
on which symmetry preserved perturbations we allow in our model.
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which clearly is off-diagonal. The topological invariant ν is defined up to a unitary
transformation U and therefore we conclude that H̃(k) can be used to compute the
topological invariant of H(k). For the SSH model we used h(k) = dx− idy and now
we identify hz with dx and hy with dy. We also perform an analytical continuation
to the complex plane in order to be able to tackle the winding integral:

ν = 1
2πi

∫
dk

d

dk
(log(h(k)))→ ν = 1

2πi

∮
|z|=1

dz
d

dz
log(h(z)) , (4.43)

where we set z = eik (i.e. all points k in the Brillouin zone are mapped onto the unit
circle in the complex plane) and let h(k) → h(z) = h(eik) and allowed ourselves a
slight abuse of notation. The sign of the integral is ambiguous and depends on the
direction of the curve (clockwise or anti-clockwise), but it does not matter for our
purposes. Thus we have

ν = 1
2πi

∮
|z|=1

dz
h′(z)
h(z) . (4.44)

Note that |h(z)| 6= 0 for the integral to be well-defined. This corresponds to clos-
ing the energy-gap, thus breaking time-reversal symmetry and moving away from
the topological phase. By Cauchy’s argument principle the integral above is easily
evaluated:

ν = 1
2πi

∮
|z|=1

dz
h′(z)
h(z) = NZ −NP , (4.45)

where NZ denote the number of zeros of h(z) inside the unit circle and NP denote
the number of poles (including multiplicity) inside the unit circle. Note that if
h(z) has poles on the unit circle the winding number definition above breaks down
and becomes undefined.16 For the Kitaev model we have hz = −µ − 2t cos(k) and
hy = 2∆ sin(k). In terms of the variable z = eik these read

hy = −i∆(eik − e−ik) = −i∆(z − 1
z

) ,

hz = −µ− t(eik + e−ik) = −µ− t(1
z

+ z) ,

and therefore

h(z) = hz − ihy = −µ− t(1
z

+ z)−∆(z − 1
z

) = −µ+ (∆− t)1
z
− (∆ + t)z . (4.46)

Clearly, we will have a pole at z = 0 for all ∆ 6= t. In the following, let us consider
two extreme cases:

a) : ∆ = t , µ = 0⇒ h(z) = −2tz ,NZ = 1 , NP = 0 (4.47)
b) : ∆ = t = 0 , µ 6= 0⇒ h(z) = −µ = const , NZ = NP = 0 . (4.48)

16The case when h(z) has zeros on the unit circle corresponds to a gapless topological system.
Such systems will be discussed extensively in the remaining chapters. The classification of topo-
logical phases in gapless systems is a current area of research and not fully understood, which is
outlined by this thesis.

38



4. Famous Toy Models and Realizations

Case a) has a non-trivial winding number. This corresponds to a topological phase.
Similarly, case b) corresponds to a topologically trivial superconductor. a) is of in-
terest when discussing Majorana edge modes. Finally, we comment on the transition
from a topological phase to a non-topological phase. This occurs when the energy
gap closes, i.e. when |h(z)| = ±

√
h2
y + h2

z = 0 and the winding number integral
becomes undefined. Since,

|h(k)| = ±
√

(µ+ 2t cos(k))2 + 4|∆|2 sin2(k) , (4.49)

it follows that for µ = −2t (k = 0, 2π) and µ = +2t (k = π) the energy gap
closes. By considering the gap closing in the vicinity of k = 0 it will be possible
to understand the topological phase transition more in detail. Then, the original
(non-rotated) Bloch Hamiltonian becomes

H(k) = (−µ− 2t cos(k))τz + 2∆ sin(k)τy ≈ (−µ− 2t)τz + 2∆kτy , (4.50)

just by taking the first-order terms in the Taylor expansion. Note that this is
precisely a Dirac Hamiltonian which is linear in momentum k with mass-term m =
−µ− 2t.17 The topology is now encoded in m sincem > 0 : µ > −2t⇒ topological phase in open chain with Majorana edge modes ,
m < 0 : µ− 2t ⇒ trivial phase in open chain without Majorana edge modes ,

and the case m = 0 corresponds to a critical point, that is, the topological phase
transition at which the bulk energy gap closes and the mass-term switches sign.
Now, we allow the mass-term to vary with position x in such a way that

lim
x→±∞

m(x) = ±m ,m(0) = 0 . (4.51)

Then x = 0 corresponds to a domain wall separating two regions of space where m is
negative (x < 0) and m is positive (x > 0). To be able to use this mass-term in the
Hamiltonian, the Bloch Hamiltonian has to be transformed to real space. Moreover,
we introduce the parameter v = 2∆ as the speed of the Majorana modes18

H(x) = −viτy∂x +m(x)τz , (4.52)

using the position representation of the momentum operator, k → −i∂x in one
dimension. We have already established previously that the case m = 0 supports
zero-energy Majorana edge states. This also becomes apparent when solving the
Schrödinger equation for zero-energy states with H(x):

H(x)ψ = 0⇒ (−vτyi∂x +m(x)τz)ψ(x) = 0 . (4.53)
17Perhaps sloppily, in condensed matter physics we call every Hamiltonian which is linear in

momentum a Dirac Hamiltonian.
18If the mass-term m = 0, the Dirac Hamiltonian has two energy eigenstates with energy E± =
±2∆k. This describes left-moving Majorana modes with energy E− = −2∆k and right-moving
Majorana modes with energy E+ = 2∆k. Thus, it makes sense to interpret 2∆ as a velocity.
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The first-order differential equation above is easily solved by multiplying the equa-
tion from the left with τy and making use of τyτz = iτx and τ 2

y = 1, giving us:

∂xψ(x) = m(x)
v

τxψ(x) . (4.54)

The solution to the equation is easily deduced as

ψ(x) = exp(±
∫ x

0

m(x′)
v

dx′τx)ψ(0) , (4.55)

with ψ(0) being the eigenstates of τx:

ψ(0) =
(

1
±1

)
. (4.56)

However, due to the fact that m(x) changes sign at x = 0, only one of the solu-
tions ψ(x) will be normalizable (

∫
dx|ψ(x)|2 < ∞). This yields a solution which is

localized at x = 0 with two exponential tails for x < 0 and x > 0 respectively. The
sign-change in m(x) is really crucial to get this kind of behavior and if this would
not have been the case there would be no normalizable solutions. At the domain
wall x = 0 there is a zero-energy bound state corresponding to the Majorana edge
mode. The solution in (4.55) is a special case of a solution first obtained by Jackiw
and Rebbi in 1976 which formed the mathematical basis for topological excitations
in systems described by an effective Dirac Hamiltonian [49]. In Figure 4.7, the sit-
uation is depicted with m(x > 0) = +m and m(x < 0) = −m. Above we have seen
that the solution for x < 0 corresponds to the topological phase and the solution
for x > 0 corresponds to the trivial phase. At the interface between these regions
there is a Majorana zero energy mode.

m(x) = +m

|ψ(x)|
x

topological side

trivial side

m(x) = −m

zero mode

Figure 4.7: The solution ψ(x) admits a zero-energy mode at the interface between
two regions x < 0 and x > 0. The region x < 0 corresponds to the topological phase
and the region x > 0 to the trivial phase. Here m(x) is set to m(x < 0) = −m
and m(x > 0) = +m but one could of course be more general and take an arbitrary
function m(x) as long as it fulfills limx±∞m(x) = ±m.
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4.2.4 Realizing Kitaev’s model
Although Kitaev’s model is of conceptual interest and constitutes a pedagogical
example when it comes to the emergence of Majorana zero modes and non-trivial
topology, it still remains a toy model. To please the more experimentally inclined
reader we therefore comment on the attempts to realize Kitaev’s model. Firstly,
the model assumes spinless electrons which has the consequence that the super-
conducting order parameter ∆ must be odd, i.e. we are considering a p-wave
superconductor. Superconductors of intrinsic p-wave type are extremely rare in na-
ture19 and moreover, as discussed by e.g. Kallin [51], zero modes are neither easily
detected or manipulated in such systems. Hence, it may seem hopeless to realize
Kitaev’s model with a system of spinful electrons. However, if one spin degree of
freedom can be “frozen out” we are effectively considering a spinless system. This
necessarily requires the lifting of Kramer’s degeneracy and typically the breaking of
time-reversal symmetry [6]. Arguably, the most celebrated realization of Majorana
zero modes in a topological superconductor was proposed by Fu and Kane in 2007
[52]. In fact, they did not use a superconductor of p-wave type but instead more
conventional building blocks. In particular, they made use of the proximity effect
between an ordinary s-wave superconductor and the edge states of a topological
insulator.20 However, Fu and Kane concluded that they had engineered a spinless
two-dimensional superconducting state of px + ipy-type, with the Majorana bound
states emerging at vortices.

When it comes to the realization of precisely Kitaev’s model and Majorana zero
modes in one dimension, the proposals of Lutchyn, Sau, Das Sarma [53] and Oreg,
Refael and van Oppen [54] were instrumental for the first attempts to experimentally
probe the signatures of MZMs performed by Kouwenhoven and his group in Delft
2012 [55].21 This work relied on superconducting nanowires with strong Rashba/-
Dresselhaus spin-orbit interactions exposed to an external magnetic field. Here, the
nanowire is a gated semiconductor deposited on an s-wave superconductor which
by the application of a magnetic field results in a topological superconducting state
[58]. A pedagogical and more formal treatment of this realization can be found
in Christian Spånslätt’s doctoral thesis on low-dimensional topological quantum
matter, see [36].

19The layered oxide superconductor Sr2RuO4 and the superfluid 3He are two examples that
stand out when it comes to intrinsic p-wave superconductors [50].

20The (superconducting) proximity effect is a phenomenon which arises when a superconductor
gets in contact with a conventional material. It enables the Cooper pairs in the superconductor to
tunnel into the normal material causing a layer of the material to be superconducting. In Fu and
Kanes’ system the Cooper pairs diffuse into the surface edge states of the topological insulator,
resulting in a topological superconducting surface state.

21More recently, one-dimensional Majorana zero modes have seen to emerge also in chains of
magnetic (iron) atoms [56], [57]. The atoms are placed on a superconducting lead-substrate of
s-wave type. By making use of scanning tunneling spectroscopy one found experimental signature
of possible Majorana zero modes at the ends of the chain.
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4.3 Integer Quantum Hall Effect
Any thesis which serves to review topological matter and invariants should be con-
sidered incomplete if a section on the integer quantum Hall effect is not included.
This is by no means a section devoted to toy models but rather to realizations (which
the name of this chapter also hints about). In 1980, von Klitzing, Dorda and Pep-
per provided the experimental motivation for the entire field of topological quantum
matter [19]. Their experiment on the integer quantum Hall effect has been of cru-
cial importance in the theory development of using topological invariants in physics,
and, in particular, for understanding and topologically protected edge states.22 The
conventional Hall effect had been discovered a century earlier by Edwin Hall, who
observed that the application of an electrical field in the presence of a magnetic
field generated a current perpendicular to the electrical and magnetic fields [59].
Moreover, the ratio between the voltage, VH , and the current, I, is described by a
linear relationship through the Hall resistance, RH , and Ohm’s law:

RH = VH
I

. (4.57)

By considering a similar two-dimensional electron system in a strong magnetic field
(B > 5 T) at very low temperatures (T < 4 K), von Klitzing noticed that the Hall
resistivity was quantized in integer multiples n and that flat plateaus of the voltage
would occur in the voltage-current spectrum at the same voltage regardless of the
quality of the sample. In particular, he found that

RQH = 1
n

e2

~
, (4.58)

in a precision better than 1 part in 105. The theoretical explanation for the quantized
behavior and plateaus of the resistivity relies on the concept of filled Landau levels.
Quantum mechanically, the motion of electrons being exposed to a strong magnetic
field follows, due to the Lorentz force, cyclotron orbits which are quantized with
energy

En = ~ω(n+ 1
2) , (4.59)

with the cyclotron frequency ω = eB
me

, me being the electron mass. Although they
are very similar to the energy levels of the harmonic oscillators, these energy levels
are referred to as Landau levels and are highly degenerate for strong magnetic fields.
This means that for sufficiently large magnetic fields, i.e. B > 5 T as in the quantum
Hall experiment, giving highly degenerate energy levels, there will be only a few
filled Landau levels of relevance. Before introducing disorder in the two-dimensional
electron system, we should justify how von Klitzing arrived at the astonishing result
for the Hall resistance in (4.58). Neglecting the possibility of a substrate potential,
the Hamiltonian for a two-dimensional non-interacting electron system in a magnetic
field ~B = Bẑ is easily written down as[60]

H = 1
2me

(−i~ ∂
∂x

+ eAx)2 + 1
2me

(−i~ ∂
∂y

+ eAy)2 + V (x, y) , (4.60)

22In fact, the main motivation of von Klitzing et al. was to accurately determine the value of the
fine structure constant α = 1

137 , of immence importance in the field of quantum electrodynamics.
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where V (x, y) = −eEyy (assuming the electrical field to be in the y-direction). The
inclusion of the electrical field forces the electrons to move not only in a cyclotron
motion but they are also exposed to a linear drift. The setup for the corresponding
quantum Hall experiment is illustrated in Figure 4.8.

− − − − − − − −

+ + + + + + + +

~E

~B = Bẑ

jx

T < 4 K

ẑ ŷ

x̂

Figure 4.8: Schematic illustration of the quantum Hall experiment. The appli-
cation of an electric field generates a current density perpendicular to the field. A
crucial difference between this experiment and the original Hall experiment per-
formed in 1879 is the temperature of the sample.

By imposing the Landau gauge Ay = 0, Ax = −By, with the x-dependence of the
wavefunction being ∼ eikxx (plane wave), we may rewrite the Hamiltonian as

H = 1
2me

(~kx−eBy)2− ~2

2me

∂2

∂y2−eEyy = 1
2me

(~kx−eBy)2 +
p2
y

2me

−eEyy , (4.61)

which, if we neglect the last (linear) drift term, and shift the y-coordinate y →
y − ~kx

eB
, is precisely the Hamiltonian of a harmonic oscillator.23 This motivates the

striking resemblance betwen the Landau levels and the energy levels of the harmonic
oscillator. Including all terms, the solution for the eigenenergies reads

En = ~ω(n+ 1
2)− eEy(y −

py
eB

) + me

2 (Ey
B

)2 . (4.62)

Now, recall that the current density operator for a charged particle in a magnetic
field with Hamiltonian H = 1

2me (~p − e ~A)2 + V (~r) in a potential V (~r) can obtained
from

~̂j(~r) = e

me

Re(ψ∗(~r)(~p− e ~A)ψ(~r)) , (4.63)

and thus the x-component of the current density operator with our Hamiltonian is
given by

ĵx = e

me

(~kx + eBy) . (4.64)

This current corresponds to the electrons having a drift velocity vd = −Ey
B

in the
x-direction, readily apparent in the last term in the energy spectrum in (4.62). By

23Translating the harmonic oscillator in position space does not affect the eigenenergies.
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the Drude model the current density is given by

~j(~r) = ene(~r)~vd , (4.65)

ne being the electron density, and, in particular, with the (absolute) magnitude of
jx given by

jx = ene
Ey
B

. (4.66)

It remains to express the electron density in terms of the known variables. The
density of a single electron flux quantum is given by

n1 = 1
2πl2 , l

2 = ~
eB

, (4.67)

with l being the Larmor length. Note that we assumed that each electron takes up
an area πl2, with the factor of 2 in the denominator of the single electron density
taking spin degrees of freedom into account. Considering n filled Landau levels the
electron number density is then given by

ne = n

2πl2 = neB

h
, (4.68)

resulting in the current density

jx = e(nBe
h

)(Ey
B

) = ne2

h
Ey . (4.69)

Finally, we need to turn our attention to Ohm’s law, which in its most general form
reads

jα =
∑
β

σαβEβ , (4.70)

with σαβ being the conductivity tensor. The only non-vanishing component of this
tensor is σxy:

σxy = −σyx = jx
Ey

= ne2

h
, (4.71)

assuming an isotropic material. Consequently, the longitudinal resistivity ρxy is
simply the inverse of the conductivity:

ρxy = 1
σxy

= 1
n

h

e2 , (4.72)

which checks out with the results of von Klitzing et al [19]. Having established that
the Hall conductance is quantized at a quantum mechanical level, a note on the
existence of plateaus in the Hall spectrum is in order. Introducing disorder in the
system results in a broadening of the degenerate Landau levels. Each broadened
Landau level has the non-perturbed Landau level in the center and away from the
center there exists localized states. When sweeping the Fermi level (by tuning the
gate-voltage) across these localized states we do not expect a change in the Hall
current (since these states are assumed not to carry current) giving rise to plateaus
in the conductance spectrum [61][62].
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We have yet not discussed the relation between the quantum Hall effect and topology.
The connection was made explicit by Thouless, Kohomoto, Nightingale and den
Nijs in 1982 and is neatly summarized in the TKNN-formula [30]. Thouless et al.
(indirectly) managed to relate the conductivity, σxy, in the integer quantum Hall
effect to the Berry curvature and Chern numbers, discussed in Chapter 2.24 By
computing the conductivity on a torus25 T 2 in a periodic potential and by making
use of the famous Kubo formula they obtained[30]

σxy = e2

2π~

n∑
k=1

∫
T 2
~Fk · d~S = e2

h

n∑
k=1

ζk = ne2

h
, (4.73)

with ~Fk being the Berry curvature and ζk = 1 being the Chern number of each filled
band k. The Hall conductivity thus constitutes a topological invariant and as such
we may explain the robustness of the integer quantum Hall effect. Being an integer,
the Chern number can not change continuously and therefore the Hall conductivity
remains unchanged under smooth deformations. In particular, as we have seen
in the SSH model and the Kitaev chain, a non-zero topological invariant is also
accompanied by the existence of edge states, in agreement with the bulk-boundary
correspondence. In the IQHE, these edge states are referred to as Halperin states
[64]. The connection between the number of gapless chiral edge states and the
TKNN topological invariant was made explicit by Hatsugai in the early 1990s [65].
These edge states are chiral since they move in one direction on one edge and the
opposite direction on the other edge.

As of today, numerous of experiments similar to that of von Klitzing et al. have
indicated the robust nature of the quantum Hall effect. Remarkably, the shape and
condition of the sample does not influence the conductivity in any way. Compar-
isons between different materials have been made, for instance in gallium arsenide
and silicon, where the agreement between the Hall resistance in the two systems
has been found with a precision of a few parts in 1010 [66].

As stated in the introductory paragraph, the integer quantum Hall effect paved the
way for the search for unconventional states of matter. In particular, it led to the
discovery of other remarkable topological phenomena such as the fractional quan-
tum Hall effect (FQHE) and the anomalous quantum Hall effect (AQHE) [67]–[69].
Perhaps most importantly, by making use of Duncan Haldane’s model of graphene
exhibiting an IQHE, Kane and Mele were able to establish the theoretical existence
of so called quantum spin Hall states [70][71].26 Their work, which eventually lead

24In fact, the real connection between the Berry phase and the TKNN-formula was provided by
the American mathematical physicist Barry Simon in 1983 [63]. However, it should not come as a
surprise that the word Berry curvature or Berry phase is not mentioned by Thouless et al. given
the fact that Michael Berry introduced the concepts of geometrical phases in quantum physics a
year after the TKNN-paper was published [27].

25One can also consider the two-dimensional magnetic Brillouin zone as the integration domain.
Once imposing (twisted) periodic boundary conditions, this is topologically equivalent to the torus
T 2.

26Bernevig and Zhang also proposed a quantum spin Hall model during the same time period,
independent of the work by Kane and Mele [72].
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to the realization of topological insulators, can be summarized in the Quantum Spin
Hall Effect (QSHE), a cousin of the effect we have been considering in this section.27

However, in contrast to the fractional or integer quantum Hall effect, achieving the
quantum spin Hall effect does not require the application of a large magnetic field.
The role of the magnetic field is instead played by spin-orbit interactions in the ma-
terial. This means that quantum spin Hall systems respect time-reversal symmetry.
Moreover, if time-reversal invariance is manifest in a spinful system we have seen
in section 3.1 that the edge states come in pairs due to Kramer’s degeneracy. By
taking two copies of an IQHE-system, one copy with only spin down electrons and
one copy with only spin up electrons with the magnetic fields of the systems having
the same magnitude but opposite directions, the magnetic field of the combined sys-
tem cancels. In particular, the edge states of the separated systems have different
chiralities and combine into a single Kramer’s pair. This is the recipe of engineering
a spin Hall system in theory. In practice, Kane and Meles’ proposal of graphene as
a candidate for QSHE has proven not to be successful due to the small spin-orbit
gap of the material. It should be stressed though that, already in 2007, just a year
after Kane and Meles’ discoveries the quantum spin Hall effect was experimentally
realized in HgTe quantum wells [73].

4.4 Returning to the ten-fold way
So far, we have by no means covered all toy models or realizations of topological
insulators or superconductors even in one dimension. However, in 2008, Schnyder,
Ludwig, Furusaki and Ryu provided a framework for the classification of gapped
systems in different symmetry classes in the ten-fold classification of topological
insulators and superconductors [17]. By starting from Altland and Zirnbauers’ work
a decade earlier which discussed the different symmetry classes in the context of
random matrix theory, and interpreting the random matrices as representations of
non-interacting fermionic Hamiltonians, Schnyder and his collaborators managed to
show that, in particular, three-dimensional topological insulators and superconduc-
tors can exist in five of the ten symmetry classes [41], [74].

We touched upon the framework already in the previous chapter, but then we were
only able to discuss the classification in terms of symmetries. Now, we complete
Table 3.1 by providing the possible topological invariants in specific dimensions for
each symmetry class of non-interacting single-particle fermionic Hamiltonians.

27Kane and Meles’ work in the field of topological quantum matter has been highly acclaimed.
In the year of writing this thesis (2019) they were awarded the prestigious Breakthrough Prize in
Fundamental Physics.
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class C P T d = 1 d = 2 d = 3
A (unitary) - - - - Z -
AI (orthogonal) - - 1 - - -
AII (symplectic) - - -1 - Z2 Z2
AIII (chiral unitary) 1 - - Z - Z
BDI (chiral orthogonal) 1 1 1 Z - -
CII (chiral symplectic) 1 -1 -1 Z - -
D - 1 - Z2 Z -
C - -1 - - Z -
DIII 1 1 -1 Z2 Z2 -
CI 1 -1 1 - - Z

Table 4.1: The tenfold classification of topological insulators and superconductors.
The leftmost column indicates the Cartan label of the symmetry class followed
by the different symmetries C, P and T (chiral/sublattice symmetry, particle-hole
symmetry and time-reversal symmetry respectively). If a symmetry is absent it is
indicated with "-" and if it is present the entries are either ±1 depending on whether
the symmetry operators square to +1 or −1. Recall that the chiral symmetry, C,
only comes in one flavor, C2 = +1. The additional three columns indicate whether
there exists topological invariants in the corresponding symmetry class in d = 1, 2
and 3 dimensions. If a Z-entry is present it means that the topological invariant in
the symmetry class can take any integer value. However, the Z2 invariant is more
restricted and only takes two values, typically 0 or 1 or ±1 depending on convention.
Entries with "-" in the last three columns indicate that the system has no topological
phase. Theoretically there exists topological invariants in dimensions d > 3 as well,
but we only consider the physically interesting cases here.

The symmetry classes A, AI and AII are referred to as the standard Wigner-Dyson
classes and have been well-investigated in physics in terms of Anderson localization
of electrons in disordered solids [17] . By enforcing a sublattice symmetry on the
classes one ends up with the symmetry classes AIII, BDI and CII which constitute
the chiral classes. The remaining four symmetry classes D, C, CI and DIII are listed
by Schnyder et al. as the superconducting Bogoliubov-de Gennes classes or the BdG
classes [17]. This is since the non-interacting fermionic Hamiltonians in these classes
can only be realized as superconductors. The other six classes (Wigner-Dyson and
chiral) can host non-superconducting topological systems, e.g. topological insu-
lators or band insulators as well. This does not imply that, for instance, the
chiral classes BDI, CII and AIII can not have superconducting realizations. In
fact, it is fairly standard to make use of the BdG formalism when dealing with
these symmetry classes as well, and therefore we may choose to refer to the classes
as (chiral) BdG classes whenever AIII, BDI or CII has a superconducting realization.
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In fact, in our discussion on the (one-dimensional) Kitaev model we chose the
parameters ∆, t and µ to be real in order to be able to use the winding number
as a topological invariant. By this choice the spinless Kitaev chain is transferred
from symmetry class D to the chiral symmetry class BDI.28 In agreement with
Table 4.1, we obtained a Z topological invariant in section 4.2.3. In his original
paper, Kitaev allowed his parameters to be complex and was thus required to
compute a Z2 topological invariant (Pfaffian), readily apparent as an entry in the
class D-row in Table 4.1 [15]. Moreover, by considering a spinful Kitaev chain and
enforcing a time-reversal symmetry T with T 2 = −1 one can even end up with a
Z2-classification in symmetry class DIII.

Similarly, most conventionally the SSH model of polyacethyelene discussed in section
4.1 is put in the symmetry class AIII with a Z topological invariant. This is due to
the apparent sublattice symmetry between A and B-atoms of the model. However,
as we saw in section 4.1, the single-particle Hamiltonian of the model, HSSH(k), also
exhibits a time-reversal symmetry and a charge-conjugation symmetry why it may
also be tempting to put it in the symmetry class BDI. In fact, it is really a matter
of choice where to put the model and it depends on which symmetries are being
enforced and which are considered accidental. When assigning a symmetry class to a
particular model the rule of thinking is really based on what terms (associated with
a certain type of symmetry) we allow to add to the Hamiltonian rather than what
symmetries the model exhibit. With this basis of thinking it is also possible to put
the SSH model in the symmetry classes BDI (all perturbations are required to have
chiral, time-reversal symmetry,and particle-hole symmetry), D (all perturbations
that are charge-conjugation symmetric are allowed but time-reversal symmetry or
chiral symmetry can be broken), AI or A (only time-reversal symmetric perturba-
tions allowed or all perturbations are allowed but the symmetries can be broken).
However, in the latter case we can not say that the edge modes of the SSH model
are topologically protected by symmetry.

Lastly, a comment on the quantum Hall insulator is in order. Since the integer
quantum Hall effect necessarily requires a (net) magnetic field, time-reversal sym-
metry must be broken. Consequently, it is put in the symmetry class A with a Z
topological invariant in d = 2 dimensions, that is the Chern number apparent in
the TKNN-formula, equation (4.73). However, by taking two spinful copies of the
quantum Hall insulator one can engineer the Quantum Spin Hall Effect, which does
not require a magnetic field and respects time-reversal symmetry, see the discussion
in section 4.3. This insulator then falls into the class AII with a Z2 topological
invariant as shown by Kane and Mele [71].

Now, we have seemingly skipped to discuss Schnyder, Ryu, Furusaki and Ludwigs’
major contribution to the field of topological quantum matter, the classification of
three-dimensional topological superconductors and insulators. These systems are
an active area of research due to their (recent) promising realizations in nature

28Here, the Kitaev chain refers to the topological phase of the Kitaev model, with specified
parameters ∆ = t > 0 and µ = 0, where there are unpaired Majorana edge modes.
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[75]–[77]. This is out of scope of this thesis, which covers almost exclusively non-
interacting one-dimensional topological systems. However, the thesis reaches beyond
the tenfold classification of topological insulators and superconductors in the sense
that the following chapters will involve not only the classification of gapped but also
gapless systems. We shall, in particular, see that non-trivial phases in the chiral
and non-chiral BdG classes which are gapless are classified not exclusively by a
topological invariant (winding number or a Pfaffian) but also by an extensive degree
of freedom of the bulk, namely the central charge of the bulk conformal field theory.
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5
Topology and Edge Modes of
Critical Systems in Class BDI

In the previous chapter we swept the notion of topological critical systems under
the rug, that is, to address the issue what happens precisely at the topological phase
transition, when the energy gap closes and the topological invariant changes from
trivial to non-trivial (or vice versa), see for instance the critical case of the SSH model
in Figure 4.3. Having established that the tenfold classification of topological insu-
lators and superconductors in Table 4.1 is valid only for gapped quantum systems,
it is clear that additional work is needed to be done on gapless chains. Therefore,
this chapter purports to review and analyze the very recent work by Verresen, Jones
and Pollmann (VJP) who have obtained a classification of superconducting critical
systems in the BDI symmetry class, which may possibly be extended to the remain-
ing chiral classes and the BdG classes [18]. The latter (original work) is the topic of
the next chapter. The discussion below thus follows the paper “Topology and edge
modes in quantum critical chains” closely but also an earlier paper by Verresen,
Pollmann and Moessner, "One-dimensional symmetry protected topological phases
and their transitions” [78]. Additional details are provided by a third paper by Jones
and Verresen, “Asymptotic correlations in gapped and critical topological phases of
1D quantum systems” from 2018 [79].

5.1 α-chains and stacking Kitaev chains
To be able to discuss gapped and gapless topological phases in the BDI symmetry
class we employ the notation used by Verresen, Jones and Pollmann and define the
translation-invariant spinless α-chain:

Hα = i

2
∑
n≤1

γ̃nγn+α , α ∈ Z , (5.1)

where α = 1 corresponds to the topological phase of the Kitaev model, see equation
(4.32) with the hopping parameter t = 1

2 and α = 0 is the non-topological phase in
equation (4.26) with µ = 1. In general, (5.1) can be seen as a Kitaev chain with
range α, see Figure 5.1.1 In the previous chapter we saw that the Kitaev chain,
H1, exhibits two Majorana zero modes, one real mode γ1 on the left edge and an

1In contrast to the previous chapter, we will refer to the topological phase of Kitaev’s model,
H1, simply as the Kitaev chain in the following. Similarly, we refer to H0 as the trivial or non-
topological phase.
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imaginary mode γ̃N on the right edge, whereas the trivial chain, H0, has no edge
modes. More generally, Hα has |α| Majorana zero modes per edge.

γ1 γ̃1 γ2 γ̃2 γ3 γ̃3 γ4 γ̃4

α = 0

α = 1

α = 2
.......

Figure 5.1: Illustration of one-dimensional α-chains. Each fermionic cell indicated
with a circle includes two Majoranas, γn and γ̃n, n = 1, ..., 4 denoted by a filled
and an unfilled circle respectively. Note that Hα represents a Kitaev chain with
(coupling) range α.

Note that we also allow the integer α to be negative. This corresponds to a spatially
inverted chain, i.e a chain with the left and right ends being swapped. The α-chain
is clearly invariant under the spinless (BDI) time-reversal symmetry transformation
T = K, K being the complex conjugation operator in the occupation number basis:

T HαT −1 = K i2
∑
n

γ̃nγn+αK = − i2K
∑
n

γ̃nγn+αK

= − i2K
∑
n

i(c†n − cn)(c† + cn)K = i

2
∑
n

i(c†n − cn)(c† + cn) = Hα ,

that is, Hα commutes with the time-reversal operator T . In fact, we may consider
the α-chain as a basis for all translation-invariant Hamiltonians in the BDI class,
generated by taking linear combinations of (5.1). This should come as no surprise
if we consider a generic non-interacting BDI Hamiltonian:

HBDI = i

2
∑
n,m

tnmγ̃nγm + (T −preserving interactions) . (5.2)

Note that combinations of the type iγnγm or iγ̃nγ̃m are not allowed since such
terms explicitly violate time-reversal symmetry. The coefficients tnm are real by
T -symmetry and hermiticity. By also enforcing translational symmetry, tnm = tm−n
and performing the change of variables α = m− n we get a neat expression for the
full BDI Hamiltonian as

HBDI = i

2
∑
α,n

tαγ̃nγn+α =
∑
α

tαHα , (5.3)
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where we take the sum over α to be finite and tα ∈ R. Since tα is real it follows
that HBDI is time-reversal symmetric (we just checked that so is the case for Hα)
and hermitian.
A concept which will prove particularly useful in the generalization of Verresen,
Jones and Pollmann to include symmetry class CII (the topic of next chapter) con-
cerns stacking of Kitaev chains. As also stressed by Verresen et al. , stacking α > 0
Kitaev chains (described by the Hamiltonian H1) on top of each other can equiva-
lently be seen as a single Kitaev chain with range α.2 In Figure 5.2, the situation is
illustrated for α = 2. On the one hand, stacking enforces us to introduce a unit cell
(containing multiple "domino" building blocks) but on the other hand the stacked
chains can be rewritten in a translation-invariant manner.3

=

γ1 γ̃1 γ2 γ̃2 γ3 γ̃3 γ4 γ̃4

α = 1

α = 1

α = 2

Figure 5.2: Stacking two Kitaev chains on top of each other (Hα with α = 1) is
equivalent to considering the translation-invariant H2 chain.

We can also stack more complicated (translation-invariant) Kitaev chains on top of
each other, for instance two different BDI chains H(1)

BDI and H
(2)
BDI formed by taking

linear combinations of Kitaev chains with weighting coefficients t(1)
α and t(2)

α . Then,
the stacked system is described by the Hamiltonian4

H = i

2
∑
n,α

(γ̃n,1, γ̃n,2)Tα
(
γn+α,1
γn+α,2

)
, Tα =

(
t(1)
α 0
0 t(2)

α

)
, (5.4)

introducing a unit cell with two sites. In general, in a system with N sites, Tα is a
N ×N real matrix and we may write

H = i

2
∑
n

(γ̃n,1, γ̃n,2, ..., γ̃n,N)Tα(γn+α,1, γn+α,2, ..., γn+α,N)T . (5.5)

2To ease potential confusion: although the term Kitaev chain is exclusively used for the α = 1-
chain, we may still view a generic α-chain (α > 1) as a Kitaev chain with range α described by
the Hamiltonian Hα.

3This is not generally true. For instance, consider stacking the Kitaev chain H1 and the critical
Majorana chain H0 + H1. It is impossible to rewrite the stacked system as a single translation-
invariant chain.

4Certainly, BDI chains which explicitly break translational invariance, i.e have a unit cell struc-
ture can be stacked as well. Then, each chain (i) is described by a set of numbers T (i)

α in a N ×N
matrix (N being the number of sites in the unit cell) and the full Hamiltonian is specified by the
real matrix Tα = diag(T (1)

α , T
(2)
α , ...).
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Returning to translation-invariant BDI chains it is clear that the coefficients tα
uniquely define the Hamiltonian, HBDI. In particular, since the basis elements Hα

by themselves give rise only to gapped topological phases, the relationship between
the weighting coefficients becomes crucial in order to obtain a BDI Hamiltonian
with gapless degrees of freedom. Of course, we could also equivalently consider the
Fourier transform of the weighting coefficients as the fundamental object of interest:

f(k) B
∑
α

tαeikα , (5.6)

which has a one-to-one correspondence with the Hamiltonian, HBDI. By writing
f(k) = εkeiϕk , εk, ϕk ∈ R5, one can show that this particular function diagonalizes
the BDI Hamiltonian by a Bogoliubov rotation with a single-particle spectrum εk
such that [18]

HBDI =
∑
k

εk

(
1
2 − d

†
kdk

)
, (5.7)

with
 dk
d†−k

 = exp(iϕk σx2 )
 ck
c†−k

 being the Bogoliubov-transformed fermionic op-

erators. For gapped systems with εk 6= 0, f(k) = εkeiϕk is a well-defined function
on the unit circle. It therefore makes sense to consider the topological invariant for
gapped BDI chains as a winding number, ν, defined by the number of loops f(k)
winds around the origin in the complex plane such that

ν = 1
2πi

∫
1BZ

dk
f ′(k)
f(k) . (5.8)

This definition of a topological invariant breaks down for gapless BDI chains. How-
ever, the problem can be solved by performing an analytical continuation of f(k) to
the entire complex plane, i.e., with abuse of notation we take f(k)→ f(z) = f(eik)
in such a way that

f(z) =
∑
α

tαz
α , (5.9)

which is a complex meromorphic function with the number of poles and zeros to be
determined. In particular, forming a gapless system using e.g. the gapless Hamil-
tonian HBDI = H0 + H1 corresponds to the complex function f(z) = z + 1, which
has the zero z0 = −1 at the unit circle, or equivalently f(z0) = f(eik0) = 0 for mo-
mentum k0 = ±π. Now, the winding number, ν, can be calculated using Cauchy’s
argument principle as6

ν = NZ −NP , (5.10)
NZ being the number of zeros of f(z) inside the unit circle |z| = 1 and NP being
the number of poles (counting multiplicities) inside |z| = 1. The right-hand side
of equation (5.10) is well-defined also in the gapless case. Still, the introduction of
the complex, meromorphic function f(z = eik) may seem ad-hoc. However, as a

5It should come as no surprise that any complex function expressed as a finite sum of weighted
exponentials can be written as a single exponential with an amplitude. This is due to the harmonic
addition theorem [80].

6A more detailed treatment is provided in section 4.2.2.
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consistency check we may in fact show, by means of a unitary transformation, that
it coincides with the function h(z) in (4.46) we used to compute the winding number
of Kitaev’s model. The calculation is provided in its entirety in Appendix B.

5.2 Majorana edge modes in gapless systems

It is in order to give a physical interpretation of the topological invariant introduced
in the previous section. For gapped systems, e.g. the individual α-chains readily
apparent in Figure 5.1, it should probably come as no surprise that the winding
number counts Majorana edge modes. Hα has the associated complex, meromor-
phic function f(z) = zα with the winding number ν = α and the (total) number
of Majorana edge modes being 2|α| as discussed above. However, using our con-
struction of the BDI Hamiltonian, equation (5.3), we will show below that localized
Majorana edge modes emerge in gapless BDI systems as well. Verresen, Jones and
Pollmann have chosen to summarize these statements in a theorem [18]:

Theorem 1 If the topological invariant ν > 0, then
• each edge has ν Majorana zero modes
• the modes have a localization length ξi = − 1

ln|zi| with zi being the ν largest zeros
of f(z) within the unit disk.

• the modes on the left (right) are real (imaginary)
If the topological invariant ν < −2c ≤ 0, with 2c being the number of zeros of f(z)
on the unit circle, the left (right) edge has |ν+ 2c| imaginary (real) edge modes with
localization length ξi = 1

ln|zi| , with zi being the |ν + 2c| smallest zeros outside the
unit disk. For any other value of ν, there exists no edge modes.

As of now, it is not obvious why the number of zeros of f(z) on the unit circle is
chosen to be precisely 2c, but it will become clear at the end of the next section.
In particular, the number c will be given a special meaning and contributes to the
topological classification of gapless systems in the BDI class.
Every theorem should be accompanied by a proof. Here, we will provide the proof
outlined by Verresen, Jones and Pollmann but be somewhat more explicit [18]. The
proof of the case ν ≤ 0 relies heavily on the case ν > 0. Starting with the latter,
the basic idea of the proof is to construct a Majorana edge mode (at either the left
edge or the right edge) which commutes with the BDI Hamiltonian, (5.3) and is
normalizable. Let us choose the left edge and construct for the ν largest zeros zi
inside the unit circle a real edge mode:

γ
(i)
left =

∑
n≥1

b(i)
n γn . (5.11)

Assuming the coefficients b(i)
n to be real, it follows that γ(i)

left is hermitian and real
(T γ(i)

leftT −1 = γ
(i)
left). Moreover, we require that the different modes anti-commute

such that {γ(i)
left, γ

(j)
left} ∼ 2δij and |b(i)

n | ∼ |zi|n. The latter condition immediately
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implies that ξi ∼ − 1
ln|zi| since we may write 7

b(i)
n ∼ e−n/ξi , (5.12)

i.e. the b(i)
n :s are exponentially localized.

To require that γ(i)
left is an edge mode we require the commutator [γ(i)

left, HBDI] to vanish

[γ(i)
left, HBDI] = 0 , HBDI =

α2∑
α=−α1

tαHα = i

2

α2∑
α=−α1

tα

( ∑
n∈sites

γ̃nγn+α

)
, (5.13)

where α1, α2 ∈ N (< ∞) are introduced to make the sum over α finite-ranged.
Evaluating the commutator explicitly gives us:

[γ(i)
left, HBDI] = i

2
∑
a≥1

∑
α

tα
∑
n

b(i)
a [γa, γ̃nγn+α] = 0 , (5.14)

where

[γa, γ̃nγn+α] = [γa, γ̃n]γn+α + γ̃n[γa, γn+α] = ({γa, γ̃n} − 2γ̃nγa)γn+α + γ̃n({γa, γn+α} − 2γn+αγa)
= −2γ̃nγaγn+α − 2γ̃nγn+αγa + 2γ̃nδa,n+α

= −4γ̃nδa,n+α + 2γ̃nγn+αγa − 2γ̃nγn+αγa + 2γ̃nδa,n+α

= −2γ̃nδa,n+α ,

and therefore (5.14) reduces to

[γ(i)
left, HBDI] = −i

∑
a≥1

∑
α

tα
∑
n

b(i)
a γ̃nδa,n+α = −i

∑
n≥1

∑
a≥1

ta−nb
(i)
a γ̃n = 0 . (5.15)

Introducing Cn = ∑
a≥1 ta−nb

(i)
a we get the condition

− i
∑
n≥1
Cnγ̃n = 0 , (5.16)

giving us a set of constraints {Cn} = 0. Now, it is in order to consider different
cases. Considering the case NP = 0 we have tα<0 = 0 (recall that α < 0 corresponds
to poles), and therefore Cn contains all the coefficients tα>0 of f(z). This means
that, upon taking b(i)

a = za−1
i , we get

Cn =
∑
a≥1

za−1
i ta−n =

∑
a≥1

za−1−n
i zni ta−n = zn−1

i f(zi) , (5.17)

and thus all constraints are trivially fulfilled. If zi is real this defines a real Majorana
mode which is normalizable:

{γ(i)
left, γ

(i)
left} =

∑
n≥1

∑
m≥1

zn−1
i zm−1

i {γn, γm} = 2
∑
n≥1

∑
m≥1

zn−1
i zm−1

i δnm = 2
∑
n≥1

z
2(n−1)
i .

7Since zi is a complex number inside the unit circle it must have |zi| < 1 and thus |zi| ∼ e−1/ξi

with 0 < ξi <∞ should be a fair parametrization.
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The sum is easily evaluated as a geometric sum:

{γ(i)
left, γ

(i)
left} = 2

∑
n≥1

z
2(n−1)
i = 2

z2
i

∑
n≥1

(z2
i )n = 2

z2
i

(
1

1− z2
i

− 1
)

= 2
1− z2

i

6= 0 ,

where we had to remove the first term “1” from the sum ∑∞
k=0 x

k since we start
our summation at n = 1 rather than at n = 0. The anti-commutator is obviously
non-zero for all zi and therefore we conclude that γ(i)

left is normalizable. Note that this
is really a result of taking b(i)

n = zn−1
i rather than perhaps the more intuitive form

b(i)
n = zni . This form would not give a normalized solution for zi = 0. Considering
zi to be complex we may instead pick b(i)

n = zn−1
i + z̄n−1

i , which is also a solution
since γn is hermitian. This is consistent with zi and z̄i both being zeros to f(z) (if
zi are complex the zeros come in complex conjugate pairs, since the coefficients tα
are real), i.e. f(zi) = f(z̄i) = 0. 8 Now, we consider the case when NP > 0. Denote
by {z̃s} the NP smallest zeros of f(z). Then consider the ansatz

b(i)
a = zai +

NP∑
s=1

λ(i)
s z̃

a
s . (5.18)

Note that, now, the exponent in z is a rather than a− 1, which we needed to have
normalizability in the previous case when zi = 0. However, since NP > 0 we must
have zi 6= 0. Otherwise it would be subtracted by the pole. As in the previous
case, we have tα<−NP = 0 and therefore we expect Cn>NP to be trivially fulfilled by
the zeros of f(z). We still have NP conditions left to consider. Using the ansatz in
(5.18) and demanding [γ(i)

left, HBDI] = 0, the following condition has to be fulfilled:

∑
a≥1

ta−n(zai +
NP∑
s=1

λ(i)
s z̃

a
s ) = 0⇒ −

∑
a≥1

ta−nz
a
i =

NP∑
s=1

∑
a≥1

ta−nz̃
a
s︸ ︷︷ ︸

=Ans

λ(i)
s , (5.19)

giving us a problem of the type Aλ = b (summation over s is implied):

Ansλ
(i)
s = −

∑
a≥1

ta−nz
a
i . (5.20)

If zi is non-degenerate the claim is that the matrix A is invertible. Using the fact
that f(z̃s) = 0 and z̃s 6= 0 we may rewrite the matrix Ans. Recall that

f(z̃s) =
∑
α

tαz̃
α
s =

∑
α≤n−1

t−αz̃
−α
s +

NP∑
α=n

t−αz̃
−α
s = 0⇒

∑
α≤n−1

t−αz̃
−α
s = −

NP∑
α=n

t−αz̃
−α
s ,

since we must have tα<−NP = 0. By shifting the indices in Ans such that a−n→ −α
we have

Ans =
∑
a≥1

ta−nz̃
a
s =

∑
α≤n−1

t−αz̃
n−α
s = z̃ns

∑
α≤n−1

t−αz̃
−α
s , (5.21)

8Another difficulty arises when zi is degenerate. We refer the interested reader to the supple-
mental material in [18].
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and combined with the line above, A, reads

Ans = −
NP∑
α=n

t−αz̃
n−α
s , (5.22)

which, by row-reduction, can be reduced to a Vandermonde matrix with a known
determinant∏1≤s′<s≤NP (z̃s−z̃s′) 6= 0.9 We show this in the case where, for simplicity,
all tα = −1. In a matrix representation, A is then given by

A =


1 + z̃−1

1 + ...+ z̃1−NP
1 ... 1 + z̃−1

NP
+ ...+ z̃1−NP

NP

1 + z̃−1
1 + ...+ z̃2−NP

1 ... ...
... ... ...

1 + z̃−1
1 + ...+ z̃NP−NP1 ... 1 + z̃−1

NP
+ ...+ z̃NP−NPNP



∼


1 + z̃−1

1 + ...+ z̃1−NP
1 ... 1 + z̃−1

NP
+ ...+ z̃1−NP

NP

z̃2−NP
1 ... ...
... ... ...

z̃NP−NP1 ... z̃NP−NPNP



∼


z̃1−NP

1 ... z̃1−NP
NP

z̃2−NP
1 ... ...
... ... ...

z̃NP−NP1 ... z̃NP−NPNP

 ,

by performing successive row-reduction. Clearly, there is a geometric progression
in each column. Therefore there is a unique solution for each λ(i). The situation is
different if we have degeneracies in z̃s, then one has to turn to derivatives.10 The
case of complex zeros is dealt with similarly as in the case NP = 0, that is, we take
the real and imaginary combination of the solution.11

Next, consider the case when the winding number satisfies ν < −2c ≤ 0, with
2c ∈ N being the number of zeros on the unit circle. Then, we can not construct a
real edge mode on the left side of the chain, since the modes will not be normalizable
(i.e. the anti-commutator between the Majorana edge modes will vanish!). We could
instead try to construct an imaginary edge mode on the left, or equivalently a real
edge mode on the right. This means that if we are able to construct a real edge
mode on the left for the spatially inverted system everything is fine. Hence, to prove
the theorem, we need to be able to show that if the original system has winding
number ν, the spatially inverted system has winding number νinv = −(ν+2c). Then,
indeed, if νinv > 0 the number of imaginary edge modes of the original system is
|ν + 2c| (according to the discussion above) and if νinv ≤ 0 there are no edge modes
at all. In the original system we are considering the meromorphic function f(z)

9A Vandermonde matrix, Vij = αj−1
i , is a matrix where the terms are arranged in geometric

progression in each row. In our case we work with the transpose, which is also perfectly fine. Its
determinant is particularly simple to compute as det(V ) =

∏
1≤i<j≤n(αj − αi).

10See [18] for a treatment on degenerate zeros in the case when NP = 0.
11We know that zi 6= ∈{z̃s}. However, we may have z̄i ∈ {z̃s} and then the real and imaginary

solutions are linearly independent.
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which has the topological invariant ν. In the spatially inverted system we instead
have finv(z) = f(1

z
) (since spatial inversion comes down to swapping tα ↔ t−α).12

Then, according to the fundamental theorem of algebra we may write13

f(z) = 1
zNP

∏
i

(z − zi) , (5.23)

where NP is the number of poles of f(z) inside the unit circle (counting multiplicity).
We also define N as the total number of zeros such that

N = NZ + 2c+N0 , (5.24)

with 2c being the zeros on the unit circle and N0 being the zeros outside the unit
circle. Now, we have to derive an expression for finv(z) using (5.23):14

finv(z) = f(1
z

) = 1
z−NP

N∏
i=1

(1
z
− zi) = 1

zN−NP

N∏
i=1

(1− zzi)

= 1
zN−NP

N∏
i 6=j:zj=0

( 1
zi
− z)zi = (−1)N

zN−NP

N∏
i=1

(z − 1
zi

)zi ,

and therefore we conclude that

finv(z) ∝ 1
zN−NP

N∏
i=1

(z − 1
zi

) , (5.25)

that is we have NP inv = N − NP . Moreover, f(1
z
) must have the same number of

zeros inside the unit circle as f(z) has outside the unit circle, that is NZinv = N0.
Then, the topological invariant for the inverted system is easily computed as

νinv = NZinv −NP inv = N0 − (N −NP )
= N0 − (NZ +N0 + 2c−NP ) = −(NZ −NP )− 2c = −ν − 2c ,

and we have proven that νinv = −ν − 2c. This completes the proof of Theorem
1. For gapped systems we note that ν is the only quantity which determines the
topological properties. Next, let us discuss the physics of gapless systems forcing us
to investigate the 2c zeros on the unit circle further.

12Note that Hα → H−α corresponds to a spatial inversion of the chain.
13This expression does not take multiplicity into account. On the other hand we do not restrict

the zeros zi to be distinct. A more general expression for a function g(z) with z1...zN zeros
with multiplicities mj , j = 1...N and z′1....z

′
NP

poles with multiplicity m′k, k = 1...NP reads

g(z) = eh(z)
∏N

i=1
(z−zi)mi∏NP

j=1
(z−z′

j
)
m′
j
, where the exponential is a positive function (note that h(z) is chosen to

be zero in (5.23)).
14The case when there are zi :s equal to zero has to be treated carefully. This corresponds to

NP = 0, cf. the first part of the proof.

Then one has to write finv(z) = 1
zN−NP

(∏N
i 6=j:zj=0,j∈[1,r](

1
zi
− z)zi +

r∏
j=1

1︸︷︷︸
=1

)
which still gives the

same NP inv.
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5.3 Conformal Field Theory and Low-Energy
Theory

In this section we turn our attention to the gapless case at which f(z) necessarily has
zeros on the unit circle. For now, assume these zeros to be non-degenerate. Then,
since the weighting coefficients tα are real it follows by the fundamental theorem
of algebra that the zeros of f(z), {z0}, are either purely real or come in complex
conjugated pairs.15 Focusing on the latter case this means that f(z0) = f(e±ik0) = 0,
but since f(k) = εkeiϕk it also implies that

εk ∼ (k ± k0) , (5.26)

assuming the zeros to be non-degenerate. The linear low-energy dispersion relation
implies that the dynamical critical exponent, z = 1 for the critical system, i.e. the
correlation length ξ and the relaxation time τ are directly proportional to each other,
ξ ∼ τ , and Lorentz symmetry is manifest. The quantities ξ and τ are characteristic
length and time scales for any critical system (not only topological ones) and are
covered in detail in the appendix on phase transitions, see Appendix C.
Now, the claim is that each zero contributes with a (massless) Majorana fermion to
the bulk conformal field theory with central charge c = 1

2 in the low-energy limit.16

More generally, one-dimensional gapless systems with small short-ranged interac-
tions have an emerging conformal symmetry in this limit [81]. A short introduction
to conformal field theory (CFT) with particular emphasis on the central charge is
provided in Appendix D. The claim is by no means trivial and requires a justifica-
tion. Let us start by considering the free Hamiltonian for a non-interacting spinless
system:17

H =
∑
k

εka
†
kak , (5.27)

with a†k and ak being the fermionic creation and annihilation operators and εk being
the single-particle spectrum in f(k). By considering electronic states in the vicinity

15The points k0 = ±π and k0 = 0 give zeros on the real axis (z0 = ±1). The following discussion
holds for these special cases as well, which will be indicated on the way. Note that e±iπ = −1 and
hence it may seem as if z0 = −1 is a degenerate zero. However, this does not imply a quadratic
dispersion relation but rather εLk ∼ (k−π), εRk ∼ (k+π) and hence the reasoning below holds even
for this case.

16If we would have m degenerate complex zeros, we would instead have εk ∼ (k−k0)m, implying
a dynamical critical exponent z = m. This follows immediately by making use of the fact that
the energy gap ∆ ∼ |λ − λc|νz ∼ (k − k0)m ∼ ( 1

ξ )m using the notation introduced in Appendix
C. However, |λ − λc|νz ∼ ( 1

ξ )z, gives z = m by comparing the right-hand side and the left-hand
side of the equation. This means that Lorentz symmetry is not manifest in the system, making it
impossible to use conformal field theory to get a physical interpretation of the zeros.

17This is the correct expression up to some additive constant, which we omit.
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of the zeros of εk we may perform the Taylor expansions

εLk = εk0︸︷︷︸
=0

+(k − k0)dεk
dk
|k=k0 +O(k2) , k ≈ k0 ,

εRk = ε−k0︸︷︷︸
=0

+(k + k0)dεk
dk
|k=−k0 +O(k2) , k ≈ −k0 ,

where we attached the subscripts L and R for left and right-moving fermions re-
spectively. Moreover, assuming k0 = kF , kF being the Fermi momentum18, we may
interpret the derivative dεk

dk
|k=k0 as the Fermi velocity vF of right-movers, reducing

the expressions above to

εRk = vF (k − k0) +O(k2) ,
εLk = −vF (k + k0) +O(k2) .

Now, consider the low-energy limit in which the electronic states are located in small
intervals near the Fermi energy εF = ε±k0 = 0. This means that we are considering
states and low-energy excitations in k-space in the intervals [−Λ− k0,−k0 + Λ] and
[k0 − Λ, k0 + Λ], with Λ being a momentum cut-off (thus vFΛ is the energy cut-off)
as indicated in Figure 5.3. Then, the Hamiltonian in the low-energy limit reads19

H =
∑
k′
εk′a

†
k′ak′ ≈ −

−k0+Λ∑
−k0−Λ

vF (k′ + k0)a†k′ak′ +
k0+Λ∑
k0−Λ

vF (k′ − k0)a†k′ak′ . (5.28)

Performing the index change k = k′ + k0 in the first sum and k = k′ − k0 in the
second sum leaves us with

HLE = −
Λ∑
−Λ

kvFa
†
k−k0ak−k0 +

Λ∑
−Λ

kvFa
†
k+k0ak+k0 . (5.29)

Next, introduce another set of ladder operators, dLk and dRk separating the left-movers
and right-movers such that

dRk = ak+k0 , d
L
k = ak−k0 . (5.30)

This results in the low-energy Hamiltonian

HLE =
Λ∑

k=−Λ
kvF

(
dR†k d

R
k − d

L†
k d

L
k

)
. (5.31)

Now, although it may seem strange, we take the (continuum) limit Λ → ∞ and
then the sum above turns into an integral such that

HLE = 1
2π

∫ ∞
−∞

dkkvF

(
dR†k d

R
k − d

L†
k d

L
k

)
. (5.32)

18In the continuum limit (which we will consider later on), the Fermi momentum is related to
the number of particles, N , in the system according to kF = πN

L , L being the size [82]. This implies
that the case kF = k0 = 0 is physically uninteresting.

19The Hamiltonian in this limit is also referred to as the linearized effective Hamiltonian [83].
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The limit Λ→∞ can be justified by the fact that we are considering a low-energy
theory where only low-energetic states in the vicinity of the Fermi energies matter.
Extending the momentum cut-off to be infinite should not affect the behavior of the
low-energy theory [83] .20

a) b)

−k0 k0

εk

k

εk

Λ→∞

−k0 k0

εk

k

Figure 5.3: In situation a) the dispersion relation εk for non-interacting electrons
and its linearization around the momenta ±k0 is readily apparent. Each zero in
momentum space corresponds to a zero of f(z) on the unit circle |z| = 1 in the
complex plane. In Figure b) we have extended the linearized dispersion relation
around the Fermi points to all momenta k and taken the cut-off parameter Λ→∞.
As a consequence, the electronic ground state is an infinite Dirac sea. The infinities
can be taken care of by normal-ordering the fermionic operators in the continuum
Dirac Hamiltonian, (5.35).

20To assure that divergences are removed when extending the range of the momentum cut-off one
has to normal-order the fermionic operators, but let us be sloppy here [84]. In fact, similar cut-off
procedures were performed by Luttinger and Tomanaga in the context of bosonization [85], [86].
Their procedures differed in the sense that Luttinger extended the dispersion relation to infinity
in contrast to Tomonaga who kept it finite. For a more detailed treatment of the two cut-off
procedures, we refer to the acclaimed work by Solyom and Apostol, [87] and [88] respectively.
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Now, using the ladder operators dLk and dRk , it is possible to find the one-dimensional
position-dependent, slowly varying, continuum right and left-moving fields ψL(x)
and ψR(x) according to

ψL(x) = 1
2π

∫ ∞
−∞

dkdLk eikx , (5.33)

ψR(x) = 1
2π

∫ ∞
−∞

dkdRk eikx , (5.34)

and similar for their hermitian conjugates. Note that the continuum fields obey the
regular anti-commutation relations

{ψL(x), ψ†L(x′)} = {ψR(x), ψ†R(x′)} = 2πδ(x− x′) ,
{ψL(x), ψL(x′)} = {ψR(x), ψR(x′)} = 0 ,

which follow by direct insertion of the expressions above. To be able to write the
low-energy Hamiltonian, HLE, in terms of ψL(x) and ψR(x) one could invert (5.34),
but we will instead do it backwards and consider

HL = ivF

∫
dxψ†L(x)∂xψL(x) ,

HR = ivF

∫
dxψ†R(x)∂xψR(x) .

Inserting the expansions in (5.34) into the equation above we deduce that

HL = ivF

∫
dxψ†L(x)∂xψL(x) = ivF

(2π)2

∫
dx
∫
dk′

∫
dkdL†k′ d

L
k (ik)ei(k−k′)x = −vF2π

∫
dkkdL†k d

L
k ,

HR = ivF

∫
dxψ†R(x)∂xψR(x) = ivF

(2π)2

∫
dx
∫
dk′

∫
dkdR†k′ d

R
k (ik)ei(k−k′)x = −vF2π

∫
dkkdR†k d

R
k ,

where one factor of 1
2π cancels due to the integral

∫
dxei(k−k′)x = 2πδ(k−k′). Hence,

by comparing to HLE in (5.32) we get

HLE =
∫
dxHLE = ivF

∫
dx

(
ψ†L(x)∂xψL(x)− ψ†R(x)∂xψR(x)

)
. (5.35)

This is precisely the Hamiltonian of right-moving and left-moving massless Dirac
fermions [89]. By introducing a time-dependence in the continuum fields, i.e.
ψL(x) = ψL(x, t) and ψR(x) = ψR(x, t)21 we may make an ansatz for the corre-
sponding Lagrangian (density), LLE:22

LLE = −ivF
(
ψ†R(x, t)( 1

vF
∂t − ∂x)ψR(x, t) + ψ†L(x, t)( 1

vF
∂t + ∂x)ψL(x, t)

)
, (5.36)

21Including a time-dependence in the fermionic fields modifies the expansion
ψL/R(x) = 1

2π
∫
dkd

L/R
k eikx → ψL/R(x, t) = 1

2π
∫
dkd

L/R
k ei(kx−vF kt).

22If one introduces 1+1-dimensional Dirac matrices and combine ψL(x, t) and ψR(x, t) into a
two-component spinor Ψ(x, t) = (ψL(x, t), ψR(x, t)) the expression can be written in a nicer form.
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which is seen to hold since HLE is related to LLE, via the Legendre transformation

HLE = ∂LLE

∂ψ̇i
ψ̇i − LLE , (5.37)

with implied summation over i = L,R and ψ̇i = ∂ψi
∂t

. The Lagrangian in (5.36)
can be expressed in terms of the complex coordinates (familiar from CFT) z =
−i(x− vF t) and z̄ = i(x+ vF t) using [90]:

∂z = − i2( 1
vF
∂t − ∂x) , ∂z̄ = − i2( 1

vF
∂t + ∂x) , (5.38)

and therefore
LLE = 2vF

(
ψ†R(z)∂zψR(z) + ψ†L(z̄)∂z̄ψL(z̄)

)
. (5.39)

We still have not made the connection to Majorana fermions explicit. Let us turn
to this task now. By writing the fermionic fields as complex linear combinations of
(real) Majorana fields χ1 and χ2 we have

ψL(z̄) = 1√
2

(iχ1(z̄) + χ2(z̄)) , ψR(z) = 1√
2

(χ̄1(z) + iχ̄2(z)) , (5.40)

where the factor 1√
2 assures that ψ fulfills the anti-commutation relations

{ψi(z), ψ†i (z′)} = δ(z − z′). Note that we could also have written χ1 = χL1 and
χ̄1 = χR1 (and similar for χ2 and χ̄2). Now, it remains to plug in the Majorana fields
into (5.39):

LLE = vF

(
(χ̄1 − iχ̄2)∂z(χ̄1 + iχ̄2) + (χ2 − iχ1)∂z̄(χ2 + iχ1)

)

= vF

(
χ̄1∂zχ̄1 + χ̄2∂zχ̄2 + i(χ̄1∂zχ̄2 − χ̄2∂zχ̄1) + χ̄↔ χ

)

= vF

(
χ̄1∂zχ̄1 + χ̄2∂zχ̄2 + i(∂z(χ̄1χ̄2)− ∂z(χ̄1)χ̄2 − χ̄2∂zχ̄1) + χ̄↔ χ

)

= vF

(
χ̄1∂zχ̄1 + χ̄2∂zχ̄2 + χ1∂z̄χ1 + χ2∂z̄χ2

)
,

where in the last step we made use of the anti-commutator relation between Majo-
rana fermions and omitted the total derivative term.23 This term will be considered
a boundary term in the action and is of no use to us. We have thus been able to
write the Dirac Lagrangian as a sum of two Majorana Lagrangians:

LLE = LM1 + LM2 , (5.41)

with LM1 = vF

(
χ̄1∂zχ̄1 + +χ1∂z̄χ1

)
and LM2 = vF

(
χ̄2∂zχ̄2 + +χ2∂z̄χ2

)
, and con-

sequently the following low-energy (Majorana) action, SLE, is obtained as

SLE = vF

∫
d2z

(
χ̄1∂zχ̄1 + χ1∂z̄χ1 + χ̄2∂zχ̄2 + χ2∂z̄χ2

)
. (5.42)

23Note that we really used {χ1, ∂z̄χ2} = 0, but since ∂z̄ is a bosonic operator (which commutes
with fermionic fields) the relation should still hold.

64



5. Topology and Edge Modes of Critical Systems in Class BDI

In this action, conformal symmetry is manifest, in the sense that it is invariant under
conformal coordinate transformations in the complex plane [81]. More precisely,
under a conformal transformation z → g(z), g(z) being a holomorphic function
and χi → (dg

dz
)1/2χi(g(z)) since the Majorana field has scaling dimension h = 1

2 , cf.
Appendix D (and similar for the anti-holomorphic coordinate z̄).
To summarize, we have now shown that each of the (two) non-degenerate zeros e±ik0

on the unit circle |z| = 1 contributes a massless Majorana fermion field theory.24

This suggests that there must be an intimate connection between the number of
zeros and the degrees of freedom in a CFT, measured by the central charge c. The
fact that each Majorana fermion contributes with central charge c = 1

2 is established
in Appendix D. In particular this means that systems with 2c zeros on the unit circle
result in a total central charge c. In our calculation with zeros z0 = e±ik0 we expect
the central charge c = 1 (which is indeed true since the central charge is additive
under stacking and each Majorana fermion contributes with c = 1

2 , see Appendix
D).

24More precisely, there are both left-moving and right-moving Majorana fields in a single Majo-
rana field theory.
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5.4 Classification of topological phases
One may define and classify different phases of matter in terms of equivalence classes
of ground states under smooth (continuous) deformations of the Hamiltonian. Then,
two ground states are said to be equivalent if they can be smoothly connected
without going through a phase transition [79]. As we have seen, a topological phase
transition between gapped phases is accompanied by the closing (and re-opening)
of the energy-gap. We have not yet established how to realize such smooth changes
in the BDI Hamiltonian, (5.3). Since the weighting coefficients tα clearly determine
the physical behavior of the superconducting BDI system, smooth changes in our
language corresponds to tuning on/off a finite number of these coefficients. This
also implies, due to its one-to-one correspondence with the Hamiltonian, that the
zeros of f(z) move around in the complex plane under such deformations.
Similarly, it is possible to transit between gapless phases of matter as well. In
the previous section we established that we needed to introduce another degree of
freedom, the central charge c of the bulk conformal field theory, in addition to the
winding number, in order to fully characterize the topological phase of a gapless
BDI system. Then of course a topological phase transition is not associated with a
gap-closing (the spectrum is always gapless!), but the central charge c, and hence the
number of zeros on the unit circle, has to change. In agreement with the c-theorem,
states of matter with different central charges cannot be smoothly connected, and
therefore the phases before and after the transition have to be topologically distinct
[91].25

By now, it should be clear that two different invariants come into play when
describing HBDI for gapped and gapless phases respectively:

c = 1
2(number of zeros on |z| = 1) , ν = NZ −NP , (5.43)

treated in the two previous sections. For gapped systems, we have c = 0, while
gapless systems have a non-zero central charge if the zeros on the unit circle are non-
degenerate. Clearly, ν is an invariant since it cannot change under smooth motion
without changing c. Moreover, it manifests itself through symmetry-protected edge
modes as seen in Theorem 1. The theorem also implies that a generic gapped phase
in the BDI class can be represented simply by Hν (which is really the α-chain with
α = ν), and a gapless phase as Hν +H2c+ν .
The discussion above leads us to making the claim that gapless phases can be labeled
by the semigroup N× Z with c ∈ 1

2N (c 6= 0) and ν ∈ Z.26 It is really a semigroup
since c, as seen in Appendix D, can only increase under stacking. The operation of
stacking corresponds to addition when it comes to the central charge. The special
case, c = 0, gives the classification Z for gapped phases or {0}×Z ⊂ N. We repeat
once again that the first classification is only valid when the zeros on |z| = 1 are
non-degenerate. Then, and only then, is the bulk described by a CFT and a central
charge c ∈ 1

2N.
25A formulation of Zamolodchikov’s famous c-theorem is provided in Appendix D.
26This claim is summarized in a theorem later.
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Returning to the translation-invariant gapless chain H2c+ν+Hν (or Hν in the gapped
case), the corresponding complex (meromorphic) function f(z) can be turned into
the canonical form27

f(z) = (z2c + 1)zν , (5.44)

without causing a phase transition. However, due to translational invariance we
could in fact be more general and let H = ±(Hν ±Hν+2c). This modifies f(z) into

f(z) = ±(z2c ± 1)zν . (5.45)

In addition to the central charge, c, and the winding number ν, we thus get a
Z2 × Z2-classification for the overall and intermediate sign due to translational in-
variance. Note that f(z) reduces to ±zν in the case c = 0, giving only an additional
Z2-classification. These findings can be summarized in another theorem due to [18]:

Theorem 2 The phases in the BDI class described by a bulk CFT have a N × Z
semigroup classification, labeled by the central charge c ∈ 1

2N and the topological
invariant ν ∈ Z. Translational invariance gives an extra Z2-classification if c = 0
and a Z2 × Z2-classification if c 6= 0.
Moreover, one can show that topological phases in two chains with identical c and
ν but with different Z2-signs can be connected by means of a unitary transforma-
tion given that we have introduced a unit cell breaking the translational invariance.28

The phase transition between two topological phases with topological invariants
ν1 and ν2 is then described by a central charge which is given by the difference in
winding number between the two phases (i.e. the number of zeros that must cross
the unit circle at the transition). This is neatly summarized in another theorem:

Theorem 3 A phase transition between two gapped phases with topological invari-
ants ν1 and ν2 obeys c ≥ |ν1−ν2|

2 .

The inequality may be slightly surprising, but can be explained by the fact that
one can fine-tune the transition to move zeros off the unit circle. Recall that 2c
counts the number of zeros on the unit circle and that, given that these zeros are
non-degenerate, the bulk is a CFT with central charge c.

27Given that f(z) has 2c zeros {z0} on the unit-disk |z| = 1, due to time-reversal symmetry,
these zeros cannot be moved off the real axis. This has the consequence that {z0} has to fulfill
z2c

0 = ±1.
28In Appendix E, we show how Hamiltonians H1 = +(H2c+ν + Hν) can be connected to H2 =
−(H2c+ν + Hν) with a unitary transformation, U(α). Connecting Hamiltonians with different
intermediate signs can also be done as shown by Verresen et al. [18]
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6
Topological Edge Modes At

Criticality in Class CII

The discussion in the previous chapter provided a topological classification of one-
dimensional non-interacting gapless superconducting models in the symmetry class
BDI, and a natural question to ask is then whether a similar classification can be
made for other symmetry classes. According to the tenfold way for gapped systems,
see Table 4.1, we should expect a non-trivial classification of topological supercon-
ductors also in classes D, DIII, AIII and CII.1 Due to its striking resemblance with
BDI, the latter should be the most straightforward to provide a classification of,
which is the main topic of this chapter. In the last section of the chapter, the dif-
ficulties of providing a topological classification for gapless phases in the classes D
and DIII will be addressed.2

6.1 Representative CII models
There are many ways of constructing a (single-particle) Hamiltonian which can be
assigned a particle-hole symmetry and a time-reversal symmetry with operators P
and T such that T 2 = P2 = −1 and a chiral symmetry C with C2 = +1. We would,
however, like to rely on the construction by Verresen, Jones and Pollmann, as much
as possible and make use of Kitaev chains to form representative gapped and gapless
phases in the class. We will consider two different approaches in order to arrive at
an appropriate set of models representing the CII class. As will be indicated on the
way, the first approach does not give representative CII Hamiltonians of the desired
form, but the ingredients are still important building blocks in the (presumably)
successful models.

6.1.1 Approach I: Zhao and Wang Hamiltonian
By taking off from general index theorems [92], Zhao and Wang show that four
topologically distinct types of Majorana zero modes can emerge at the ends of one-
dimensional superconducting wires in the symmetry classes D, DIII, AIII, BDI and

1The BdG classes CI and C have a trivial classification in one dimension as can be seen in Table
4.1.

2As already noted by Verresen et al. , the classification of topological phases in symmetry class
AIII should follow immediately from the BDI-classification [18]. This is since AIII can be identified
as a subset of BDI in the sense that both classes have a Z topological invariant in one dimension
and AIII reduces to BDI if time-reversal/particle-hole symmetric perturbations are not allowed.
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CII. In particular, they provide a representative model for the symmetry class CII,
which can be seen as a spinful analogue of Kitaev’s model. In the BdG-formalism,
the Hamiltonian can be written as [93]

HCII
ZW =

∑
k

Ψ†kHZW(k)Ψk , HZW(k) = −∆ sin kσy ⊗ τz + (t cos k − µ)1⊗ τx , (6.1)

with Ψ†k = (â†k, â−k(−iσy))3 and t, µ,∆ ∈ R. Here, the spin dependence in the
fermionic operators is made explicit through the notation â†k = (a†↑,k, a

†
↓,k) (similar

for âk). Note that the Pauli matrices σi and τi act on the spin and particle-hole
degrees of freedom respectively. Expressed in this way, it is simple to read off a
time-reversal symmetry T and a particle-hole symmetry P of the model such that

T = σy ⊗ 1K ,P = 1⊗ τyK , (6.2)

obeying T 2 = P2 = −1. Hence, we may put the model in symmetry class CII. Let
us check explicitly that the Bloch Hamiltonian HZW(k) transforms correctly under
T and P :

T HZW(k)T −1 = −σy ⊗ 1K(−∆ sin kσy ⊗ τz + (t cos k − µ)1⊗ τx)σy ⊗ 1K
= σy ⊗ 1(∆ sin kσy ⊗ τz + (t cos k − µ)1⊗ τx)σy ⊗ 1
= ∆ sin kσy ⊗ τz + (t cos k − µ)1⊗ τx
= HZW(−k) ,

in agreement with (3.3). Similarly,

PHZW(k)P−1 = −1⊗ τyK(−∆ sin kσy ⊗ τz + (t cos k − µ)1⊗ τx)1⊗ τyK
= 1⊗ τy(∆ sin kσy ⊗ τz + (t cos k − µ)1⊗ τx)1⊗ τy
= −∆ sin kσy ⊗ τz − (t cos k − µ)1⊗ τx
= −HZW(−k) ,

as expected according to (3.17). Now, the Hamiltonian, HCII
ZW is easily written in

real space via the inverse Fourier transformation:

HCII
ZW =

∑
j

(
tâ†j+1σxâj −∆âj+1σxâj − µâ†jσxâj + h.c.

)
, (6.3)

with the full calculation provided in Appendix F. This will be used later when
discussing the emergence of Majorana zero modes. First, we turn our attention to
topological invariants of the model. In accordance with the Kitaev model, there
are two topological phases described by a topological invariant, ν. However, due to
the spin degrees of freedom, the topological invariant takes the values ν = ±2 (in
contrast to ν = ±1 of the Kitaev model ). To arrive at this result we make use of
Zhao and Wangs’ neat formula for computing the CII-topological invariant in one
spatial dimension [93]

νCII = 1
4πi

∫ π

−π
dktr

(
σy ⊗ τy(HZW(k))−1∂kHZW(k)

)
= 1

4πi

∫ π

−π
dkf(k) , (6.4)

3This defines a Nambu spinor, commonly introduced in superconducting BdG systems. Matrices
acting on such spinors must be 4× 4, e.g. σi ⊗ τj or τi ⊗ σj [4].
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which is quite similar to the winding number integral we used to compute the topo-
logical invariant for the SSH model and the Kitaev model, cf. equation (4.38). The
integrand, f(k), is easily (but tediously) computed as

f(k) = 4i∆(t− µ cos k)
µ2 − 2µt cos k + t2 cos2 k + ∆2 sin2 k

. (6.5)

Specifying the parameters t = ∆ > 0 and µ = 0 gives the integrand f(k) = 4i and
a trivial integral to solve with a non-zero topological invariant:

ν = 4i
4πi

∫ π

−π
dk = 2 , (6.6)

in agreement with the topological phase of the conventional Kitaev model (which
has ν = 1 for the same choice of parameters). However, note that we may also have
µ 6= 0 and still get ν 6= 0. To get ν = +2, t is restricted to be strictly larger than µ.
This can be seen by turning the integral in (6.4) with ∆ = t into a complex integral
by the substitution z = eik:

ν = 1
4πi

∫ π

−π
dkf(k) = −i4πi

∫
|z|=1

dz
f(z)
z

= − 1
4πi

∫
|z|=1

dz
4t(tz − µ/2(z2 + 1))
µtz(z − µ

t
)(z − t

µ
) ,

where Euler’s formula has been used to write f(k) as a polynomial of the variable
z = eik. Considering t > µ only the poles at z = 0 and z = µ

t
are inside the unit

circle and contribute to the integral and therefore

νCII

∣∣∣∣∣∣
t>µ

= − 4t2πi
4πiµt

(
(tz − µ/2(z2 + 1))

(z − µ
t
)(z − t

µ
)

∣∣∣∣∣∣
z=0

+ (tz − µ/2(z2 + 1))
z(z − t

µ
)

∣∣∣∣∣∣
z=µ

t

)

= − 2
µ

(
− µ

2 +
µ/2(1− µ2

t2
)

µ
t
(µ
t
− t

µ
)

)
= − 2

µ

(
− µ

2 −
µ

2

)
= 2 ,

invoking Cauchy’s integral formula (alternatively the residue theorem). However,
for t < µ we instead have

νCII

∣∣∣∣∣∣
t<µ

= − 4t2πi
4πiµt

(
(tz − µ/2(z2 + 1))

(z − µ
t
)(z − t

µ
)

∣∣∣∣∣∣
z=0

+ (tz − µ/2(z2 + 1))
z(z − µ

t
)

∣∣∣∣∣∣
z= t

µ

)

= − 2
µ

(
− µ

2 +
(µ/2( t2

µ2 − 1)
t
µ
( t
µ
− µ

t
)

)
= − 2

µ

(
− µ

2 + µ

2

)
= 0 .

Similarly, by putting t = −∆ < 0 and µ = 0 we arrive at νCII = −2. To summarize,
for µ 6= 0 we need |t| > |µ| in order to belong to a topological phase. In analogy
with the conventional Kitaev model, one can find topologically protected Majorana
modes in this phase by recasting the Hamiltonian in terms of spinful Majorana
operators4

γjs = ajs + a†js , γ̃js = i(a†js − ajs) , (6.7)
4In general, we could include a phase in the definition of the Majorana operators according to

γjs = eiθ/2ajs + e−iθ/2a†js and γ̃js = i(e−iθ/2a†js − eiθ/2ajs). In this setting θ is chosen to be zero.
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where j ∈ [1, N − 1] and s is the spin index, i.e. s =↑, ↓ . Moreover, γjs = γ†js and
γ̃js = γ̃†js. Putting ∆ = t > 0 and µ = 0 in (6.3), and decomposing âj = (aj↑, aj↓)
(and similar for the hermitian conjugate) we deduce that

HCII
Majorana =

∑
j

t

(
â†j+1σxâj − âj+1σxâj + h.c.

)

=
∑
j

t

(
a†j↑aj+1↓ + a†j↓aj+1↑ + a†j+1↑aj↓ + a†j+1↓aj↑

− a†j+1↓a
†
j↑ − a

†
j+1↑a

†
j↓ − aj↑aj+1↓ − aj↓aj+1↑

)

=
∑
j

t

(
(a†j↑ − aj↑)(aj+1↓ + a†j+1↓) + (a†j↓ − aj↓)(aj+1↑ + a†j+1↑)

)

= −it
∑
j

(
γ̃j↑γj+1↓ + γ̃j↓γj+1↑

)
,

where γ̃j = i(a†j − aj) and γj = a†j + aj. Thus, in terms of Majorana operators the
Hamiltonian reads

HCII
Majorana = −it

N−1∑
j=1

(
γ̃j↑γj+1↓ + γ̃j↓γj+1↑

)
. (6.8)

Now, by comparing the expression above with H1 in (5.1), it seems as if the rep-
resentative Kitaev-like CII model can be seen as two copies of the Kitaev chain.
However, the spins in (6.8) are coupled in an exotic way and in contrast to H1,
HCII

Majorana has two Majorana zero modes on each edge. On the left edge γ1↑ and γ1↓
serve as Majorana zero modes and similar for γ̃N↑ and γ̃N↓ on the right edge. To
confidently be able to argue that the CII Hamiltonian in (6.8) is just two copies
of the BDI Kitaev chain, we would like Majorana operators with the same spin to
couple to each other. Then, a representative CII model can be obtained by stacking
two BDI copies, one with spin up and one with spin down, on top of each other
and we may make use of the stacking procedure described by Verresen, Jones and
Pollmann [18] and in the previous chapter. This complication will be resolved in
the next section.

6.1.2 Approach II: PWW Hamiltonian
Another set of representative CII models is provided by Prakash, Wang and Wei
(PWW) who make use of stackings of Kitaev chains to form general short-range
entangled5 symmetry-protected fermionic phases in the BdG and chiral classes [95].
The construction by Prakash et al. is however really more general than we need
since it is also valid in the presence of interactions. Moreover, the model relies on

5This is superfluous terminology here since all symmetry-protected states can be seen as short-
range entangled states with a symmetry (T ,P or C). By contrast, states with intrinsic topological
order are long-range entangled [94].
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having four (rather than two) fermion species per unit cell labeled by the indices
a = 1, 2 and the spin index σ =↑, ↓ with the PWW Hamiltonian reading [95]

HPPW
CII = i

∑
n,σ

(γσ,2,nγσ,1,n+1 − γ̃σ,2,nγ̃σ,1,n+1) . (6.9)

It is clear that this Hamiltonian is difficult to interpret in the light of the previous
chapter. In contrast to the BDI Hamiltonian in (5.3), the Majorana operators γ
and γ̃ couple to themselves rather than to each other and they are also decorated
with extra indices a = 1, 2. The exotic couplings can be taken care of by means of
a unitary basis-transformation, Ms, such that

Ms =
∏
n

exp
(
π

4
∑
σ=↑,↓

γσ,2,nγ̃σ,1,n

)
=
∏
n

(1 + γ↑,2,nγ̃↑,1,n)√
2

(1 + γ↓,2,nγ̃↓,1,n)√
2

= M↑M↓ ,

where the second step follows by noting that the quantities A = γ↑,2,nγ̃↑,1,n and B =
γ↓,2,nγ̃↓,1,n are commuting quantities, i.e. the identity exp(A + B) = exp(A)exp(B)
holds. One can then make use of the Taylor series expansion of each exponential to
arrive at the neat expression above. The unitary operators M↑ and M↓ are easily
read off as

Mσ =
∏
n

(1 + γσ,2,nγ̃σ,1,n)√
2

, σ =↑, ↓ ,

which gives
M †

sHCIIMs = H̃CII = M †
↑H
↑
CIIM↑ +M †

↓H
↓
CIIM↓ , (6.10)

since M †
↑H
↓
CIIM↑ = H↓CII, M

†
↓H
↑
CIIM↓ = H↑CII. Let us, at least once, do the basis

transformation explicitly with σ =↑ acting on H↑CII. First, it is convenient to rewrite
the Hamiltonian:

H↑CII = i
∑
n

(γ↑,2,n, γ̃↑,2,n)
(
γ↑,1,n+1
−γ̃↑,1,n+1

)
,

and thus

M †
↑H
↑
CIIM↑ = i

∑
n

M †
↑(γ↑,2,n, γ̃↑,2,n)M↑M †

↑︸ ︷︷ ︸
=1

(
γ↑,1,n+1
−γ̃↑,1,n+1

)
M↑ .

The problem thus reduces to computing

M †
↑

(
γ↑,2,n γ̃↑,2,n

)
M↑ =

(∏
n′

(1 + γ↑,2,n′ γ̃↑,1,n′)√
2

)† (
γ↑,2,n
γ̃↑,2,n

)∏
n′′

(1 + γ↑,2,n′′ γ̃↑,1,n′′)√
2

= 1
2(1− γ↑,2,nγ̃↑,1,n)

(
γ↑,2,n
γ̃↑,2,n

)
(1 + γ↑,2,nγ̃↑,1,n)

= 1
2

(
γ↑,2,n + γ̃↑,1,n

γ̃↑,2,n − γ↑,2,nγ̃↑,1,nγ̃↑,2,n

)
(1 + γ↑,2,nγ̃↑,1,n)

= 1
2

(
γ̃↑,1,n + γ↑,2,n + γ̃↑,1,n + γ̃↑,1,nγ↑,2,nγ̃↑,1,n

γ̃↑,2,n − γ↑,2,nγ̃↑,1,nγ̃↑,2,n + γ̃↑,2,nγ↑,2,nγ̃↑,1,n − γ↑,2,nγ̃↑,1,nγ̃↑,2,nγ↑,2,nγ̃↑,1,n

)

=
(
γ̃↑,1,n
γ̃↑,2,n

)
,
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where we made use of the fermionic anti-commutator relations {γjs, γj′s′} =
{γ̃js, γ̃j′s′} = 2δjj′δss′ and {γjs, γ̃j′s′} = 0. The products over n′ and n′′ could
be removed right away since(∏

n′
M↑,n′

)†
~γ2(n)

∏
n′′
M↑,n′′ = M †

↑,NM
†
↑,N−1 · ... ·M

†
↑,n · ...M

†
↑,1~γ2(n)M↑,1M↑,2 · ... ·M↑,n · ...

= M †
↑,n~γ2(n)M↑,n ,

with ~γ2(n) =
(
γ↑,2,n
γ̃↑,2,n

)
. All factors M↑,n′ with n′ 6= n can be moved to the left of

~γ2(n) (since [M↑,n′ , ~γ2(n)] = 0 , n′ 6= n), and using M †M = 1 successively gives the
end result. Similarly,

M †
↑

(
γ↑,1,n
−γ̃↑,1,n

)
M↑ = 1

2(1− γ↑,2,nγ̃↑,1,n)
(
γ↑,1,n
−γ̃↑,1,n

)
(1 + γ↑,2,nγ̃↑,1,n)

= 1
2

(
γ↑,1,n − γ↑,2,nγ̃↑,1,nγ↑,1,n

γ↑,2,n − γ̃↑,1,n

)
(1 + γ↑,2,nγ̃↑,1,n)

= 1
2

(
γ↑,1,n − γ↑,2,nγ̃↑,1,nγ↑,1,n + γ↑,1,nγ↑,2,nγ̃↑,1,n − γ↑,2,nγ̃↑,1,nγ↑,1,nγ↑,2,nγ̃↑,1,n

γ↑,2,n − γ̃↑,1,n + γ̃↑,1,n − γ̃↑,1,nγ↑,2,nγ̃↑,1,n

)

=
(
γ↑,1,n
γ↑,2,n

)
,

and therefore

M †
↑H
↑
CIIM↑ = i

∑
n

(γ̃↑,1,n, γ̃↑,2,n)
(
γ↑,1,n+1
γ↑,2,n+1

)
= i

∑
n

(
γ̃↑,1,nγ↑,1,n+1 + γ̃↑,2,nγ↑,2,n+1

)
,

and analogously for M †
↓H
↓
CIIM↓. Thus, we may recast HPPW

CII into the form 6

H̃PPW
CII = i

∑
n

∑
σ=↑,↓

(
γ̃σ,1,nγσ,1,n+1 + γ̃σ,2,nγσ,2,n+1

)
. (6.11)

Now, we allow ourselves to be naive and check whether the index a = 1, 2 is really
necessary in order to put the Hamiltonian in the symmetry class CII. Hence, we
remove the second term in (6.11) and suppress the remaining site index:

H̃PPW
CII

drop a︷︸︸︷→ H1
CII = i

∑
n

∑
σ=↑,↓

γ̃σ,nγσ,n+1 , (6.12)

and thus the CII chain hosts Majorana zero modes γ̃↑,N , γ̃↓,N on the right edge of
the chain and γ↑,1, γ↓,1 on the left edge of the chain. Generically, when a spinful
time-reversal symmetry is present, the pairs of Majorana zero modes on each edge
are referred to as Kramers pairs due to Kramers theorem discussed briefly in section

6The basis transformation, Ms, and this representation of the PPW Hamiltonian is nowhere to
be found in [95]. However, the correctness of the expression has been verified by one of the authors
(Prakash) [96].
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3.1.7 To easier analyze the symmetries of the model, we turn our attention to
the corresponding single-particle BdG Hamiltonian as in the previous section. In
this case, the entire calculation will be provided in the main text. First, the CII
Hamiltonian has to be expressed in terms of fermionic creation and annihilation
operators:

H1
CII = i

∑
j

∑
σ=↑,↓

i(c†σ,j − cσ,j)(c
†
σ,j+1 + cσ,j+1)

= −
∑
j

∑
σ=↑,↓

(c†σ,j − cσ,j)(c
†
σ,j+1 + cσ,j+1)

= −
∑
j

∑
σ=↑,↓

(
c†σ,jc

†
σ,j+1 + c†σ,jcσ,j+1 − cσ,jc†σ,j+1 − cσ,jcσ,j+1

)
,

and by expressing the fermionic operators in momentum space according to

cσ,j = 1√
N

∑
k

e−ijkcσ,k , (6.13)

it is a simple matter to write the CII model in a Bogoliubov-de Gennes fashion:

H1
CII = − 1

N

∑
j,k,k′,σ

(
c†σ,kc

†
σ,k′eij(k

′+k)+ik′ + c†σ,kcσ,k′eij(k−k
′)−ik′

− cσ,kc†σ,k′eij(k
′−k)+ik′ − cσ,kcσ,k′e−ij(k

′+k)−ik′
)

= −
∑
k,σ

(
c†σ,kc

†
σ,−ke−ik + c†σ,kcσ,ke−ik − cσ,kc

†
σ,keik − cσ,kcσ,−keik

)

= −1
2
∑
k,σ

(
c†σ,kc

†
σ,−ke−ik + c†σ,−kc

†
σ,keik + c†σ,kcσ,ke−ik + c†σ,−kcσ,−keik

− cσ,kc†σ,keik − cσ,−kc
†
σ,−ke−ik − cσ,kcσ,−keik − cσ,−kcσ,ke−ik

)

=
∑
k


c†↑,k
c†↓,k
c↓,−k
−c↑,−k


T 
−( e−ik+eik

2 ) 0 0 −( eik−e−ik
2 )

0 −( e−ik+eik
2 ) −( e−ik−eik

2 ) 0
0 −( eik−e−ik

2 ) e−ik+eik
2 0

e−ik−eik
2 0 0 −( e−ik+eik

2 )




c↑,k
c↓,k
c†↓,−k
−c†↑,−k

 ,

=
∑
k


c†↑,k
c†↓,k
c↓,−k
−c↑,−k


T 
− cos(k) 0 0 −i sin(k)

0 − cos(k) i sin(k) 0
0 −i sin(k) cos(k) 0

i sin(k) 0 0 cos(k)


︸ ︷︷ ︸

=H(k)


c↑,k
c↓,k
c†↓,−k
−c†↑,−k

 ,

7In the introduction, Chapter 1, of this thesis we argued that long-range separation of Majorana
zero modes obeying non-abelian statistics can be useful to store information non-locally. Clearly,
this is the case for the regular spinless Kitaev chain with two isolated Majorana edge modes
with large separation in the thermodynamic limit. However, the cautious reader may be worried
that a Kramer’s pair of Majoranas combine into a fermion, thereby loosing its exotic statistics.
Fortunately, this is not the case: in spinful TRS systems Kramer pairs of Majorana can still be
braided in a non-commutative fashion [37][97].
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6. Topological Edge Modes At Criticality in Class CII

where we adapted the Nambu spinor-convention introduced by Zhao and Wang [93].8
The Bloch Hamiltonian, H(k), can be written more elegantly by introducing Pauli
matrices σi and τi acting on spin degrees of freedom and particle-hole degrees of
freedom respectively.9 One obtains:

H(k) = sin(k)σx ⊗ τy − cos(k)σz ⊗ 1 , (6.14)
which is seen to be invariant under the time-reversal transformation T = 1 ⊗ τyK
and the particle-hole symmetry transformation P = −σy⊗1K, K being the complex
conjugation operator. In other words,

T H(k)T −1 = H(−k) ,PH(k)P−1 = −H(−k) . (6.15)
Note that T 2 = P2 = −1, which confirms that H(k) in the CII symmetry class.
However, one might also choose the particle-hole operator P = σy ⊗ τyK and still
fulfill (6.15), giving C2 = +1 and putting the model in symmetry class DIII. Remark-
ably, (6.14) can be related to the CII Hamiltonian suggested by Zhao and Wang,
HZW(k), equation (6.1) with ∆ = t = 1 and µ = 0, via a unitary transformation, U ,
such that

UH(k)U † = HZW(k) , (6.16)
where U , in matrix representation, can be taken as10

U = 1
2


1 1 1 1
−1 −1 1 1
1 −1 1 1
−1 1 1 −1

 = 1
21⊗ τz + 1

2σx ⊗ 1 + i

2σy ⊗ τx + i

2σz ⊗ τy . (6.17)

The latter representation makes the connection between H(k) and HZW(k) more
explicit (since these are expressed as linear combinations of Kronecker products of
Pauli matrices in spin space and particle-hole space). This shows that our discussion
of topological invariants in the previous section will now serve as well. In particular,
we do not have to provide a new calculation of the topological invariant for the CII
model in the setting of Prakash et al. but can rely on the discussion in 6.1.1. Now
we return to H1

CII and use this Hamiltonian to form the corresponding translation-
invariant α-chain for Hamiltonians in symmetry class CII in analogy with (5.1) in
Chapter 5:

Hα
CII = i

∑
n

∑
σ=↑,↓

γ̃σ,nγσ,n+α , (6.18)

which, due to spin-degeneracy, hosts 2|α| Majoranas at each edge. These chains
may now be used as basis elements when forming a general CII Hamiltonian:

HCII =
∑
α

tαH
α
CII , tα ∈ R . (6.19)

As before, basis elements of the type iγnγm or iγ̃nγ̃m are not allowed in HCII due to
time-reversal symmetry.

8Another popular convention for the Nambu spinor, Ψ†, is given by Ψ† =
(a†k↑, a

†
k↓,−a−k↓, a−k↑).

9It is a matter of choice whether to write the Hamiltonian as H(k) = fij(k)σi ⊗ τj or H(k) =
fij(k)τi ⊗ σj .

10It should be noted that the proposed unitary transformation is by no means unique. However,
U fulfills the conditions UH(k) = HZW(k)U and UU† = 1 which is all we require.
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6. Topological Edge Modes At Criticality in Class CII

6.2 Classifying critical phases of CII
We have now justified that the representative CII Hamiltonian can be seen as two
copies of the BDI Hamiltonian, assigning a spin index to each copy, cf. equation
(5.3). In other words, HCII, can equivalently be written as

HCII = H
(1)
BDI +H

(2)
BDI , (6.20)

with (1) and (2) referring to ↑ and ↓ respectively. Considering the different decoupled
chains we may use the concept of stacking BDI chains to describe the CII model.
In particular, given that H(1)

BDI and H
(2)
BDI have a one-to-one correspondence with

the complex functions g(z) and h(z), the function used to calculate the topological
invariant of the stacked system is provided by Verresen et al. as [18]

f(z) =
∣∣∣∣∣g(z) 0

0 h(z)

∣∣∣∣∣ = g(z)h(z) . (6.21)

Let us take the canonical example with the stacking of two H1
BDI-chains to see that

this construction holds. Recall that we calculated the topological invariant of H1
CII

to be equal to ν = 2 in (6.6) for parameters ∆ = t and µ = 0. Now, our claim is
that H1

CII can be seen as two copies of the regular (BDI) Kitaev chain, H1 in (5.1).
Such a chain has a complex function g(z) = z associated to it and consequently the
topological invariant ν = 1. Thus, the corresponding function f(z) of H1

CII is given
by

f(z) =
∣∣∣∣∣z 0
0 z

∣∣∣∣∣ = z2 , (6.22)

according to the recipe above. This naturally gives a topological invariant ν = 2,
which coincides with our result in (6.6). For gapped systems, in which f(z) has no
zeros on the unit circle, it seems as the main difference between topological phases
in the symmetry class CII and the symmetry class BDI is reflected in the degree of
the poles and the degeneracies of the zeros of f(z). Since f(z) is the product of two
identical functions h(z) = g(z) (each associated to a gapped BDI chain), the zeros
of f(z) identically coincide with the zeros of g(z) although they are at least two-fold
degenerate.11

Turning our attention to gapless systems, we have to be very careful. The construc-
tion of stacking BDI copies on top of each other necessarily requires the inclusion
of a unit cell (if we neglect the possibility of rewriting the resulting CII chain in
a translation-invariant manner). Then, since the complex function f(z) can be ex-
pressed as the product of energy bands [18] such that |f(eik)| = ∏N

n ε
(n)
k , with N

being the number of bands (i.e. the number of BDI copies), it is clear that zero-
degeneracies in f(z) has another interpretation than in the translation-invariant
case. In particular, we have seen that in the translation-invariant case the classifi-
cation of gapless phases in terms of the central charge of the bulk CFT fails when
the zeros on the unit circle are degenerate. This does not have to be the case with
a unit cell. In fact, if all BDI copies are described by a CFT in the bulk (that is,

11We have omitted the rather uninteresting trivial case f(z) = 1 here.
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6. Topological Edge Modes At Criticality in Class CII

they are each associated to complex functions with non-degenerate zeros on the unit
circle), we should have no reason to worry about the stacked system. For instance,
f(z) = (z + 1)2 does not in general imply a dynamical critical exponent zdyn = 2.
However, if the composition of f(z) is unknown one can not use f(z) to distinguish
a CFT with c = 1 from a gapless quadratic point with zdyn = 2.

6.3 Topological classification of remaining BdG
classes

Given that the bulk of the two BDI chains labeled by the spin index σ =↑, ↓ is de-
scribed by a CFT, we have been able to perform an extension of Verresen, Jones and
Pollmann’s arguments to include symmetry class CII giving an 2N×2Z-classification
for gapless phases. The factor "2" is due to the spin degeneracy. It still remains to
classify gapless phases in the symmetry classes D and DIII, which both have a non-
trivial gapped Z2−classification in one dimension, see Table 4.1. It is clear that the
winding number-description outlined in [18] can not be immediately used in these
cases to compute Z2-invariants, which rather are commonly computed as Pfaffians
[15]. However, as shown by Ardonne and Budich for the Kitaev chain in class D, the
Z2-invariant can equivalently be computed in terms of a Zak-Berry phase [27][31]
and consequently a winding number [98]. Moreover, in a presence of an additional
U(1) spin rotation symmetry, Budich and Ardonne argue (in another paper) that a
1D topological superconductor in class DIII can be understood as two copies of the
TSC in class D, each copy being assigned one spin direction [99]. This is analogous
to the construction of a representative CII model using two BDI chains presented
in the previous section. Hence, it seems plausible that it is possible to provide a
topological classification for gapped and gapless phases in classes D and DIII in the
light of Verresen, Jones and Pollman as well. However, focusing on symmetry class
D, Ardonne and Budich allow for fermionic chains which are neither translation-
invariant or time-reversal invariant forcing us to introduce terms of the type iγnγm
and iγ̃nγ̃m such that a general superconducting (mean field) Hamiltonian without
any physical symmetries12 can be expressed as[100]

HD = i

4
∑
j,k

γjtjkγk , γ2j = i(c†j − cj) , γ2j−1 = c†j + cj , j = 1...N , (6.23)

where tij = −tji ∈ R are matrix elements in an 2N × 2N real matrix, T . In our
notation, γ2j ↔ γ̃j and γ2j−1 ↔ γj and (6.23) can be rewritten according to

HD = i

4
∑
j,k

γ̃jajkγ̃k + i

4
∑
j,k

γjbjkγk + i

2
∑
j,k

γ̃jgjkγk , (6.24)

with ajk = t2j,2k, bjk = t2j−1,2k−1 and gjk = t2j−1,2k. The last term was our starting-
point for the generic, time-reversal symmetric, BDI Hamiltonian, equation (5.2),
before demanding translation-invariance. Now, it is by no means obvious how to

12As stressed earlier Hamiltonians in class D have a particle-hole symmetry. This symmetry
emerges as a result of introducing Bogoliubov quasiparticles, which is a mathematical construction.
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6. Topological Edge Modes At Criticality in Class CII

relate the entries in the matrix T to a complex, meromorphic function f(z) which is
one-to-one with the Hamiltonian HD. Naively, we may follow the logic by Ardonne
and Budich and make use of the fact that T , being real and anti-symmetric, have
purely imaginary eigenvalues which come in complex-conjugated pairs, i.e. ±iελ,
ελ > 0. Note that this reasoning is only valid for gapped systems (ελ 6= 0). Hence, T
can be brought to an off-diagonal Jordan form using an orthogonal transformation,
W (WW T = 1)[98]:

T̃ = WTW T = diag
(

0 ελ
−ελ 0

)
. (6.25)

Now, as outlined in detail in [98], one can show that the Z2 Pfaffian invariant,M,
introduced by Kitaev [15] can be related to a winding integral over half the Brillouin
zone of the quantity, det(W̃ (k)), which is the determinant of the Fourier transform
of W :

M = (−1)ν , ν = i
∫ π

0
dk∂klog(det(W̃ (k))) , (6.26)

where ν is seen to be an integer since det(W̃ (k))) = eiϕk and ϕk = ϕ−k. This implies
that Kitaev’s Z2-invariant takes two values, ±1 with one sign (-) being attributed
to a topological phase and one sign (+) attributed to a trivial phase. At first glance
it may seem as if we are not able to give this winding number the same physical
interpretation as in the BDI-case, that is, the winding number counts the number
of Majorana edge modes. This is since, ν = 2m, m ∈ N, corresponds to the trivial
phase and ν = 2m − 1 to the topological phase, and naively it seems as if we only
can have an odd number of MZMs in the topological phase. However, since time-
reversal symmetry is not present in the symmetry class D, phases of matter with
different topological invariants ν1 = 2m− 1 and ν2 = 2n− 1, n,m ∈ N, n 6= m can
be adiabatically connected without closing the energy gap [101]. Using the same
argument, (non-topological) phases with an even non-zero topological invariant can
be considered equivalent to a trivial phase with ν = 0. Hence, ν still counts Majorana
edge modes in class D. Still the construction does not hold for gapless systems. As
such, the analysis of the symmetry classes D and DIII is incomplete, although it
seems reasonable to expect a single topological phase with M = −1 per central
charge c as also concluded by Verresen, Jones and Pollmann [18].
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7
Conclusion

This thesis has served to review the nowadays well-established field in condensed
matter physics − topological quantum matter. This field provides a bridge be-
tween abstract mathematics and measurable quantities. In contrast to much of the
introductory literature on the subject, the emphasis has been put on topological
superconductors rather than on topological insulators. The fact that such supercon-
ductors may host Majorana bound states, which are exotic quasiparticle excitations
obeying non-abelian anyon statistics, is truly remarkable and hence, doing basic
research on the topic is well-motivated by desirable future technological applications.

We have been concerned with the existence of Majorana zero modes in the simplest
setting possible: one-dimensional and non-interacting systems. In fact, we have
seen that already these toy models demonstrate rich physics in the sense that they
well illustrate the concepts of symmetry-protected topological phases and their
relation to topological invariants and boundary states. Moreover, although the
gapped classification of topological classification of one-dimensional TSCs is fully
understood and neatly summarized in the tenfold table, we have indicated that
the comprehension of gapless critical systems is lacking. Therefore, this thesis can
also be seen as an attempt of addressing the issue of what happens precisely at a
topological phase transition. Following the logic by Verresen, Jones and Pollmann,
we have been able to extend their topological classification for gapless supercon-
ductors in the BDI symmetry class to CII in terms of the conventional Z-invariant,
the winding number, complemented by the central charge c in the bulk conformal
field theory. In particular, it was shown that the winding number counts Majorana
zero modes, although the extension to the CII-class introduces a doubling of the
edge modes due to spin degeneracy. This is also reflected in the winding number
only taking even integer values in the CII-case. Finally, we also commented on
the difficulties of extending the classification of gapless phases to the remaining
BdG-classes with a non-trivial topological invariant in one dimension. However,
in classes D and DIII, these are Z2-invariants commonly computed as Pfaffians,
making them difficult to interpret in the context of our earlier discussion based on
a winding number construction.

More importantly, it should be noted that realistic topological systems are expected
to be more complex than implied by the simple toy models studied above. Firstly, it
would be favourable to classify topological phases of matter in a larger number of di-
mensions and secondly, interactions between electrons have to be taken into account.
Unfortunately, this Master’s thesis resides almost exclusively in a one-dimensional
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universe with electrons that interact only at mean-field level to form Cooper pairs.
On the other hand, just a couple of decades ago there would be no material at all
to fill this thesis with and that would be truly dissatisfying. The journey starting in
1980 with the discovery of the (integer) quantum Hall effect, eventually leading to
the detection of the first experimental signals of possible Majorana zero modes and a
couple of Nobel prizes1 on the way, has only begun. Additionally, and optimistically,
the experimental realization of topological quantum computing might soon be made
successful. Thus, to conclude, from a physics perspective, these are truly interesting
times.

1von Klitzing was awarded the prize for the experimental discovery of the quantization of the
Hall conductivity in 1985, and a cousin of IQHE, the Fractional Quantum Hall Effect was rewarded
in 1998 when Laughlin, Störmer and Tsu received the prize. More recently, in 2016, the entire field
of topological quantum matter was celebrated and exposed to the public, when Thouless, Haldane
and Kosterlitz got their Nobel medals [102].
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A
Alternative Form of Winding

Number Integral

In Asboth et al. [5], the following definition of the winding number ν is given:

ν = 1
2π

∫
k∈1BZ

~e~d(k)× d

dk
~e~d(k)dk , (A.1)

where ~e~d(k) = ~d(k)
|~d(k)| is the projection of ~d = (dx, dy, dz) onto the unit circle. Moreover,

~e~d is well-defined since it is assumed that |~d| 6= 0. The claim is then that, in the case
of the SSH model (or any other model with an off-diagonal Bloch Hamiltonian), the
integral above is equivalent to

ν = 1
2πi

∫
k∈1BZ

dk
d

dk
(log(h(k))) , (A.2)

with h(k) = dx − idy. Showing this equivalence is the topic of this appendix. Since
dz = 0 by chiral symmetry, it follows that the result of taking the cross-product in
(A.1) is a vector in the ẑ-direction:

~e~d(k)× d

dk
~e~d(k) = (dx, dy, 0)

|~d|
× d

dk
((dx, dy, 0)
|~d|

) = (d̃x
d

dk
d̃y − d̃y

d

dk
d̃x)ẑ ,

where we introduced d̃x = dx
|~d| (and similar for d̃y). Now, we have to write the

expression out explicitly and be careful about signs:

d̃x
d

dk
d̃y = dx√

d2
x + d2

y

(
d′y√

d2
x + d2

y

+ dy
d

dk
( 1√

d2
x + d2

y

)) ,

d̃y
d

dk
d̃x = dy√

d2
x + d2

y

( d′x√
d2
x + d2

y

+ dx
d

dk
( 1√

d2
x + d2

y

)) ,

and when taking the difference between the two terms, the terms with derivatives
on 1

|~d| cancel yielding

d̃x
d

dk
d̃y − d̃y

d

dk
d̃x =

dxd
′
y − dyd′x
d2
x + d2

y

. (A.3)

Next, note that

d

dk

(
dx − idy

)
(dx + idy) = d′xdx + dyd

′
y − i(d′ydx − d′xdy) , (A.4)
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and therefore

ν = i

2π

∫ d
dk

(dx − idy)(dx + idy)
d2
x + d2

y

dk − i

2π

∫ d′xdx + d′ydy

d2
x + d2

y

dk . (A.5)

The second term is easily evaluated:

i

2π

∫
k∈1BZ

d′xdx + d′ydy

d2
x + d2

y

dk = i

4π [log(d2
x + d2

y)]2πk=0 = 0 , (A.6)

since h(k) = d2
x+d2

y and |h(0)| = |h(2π)|. The remaining term gives the final formula
(up to a sign)

ν = i

2π

∫
k∈1BZ

d
dk

(dx − idy)(dx + idy)
(dx + idy)(dx − idy)

dk

= i

2π

∫
k∈1BZ

d
dk

(h(k))
h(k) dk = i

2π

∫
k∈1BZ

dk
d

dk
log(h(k)) .

We are therefore left with

ν = − 1
2πi

∫
k∈1BZ

dk
d

dk
log(h(k)) , (A.7)

which agrees with Asboth up to an (irrelevant) sign. The sign is quite arbitrary
in the sense that it depends on whether the curve ~e~d(k) is traversed clockwise or
anti-clockwise around the origin. Going back to (A.4), we could get rid of the sign
by considering h∗(k) rather than h(k) by noting

d

dk

(
(dx + idy)

)
(dx − idy) = d′xdx + dyd

′
y + i(d′ydx − d′xdy) , (A.8)

and therefore

ν = − i

2π

∫ 2π

0

d
dk

(dx + idy)
dx + idy

dk = 1
2πi

∫ 2π

0

d
dk
h∗(k)
h∗(k) dk , (A.9)

concluding that

ν = − 1
2πi

∫ 2π

0
dk
h′(k)
h(k) = 1

2πi

∫ 2π

0
dk

d
dk
h∗(k)
h∗(k) . (A.10)

This means that it does not matter if we work with h(k) or h∗(k). The resulting
winding numbers will only differ by a total sign.
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B
Connecting f (z) of VJP to h(z) of

the Kitaev Model

In this section we will demonstrate a connection between the function h(z) in the
Kitaev model, cf. equation (4.46), and the complex, meromorphic f(z) introduced
by Verresen, Jones and Pollmann to classify topological phases in symmetry class
BDI [18]. Recall that the non-topological phase of the Kitaev model sits in H0 and
the topological phase sits in H1, see equations (4.26) and (4.27) respectively. Recall
the Bloch Hamiltonian for the Kitaev model:

H(k) =
(
−µ− 2t cos(k) −2i∆ sin(k)

2i∆ sin(k) µ+ 2t cos(k)

)
=
(
hz −ihy
ihy −hz

)
, (B.1)

with hz = −µ − 2t cos(k) and hy = 2∆ sin(k). Now, by a unitary transformation
U = e−iϕkσx/2 we will be able to diagonalize H(k) according to

UH(k)U † =
(
E(k) 0

0 −E(k)

)
, (B.2)

where E(k) = ±
√

(µ+ 2t cos(k))2 + 4∆2 sin2(k) is the bandstructure, cf. equation
(4.37), equal to the single-particle energy, εk. The unitary transformation can be
rewritten as

U = e−iϕkσx/2 = cos(ϕk2 )− i sin(ϕk2 )σx , (B.3)

which is easily proven by expressing the exponential as a Taylor series, cf. the
derivation leading up to (4.42). Written out, U reads

U =
(

cos(ϕk2 ) −i sin(ϕk2 )
−i sin(ϕk2 ) cos(ϕk2 )

)
. (B.4)

Now, we need to compute the matrix product UH(k)U †:

UH(k)U † =
(
hz cos(ϕk) + hy sin(ϕk) −ihy cos(ϕk) + ihz sin(ϕk)
ihy cos(ϕk)− ihz sin(ϕk) −hz cos(ϕk)− hy sin(ϕk)

)
. (B.5)

Comparing this with the diagonal matrix diag(E,−E) we immediately see that

hz cos(ϕk) + hy sin(ϕk) = E

hy cos(ϕk) = hz sin(ϕk) .
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Assuming hz 6= 0 (µ 6= −2t) we may solve for sin(ϕk) = hy
hz

cos(ϕk) and plug the
result into the first equation:

(hz +
h2
y

hz
) cos(ϕk) = E ⇒ cos(ϕk) = Ehz

h2
z + h2

y

= ± hz
|E|

, (B.6)

using the fact E2 = h2
y + h2

z. Similarly, we can solve for cos(ϕk) = hz
hy

sin(ϕk)
(assuming hy 6= 0) and get an expression for sin(ϕk):

(h
2
z

hy
+ hy) sin(ϕk) = E ⇒ sin(ϕk) = ± hy

|E|
. (B.7)

Therefore, we have
f(k) = E(k)eiϕk = ±(hz + ihy) . (B.8)

Note that if we pick the + sign for hz and the − sign for hy f(z) reduces to precisely
h(z) in (4.46). This is remarkable! We have thus found out that f(z) seems like
a plausible candidate for computing winding numbers (at least this holds for the
Kitaev model).
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C
Phase Transitions and Critical

Systems

Most readers are probably well acquainted with the concept of phase transitions
from a course in thermodynamics or even from elementary level physics. A familiar
example of a phase transition is when water freezes to ice, but Nature exhibits
many other types of phase transitions, as when a metal is cooled down to low
temperatures and becomes superconducting. These examples have in common that
both transitions occur by varying an external parameter, in this case temperature.
The topological phase transitions discussed in this thesis, however, are non-thermal,
happening at zero temperature and so called quantum phase transitions. A phase
transition is here induced by changing a non-thermal control parameter, such as a
magnetic field, chemical potential, or coupling constant. In the discussion below,
we have closely followed the canonical work by Sachdev [103] and the review by
Vojta [104] (although Vojta has benefited a lot from Sachdev).

Conventionally, one distinguishes between first-order transitions and continuous
transitions. In the realm of classical thermal phase transitions, first-order transitions
involve a discrete jump in energy, i.e. latent heat, at the transition temperature,
a characteristic feature well-known from the water-vapor and ice-water phase tran-
sitions. Continuous transitions instead demonstrate a discontinuity or a singular
behavior in the derivatives of thermodymamic quantities. In particular, such transi-
tions are described by some order parameter which is non-zero in one phase (ordered
phase) and zero in the other phase referred to as the disordered phase or the high-
symmetric phase.1 This is since conventional phase transitions are associated with
broken symmetries. For instance, the spins in a paramagnetic material with (spon-
taneous) magnetization M = 0 display rotational symmetry but in a ferromagnetic
phase with M 6= 0 the spins tend to align with the direction of the magnetization,
breaking the rotational symmetry. Above a certain temperature T > TC the mag-
netization of a ferromagnetic material vanishes while for T < TC M is non-zero. As
T → TC the magnetization goes to zero according to the power-law[81]

M ∼ (TC − T )β , (C.1)

with β = 1
8 . Note that M is continuous at T = TC . This is not the case for its

1It is really the thermodynamic average of the order parameter which is zero or non-zero in the
disordered or orded phases.
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derivative with respect to the magnetic field, h, that is, the magnetic susceptibility:

χ = ∂M

∂h
∼ (T − TC)−γ , (C.2)

with γ = 7
4 . Moreover, although the thermodynamic average of the magnetization

is zero for T > Tc, the fluctuations of the parameter are non-zero in general. In
particular, if T → TC the spatial correlations between the fluctuations will be very
large and the correlation length, ξ(T ), scales as

ξ(T ) ∼ 1
|T − TC |

. (C.3)

For a generic system undergoing a continuous phase transition the correlation length
does not have to depend on temperature but rather

ξ ∼ |t|−ν , (C.4)

with |t| = |λ− λc|, λ being some external control parameter.2 The critical exponent
ν is of crucial importance and determines the divergence of the correlation length.
Similarly, one can also define a correlation time, τc, which determines the time scale
of the decay of correlations between fluctuations of the order parameter,

τc ∼ ξz ∼ |t|−νz , (C.5)

in this way introducing the dynamical critical exponent z. The parameters ν and
z are fundamental characteristics of continuous phase transitions and critical phe-
nomena. At the critical point the correlation length and correlation time are infinite
and fluctuations of the order parameter occur at all time scales and length scales,
i.e. scale invariance is manifest. Therefore, in the vicinity of the critical point, all
thermodynamic functions (such as M and χ) are defined by power-laws. Critical
phenomena are thus completely characterized by the different critical exponents (up
to amplitudes, which are usually less relevant when comparing theory to experi-
ments). Interestingly, the critical exponents are not independent from each other
but are in general connected by the scaling hypothesis. In our example with the fer-
romagnet with magnetization M , the hypothesis states that the free energy density
is a homogenous function of the parameters t and h near the critical point T → TC .
Introducing the free energy density f(t, h) there must then exist exponents λa and
λb such that

f(λat, λbh) = λf(t, h) , (C.6)
since the correlation length is the only relevant length scale at T = TC . Moreover,
note that the quantity t−1/af(t, h) is invariant under the transformations t → λat
and h→ λbh:

t−1/af(t, h)→ (λat)−1/af(λat, λbh) = t−1/af(t, h) , (C.7)

according to (C.6). This implies that t−1/af(t, h) only depends on the scale-invariant
parameter y = h/tb/a, i.e. t−1/af(t, h) = g(y) and therefore we must be able to write

f(t, h) = t1/ag(y) , y = h

tb/a
, (C.8)

2One can also renormalize |t| to be dimensionless by writing |t| = |λ− λc|/|λc|.
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which is consistent with (C.6) under the transformations t → λat and h → λbh.
Now, the derivatives of the free energy at zero magnetic field, h = 0, are related to
the spontaneous magnetization and the magnetic susceptibility according to

M = −∂f
∂hh=0

= t(1−b)/ag′(0) ,

χ = ∂2f

∂h2 h=0
= t(1−2b)/ag′′(0) .

By comparing these equations to (C.1) and (C.2) the following constraints have to
be obeyed:

γ = 1− b
a

,

β = −(1− 2b)
a

.

These relations show that the critical exponents γ and β are related through what
is called a scaling law.
The most remarkable feature about continuous phase transitions concerns the con-
cept of universality classes. Near the critical point the behavior of the system is
solely determined by the symmetries and dimensionality of the order parameter and
not the microscopic properties of the Hamiltonian (which otherwise characterizes the
system). This means that there exists entire classes of phase transitions described
by certain critical exponents, and thus, systems which describe completely different
kinds of physics may belong to the same universality class. Given that the critical
exponents are well-investigated for a single simple model it then immediately follows
that all other models in the same universality class have the same exponents.
It is now in order to comment on the distinction between quantum phase transitions
and the classical phase transitions we have discussed above. In quantum mechanics,
the energy scale ~ωc of quantum fluctuations is important and should be compared
to the (classical) thermal energy scale kBT , with kB being the Boltzmann constant
and T the temperature. Simply put, whenever ~wc >> kBT quantum mechanical
effects have to be taken into account but if ~ωc << kBT the system can be treated
classically. At zero temperature quantum fluctuations dominate the system’s be-
havior. From (C.5) we note that the characteristic time scale, τ , diverges as the
critical point λ → λc is approached. Similarly, the frequency scale ωc vanishes at
the quantum critical point and the energy scale goes as

~ωc ∼ |t|νz . (C.9)

Now, as soon as ~ωc is smaller than kBT , the order parameter fluctuations can be
described classically.
The connection between quantum mechanical systems and classical systems in fact
goes deeper than the discussion above. In fact, by turning to (quantum) statistical
mechanics we may show an intimate connection between d-dimensional quantum
systems and d+ 1-dimensional classical systems. In order to understand what hap-
pens when the temperature goes to zero and quantum mechanichal effects become
important, we consider the partition function

Z(β) = tr(e−βH) , (C.10)
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with β = 1
kBT

and H = Hkin +Hp being the Hamiltonian with its kinetic (Hkin) and
potential (Hp) parts. In a classical system the kinetic and potential part commute
and hence the partition function factorizes according to Z = ZkinZpot. In this way,
the statics and dynamics of the system can be considered decoupled. In contrast,
Hkin and Hp are anti-commuting quantities in a quantum theory, forcing us to
consider both space and time-dependent fields in an order parameter field theory
[104]. Next, note that the quantity e−βH coincides with the regular time evolution
operator e−iHt/~ at (imaginary) time t = −i~β, implying that

Z(β) =
∑
n

〈n|e−βH |n〉 , (C.11)

can be seen as a sum of (imaginary-time) transition amplitudes [105]. We have
thus established that calculating the thermodynamics in the quantum system is
equivalent of computing the dynamics in imaginary time. Note that, at zero tem-
perature, the imaginary time-dimension in the quantum system becomes a proper
space dimension in the classical system. As a result, the partition function of a
d-dimensional quantum system is identical to the classical partition function in a
d+ 1-dimensional classical system and in the quantum case the inverse temperature
can be interpreted as imaginary time.3 Note that this equivalence only holds in the
so called scaling limit ξ

a
→∞, ξ being the correlation length and a the microscopic

length (lattice constant).

Let us be more explicit and properly show the equivalence between a 1D clas-
sical Ising model and a 0D (quantum) Ising model. The Hamiltonian, H in (C.10)
is then given by that of a one-dimensional Ising model:

H = HIsing = −J
∑
i

σiσi+1 , σi = ±1 , (C.12)

where σi are spins on a one-dimensional lattice and J describes the coupling strength
between neighboring sites. Then it follows that the partition function can be ex-
pressed as

Z(β) =
∏
i

∑
{σi}

eKσiσi+1 , (C.13)

introducing K = Jβ. Now, with slight abuse of notation, we may interpret eKσiσi+1

as elements Tσiσi+1 in a transfer matrix, T :

T =
(

eK e−K
e−K eK

)
, (C.14)

with eigenvalues ε1 = coshK and ε2 = sinhK. Next, we write out (C.13) in its full
glory:

Z(β) =
∑
{σi}

Tσ1σ2Tσ2σ3 · ... · TσM−1σ1 = tr(TM) = εM1 + εM2 , (C.15)

3Surely, this connection between quantum and classical systems is truly remarkable and, as
Polyakov [106] puts it, there might be "deep reasons" for the analogies which have to do with the
properties of spacetime.
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where we imposed periodic boundary conditions, i.e. σM = σ1. To further investi-
gate the scaling limit ξ

a
, we turn to correlation functions:

〈σiσj〉 = 1
Z

∑
{σλ}

eK
∑

l
σlσl+1σiσj = 1

Z

∏
l

∑
{σλ}

eKσlσl+1σiσj , (C.16)

where ∏
l

∑
{σλ}

eKσlσl+1σiσj =
∑
{σλ}

Tσ1σ2Tσ2σ3 · ... · TσM−1σ1σiσj

=
∑
〈σ1|T i−1σzT

j−iσzT
M−(j−1)|σ1〉

= tr
(
T i−1σzT

j−iσzT
M−(j−1)

)
,

where we made use of the resolution of identity ∑k |σk〉〈σk| = 1, k 6= i, j and noted
that ∑k σk|σk〉〈σk| = |+〉〈+| − |−〉〈−| and σz|±〉 = ±1. We also assumed j ≥ i.
Now, it is convenient to compute the trace in the eigenbasis of T . Let us denote the
eigenstates of T by | →〉 and | ←〉 where

| →〉 = 1√
2

(| ↑〉+ | ↓〉) , | ←〉 = 1√
2

(| ↑〉 − | ↓〉) , (C.17)

with T | →〉 = ε1| →〉 and T | ←〉 = ε2| ←〉. Hence,

〈σiσj〉 = 1
Z

∑
m,n,m′,n′=←,→

tr
(
T i−1|m〉〈m|σz|n〉〈n|T j−i|m′〉〈m′|σz|n′〉〈n′|TM−j+1

)

= 1
εM1 + εM2

(
εi−1

1 εj−i2 ε
M−(j−1)
1 + εi−1

2 εj−i1 ε
M−(j−1)
2

)
,

reducing to

〈σiσj〉 = εM−j+i1 εj−i2 + εi−j+M2 εj−i1
εM1 + εM2

. (C.18)

In terms of ε1 = coshK and ε2 = sinhK the expression can be rewritten as

〈σiσj〉 = tanhKj−i + tanhKM tanhKi−j

1 + tanhKM
. (C.19)

Next, we let the number of sites, M , be very large and take the thermodynamic
limit M →∞. Thus, we need to investigate tanhKM as M →∞. Note that

tanhKM = (1− 2
e2K + 1)M = CM → 0 , C ∈ (−1, 1) . (C.20)

Hence, we deduce that
〈σiσj〉 = tanhKj−i , j ≥ i . (C.21)

By introducing the parameter τ = ja , a being the microscopic length and defining

ξ−1 = −1
a

ln(tanhK)⇒ cothK = ea/ξ , (C.22)
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we note that (C.21) is consistent with the conventional exponential correlation func-
tion

〈σ(0)σ(τ)〉 = e−τ/ξ , (C.23)

if we also set i = 0. This enables us to consider the scaling limit:

ξ

a
= 1

log(cothK) = 1

log(1 + 2e−K
eK − e−K )︸ ︷︷ ︸
<<1 ,K>>1

≈ e2K

2 , K >> 1 , (C.24)

where we made use of log(1 + x) ≈ x, x << 1. Finally, we return to the transfer
matrix

T =
(

eK e−K
e−K eK

)
= eK(1+e−2Kσx) ≈ eK(1 + a

2ξ σx + ...) = eKe
a
2ξσx = ea(−E0·1+ 1

2ξσx) ,

introducing E0 = −K
a
. Here we have implicitly taken the scaling limit a → 0 (and

M →∞). Hence, we may also introduce another parameter Lτ as the product of a
and M , which is constant as a→ 0 and M →∞. As a consequence,

Z(β) = tr(TM) = tr
(

e−LτHq
)
, (C.25)

with
Hq = E0 · 1−

1
2ξ σx , (C.26)

being a quantum Hamiltonian with one spin. We have thus established the connec-
tion between a one-dimensional classical system and a zero-dimensional quantum
spin system. Finally, let us set Lτ = 1

T
such that

Z = tr
(

e− 1
T
Hq

)
. (C.27)

As mentioned above Lτ becomes a proper length dimension at low temperatures
T . A treatment of higher-dimensional analogies of quantum versus classical (Ising)
systems can be found in [107].
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D
Conformal Field Theory and the

Central Charge

D.1 A condensed introduction to CFT

In 1+1 dimensions, time and space are on the same footing in a quantum critical
system in the low-energy limit, cf. the situation in section 5.3. In other words,
Lorentz invariance is manifest in the system, which in the imaginary-time formal-
ism translates into regular rotational-invariance [90].1 Moreover, such systems also
exhibit translation invariance and scale invariance which combines into conformal
invariance.2 The unified framework for describing 1+1-dimensional gapless quan-
tum systems in the low-energy limit is therefore provided by a conformal field theory.
At a quantum level one also has to introduce a scale which renders the theory finite
which may break the conformal symmetry except at the fixed points of the theory
[81]. Still, we should bear in mind that conformal symmetry in a quantum critical
system does not follow from a classical system exhibiting conformal invariance.
However, perhaps surprisingly, there exists a formal analogy between d-dimensional
quantum systems and d + 1-dimensional classical systems. In fact, the imaginary-
time formalism employed in this section enables us to consider a one-dimensional
quantum system to be effectively two-dimensional, with the imaginary time acting
as an extra spatial dimension in a classical system.3 In the following, we will make
no distinction between the quantum world and the classical world.

Let us move away from one dimension for a while and be more formal and define a
conformal transformation Λ(x) acting on the D-dimensional metric tensor gµν such
that

gµν(x)→ g′µν(x′) = Λ(x)gµν(x) , (D.1)

1The imaginary-time formalism relies on the connection between proper time, τ , and Euclidean
time, t, via the Wick rotation t = iτ which translates the Euclidean signature to a Lorentz
(Minkowskian) signature and vice versa.

2Local scale invariance and conformal invariance is often used interchangeably in theoretical
physics, although the statement that a theory is invariant under conformal transformations is
stronger than the statement that a theory is scale-invariant. In fact, the latter does not in general
imply conformal invariance as shown by Polchinski in 1988 [108]. By assuming the theory to
be local and unitary, Polchinski managed to show that 1+1-dimensional scale invariance implies
conformal invariance. However, in higher dimensions and without imposing unitarity and locality
the implication has not yet been shown [109].

3This aspect is investigated in detail in Appendix C.

93



D. Conformal Field Theory and the Central Charge

with Λ(x) being a conformal factor which locally scales the metric.4 Clearly, the
Poincaré (Lorentz-symmetry+translations) group is a subgroup of the conformal
group with Λ(x) = 1. Using the metric tensor, we may form the line element, ds2,
according to

ds2 = gµνdx
µdxν , (D.2)

which transforms under a local infinitesimal coordinate transformation xµ → x′µ =
xµ + εµ(x) in the following fashion:

ds2 → ds2 − (∂µεν + ∂νεµ)dxµdxν , (D.3)

since

g′µν = ∂xα

∂x′µ
∂xβ

∂x′ν
gαβ = (δαµ − ∂µεα)(δβµ − ∂νεβ)gαβ = gµν − ∂µεν − ∂νεµ . (D.4)

For the transformation to be conformal we therefore , by comparison with (D.2),

∂µεν + ∂νεµ = f(x)gµν , (D.5)

where f(x) is easily obtained by taking the trace of both sides:

gµν∂µεν + gµν∂νεµ = f(x)gµνgµν ⇒ f(x) = 2
D
∂µε

µ . (D.6)

Now, it turns out that f(x) or more precisely the form of εµ(x) is highly dependent
on the spacetime dimension, D. For D = 1 no constraints at all are put on f(x),
and thus any smooth transformation is conformal in one spacetime dimension. With
some simple manipulations one can show that the infinitesimal, εµ can be written
as [81]

εµ = aµ + bµνx
ν + cµνρx

νxρ , cµνρ = cνρµ , (D.7)
for dimensions D ≥ 3, pointing to the fact that aµ amounts to a translation, bµν to
an infinitesimal scale transformation, and cµνρ to a special conformal transformation
(SCT).5 The latter is, as the name suggests, special and can be realized as an
inversion, followed by a translation and an additional inversion. See [81] for further
details. The corresponding finite transformations can be summarized as

(translation) x′µ = xµ + aµ ,

(dilation/scaling) x′µ = αxµ ,

(rotation) x′µ = Mµ
νx

ν ,

(SCT) x′µ = xµ − bµx2

1− b · x + b2x2 .

A consequence of this result is that the conformal group is finite-dimensional forD >
2. D = 2 dimensions is a special case which requires extra attention. In particular, it

4The transformation is very similar to regular (differentiable) coordinate transformations where
gαβ = ∂xα

∂x′µ
∂xβ

∂x′ν gαβ . In fact, conformal transformations form a subgroup of such diffeomorphisms
with the word "conformal" referring to the fact that they preserve angles between two vectors.

5The constraints for conformal invariance must be independent of xµ. Therefore, each term in
εµ can be considered individually.
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turns out that (D.5) can be rewritten in such a way that the components of εµ obey
the Cauchy-Riemann equations of complex analysis, thereby forcing the conformal
transformations in two dimensions to include an analytic function ε(z) and an anti-
analytic function ε̄(z̄) with z = vτ − ix and z̄ = vτ + ix, τ being the proper time,
τ = it, x the position coordinate and v the Fermi velocity. The complex coordinates
z and z̄ are often used in the language of conformal field theory and deserves to be
specified (along with its derivative correspondence) below:

z = vτ − ix , ∂z = − i2(1
v
∂t − ∂x) , (D.8)

z̄ = vτ + ix , ∂z = − i2(1
v
∂t + ∂x) . (D.9)

Since ε(z) and ε̄(z̄) are arbitrary analytic functions it follows that the group of
conformal transformations in D = 2 has to be infinite-dimensional, in contrast to
CFTs in D ≥ 3. In other words, the conformal group is the set of all analytic
mappings. In our new coordinates z and z̄ we may express the line element as

ds2 = dzdz̄ , (D.10)

and an infinitesimal conformal transformation z → f(z) = z + ε(z) (similarly for z̄)
results in the line element transforming as

ds2 = dzdz̄ → ∂f

∂z

∂f

∂z̄
dzdz̄ . (D.11)

Now, for the conformal group to be a proper group the analytic mappings have to
be invertible and the whole complex plane (including infinity) has to be mapped
to itself. The transformations which perform this trick are referred to as global
conformal transformations. If we consider f(z) as such a mapping it must not have
any essential singularities or branch points. However, it may have poles, enabling
us to write

f(z) = P (z)
Q(z) . (D.12)

Since we want f(z) to be a well-defined invertible mapping it is moreover crucial
that P (z) does not have distinct zeros. The same reasoning applies for the function
Q(z) in the denominator in the sense that the inverse image of infinity has to be
well-defined. This means that f(z) must be a rational polynomial with P (z) and
Q(z) being linear polynomials in z:

f(z) = az + b

cz + d
, , a, b, c, d ∈ C (D.13)

with the additional constraint that the determinant ad− bc is non-zero (due to in-
vertibility). This transformation is also referred to as a projective conformal trans-
formation or a Möbius transformation.
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D.2 Central Charge in Conformal Field Theory
In Chapter 5 we established that the central charge c , along with the winding
number ν, completely characterize the topological phases of the symmetry class
BDI. For instance, the critical Majorana chain is said to be described by a low-
energy conformal field theory with c = 1

2 . In this section, we therefore give a generic
background on how the concept of central charge arises in conformal field theory
and how it relates to fermionic and bosonic systems respectively. The discussion
follows closely that of the standard literature, “the yellow book”, by Di Fransesco,
Mathieu, and Sénechal but the calculations are made somewhat more explicit [81].
We will consider the bosonic case and the fermionic case separately, although the
latter is of more use to us.

D.2.1 Free (massless) bosons
Consider the (conformal) action of a massless bosonic field ϕ:

S = g

2

∫
d2x∂µϕ∂

µϕ , (D.14)

where g is a coupling constant. From the action we may derive the scalar propagator
by inserting the function A(~x, ~y) = −gδ(2)(~x− ~y)∂2

x according to:

S = 1
2

∫
d2xd2yϕ(~x)A(~x, ~y)ϕ(~y) . (D.15)

Then, the propagator K(~x, ~y) is given by

K(~x, ~y) = A−1(~x, ~y)⇒ −g∂2
xK(~x, ~y) = δ(2)(~x− ~y) . (D.16)

By demanding translational invariance we have K(~x, ~y) = K(|~x− ~y|) and therefore
it seems reasonable to introduce r = |~x−~y|. Let us then integrate the equation over
the disk D with radius r:

− 2πg
∫ r

0
dρρ(1

ρ

∂

∂ρ
(ρK ′(ρ))) = −2πgrK ′(r) = 1 , (D.17)

where we expressed the second derivative in cylindrical coordinates. Now, the prop-
agator is easily evaluated by integration:

K(r) = − 1
2πg log(r) + const , (D.18)

or equivalently

K(x− y) = − 1
4πg log(x− y)2 + const = 〈ϕ(x)ϕ(y)〉 , (D.19)

and 〈ϕ(x)ϕ(y)〉 denotes the two-point correlation function. For later, we would like
to express the correlation function in terms of complex variables z, z̄ and w, w̄:

〈ϕ(z, z̄)ϕ(w, w̄)〉 = − 1
4πg

(
log(z − w) + log(z̄ − w̄)

)
+ const . (D.20)
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We focus on the holomorphic field ∂zϕ = ∂ϕ and then

〈∂zϕ(z, w)∂wϕ(z, w)〉 = − 1
4πg∂z(

−1
(z − w)) = − 1

4πg
1

(z − w)2 = 〈∂ϕ(z)∂ϕ(w)〉 .

(D.21)
The following is also referred to as the operator product expansion (OPE) of the
operator ∂ϕ:

〈∂ϕ(z)∂ϕ(w)〉 ∼ − 1
4πg

1
(z − w)2 , (D.22)

where the ∼ refers to the fact that there may be more terms in the expansion which
are regular as z → w.

Next, we turn our attention to the energy-momentum tensor for the free bosonic
(massless) theory:6

Tµν = g(∂µϕ∂νϕ−
1
2ηµν∂ρϕ∂

ρϕ) . (D.23)

In the quantized theory of conformally invariant scalar bosons the stress-tensor is
given (in terms of the complex coordinate z introduced in (D.9)) by:

T (z) = −2πTzz = −2πg : ∂ϕ∂ϕ : , (D.24)

where : : denotes normal ordering, required to make the vacuum expectation value
of the stress-energy tensor finite – actually equal to zero since we are dealing with
a free theory. The normal ordering product can also be interpreted as

: ∂ϕ∂ϕ := lim
z→w

(∂ϕ(z)∂ϕ(w)− 〈∂ϕ(z)∂ϕ(w)〉) . (D.25)

Let us now evaluate the OPE of T (z) with ∂ϕ(w):

T (z)∂ϕ(w) = −2πg : ∂ϕ(z)∂ϕ(z) : ∂ϕ(w) . (D.26)

To get further, we have to invoke Wick’s theorem for four bosonic fields φ1, φ2, φ3
and φ4:

T (: φ1φ2φ3φ4 :) =: φ1φ2φ3φ4 : + all possible contractions , (D.27)

where T (...) is the time-ordering operator. In particular, in our case we get7

: ∂ϕ(z)∂ϕ(z) : ∂ϕ(w) ∼: ∂ϕ(z)∂ϕ(z) : ∂ϕ(w)+ : ∂ϕ(z)∂ϕ(z) : ∂ϕ(w) ,

and since
: φ1φ2 : = 〈φ1φ2〉 , (D.28)

we must have (using (D.22))

T (z)∂ϕ(w) ∼ −2πg
(
− 1

(4πg)(z − w)2−
1

(4πg)(z − w)2

)
∂ϕ(z) = ∂ϕ(z)

(z − w)2 . (D.29)

6Recall that Tµν can be calculated due to Noether as Tµν = ∂L
∂(∂µϕ) − g

µνL.
7Applying the time-ordering operator on two operators φ1 and φ2 gives T (φ1φ2) =: φ1φ2 :

+〈φ1φ2〉. However, the expectation values are dropped in our calculations.
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Moreover, we may expand ϕ(z) around w such that ϕ(z) ≈ ϕ(w) + (z − w)∂wϕ(w)
and therefore

T (z)∂ϕ(w) ∼ ∂wϕ(w)
(z − w)2 + ∂2

wϕ(w)
(z − w) , (D.30)

and we conclude that ∂ϕ(w) is a primary field with conformal (scaling) dimension
h = 1.8 Now, let us instead consider the OPE of the energy-momentum tensor T (z)
with itself. We follow the recipe:

T (z)T (w) = 4π2g2 : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :

∼ 4π2g2
(

: ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) : + : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :

+ : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) : + : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :

+ : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) : + : ∂ϕ(z)∂ϕ(z) :: ∂ϕ(w)∂ϕ(w) :
)

= 4π2g2
(

2
(4πg)2(z − w)4 −

4 : ∂ϕ(z)∂ϕ(w) :
4πg(z − w)2

)

= 1/2
(z − w)4 −

4πg : ∂ϕ(z)∂ϕ(w) :
(z − w)2

∼ 1/2
(z − w)4 −

4πg : ∂wϕ(w)∂wϕ(w) :
(z − w)2 − 4πg : ∂2

wϕ(w)∂wϕ(w) :
(z − w)

= 1/2
(z − w)4 + 2T (w)

(z − w)2 + ∂wT (w)
(z − w) ,

where the first term is due to the double contractions and the second term is due
to the four single contractions. Note that we also expanded ϕ(z) in the last step.
The first term is special. It has no dependence on T (z) and therefore it can not
be a primary. In fact, the term is really a conformal anomaly. The factor 1

2 in the
nominator is important and is related to the central charge as we will see. However,
first let us first perform the analogous analysis for the fermionic case.

D.2.2 Free Majorana fermions
Now, we consider the action of a free (massless) fermionic theory. This is slightly
trickier since we have to deal with two-component spinors Ψ = (ψ, ψ̄) and Dirac
matrices, which increases the dimensionality of the problem. The action reads

S = g

2

∫
d2xΨ†γ2γµ∂µΨ , (D.31)

where the Dirac matrices are precisely the Pauli matrices in two dimensions, i.e.

γ1 =
(

0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
. (D.32)

8In general we may have T (z)O ∼ hO
(z−w)2 +..., where h is the scaling dimension. If O appear

(without any derivatives acting on it) in the right-hand side, O is referred to as a primary field.
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Then, by performing the matrix product we may write the action as

S = g
∫
d2z(ψ̄∂zψ̄ + ψ∂z̄ψ) , (D.33)

with ∂z = ∂0−i∂1. Note the striking resemblance between this action and the action
obtained in (5.42) (set g = vF and take only one copy). Clearly, the equations of
motion for ψ and ψ̄ are independent and given by

∂zψ̄ = 0 ,
∂z̄ψ = 0 ,

where the first equation implies that ψ̄ is a chiral and holomorphic field and ψ
is an anti-chiral and anti-holomorphic field. Now, it is in order to calculate the
propagators for the fermionic fields. We carry out the same procedure as in the
bosonic case and introduce

A(x, y) = gδ(xµ − yµ)γ2γµ∂µ , (D.34)
such that

S = g

2

∫
d2xd2yΨ†A(x, y)Ψ , (D.35)

from which we find the Feynman propagators9

〈ψ(z)ψ(w)〉 ∼ 1
2πg

1
z − w

,

〈ψ̄(z)ψ̄(w)〉 ∼ 1
2πg

1
z̄ − w̄

,

〈ψ̄(z)ψ(w)〉 = 0 .
Note that the anti-symmetry between fermionic operators is manifest in these ex-
pressions. Swapping ψ(z) and ψ(w) induces a minus sign in the propagator, which
is consistent with {ψ(z), ψ(w)} = 0. Moreover, the stress tensor is (due to Noether):

T (z) = −πg : ψ∂ψ : , (D.36)
where ∂ = ∂z as before. Continuing to the operator product expansion of T (z) and
ψ(w) we have:

T (z)ψ(w) = −πg : ψ(z)∂ψ(z) : ψ(w)

∼ −πg
(

: ψ(z)∂ψ(z) : ψ(w)+ : ψ(z)∂ψ(z) : ψ(w)
)

= −πg
(
− ∂ψ(z)

2πg(z − w) −
ψ(z)

2πg(z − w)2

)

= ∂ψ(z)
2(z − w) + ψ(z)

2(z − w)2

∼ ∂wψ(w)
2(z − w) + ψ(w) + (z − w)∂wψ(w)

2(z − w)2

= ψ(w)
2(z − w)2 + ∂wψ(w)

(z − w) ,

9This seems reasonable. Since A(x, y) is linear in derivatives we should expect a factor (z −w)
in the denominator rather than (z − w)2, we had in the bosonic case.
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that is ψ(w) is a primary field with h = 1
2 . Note that we had to be careful about

signs since the ψ fields anti-commute. An analogous calculation shows that the same
holds for ψ̄. Now, it remains to do the OPE for T (z) with itself:

T (z)T (w) = π2g2 : ψ(z)∂zψ(z) :: ψ(w)∂wψ(w) : .

We have to be very careful about signs when expanding the Wick product:10

: ψ(z)∂zψ(z) :: ψ(w)∂wψ(w) : ∼: ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) : + : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) :

+ : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) : + : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) :

+ : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) : + : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) :

= − : ψ(z)ψ(w) :: ∂ψ(z)∂ψ(w) : + : ψ(z)∂ψ(w) : ∂ψ(z)ψ(w) :

− : ψ(z)ψ(w) :: ∂ψ(z)∂ψ(w) : + : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) :

+ : ψ(z)∂ψ(w) :: ∂ψ(z)ψ(w) : − : ψ(z)∂ψ(z) :: ∂ψ(w)ψ(w) :

= 2
(2πg)2(z − w)4 −

1
(2πg)2(z − w)4

−
: ∂ψ(z)∂ψ(w) :

2πg(z − w) −
: ψ(z)∂ψ(w) :
2πg(z − w)2

+
: ∂ψ(z)ψ(w) :
2πg(z − w)2 + 2 : ψ(z)ψ(w) :

2πg(z − w)3

∼ 1/4
π2g2(z − w)4 −

: ∂ψ(w)∂ψ(w) :
2πg(z − w) −

: ψ(w)∂ψ(w) :
2πg(z − w)2

−
: ∂ψ(w)∂ψ(w) :

2πg(z − w) +
: ∂ψ(w)ψ(w) :
2πg(z − w)2 +

: ∂2ψ(w)ψ(w) :
2πg(z − w)

+ 2 : ψ(w)ψ(w) :
2πg(z − w)3 + 2 : ∂ψ(w)ψ(w) :

2πg(z − w)2 +
: ∂2ψ(w)ψ(w) :

2πg(z − w)

= 1/4
π2g2(z − w)4 −

2 : ψ(w)∂ψ(w) :
πg(z − w)2

−∂ψ(w)∂ψ(w)
πg(z − w) −

: ψ(w)∂2ψ(w) :
πg(z − w)︸ ︷︷ ︸

=∂wT (w)/(π2g2(z−w))

+
: ψ(w)ψ(w) :
πg(z − w)3

= 1/4
π2g2(z − w)4 + 2T (w)

π2g2(z − w)2 + ∂T (w)
π2g2(z − w) +

: ψ(w)ψ(w) :
πg(z − w)3︸ ︷︷ ︸

=0 ,{ψ(w),ψ(w)}=0

.

To conclude, we obtain the OPE

T (z)T (w) ∼ 1/4
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
(z − w) . (D.37)

10To tidy up the calculation we have abbreviated both ∂z and ∂w by ∂. Obviously, whenever ∂
is acting on ψ(w) it is a derivative with respect to w and similarly for ψ(z).
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Note that the factor 1
4 in front of the first term is different from the bosonic expression

(1
2). We may therefore conclude that

T (z)T (w) ∼ c/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
(z − w) , (D.38)

where c is the central charge. In particular, we thus find that c = +1 for free
(massless) bosons and c = +1

2 for free (Majorana) fermions. The central charge is
considered a conformal anomaly which softly11 breaks conformal symmetry.

D.3 The c-theorem
The c-theorem was proven by Zamolodchikov in 1986 and relates the central charge
in CFT to the renormalization group (RG) flow12 [110]. Given a conformal field
theory one can find a positive function C(gi, µ) depending on the coupling constants
gi and the energy scale µ which has the properties

• C(gi, µ) decreases monotonically under the RG flow
• All fixed points of the RG flow are specified by fixe-point couplings, g∗, such

that the function C(g∗, µ) = c is constant.

11The soft breaking of symmeries refer to the fact that only the low-energy behavior of the
physical gets affected, while at high energies the physics are unchanged.

12In the context of quantum field theory, a renormalization group flow is induced when a con-
formal field theory, CFTUV, gets perturbed by an operator such that its degrees of freedom get
distorted leading to a new theory, CFTIR, at long distances. More simply put, the RG flow
describes a curve which parameters in the theory follow as the energy is lowered.
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E
Connecting Topological Phases

within the BDI Class

In our discussion in section 5.4 in Chapter 5 we argued that the meromorphic func-
tion f(z) can be tuned to the canonical form

f(z) = ±(z2c ± 1)zν (E.1)

without breaking translational symmetry. Previously, we have noted that the topo-
logical invariant ν can not change unless a phase transition is induced. However,
models with different signs in f(z) can still be connected without causing a bulk
transition. Due to the one-to-one correspondence between f(z) and the Hamiltonian
we may thus connect Hamiltonians H = ±(H2c+ν ±Hν) with different overall signs
and intermediate signs. Define the unitary transformation

U(θ) = exp(θ2
∑
n

γ̃2n−1γ̃2n) , (E.2)

which can be rewritten by making use of the Taylor expansion of the exponential
and the Majorana algebra

exp(θ2
∑
n

γ̃2n−1γ̃2n) =
∏
n

∑
k

(θ2 γ̃2n−1γ̃2n)k/k! =
∏
n

1 + θ

2 γ̃2n−1γ̃2n + (θ2)2γ̃2n−1γ̃2nγ̃2n−1γ̃2n
1
2!

+ (θ2)3(γ̃2n−1γ̃2n)3 1
3! + ...

=
∏
n

1− (θ2)2 1
2! + ...γ̃2n−1γ̃2n(θ2 − (θ2)3 1

3! + ...)

=
∏
n

cos(θ2) + γ̃2n−1γ̃2n sin(θ2) ,

that is
U(θ) =

∏
n

cos(θ2) + γ̃2n−1γ̃2n sin(θ2) . (E.3)

We will need to perform the transform U(π)HαU
†(π), with

U(π) =
∏
n

γ̃2n−1γ̃2n . (E.4)

This is since
U(π)HαU

†(π) = −Hα , (E.5)
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i.e. Hamiltonians with different overall signs can be connected. Let us prove this
identity. Written out in its entirety we have

U(π)HαU
†(π) = i

2
∏
n

γ̃2n−1γ̃2n
∑
k

γ̃kγk+α
∏
i

γ̃2nγ̃2n−1

= i

2
∑
k

γ̃1γ̃2 · ... · γ̃2N γ̃kγk+αγ̃2N γ̃2N−1 · ... · γ̃2γ̃1

= i

2(−1)2N∑
k

γ̃1γ̃2 · ... · γ̃2N γ̃kγ̃2N γ̃2N−1 · ... · γ̃2γ̃1γk+α

= i

2(−1)2N∑
k

γ̃1γ̃2 · ... · γ̃2N(2δ2N,k − γ̃2N γ̃k)γ̃2N−1 · ... · γ̃2γ̃1γk+α

= i(−1)2N γ̃1γ̃2 · ... · γ̃2N γ̃2N−1 · ... · γ̃2γ̃1γ2N+α

− i

2(−1)2N∑
k

γ̃1γ̃2 · ... · γ̃2N γ̃2N γ̃kγ̃2N−1 · ... · γ̃2γ̃1γk+α

= i(−1)4N−1 γ̃1γ̃2 · ... · γ̃2N−1γ̃2N−1 · ... · γ̃2γ̃1︸ ︷︷ ︸
=1

γ̃2Nγ2N+α

− i

2(−1)2N∑
k

γ̃1γ̃2 · ... · γ̃2N−1γ̃kγ̃2N−1 · ... · γ̃2γ̃1γk+α

= i(−1)4N−1 γ̃1γ̃2 · ... · γ̃2N−1γ̃2N−1 · ... · γ̃2γ̃1︸ ︷︷ ︸
=1

γ̃2Nγ2N+α

− i

2(−1)2N∑
k

γ̃1γ̃2 · ... · γ̃2N−1(2δ2N−1,k − γ̃2N−1γ̃k) · ... · γ̃2γ̃1γk+α

= i(−1)4N−1 γ̃1γ̃2 · ... · γ̃2N−1γ̃2N−1 · ... · γ̃2γ̃1︸ ︷︷ ︸
=1

γ̃2Nγ2N+α

− i(−1)4N−2∑
k

γ̃1γ̃2 · ... · γ̃2N−2 · γ̃2N−2... · γ̃2γ̃1︸ ︷︷ ︸
=1

γ̃2N−1γ2N−1+α

+ i

2(−1)2N∑
k

γ̃1γ̃2 · ... · γ̃2N−2γ̃k · γ̃2N−2... · γ̃2γ̃1γk+α

= i(−1)4N−1
(
γ̃2Nγ2N+α + γ̃2N−1γ2N−1+α + ...+

)

+ i

2
∑
k

γ̃kγk+α

= −i
∑
k

γ̃kγk+α + i

2
∑
k

γ̃kγk+α = − i2
∑
k

γ̃kγk+α = −Hα ,

which we set out to prove. Note that we had to use the anti-commutator relations
{γ̃i, γ̃j} = 2δi,j and {γ̃i, γj} = 0 repetetively to arrive at the result. A similar,
although perhaps a more technical calculation, can be performed to change the
intermediate sign in ±(Hν +H2c+ν). See [18] for details.
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F
Generalized Kitaev Hamiltonian

by Zhao and Wang

In this appendix we will provide details on how to perform an inverse Fourier trans-
formation of the Zhao/Wang BdG Hamiltonian in (6.1) to express the model in real
space. Note that the result obtained differs from that of Zhao-Wang [93]. Starting
with the Bloch Hamiltonian and using Ψ†k = (a†k↑, a

†
k↓, a−k↓,−a−k↑) (and similarly

for Ψk) and expanding the tensor products we get

HCII
ZW =

∑
k

(a†k↑, a
†
k↓, a−k↓,−a−k↑)HZW(k)


ak↑
ak↓
a†−k↓
−a†−k↑



=
∑
k

(a†k↑, a
†
k↓, a−k↓,−a−k↑)

(
(t cos k − µ)


ak↓
ak↑
−a†−k↑
a†−k↓

− i∆ sin k


−a†−k↓
−a†−k↑
ak↑
−ak↓


)

=
∑
k

(
(t cos k − µ)

(
a†k↑ak↓ + a†k↓ak↑ − a−k↑a

†
−k↓ − a−k↓a

†
−k↑

)

− i∆ sin k
(
a−k↓ak↑ + a−k↑ak↓ − a†k↓a

†
−k↑ − a

†
k↑a
†
−k↓

))
.

Next, we write the Hamiltonian in real space by making use of the discrete (inverse)
Fourier transform:

aks = 1√
N

∑
j

e−ijkajs , (F.1)
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with s =↑, ↓. Note that the inverse transform of a−ks only changes the sign of the
argument in the exponential in (F.1). Then, treating the first term in (??) gives us

∑
k

(
(t cos k − µ)

(
a†k↑ak↓ + a†k↓ak↑ − a−k↑a

†
−k↓ − a−k↓a

†
−k↑

)

= 1
N

∑
k

∑
j,j′

t

2(ei(j−j′+1)k + ei(j−j′−1)k)
(
a†j↑aj′↓ − aj↑a

†
j′↓ + (↑↔↓)

)

− µei(j−j′)k(a†j↑aj′↓ − aj↑a
†
j′↓ + (↑↔↓))

=
∑
j,j′

t

2(δj+1,j′ + δj−1,j′)
(
a†j↑aj′↓ − aj↑a

†
j′↓ + (↑↔↓)

)
− µδj,j′(a†j↑aj′↓ − aj↑a

†
j′↓ + (↑↔↓))

=
∑
j

t

(
a†j↑aj+1↓ + a†j↓aj+1↑ + a†j+1↑aj↓ + a†j+1↓aj↑

)
− 2µ(a†j↑aj↓ + a†j↓aj↑)

=
∑
j

tâ†j+1σxâj − µâ
†
jσxâj + h.c. ,

where we introduced the operators âj and â†j with an implicit spin dependence such
that âj = (aj↑, aj↓). Note that we here also assume that the parameters w, ∆ and
µ are real. Moving on to the next term we obtain

− ∆
2
∑
k

(eik − e−ik)
(
a−k↓ak↑ + a−k↑ak↓ − a†k↓a

†
−k↑ − a

†
k↑a
†
−k↓

)

= −
∑
k

∆
2N

∑
j,j′

(ei(j−j′+1)k − ei(j−j′−1)k)
(
aj↓aj′↑ + aj↑aj′↓ − a†j↓a

†
j′↑ − a

†
j↑a
†
j′↓

)

= −∆
2
∑
j,j′

(δj+1,j′ − δj−1,j′)
(
aj↓aj′↑ + aj↑aj′↓ − a†j↓a

†
j′↑ − a

†
j↑a
†
j′↓

)

= −∆
∑
j

(
a†j+1↓a

†
j↑ + a†j+1↑a

†
j↓ + h.c.

)

= −∆
∑
j

(âj+1σ1âj + h.c.
)
.

To summarize we have

HCII
ZW =

∑
j

(
tâ†j+1σxâj −∆âj+1σxâj − µâ†jσxâj + h.c.

)
. (F.2)

In contrast to Zhao and Wang [93], the Pauli matrix σx is sandwiched between the
fermionic ladder operators rather than the matrix iσy. By putting ∆ = t and µ = 0
and introducing Majorana operators we are able to make the MZMs apparent in the
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Hamiltonian. To see how, let us first do some rewriting:

HCII
Majorana =

∑
j

t

(
â†j+1σ1âj − âj+1σ1âj + h.c.

)

=
∑
j

t

(
a†j↑aj+1↓ + a†j↓aj+1↑ + a†j+1↑aj↓ + a†j+1↓aj↑

− a†j+1↓a
†
j↑ − a

†
j+1↑a

†
j↓ − aj↑aj+1↓ − aj↓aj+1↑

)

=
∑
j

t

(
(a†j↑ − aj↑)(aj+1↓ + a†j+1↓) + (a†j↓ − aj↓)(aj+1↑ + a†j+1↑)

)

= −it
∑
j

(
γ̃j↑γj+1↓ + γ̃j↓γj+1↑

)
,

where γ̃js = i(a†js − ajs) and γjs = a†js + ajs. Thus, in terms of Majorana operators
the Hamiltonian reads

HCII
Majorana = −it

∑
j

(
γ̃j↑γj+1↓ + γ̃j↓γj+1↑

)
. (F.3)

From this Hamiltonian, we may easily read off the corresponding Majorana zero
modes. There are two imaginary modes, γ̃N↑, γ̃N,↓ and two real modes, γ1↑, γ1↓.
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