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Chapter 3

Band model of the graphene bilayer

Many of the special properties of the graphene bilayer have their origins in its lattice

structure that results in the peculiar band structure that we will discuss in detail in this

chapter. First we repeat the observation from Chapter 2 that the graphene bilayer in the

A-B stacking1 is just the unit cell of graphite that we depict in Fig. 3·1. Therefore, if the

A1
B1

A2

B2

Figure 3·1: Lattice structure of the graphene bilayer. The A (B) sublat-
tices are indicated by the darker (lighter) spheres and the planes are labeled
by 1 and 2.

two planes are equivalent the symmetry analysis of graphite is also valid for the graphene

bilayer. Thus we can directly use the spinor of Eq. (2.15) and the Hamiltonian in Eq. (2.17)

1Also known as Bernal stacking. Other stackings are also possible but the A-B stacking seems to be the
most energetically favorable.



19

with Γ = 1 and γ2 = γ5 = 0, leading to:

H0(p) =





∆ vFpeiφ t⊥ −v4vFpe−iφ

vFpe−iφ 0 −v4vFpe−iφ v3vFpeiφ

t⊥ −v4vFpeiφ ∆ vFpe−iφ

−v4vFpeiφ v3vFpe−iφ vFpeiφ 0





. (3.1)

Another way of arriving at Eq. (3.1) is to use the tight-binding model directly in the bilayer.

Since the system is two-dimensional only the relative position of the atoms projected on

to the x-y-plane enters into the model. The projected position of the different atoms are

shown in Fig. 3·2. Since the A atoms are sitting right on top of each other in the lattice, the

A1

A2

B2

B1

Figure 3·2: The real space lattice structure of the graphene bilayer pro-
jected onto the x-y plane showing the relative positions of the different
sublattices.

hopping term between the A1 and A2 atoms are local in real space and hence a constant

that we denote by t⊥ in momentum space. Referring back to Section 2.1 we note that the

hopping B1 → A1 [A1 → B1] gives rise to the factor ζ(k) [ζ∗(k)], with ζ(k) defined in

Eq. (2.6). Since the geometrical role of the A and B atoms are interchanged between plane

1 and plane 2 we immediately find that in Fourier space the hopping A2 → B2 [B2 → A2]

gives rise to the factor ζ(k) [ζ∗(k)]. Furthermore, the direction in the hopping B1 → B2
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(projected on to the x-y plane) is opposite to that of hopping B1 → A1. Thus we associate

a factor v3ζ∗(k) to the hopping B1 → B2, where the factor v3 = γ3/γ0 is needed because

the hopping energy is γ3 instead of γ0 = t. Similarly, the direction of hopping B1 → A2

(projected on to the x-y plane) is the same as B1 → A1 and therefore the term −v4ζ(k)

goes with the hopping B1 → A2.2 Continuing to fill in all the entries of the matrix the full

tight-binding Hamiltonian in the graphene bilayer becomes:

Ht.b.(k) =





∆ ζ(k) t⊥ −v4ζ∗(k)

ζ∗(k) 0 −v4ζ∗(k) v3ζ(k)

t⊥ −v4ζ(k) ∆ ζ∗(k)

−v4ζ(k) v3ζ∗(k) ζ(k) 0





, (3.2)

where ∆ parametrizes the difference in energy between the A and B atoms. We come back

to Eq. (3.1) upon expanding this expression close to the K point. The typical behavior of

the bands obtained from Eq. (3.1) is shown in Fig. 3·3. Two of the bands (labeled 3 and

4 in the figure) are moved away from the Dirac point by an energy that is given by the

interplane hopping term t⊥.

E

k

t

1

2

3

4

Figure 3·3: Band dispersions near the K-points in the bilayer. Bands are
labeled by the numbers 1 − 4 as in the text.

2The minus sign in front of v4 follows from the conventional definition of γ4 (Partoens and Peeters, 2006).
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3.1 Simplified model

A simplified model that only considers the interplane hopping term between A atoms em-

ploys a matrix of the form

H0(p) =





0 vFpeiφ(p) t⊥ 0

vFpe−iφ(p) 0 0 0

t⊥ 0 0 vFpe−iφ(p)

0 0 vFpeiφ(p) 0





. (3.3)

From now on in this section, we use units such that vF = 1 as discussed in Section 2.1. This

Hamiltonian has the advantage that it allows for relatively simple calculations. Some of the

fine details of the physics might not be accurate but it will work as a minimal model and

capture most of the important physics. It is important to know the qualitative nature of the

terms that are neglected in this approximation, this will be discussed later in this Chapter.

It is also an interesting toy model as it allows for (approximately) “chiral” particles with

mass (i.e., a parabolic spectrum) at low energies as we will discuss in the next Section. For

a large part of this thesis we will study the properties of the system with this simplified

Hamiltonian.

3.2 Approximate effective two-band models

There are two main reasons for constructing approximate two-band models: First, on

physical grounds the high-energy bands (far away from the Dirac point) should not be very

important for the low-energy properties of the system. Second, it is often easier to work

with 2 × 2 matrices instead of 4 × 4 matrices. In this section, we derive the low-energy

effective model by doing degenerate second order perturbation theory. The quality of the

expansion is good as long as vFp $ t⊥ ≈ 0.35 eV. We first present the general expression

for the second-order 2× 2 effective Hamiltonian, thereafter various simplified forms will be

introduced. Analyses similar to the one presented here were presented in (McCann and

Fal’ko, 2006) and (Nilsson et al., 2006c).
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Derivation of effective models

First we decompose Eq. (3.1) into a high-energy part K0 and two low-energy parts K1 and

K2 according to H0 = K0 + K1 + K2, with

K0 =





∆ 0 t⊥ 0

0 0 0 0

t⊥ 0 ∆ 0

0 0 0 0





, (3.4)

K1 = vF





0 peiφ 0 −v4pe−iφ

pe−iφ 0 −v4pe−iφ 0

0 −v4peiφ 0 pe−iφ

−v4peiφ 0 peiφ 0





, (3.5)

K2 = vF





0 0 0 0

0 0 0 v3peiφ

0 0 0 0

0 v3pe−iφ 0 0





. (3.6)

The usual manipulations (Sakurai, 1994) then given the Hamiltonian matrix in the low

energy subspace as Klow = K2 − K†
1P1(1/K0)P1K1, where P1 is the projection out of the

low-energy subspace (explicitly P1 = Diag[1, 0, 1, 0]). The result is:

Klow =
v2
Fp2

t2⊥ − ∆2





0 0 0 0

0 2t⊥v4 + ∆(1 + v2
4) 0 −

[
t⊥(1 + v2

4) + 2v4∆
]
e−2iφ

0 0 0 0

0 −
[
t⊥(1 + v2

4) + 2v4∆
]
e2iφ 0 2t⊥v4 + ∆(1 + v2

4)





+ K2,

(3.7)



23

and because this is really just a 2× 2 matrix in the low-energy subspace we can write it as:

Heff =
v2
Fp2

t2⊥ − ∆2

{[
2t⊥v4 + ∆(1 + v2

4)
]


1 0

0 1





−
[
t⊥(1 + v2

4) + 2v4∆
]


 0 e−i2φ

ei2φ 0




}

+ v3vFp



 0 eiφ

e−iφ 0



 . (3.8)

The corresponding eigenvalues are:

Eeff,± ≈
v2
Fp2

t2⊥ − ∆2

[
2t⊥v4 + ∆(1 + v2

4)
]

±

√

(v3vFp)2 +
{v2

Fp2
[
t⊥(1 + v2

4) + 2v4∆
]

t2⊥ − ∆2

}2
−

2v3v3
Fp3

[
t⊥(1 + v2

4) + 2v4∆
]

t2⊥ − ∆2
cos(3φ).

(3.9)

This expression shows that v4 and ∆ weakly breaks the particle-hole symmetry of the

system and that v3 is responsible for breaking the cylindrical symmetry and the so-called

“trigonal warping” of the energy bands. A simplified model that takes only the terms

involving t⊥ and the trigonal warping v3 into account is

Heff = −
v2
Fp2

t⊥



 0 e−i2φ

ei2φ 0



 + v3vFp



 0 eiφ

e−iφ 0



 . (3.10)

An even simpler model which neglects both the electron-hole asymmetry and the trigonal

warping is:

Heff = −
v2
Fp2

t⊥



 0 e−i2φ

ei2φ 0



 . (3.11)

This form is interesting since it gives rise to massive “chiral” quasi-particles (McCann and

Fal’ko, 2006). Here “chirality” means that there exist an operator Ĉ defined by

Ĉ ≡ −



 0 e−i2φ

ei2φ 0



 , (3.12)
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that has the eigenvalues ±1 and commutes with the Hamiltonian. This implies that there

is another quantum number (in addition to the energy) with which one can label the states

of the system.

3.3 Band structure comparisons

A comparison of the bands obtained from the simple Hamiltonian in Eq. (3.3) and those

obtained from the full Hamiltonian in Eq. (3.1) on a large scale is shown in Fig. 3·4. This

figure clearly shows that the gross features of the bands are correctly captured in the simple

minimal model.
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Figure 3·4: Comparison between the bands obtained from the full Hamil-
tonian in Eq. (3.1) and those of the simple minimal model in Eq. (3.3) along
the direction φ = 0 in the BZ. (a) Full Hamiltonian. (b) Minimal model
Hamiltonian.

That the low-energy effective theory in Eq. (3.8) and Eq. (3.9) is accurate for low

energies is shown in Fig. 3·5. But as one moves away from the Dirac point deviations from

the real spectrum is clearly visible.

We show, in Figure 3·6 and in Figure 3·7, a comparison of the bands obtained from the

simple minimal Hamiltonian in Eq. (3.3) and those of the full Hamiltonian in Eq. (3.1) for

low energies. This shows that especially γ3, which gives rise to the “trigonal distortion”,

significantly changes the behavior at the lowest energies. A normal Dirac cone is found at

p = 0 at the lowest energies, but now the Fermi-Dirac velocity is v3vF. There is also the
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Figure 3·5: Comparison between the bands obtained from the full Hamil-
tonian in Eq. (3.1) and those of the effective model in Eq. (3.8) along dif-
ferent directions in the BZ. Solid line – [φ = 0, Eq. (3.1)], Dash-dotted line
– [φ = 0, Eq. (3.8)] , Dashed line – [φ = π/6, Eq. (3.1)], Dotted line –
[φ = π/6, Eq. (3.8)]. (a) Larger energy scale. (b) Zoom in at low energies.

extra band crossings in the directions φ = 0 and φ = ±2π/3 which gives rise to elliptical

Dirac cone3 away from the point p = 0. This structure is present at a small energy scale of

the order of ∼ 1meV, therefore experimental probes that are sensitive to this energy scale

are necessary to be able to detect these features. Moreover, as we will see in Chapter 5,

different forms of disorder can easily generate energies of this scale or larger in the real

experimental samples, thus this structure might be hard to detect experimentally.

A study of few-layer graphene systems (including graphene bilayers) with plots similar

to those in this chapter can be found in (Partoens and Peeters, 2006). A first-principles

study with both similar scope and results also exists (Latil and Henrard, 2006).

3This means that there are two inequivalent perpendicular axes (1 and 2) in the cone, with two different
values of the Fermi velocity vF1 != vF2. The spectrum is then ±

p
v2
F1p

2
1 + v2

F2p
2
2.
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Figure 3·6: Comparison between the low-energy bands obtained from the
simple model in Eq. (3.3): solid lines; and those of the full Hamiltonian in
Eq. (3.1) along three different directions in the BZ: φ = 0 (dashed), φ = π/9
(dashed-dotted), and φ = 2π/9 (dotted). (a) Larger energy scale. (b) Zoom
in at low energies.
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Figure 3·7: Comparison between the bands obtained from the full Hamilto-
nian and those of the simple minimal model at low energies using a contour
plot: (a) Full Hamiltonian (b) Simplified Hamiltonian. The contours are at
the energies: 0.1, 0.3, 0.5, 1, 2, 3, 4meV (black lines, ordered from the solid
line to the more dotted), 5, 10, 20meV (gray lines, same ordering).


