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which is the lower edge of a continuum of excitations whose upper edge is bounded by

ω(q) = πJ cos (q/2). (8.544)

The continuum of excitations develops because spinons are always created in pairs,
and therefore the momentum of the two spinons can be distributed in a continuum of
different ways. Neutron scattering experiments on quasi-one-dimensional materials like
KCuF3 have corroborated the picture outlined here (see, e.g. Tennant et al., 1995).

In dimensions higher than one, separating a !ipped spin into a pair of kinks, or a
magnon into a pair of spinons, costs energy, which thus con"nes spinons in dimensions
d ≥ 2.

The next section we constructs the Hubbard model from "rst principles and then
show how the Heisenberg model can be obtained from the Hubbard model for half-
"lling and in the limit of strong on-site repulsion.

8.7 Hubbard model

The Hubbard model presents one of the simplest ways to obtain an understanding of
the mechanisms through which interactions between electrons in a solid can give rise
to insulating versus conducting, magnetic, and even novel superconducting behaviour.
The preceding sections of this chapter more or less neglected these interaction or
correlation effects between the electrons in a solid, or treated them summarily in a
mean-"eld or quasiparticle approach (cf. sections 8.2 to 8.5). While the Hubbard model
was "rst discussed in quantum chemistry in the early 1950s (Pariser and Parr, 1953;
Pople, 1953), it was introduced in its modern form and used to investigate condensed
matter problems in the 1960s independently by Gutzwiller (1963), Hubbard (1963), and
Kanamori (1963). Their proposals of the model were motivated by different physical
problem situations. Gutzwiller used the model to study the transition between metallic
and insulating phases of solids, Hubbard’s research focused on electron correlations in
narrow energy bands of transition metals, and Kanamori’s objective was the study of
itinerant ferromagnetism.

Despite its simplicity, the Hubbard model has proven to be a versatile model with
many applications to condensed matter systems. For a careful exposition of the materials
and phenomena discussed on the basis of the Hubbard model, especially the high-
temperature superconductors, see Fazekas (1999). However, in a recent editorial 2013
on the occasion of the "ftieth anniversary of the work of Gutzwiller, Hubbard, and
Kanamori, a second upsurge of interest in the Hubbard model emerged occurred as
a result of the experimental possibilities made available by the novel experimental
techniques to trap ultracold atoms in optical lattices (see, e.g. Bloch (2005) for a review).
These techniques allow the experimental investigation of the original Fermionic Hubbard
(Joerdens et al., 2008) model discussed here, but were also used to explore its Bosonic
version (Greiner et al., 2002) a number of years earlier.
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This section an understanding of how the Hubbard model can be justi"ed from a
microscopic ‘"rst principles’ perspective. As in section 8.2.1, we begin with the electronic
part of the ‘Theory of Everything’ Hamiltonian Laughlin and Pines (2000); Laughlin
(1998) of condensed matter theory

H = Hkin + Hint (8.545)

=
∑

σ

∫
d3rψ†

σ (r)
[
−

2m
∇2 + Uion(r)

]
ψσ (r)

+
∑

σ ,σ ′

∫
d3r

∫
d3r′ψ†

σ (r)ψ†
σ ′(r ′)Vee(r − r ′)ψσ ′(r ′)ψσ (r), (8.546)

which, unlike Laughlin in his Nobel presentation 1998, we again have written in second
quantized form with "eld operators ψσ

†(r).
This very general Hamiltonian describes electrons interacting with the potential

U ion(r) of a static lattice of ions, i.e. employs the Born–Oppenheimer approximation.
Thus, we neglect the motion of the ion lattice since we are only interested in the
interactions of electrons and not in dynamical lattice effects, such as phonons. Moreover,
the electrons interact via Coulomb repulsion

Vee(r − r ′) ∝ 1
|r − r ′| . (8.547)

In second quantization language, the Hamiltonian (8.546) describes the situation ade-
quately.

The Hamiltonian (8.546) is quite complicated still, and in the following we make a
number of approximations to reach a more tractable Hamiltonian. We attempt to make
the approximations in such a way that still captures the essential physics of strongly
interacting electrons. The method of second quantization introduced and discussed in
chapter 2 is very well adapted to this task.

The "rst ingredient in our analysis is Bloch’s theorem. The lattice potential U ion(r) is
periodic

Uion(r + Ri) = Uion(r) (8.548)

with periodicity given by a lattice vector Ri (assuming a primitive lattice with one atom
per unit cell)

Ri = i1a1 + i2a2 + i3aJ =
3∑

J=1

iJ aJ (8.549)
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where {aJ} are a set of basis vectors of the lattice and the numbers iJ ∈ Z ( J = 1,
2, 3) describe an in"nite lattice or a lattice with some appropriately chosen boundary
conditions. For the triple of numbers iJ we have already used a vector notation: i.

Bloch’s theorem states that the solution of the Schrödinger equation in a periodic
lattice potential U ion(r) is given by wave functions that have the form of so-called Bloch
functions uk, α(r) and energy eigenvalues in the form of electronic bands εk, α.

The Bloch functions are functions that have been Fourier transformed with respect to
the periodic lattice Ri. Their inverse Fourier transformed counterparts are the Wannier
functions

φiα(r) ≡ φα(r − Ri) = 1√
N

∑

k

e−ik·Riuk,α(r), (8.550)

which are localized at site Ri of the ionic lattice. Bloch and Wannier functions are
connected by a unitary transformation and provide equivalent descriptions of the
physical situation.

We now de"ne creation operators for electrons in a Wannier state

c†
iασ =

∫
d3r φiα(r)ψ†

σ (r), (8.551)

which have the inverse relation

ψ†
σ (r) =

∑

i,α

φ∗
iα(r)c†

iασ . (8.552)

These operators, being Fermionic, obey anti-commutation relations

{cjασ , c†
lβσ ′} = δjlδαβδσσ ′ , {cjασ , clβσ ′} = {c†

jασ , c†
lβσ ′} = 0. (8.553)

The Hamiltonian 8.546 becomes in the Wannier basis

H =
∑

ijασ

tαijc
†
iασ cjασ +

∑

ijmn

∑

αβµν

∑

σσ ′
vαβµν

ijmn c†
iασ c†

jβσ ′cnνσ ′cmµσ (8.554)

with the hopping

tαij =
〈
iα

∣∣∣∣

[
− 1

2m
∇2 + Uion(r)

]∣∣∣∣ jα
〉

(8.555)

=
∫

d3r φ∗
iα(r)

[
− 1

2m
∇2 + Uion(r)

]
φjα(r) (8.556)
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and the interaction matrix elements

vαβµν
ijmn = 〈iα, jβ|Vee(r − r′)|mµ, nν〉 (8.557)

=
∫

d3r
∫

d3r′ φ∗
iα(r)φ∗

jβ(r ′)Vee(r − r′)φmµ(r)φnν(r′). (8.558)

Apart from the Born–Oppenheimer approximation of a static ionic lattice, we have not
yet made any further approximation. We just have rewritten the Hamiltonian (8.546) in
a form that is more suitable for our purpose of describing interacting localized magnetic
moments.

Following Hubbard 1963, Gutzwiller (1963), and Kanamori (1963), we now make a
number of simplifying assumptions. Firstly, we assume that all except the lowest band
have very high energies and are, thus, energetically unavailable. Therefore, we can drop
all band indices α, β, µ, ν, and the corresponding summations. Secondly, we assume
that the remaining band has rotational symmetry, i.e. is an s-band. This implies that the
hopping matrix elements depend only on the distance between the sites i and j, i.e.

tij = t(|Ri − Rj|). (8.559)

We arrive, thus, at the simpli"ed Hamiltonian

H =
∑

ijσ

tijc
†
iσ cjσ +

∑

ijmn

∑

σσ ′
vijmnc†

iσ c†
jσ ′cnσ ′cmσ . (8.560)

The matrix elements decrease fast with increasing distance |Ri −Rj|, so that we can
restrict the summation over sites to nearest-neighbour sites 〈ij〉 and arrive at the
generalized Hubbard model

H = −t
∑

〈ij〉

∑

σ

(
c†
iσ cjσ + c†

jσ ciσ

)
+ U

∑

i

ni↑ni↓ + V
∑

〈ij〉
njnj

+ X
∑

〈ij〉

∑

σ

(
c†
iσ cjσ + c†

jσ ciσ

) (
ni,−σ + nj,−σ

)
+ J

∑

〈ij〉
Si · Sj

+ Y
∑

〈ij〉

(
c†
i↑c†

i↓cj↓cj↑ + c†
j↓c†

j↑ci↑ci↓
)

, (8.561)

where the only surviving matrix elements are the hopping matrix element

t = −tij, (8.562)
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describing single-electron hopping between nearest-neighbour sites i and j, the on-site
or Hubbard repulsion6

U = viiii, (8.563)

the Coulomb interaction between electrons on neighbouring sites

V = vijij, (8.564)

the so-called bond-charge interaction

X = viiij, (8.565)

the spin-spin, or Heisenberg exchange interaction between neighbouring sites

J = −2vijji, (8.566)

and, "nally, the term describing the hopping of pairs of electrons

Y = viijj. (8.567)

The bond-charge interaction X describes the hopping of single electrons where the
hopping depends on the occupation of the sites involved. It is proportional to the charge,
i.e. the number of electrons, located on the sites of the bond 〈ij〉 between sites i and j.

In the generalized Hubbard Hamiltonian (8.561), we introduced the following oper-
ators: the electron number operators at site i

niσ = c†
iσ ciσ , (8.568)

and

ni = ni↑ + ni↓, (8.569)

and the spin- 1
2 operators at site i

Si = 1
2

∑

α,β

c†
iσ σ αβciσ , (8.570)

where σαβ are the components of the vector σ of Pauli matrices (cf. chapter 3).
Some of the symmetries of the generalized Hubbard Hamiltonian (8.561), i.e. some

of the operators with which (8.561) commutes, are:

6 The attractive case is also sometimes considered.
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• the number of electrons

N =
∑

i

ni. (8.571)

On a lattice of N sites we can at most place 2N electrons. Note the important special
case of a so-called half-"lled band, where in the ground state one has Ne = N

2
electrons in the lattice, one electron per site.

• the magnetization

M = N↑ − N↓ =
∑

i

(
ni↑ − ni↓

)
, (8.572)

and the

• total spin of the chain

S =
∑

i

Si. (8.573)

In other words, the total number of electrons N , the magnetization M, and the total
spin S are conserved, the latter because the Heisenberg interaction J is isotropic. This
latter property of the generalized Hubbard model can, in principle, be relaxed to allow
anisotropic exchange interactions with Jx .= Jy .= Jz in the most general case. In fact, the
anisotropic Heisenberg model retains all but the spin-spin interaction of the generalized
Hubbard model (8.561) . Obviously, in such a model no electron motion is possible
that would require at least a hopping term t. Therefore, it cannot describe itinerant
magnetism. However, it is a perfectly reasonable model to describe the interaction of
localized magnetic moments in magnetic insulators where the magnetism is indeed due
to the interaction between local magnetic moments. The one-dimensional version of this
model, the Heisenberg quantum spin chain, is one of our prime examples of a model
solvable by Bethe ansatz.

.....................................................................................................................................

EXERCISE 8.26 Generalized Hubbard model Convince yourself explicitly that the
generalized Hubbard Hamiltonian (8.561) is obtained from the Hamiltonian (8.560) if
we only retain nearest-neighbour interactions.
.....................................................................................................................................

Hubbard (1963) provided a simple estimate for the order of magnitude of the various
matrix elements in the generalized Hubbard model (8.561) in the case of transition
metals like iron, cobalt, or nickel: t ≈ 1eV, U ≈ 10eV, V ≈ 2 − 3eV, X ≈ 0.5eV, and J,
Y 0 1eV. Motivated by these orders of magnitude, most attention was henceforth
focused on the case where all terms in the generalized Hubbard model (8.561) are
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neglected except the on-site Coulomb repulsion U, and the single-electron hopping t,
the latter being necessary to still describe itinerant magnetism using this model.

The remaining model Hamiltonian

H = −t
∑

〈ij〉σ

(
c†
iσ cjσ + c†

jσ ciσ

)
+ U

∑

i

ni↑ni↓ ≡ Ht + HU (8.574)

today bears the name Hubbard model, and constitutes arguably one of the models,
alongside the Ising model and the Heisenberg model, to which a great deal of research
effort in condensed matter physics is devoted. For calculations involving the grand
canonical ensemble, a chemical potential µ and a corresponding term in the Hamiltonian

Hµ = −µ
∑

iσ

niσ (8.575)

are introduced. Furthermore, an external magnetic "eld h = hez will couple to the z-
component of the total spin adding a further term

Hh = h
∑

i

Sz
i = h

2

∑

i

(
ni↑ − ni↓

)
(8.576)

to the Hubbard Hamiltonian.
An alternative form for the on-site part of the Hubbard Hamiltonian is

H′
U = U

∑

i

(
ni↑ − 1

2

) (
ni↓ − 1

2

)
(8.577)

such that

H′
U = HU − U

2

∑

i

(
ni↑ + ni↓

)
+ NU

4
. (8.578)

This form shifts the chemical potential µ → µ+ U/2 and introduces an overall additive
constant NU /4 to the energy. However, the particle-hole symmetry discussed in section
8.7.1 is manifest in this form of the Hubbard Hamiltonian.

In summary, it is fair to say that

the Hubbard model describes—in the simplest possible fashion—a system of
interacting electrons. It can be viewed in just this way, as a toy model, or it
can be viewed, a bit more realistically in the repulsive case, as a serious model
of π-electrons hopping between localized Wannier orbitals in some molecule
such as benzene (with N = 6) Heilmann and Lieb (1970); the half-"lled band
(one electron per site) is then especially important because it corresponds to



OUP CORRECTED PROOF – FINAL, 12/6/2019, SPi

Hubbard model 363

neutrality. The ultra-short range interaction is supposed to mimic a highly
screened Coulomb potential. From the latter viewpoint it was known "rst in the
chemistry literature as the Pariser–Parr–Pople Pariser and Parr (1953); Pople
(1953) model; molecules having a bipartite structure were called ‘alternant
molecules’. It was a decade later that Hubbard (1963), Gutzwiller (1963), and
Kanamori (1963) realized its importance for bulk matter—paraphrased from
Lieb (1993)

8.7.1 Particle-hole symmetry of the Hubbard model

We now consider the bipartite lattice introduced in section 8.6.6.2.
On bipartite lattices we may consider new Fermionic creation and annihilation

operators according to

C†
iσ = (−1)iciσ and Ciσ = (−1)ic†

iσ (8.579)

where the factor (−1)i is de"ned to be (+1) on sub-lattice A and (−1) on the sub-lattice
B. These new operators exchange the roles of creation and annihilation Fermions. The
transformation to the new operators is called a particle-hole transformation, which is
justi"ed by the observation

C†
iσ Ciσ = 1 − c†

iσ ciσ . (8.580)

Among the symmetries exhibited by the Hubbard model (8.574), the particle-hole sym-
metry is of particular practical importance, e.g. in quantum Monte Carlo simulations.

This symmetry is manifest for the Hubbard Hamiltonian with the on-site interaction
written in the form (8.577)

Ht + H′
U → Ht + H′

U . (8.581)

However, using (8.574) directly produces upon a particle-hole transformation (8.579)
extra terms

Ht + HU → Ht + HU + UN − U
∑

i

(
ni↑ + ni↓

)
, (8.582)

the "rst of which is an irrelevant constant. However, the second term acts as a shift in
the chemical potential (8.575), which itself behaves as

Hµ → H−µ − 2µN (8.583)

under a particle-hole transformation.
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A simple application of the particle-hole transformation (8.579) of the Hubbard
Hamiltonian (8.574) "nds for the site occupation number or particle density

n(µ, T) = 1
N

〈n↑ + n↓〉 = 1
NZ

Tr
[
(n↑ + n↓)e−βHt−βHU −βHµ

]
= 1

Nβ

∂ ln Z
∂µ

(8.584)

with

Z = Tr
[
e−βHt−βHU −β−βHµ

]
. (8.585)

Using the transformation behaviour of the various parts of the Hubbard Hamiltonian
discussed above, under the particle-hole transformation, the site occupation number
becomes

1
Nβ

∂

∂µ
ln

[
e−βHt−βHU −βH(U−µ)−β(U−2µ)N

]
= −n(U − µ, T) + 2. (8.586)

Hence, we have the relation for the site occupation number

n(µ, T) = 2 − n(U − µ, T), (8.587)

which implies for half-"lling, i.e. n = 1, that we need µ = U /2 for the particle-hole
symmetric Hubbard model independent of temperature.

Exercise 8.27 concerns a similar application of the particle-hole symmetry. See
exercise 8.28 for a discussion of further symmetries of the Hubbard Hamiltonian in the
special case of one dimension.

.....................................................................................................................................

EXERCISE 8.27 The single-site Hubbard model Consider the Hubbard Hamil-
tonian (8.574) together with the chemical potential term (8.575) and a magnetic "eld
term (8.576), i.e. H = Ht +HU +Hµ +Hh. Putting the hopping matrix element to zero,
t = 0, in this Hamiltonian is tantamount to considering a collection of identical single-site
Hubbard Hamiltonians, i.e. H = ∑

j Hj.
Calculate the partition function of the single-site Hubbard Hamiltonian

Z = Tr
[
exp(−βHj)

]
(8.588)

and the site occupation number

ρ(µ, h, T) ≡ 〈n↑ + n↓〉 ≡ Z−1Tr
[(

n↑ + n↓
)

exp(−βHj)
]
, (8.589)

which are, of course, independent of the site index j, as a function of chemical potential
µ, temperature T = 1/β, and magnetic "eld h.

Convince yourself that, in the limit T → 0 and for h = 0, the site occupation number
ρ(µ, T) changes in steps: ρ(µ) = 0 for µ < −U /2, ρ(µ) = 1 for − U /2 < µ < U /2,
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U/20 µ−U/2

ρ(µ)

Figure 8.8 Site occupation number Hubbard model. The so-called Mott plateau between µ = −U/2
and µ = U/2 with occupation number ρ = 1, i.e. half-!lling, develops for decreasing temperature
(thicker lines correspond to lower temperatures). In the limit T → 0 the occupation is ρ = 0 for µ <

−U/2. It jumps to ρ = 1 at µ = −U/2. A cost in energy of U has to be expended to add a second electron.

and ρ(µ) = 2 for µ > U /2. For "nite temperature T, these steps are washed out but still
clearly discernible for low temperatures (see "gure 8.8).
.....................................................................................................................................

In one dimension, the Hubbard model can be solved by Bethe ansatz. Investigating
the properties of the one-dimensional Hubbard model is therefore a very useful exercise.

.....................................................................................................................................

EXERCISE 8.28 The one-dimensional Hubbard model The Hubbard model in
one dimension describes Ne electrons on a lattice of N lattice sites that are allowed to
hop to nearest-neighbour sites. Double occupancy of a site with two electrons (which, of
course, must have opposite spin orientation) costs an energy U. The second quantized
Hamiltonian for this model is

H = − t
N∑

j=1,
σ=±1

{
ψ†

σ (xj)ψσ (xj + a) + ψ†
σ (xj)ψσ (xj − a)

}

+ U
2

N∑

j=1,
σ=±1

{
ψ†

σ (xj)ψσ (xj)ψ
†
−σ (xj)ψ−σ (xj)

}
, (8.590)

where xj = ja, j = 1, 2, . . .N, and a is the lattice spacing.
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The Fermi operators obey anti-commutation relations
{
ψσ (xj), ψ

†
σ ′(xl)

}
= δσ ,σ ′δjl . (8.591)

a) Diagonalize the hopping part of this Hamiltonian by Fourier transformation

ψσ (x) = 1√
N

∑

k

exp(ikx)ck,σ (8.592)

and determine the allowed k-values assuming periodic boundary conditions
xj+N = xj .

b) Show that

M↑ =
∑

j

ψ
†
↑(xj)ψ↑(xj) (8.593)

and M↓ de"ned analogously are conserved quantities, i.e. commute with
H. Therefore M↑ and M↓ provide quantum numbers M↑ and M↓ of the
spectrum of H

E = E(M↑, M↓; t, U ). (8.594)

c) Determine the symmetries of E = E(M↑, M↓; t, U) under the transformations

ψσ (xj) = (−1) j cj,σ (8.595)

and

ψ↑(xj) = (−1) j c†
j,↑, (8.596)

ψ↓(xj) = cj,↓. (8.597)

Are the new operators in both cases again Fermi operators?
.....................................................................................................................................

8.8 Heisenberg model

Section 8.6 on magnetism, especially section 8.6.4 on the electrostatic origin of the
exchange interaction in the hydrogen molecule, discussed the Heisenberg model as
a model for localized magnetism. There is also another route to this model as an
approximative limit starting from the Hubbard model, arguably one of the central models
in the physics of strongly interacting quantum matter, and that is connected in the limit of
large on-site interaction U to two other important models, the t–J model and, eventually,
the Heisenberg model.
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While the Hubbard model describes itinerant magnetic behaviour of the conduction
band electrons for arbitrary "lling of the band, the Heisenberg model is a model of fully
localized strongly interacting spins that arises for an exactly half-"lled conduction band.
The t–J model occupies an intermediate position where the conduction band is away
from half-"lling and electrons can still hop between lattice sites because the penalty for
double occupancy of a site is not too large.

In the following two sections we derive these two models. Our starting point is the
Hamiltonian H = Ht + HU , (8.574), of the Hubbard model introduced in section 8.7.
We focus on the Hubbard model on a bipartite lattice, which simpli"es the discussion
considerably. There are various techniques available for these derivations, see, e.g.
Fazekas (1999), chapters 4 and 5, or Auerbach (1994), chapter 3. The method we choose
for the derivation, the Schrieffer–Wolff transformation, was introduced by Schrieffer and
Wolff (1966) in connection with quantum impurity models to derive the Kondo model
from the Anderson model. However, in order to derive the Kondo Hamiltonian from the
Anderson Hamiltonian in section 8.9, we employ a different method.

The Schrieffer–Wolff transformation is a unitary transformation used in many
instances to extract the effective low-energy physics of strongly interacting quantum
systems. It can be used if the energy scales in a Hamiltonian can be chosen such that
only a subset of the states available in principle can be reached for low energies.

Under the condition of strong on-site repulsion U 2 t, double occupancy in the
Hubbard model is suppressed. Depending then on the "lling Ne/N of the N lattice
sites with a total number of Ne = N↑ + N↓ electrons we obtain either the t–J model
for "lling Ne/N .= 1, i.e. away from half-"lling, or the Heisenberg model for "lling
Ne/N = 1, i.e. at half-"lling. We concentrate on the case of less than half-"lling, Ne/N < 1.
Close to half-"lling most of the N sites of the lattice sites are "lled with only one
electron in the ground state con"guration. At exactly half-"lling, single occupancy of
all N lattice sites de"nes the ground state. However, these ground states are highly
degenerate.

8.8.1 From the Hubbard to the t–J model: non-half !lled
band case

We begin by looking at two sites only. By doing this, we obtain an overview of the most
important processes possible in the Hubbard model and how they contribute as the
parameters U, t, and the "lling factor ν = Ne/N vary.

There are 42 = 16 possible states to consider for two sites with Ne = 0, 1, 2, 3, 4
electrons. As discussed in the previous section, the number of electrons can be adjusted
by a variation of the chemical potential µ. Here, we assume appropriate values of µ such
that the lattice exhibits the desired regimes of electron "lling.

For the strong-coupling limit U 2 t we are interested in here, it is natural to start our
discussion in the extreme limit, where t = 0, i.e. the atomic limit. In this limit, there are
no hopping processes. The ground state consists of a lattice of singly occupied lattice
sites and is highly degenerate. If we now switch on hopping, i.e. t > 0, the ground state
degeneracy gets lifted and the four hopping processes
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(a) ↑ 3⇒ ↑ (8.598)

(b) ↑↓ ↓ 3⇒ ↓ ↑↓ (8.599)

(c) ↑ ↓ 3⇒ ↑↓ (8.600)

(d) ↑↓ 3⇒ ↓ ↑ (8.601)

and their spin reversed versions must be considered. While in the hopping processes (a)
and (b) the number of doubly occupied states remain unchanged, process (c) creates a
new doubly occupied site, and process (d) lowers this number by one. Therefore, only
the hopping processes (c) and (d) contribute an on-site energy U.

These considerations can now be used as input into the Schrieffer–Wolff transforma-
tion where we need a separation of energy scales in the Hamiltonian. Our goal with this
unitary transformation is to eliminate the high-energy contributions from the Hubbard
Hamiltonian and thus obtain an effective low-energy description.

We thus split up the hopping part Ht of the Hubbard Hamiltonian (8.574) into pieces
that describe the different hopping processes

Ht = Ht,0 + Ht,2 + Ht,d+ + Ht,d− ≡ H(0)
t + H(±)

t (8.602)

where

Ht,0 = −t
∑

〈ij〉σ

{
(1 − ni−σ ) c†

iσ cjσ
(
1 − nj−σ

)
+

(
1 − nj−σ

)
c†
jσ ciσ (1 − ni−σ )

}
(8.603)

represents processes where unoccupied sites hop by one lattice site, while

Ht,2 = −t
∑

〈ij〉σ

{
ni−σ c†

iσ cjσ nj−σ + nj−σ c†
jσ ciσ ni−σ

}
(8.604)

characterizes processes where doubly occupied sites hop by one lattice site. The Hamil-
ton operator

Ht,d+ = −t
∑

〈ij〉σ

{
ni−σ c†

iσ cjσ
(
1 − nj−σ

)
+ nj−σ c†

jσ ciσ (1 − ni−σ )
}

(8.605)

indicates hopping processes that increase the number of doubly occupied sites by one,
while



OUP CORRECTED PROOF – FINAL, 12/6/2019, SPi

Heisenberg model 369

Ht,d− = −t
∑

〈ij〉σ

{
(1 − ni−σ ) c†

iσ cjσ nj−σ +
(
1 − nj−σ

)
c†
jσ ciσ ni−σ

}
(8.606)

corresponds to hopping processes that decrease the number of doubly occupied sites
by one.

Thus, the "rst two parts, Ht,0 and Ht,2, describe the hopping processes that leave the
double occupancy unchanged. The last two parts, Ht,d+ and Ht,d−, change the double
occupancy by +1 and −1, respectively, and thus change the energy by U. Moreover, we
can also write Ht as two parts: a part H(0)

t that leaves double occupancy unchanged, and
a part H(±)

t that changes double occupancy by one.
We now apply the Schrieffer–Wolff transformation to the present situation where

we want to eliminate the high-energy contributions of the term H(±)
t in the Hubbard

Hamiltonian in order to generate an effective Hamiltonian.
The Schrieffer–Wolff transformation is a unitary canonical transformation of the form

Ã = eSAe−S (8.607)

where S, called the action operator, is required to be an anti-Hermitian operator, i.e.

S† = −S (8.608)

such that, if A is Hermitian, then so is Ã. Expectation values remain unchanged if the
state is also transformed as

|ψ̃〉 = eS |ψ〉. (8.609)

In particular, eigenvalues of A and Ã are identical.

.....................................................................................................................................

EXERCISE 8.29 Proof of the Schrieffer–Wolff transformation formula The
Schrieffer–Wolff transformation gains its usefulness from the expansion

Ã = eSAe−S

= A + [S, A] + [S, [S, A]] + . . . = A +
∞∑

n=1

[S, [S, . . . [S, A] . . .]]n (8.610)

where the index n = 1, 2, . . . signi"es an n-fold commutator.
Prove the validity of this expansion.

.....................................................................................................................................

Here, we thus are looking for an operator S such that the part of the Hubbard
Hamiltonian H(±)

t that changes the number of doubly occupied sites is eliminated from
the Hubbard Hamiltonian in lowest order
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H̃ = eS
(
H(0)

t + H(±)
t + HU

)
e−S = H(0)

t + HU + O
(

t2

U

)
. (8.611)

Using the expansion derived in exercise 8.29, we can write a transformed Hamiltonian

H̃ = H + [S, H] + 1
2

[S, [S, H]] + . . . (8.612)

= HU + H(0)
t + H(±)

t + [S, HU ] +
[
S, H(0)

t

]
+

[
S, H(±)

t

]

+ 1
2

[S, [S, H]] + . . . . (8.613)

The "rst task now consists of "nding an anti-Hermitian operator S such that

H(±)
t + [S, HU ] = Ht,d+ + Ht,d− + [S, HU ] = 0 (8.614)

and, hence, to lowest order, the Schrieffer–Wolff transformed operator does not change
the number of doubly occupied sites.

In order to "nd this operator, we observe that

[
Ht,d±, HU

]
= ∓UHt,d±, (8.615)

which suggests that the explicit form

S = 1
U

(
Ht,d+ − Ht,d−

)
(8.616)

satis"es the requirement (8.614).

.....................................................................................................................................

EXERCISE 8.30 Commutators in the Schrieffer–Wolff expansion Convince your-
self of the commutator relations (8.615).
.....................................................................................................................................

However, with this choice of S, the commutator

[
S, H(0)

t

]
(8.617)

again introduces hopping processes that change the double occupancy of sites. There are
two ways out of this predicament. The "rst is to consider the orders of magnitude of the
terms. The eliminated terms are O(t), while the terms of (8.617) are of order O(t2/U ),
i.e. of one order of magnitude smaller than the eliminated ones.
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A more formal way to deal with this problem is to consider our choice of S as the "rst
term in an expansion in the small parameter t/U and introduce a second order correction

S → S + S(2), (8.618)

which is of order (t/U )2 and which thus eliminates the unwanted term

[
S(2), HU

]
= −

[
S, Ht,0

]
= − 1

U
[
Ht,d+ − Ht,d−, Ht,0

]
. (8.619)

The remaining "rst-order commutators
[
S, H(±)

t

]
of the expansion (8.613) are of order

of magnitude

[
S, Ht,d±

]
= 1

U
[
Ht,d+, Ht,d−

]
= O(t2/U ), (8.620)

which is the same order of magnitude as we obtain for

1
2

[S, [S, HU ]] = − 1
U

[
Ht,d+, Ht,d−

]
= O(t2/U ), (8.621)

while we have for the remaining parts of the second-order in the expansion (8.613) as
order of magnitude

[S, [S, H]] = [S, [S, HU ]] + O(t3/U2). (8.622)

Thus, collecting terms with order lower than O(t3/U2), the Schrieffer–Wolff trans-
formed Hamiltonian of the Hubbard model becomes the effective Hamiltonian

H̃ = Heff = H(0)
t + HU + 1

U
[
Ht,d+, Ht,d−

]
+ O(t3/U2). (8.623)

The main remaining task now is to work out the term 1
U

[
Ht,d+, Ht,d−

]
in the effective

Hamiltonian. We are interested in the low-energy regime near half-"lling where most sites
are singly occupied except for a small number of unoccupied sites or holes. Therefore,
the product Ht,d+Ht,d− does not contribute as it would require doubly occupied sites.
For the same reason, HU does not give a contribution. We are left with Ht,d−Ht,d+, which
creates a doubly occupied site and destroys one. This can be done in two ways, where
either the product of operators acts only on two neighbouring sites (i, j) creating and
annihilating a doubly occupied site, or involving three adjacent sites (i, j, k) where the
doubly occupied site is created and annihilated on the middle site j.

Exercise 8.31 focuses is on the two-site process. The three-site process is discussed
in Fazekas (1999), chapter 5, where the useful tool of Hubbard (projection) operators
is introduced and used to discuss the t–J model. In Fazekas (1999), the discussion is
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framed in the notions of lower and upper Hubbard band, which we have not introduced.
The t–J model is then the effective description of the low-energy physics or the physics
of the lower Hubbard band.

.....................................................................................................................................

EXERCISE 8.31 t–J model Considering only the two-site processes, show that the
effective Hamiltonian (8.623) can be written as

HtJ = − t
∑

〈ijσ 〉

(
(1 − ni−σ ) c†

iσ cjσ
(
1 − nj−σ

)
+

(
1 − nj−σ

)
c†
jσ ciσ (1 − ni−σ )

)

+ 4t2

U

∑

〈ij〉

(
Si · Sj − 1

4
ninj

)
, ni = ni↑ + ni↓, (8.624)

which is the Hamiltonian of the t–J model. The "rst term re!ects the contributions of
H(0)

t in (8.623). Recall the local spin operators for electrons calculated in exercise 3.11.
.....................................................................................................................................

The t–J Hamiltonian (8.624) will have to be supplemented by three-site terms.
However, these are often neglected in applications of the model.

8.8.2 From the Hubbard to Heisenberg model: half-!lled
band case

As previously mentioned, the exactly half-"lled band case is characterized by a ground
state with one electron per site, i.e. there are no empty sites or holes. In this situation
the "rst part of (8.623), stemming from Ht,0, which corresponds to hopping of empty
sites, ceases to contribute to the effective Hamiltonian and we are left with a pure
antiferromagnetic Heisenberg Hamiltonian

H = 4t2

U

∑

〈ij〉
Si · Sj ≡ J

∑

〈ij〉
Si · Sj (8.625)

with J > 0. This is the case of the t–J model with ni = ni↑ + ni↓ = 1. We omitted the
constant term arising from the density-density interaction ninj in (8.623). For further
discussion of the consequences of this model’s provenance from the Hubbard model,
interested readers are referred to chapter 5 of Fazekas (1999).

8.9 Magnetic quantum impurity models

An important avenue to probe strongly interacting quantum matter consists in the study
of the effects of quantum impurities. Quantum impurity problems present theoretical
and experimental settings in which to analyse various aspects of strong electron correla-
tions. In particular, magnetic quantum impurities induce an effective electron-electron
interaction that increases as the energy scale is lowered, the so-called Kondo effect. The


