Graphene: lattice structure, tight-binding, and all that...
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Figure 2.1.: (a) Honeycomb structure of the graphene lattice. The unit cell, defined by
the two lattice vectors a; and as. contains two atoms. which constitute two equivalent
sublattices A and B. Furthermore. the nearest neighbor vectors directed from an A-atom
to the nearest B-atoms are depicted. (b) Brillouin zone of graphene defined by the
reciprocal lattice vectors ki and ks containing the high symmetry points I'. M. K and

K’



the electronic wave function ¥(k) can be approximated
within a tight-binding ansatz as a linear combination of both equivalent sublattices A

and B
Vi (r) = ca(k)®ak(r) +ca(k)Ppk(r), (2.8)

where ¢;(k) are the tight-binding coefficients and @,y (r) is the sublattice wave function
with [ = A,B |48,51]. The latter is normalized and periodic on the respective sublattice
R;. reading

Ok (r) = % Y e tg(r —Ry), (2.9)
Ry

where N is the number of unit cells in the system and ¢(r) is the atomic 2p, orbital.

With this ansatz the Schrodinger equation
H\I’k(l‘) = €k‘Ifk(I‘) (2.1())

can be solved analytically.




It remains to determine the matrix elements H;; and S;;, e.g.

Hap = % z eXBERA) (4(r — R,)|H|d(r — Rp)). (2.14)
Ra,RpB

Due to the localization of the atomic orbital. H g can be treated within the nearest
neighbor approximation! [52|. That means for each summand R4 only the three adjacent

B atoms at R, = R4 + b; contribute, where the b; with 7 = 1,23 are the nearest
neighbor vectors, which are shown in Fig. 2.1(a). Note that the opposite case, l.e. fixing

the B-sublattice and considering the nearest A-atoms, leads to the same eigenvalues. The
three remaining integrals in Eq. (2.14) v0 = (¢(r—Ra)|H|¢(r—Rp,)) are independent on
i, since the 2p,-orbital depends in the plane only on the distance o(r),2) = o(|r)[,2) [48|.
Common values of the integral are in the range between —2.5eV and —3.0eV [48, 53],
where throughout this work —2.84 eV is applied. which is denoted by 7g in the following.
Therewith, Eq. (2.14) yields

H ap = yoe(k), (2.15)

where
e(k) =) ekPi (2.16)

is the nearest neighbor sum. which accounts for the graphene lattice symmetry. The
other matrix elements can be treated in analogy. where Hqa = €g is a constant. which is
chosen to be 0eV to benchmark the energy scale with respect to the intrinsic Fermi level
er. The normalization of the sublattice wave function ®;(r) directly yields Sqa = 1.
Finally. S4p represents the overlap between neighboring orbitals orbital and is given by
Sap = spe(k). The overlap integral sg = (¢(r)|@(r — by)) can be evaluated numerically
via the 2p, orbital. Common values of the overlap integral lie between 0.06 and 0.13,
depending on the applied effective charge Z* |48,54|. However, later the overlap integral
will be neglected providing a good description in energy regime addressed in this work.




Linear band approximation Close to the Dirac point the tight-binding bandstruc-
ture can be linearly approximated. Therefore. the overlap integral sg is
neglected and the nearest neighbor sum. Eq. (2.16). is expanded up to the first order
around the K (or K') point

e(k) = e(K) + [Vke(k)] . K(k —K) = aO\/_ ( ke + k ) (2.20)
where K = 3a 7—€, and k = k — K is the electron wave vector with respect to the Dirac

point [56/. In the following k is denoted by k. if the respective consideration is restricted
to a Dirac valley.




