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Preface

This is work in preparation. There are undoubtedly many typos, and the notations between
the different chapters may not be fully uniform, but hopefully the notes will improve during
the course and the coming years. The document will be updated as errors are detected and
corrected.

We welcome your comments on explanations that you find confusing or particularly clear,
trivial or incomprehensible.
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Chapter 1

Quantum Coherence in Condensed

Matter

1.1 Effects of Phase Coherence

1.1.1 Resonant Tunneling

Consider a double barrier structure comprising two scattering centers in an otherwise clean
one-dimensional structure as shown in Figure 1.1. Classically the transmission probability
through the structure can be obtained from the probability of transmission (Tj) and reflection
(Rj) for each barrier (Tj +Rj = 1) by accounting for multiple reflections between barriers as

T = T1(1 +R2R1 +R2R1R2R1 + . . .)T2 =
T1T2

1 −R1R2
=

T1T2

T1 + T2 − T1T2
→T2=T1

T1

2 − T1

which is always less than T1, i.e. it is harder to get through two barriers than one. Hardly
surprising. What may be surprising at first is that the total transmission probability is not
proportional to T 2

1 but to only T1 for small transmission. The reason is that if the particle
gets through the first barrier, it bounces several times between the barriers and hence has
many attempts to get through the second barrier; in the limit of small T1 a particle is almost
as likely to exit to the right as it is to exit to the left (once it has passed the first barrier),
hence T ≈ T1/2 as our calculation shows.

In quantum mechanics we cannot sum the probabilities for different trajectories but, in-
stead, we have to sum the transmission amplitudes. During each passage between the barriers

T T

L

1 2

Figure 1.1: A double barrier structure comprising two barriers with transmission probabilities
T1 and T2, separated by distance L.
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8 CHAPTER 1. QUANTUM COHERENCE IN CONDENSED MATTER

the wave function accumulates phase kL, which yields the total transmission amplitude

t = t1e
ikL(1 + e2ikLr2r1 + e4ikLr2r1r2r1 + . . .)t2 =

eikLt1t2
1 − e2ikLr1r2

so that the transmission probability is given by

T =
|t1t2|2

|1 − e2ikLr1r2|2
→r2=r1,t2=t1

|t1|4
|1 − e2ikLr21|2

.

We now write r1 =
√
R1e

iφR and t1 =
√
T1e

iφT where T1 +R1 = 1 to get

T =
T 2

1

(1 − cos(2kL+ 2φR)R1)2 + sin2(2kL+ 2φR)R2
1

=
T 2

1

T 2
1 + 4(1 − T1) sin2(kL+ φR)

.

Now it is not true that T < T1, and in particular if kL+ φR = nπ, n ∈ Z, T = 1 regardless
of the transparency of an individual barrier: the particle is transmitted with unit probability
regardless of how reflective the individual barriers are. This is the well-known phenomenon
of resonant tunneling. Near a resonance, i.e. for kL ≈ nπ − φR, we get

T ≈ T 2
1

T 2
1 + 4(1 − T1)[kL− (nπ − φR)]2

=
1

1 + 41−T1

T 2
1

[kL− (nπ − φR)]2

showing the Lorentzian line shape of the resonance. It is important to notice that the res-
onance width is given by 1 = 4 1−T1

T 2
1

[kL − (nπ − φR)]2 or [kL − (nπ − φR)] = ± T1

2
√

1−T1

implying that for low-transparency barriers the resonances are very narrow, and in the limit
of vanishing barrier transparency the resonance becomes a δ-peak.

Two features are responsible for the difference between the classical and the quantum
results: (i) in quantum mechanics we had to add the amplitudes of different ways of arriving
at the same final state, and (ii) the phase accumulated during propagation between the
barriers is always kL. The first of these is carved in the stone that Bohr & Co. brought down
the mountain, but the second is an assumption.

Let us now relax the assumption and postulate that, due to some unknown process, the
phase changes by an amount θj during the jth round trip between the barriers. We then have

t = t1e
ikL+θ0/2(1 + e2ikL+θ1r2r1 + e4ikL+θ1+θ2r2r1r2r1 + . . .)t2

so that
T ({θj}∞j=1)

= |t1|4
∣∣1 + e2ikL+θ1r21 + e4ikL+θ1+θ2r41 + . . .

∣∣2

= T 2
1

∣∣1 + e2ikL+θ1+2φRR1 + e4ikL+θ1+θ2+4φRR2
1 + . . .

∣∣2

or

T = T 2
1

∣∣∣
∑∞

n=0 e
i2n(kL+φR)+i

Pn
j=1 θjRn1

∣∣∣
2

= T 2
1

∑∞
n=0

∑∞
m=0 e

i2(n−m)(kL−φR)+i
Pn

j=1 θj−i
Pm

j=1 θjRn+m
1

= T 2
1

[∑∞
n=0R

2n
1 + 2Re

∑∞
n=0

∑n−1
m=0 e

i2(n−m)(kL−φR)+i
Pn

j=m+1 θjRn+m
1

]

where the second term describes interference between different paths. Let us now assume that
all the phase changes θj are independent random variables that follow a Gaussian distribution
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Figure 1.2: Transmission as a function of 2(kL− φR) and σ2 for T1 = 0.1.

P (θ) with standard deviation σ. We can then obtain the average transmission probability
〈T 〉 for a collection (ensemble) of such systems by

〈T 〉 =

∫ ∞

−∞

∞∏

j=1

dθjP (θj)T ({θj}∞j=1) = T 2
1

[ ∞∑

n=0

R2n
1 + 2Re

∞∑

n=0

n−1∑

m=0

ei2(n−m)(kL−φR)− 1
2
(n−m)σ2

Rn+m
1

]

where I used
∫∞
−∞dθ P (θ)eiθ = 1√

2πσ

∫∞
−∞dθ e

−θ2/(2σ2)eiθ = e−σ
2/2. This result shows that the

interference terms are reduced by the phase fluctuations: the exponent has acquired the part
−(n−m)σ2/2 the dampens the off-diagonal n 6= m terms. Proceeding further by evaluating
the geometric sums we get

〈T 〉 = T 2
1

[
1

1−R2
1

+ 2Re
∑∞

n=0 e
i2n(kL−φR)−n 1

2
σ2
Rn1

1−e−i2n(kL−φR)+n 1
2 σ2

Rn
1

1−e−i2(kL−φR)+ 1
2 σ2

R1

]

= T 2
1

[
1

1−R2
1

eσ2
R2

1−1

eσ2R2
1+1−2e

1
2 σ2

cos(2(kL−φR))R1

+ 2Re 1

1+R2
1−e

−i2(kL−φR)+1
2 σ2

R1−ei2(kL−φR)− 1
2 σ2

R1

]

Since there were ample possibilities for errors in this lengthy calculation, let us check the
two limits we know: the classical result and deterministic quantum case. The classical limit is
obtained by completely smearing out the phase information by setting σ2 → ∞, which yields

〈T 〉σ→∞ =
T 2

1

1 −R2
1

=
T1

2 − T1

as above, and the deterministic phase evolution is obtained by setting σ2 = 0, which yields

〈T 〉σ=0 =
T 2

1

1 +R2
1 − 2 cos(2(kL − φR))R1

also in agreement with the previous result. For intermediate σ2 the result is between the
classical and quantum limits as shown in Figure 1.2.
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Thus, we have concluded that if the phase accumulated during propagation fluctuates
randomly, resonant tunneling (and other interference phenomena e.g. in optics) are sup-
pressed. How much phase fluctuations can be tolerated, then? Let us consider the resonant
case kL = φR so that

〈T 〉 = T 2
1

[
1

1−R2
1

eσ2
R2

1−1

eσ2R2
1+1−2e

1
2 σ2

R1

+ 2 1

1+R2
1−e

1
2 σ2

R1−e−
1
2 σ2

R1

]

= e
1
2 σ2

+R1

e
1
2 σ2−R1

1−R1
1+R1

The relevant scale for importance of phase fluctuations is seen by solving T = 1
R1+1 which is

the average value of the classical (T = 1−R1
1+R1

) and resonant (T = 1) transmissions. This yields
1
2σ

2 = ln(1+T1) For small barrier transparency this gives 1
2σ

2 ≈ T1, which can be understood
by noticing that, classically, the average number of times the particle must impinge upon the
second barrier before it succeeds in getting through is 1/T1, so that the total variance of its
phase upon exit is (1/T1)σ

2; hence, if σ2 ∼ T1, the total variance upon exit is a number
independent of T1, making it reasonable that resonant transmission can be seen if σ2 � T1

while if σ2 � T1, resonant transmission is destroyed.

Phase fluctuations result in a randomization of the phase of the wave function. If a state
that has energy ε and a well-defined phase at time t = 0 undergoes phase fluctuations, the
phase measured after time δt has a probability distribution centered around φ = εt/~. The
width of the distribution increases with δt, and after some time the width has increased to 2π,
meaning that the phase has become completely uncertain (phases that differ by a multiple
of 2π are indistinguishable). The time it takes to reach this situation is called the phase
breaking time τφ. An alternative definition of the phase breaking time is based on evaluating
the average phase factor 〈eiφ(t)〉 as a function of time: at t > 0 the magnitude of the average
phase factor decreases exponentially with time, and the phase breaking time can be defined
through |〈eiφ(t)〉| ∼ e−t/τφ . Both definitions yield the same result within factors of order
unity.1 In order for resonant transmission to survive phase fluctuations, the above analysis
shows that, at small barrier transparencies, phase breaking time must be at least τφ & 2L

vT1

where v is the velocity of the particle between the barriers; faster de-phasing results in a
transmission that is far below unity.

1.1.2 Persistent Currents

We will now consider a collection of independent electrons confined to a small ring-shaped
conductor of radius R. The ring is pierced by a magnetic field that is entirely confined in
the inside of the ring and does not penetrate into the conductor at all. Hence, classically the
electrons are completely unaffected by the magnetic field since the field strength B vanishes
inside the conductor. Quantum mechanically, however, the fundamental quantity is the vector
potential A, which does not vanish inside the conductor, and may therefore influence the
electrons.

1Technically, one should distinguish between the energy relaxation time τE and the phase breaking time
τφ. The former describes how quickly an excited state such as an electron above the Fermi surface loses
its energy, while the latter describes how quickly the phase of the wave function describing the excitation
becomes randomized. Usually the two times are roughly equal but if energy relaxation occurs through a series
of scattering events all involving small energy transfers, the phase memory may be lost before energy is fully
relaxed.
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The system is described by the Schrödinger equation

[
1

2m
[−i~∇ + eA(r)]2 + V (r)

]
ψ(r) = Eψ(r)

where ∇×A = B and V (r) is the potential that confines electrons in the ring. In the simplest
case the ring is infinitesimally thin both in the radial direction and the z-direction so that
V (r) = V0δ(r−R)δ(z), V0 < 0. In this case the only degree of freedom is the angular position
ϕ along the ring, and the Schrödinger equation simplifies to

1

2m

[
−i ~

R

d

dϕ
+ eA(ϕ)

]2

ψ(ϕ) = εψ(ϕ)

where we assumed that the magnetic field is in the z-direction and cylindrically symmetric
about the origin r = 0. To be specific, let us consider a magnetic field that is non-zero only
for r = 0 and has a total magnetic flux Φ. We then have Φ =

∫
Ω d

2r∇×A(r) =
∮
∂Ω d` ·A(r)

where Ω is an arbitrary region surrounding the origin and ∂Ω is its boundary. Let us specialize
to a circular region with radius ρ so that Φ = ρ

∫ 2π
0 dϕϕ̂ · A(r). By cylindrical symmetry the

integrand must be independent of ϕ so that we have Φ = 2πρϕ̂ · A(ρ, ϕ) or A(ρ, ϕ) = Φ
2πρ ϕ̂.

Hence, within the conductor the vector potential is given by A(R,ϕ) = Φ
2πR ϕ̂, and the

Schrödinger equation becomes

~
2

2mR2

[
−i d
dϕ

+
Φ

Φ0

]2

ψ(ϕ) = εψ(ϕ)

where Φ0 = h/e is the magnetic flux quantum. Since the variable ϕ does not appear in
the Hamiltonian, the Hamiltonian commutes with the angular momentum operator, and the
eigenfunction ψ(ϕ) can be written as 1√

2π
ei`ϕ. Substituting in the equation we get ε` =

~2

2mR2

[
`+ Φ

Φ0

]2
. Since the wave function must be single valued as ϕ → ϕ + 2π, the angular

momentum quantum number ` must be an integer.
Thus, the single particle levels are characterized by an integer valued quantum number `,

which is connected to the angular momentum in the z-direction through Lz = ~`, and have

energies ε` = ~
2

2mR2

[
`+ Φ

Φ0

]2
. At temperature T = 0 sufficiently many states with lowest

energies are occupied that all electrons can be accommodated. To see what implications this
has let us first consider spinless electrons (fictitious particles that are identical to electrons
except that they have no spin). Then each `-state can accommodate one electron. If the
number of electrons in the ring is odd, N = 2M + 1, then at zero penetrating flux Φ = 0
the states with ` = −M to ` = M are occupied, and the two highest occupied states are
degenerate. If Φ is now increased from zero, the energies of states with negative ` are reduced
while those of states with positive ` are increased, and for Φ = Φ0/2 it becomes energetically
favorable to occupy the state ` = −(M + 1) rather than the state ` = +M , meaning that
at this value of the magnetic flux the total angular momentum increases from Lz = 0 to
Lz = −(2M+1)~ = −N~. At Φ = 3Φ0/2 another increase takes place and Lz becomes −2N~

so that in general Lz = −[Φ/Φ0+1/2]N~ where [z] is the least integer not greater than z. For
an even number of particles N = 2M at Φ = 0 the states from ` = −(M − 1) to ` = (M − 1)
are occupied, plus either one of the states ` = ±M , and the total angular momentum is seen
to be Lz = −M~ = −(N/2)~ for 0 < Φ < Φ0, so that Lz = −[Φ/Φ0]N~ − (N/2)~.
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The total angular momentum is not directly observable. However, the velocity associated

with the state |`〉 is ~
−1R∂`ε` = ~

mR

[
`+ Φ

Φ0

]
, and the current carried by a single electron

traveling with velocity v is −ev/(2πR), so that the total current carried by a collection of
electrons with the total angular momentum Lz is

I = −e 1

2πR

~

mR

(
~
−1Lz +N

Φ

Φ0

)
= −Ne ~

2πmR2

(
Lz
N~

+
Φ

Φ0

)
.

This current can, in principle, be measured: the current in the ring causes a magnetic flux
through the loop (cf. an electromagnet), which slightly changes the total magnetic field from
the externally applied one. In practice, however, the change is so small that the measurements
are extremely challenging. Substituting the total angular momentum Lz obtained above
shows that the quantity in the parentheses varies between − 1

2 and +1
2 , so that the maximum

persistent current is N
2πR

e~
mR . This can be written as evF /L where vF is the Fermi velocity

(velocity of highest occupied state at B = 0) and L = 2πR is the circumference of the ring.
Hence, the total current is effectively given by the last occupied state as contributions from
the other states cancel out.

Persistent currents are purely a quantum mechanical phenomenon even though they re-
semble ordinary diamagnetic or paramagnetic response — even in the incoherent regime
surface currents arise as a respond to an external magnetic field. The difference is two-fold:
persistent currents emerge even if the magnetic field inside the conductor vanishes as long
as the electronic states encircle a magnetic flux (classical response is proportional to mag-
netic field in the conductor), and the magnitude of the current is inversely proportional to
the system size L. Persistent currents are also fundamentally different from currents that
appear as a response to external electric field. The conductive currents represent a balance
between the external fields that tend to excite electrons to states with higher energies, and
scattering mechanisms that tend to relax the electron distribution towards a thermal equilib-
rium. Persistent currents, in contrast, are a property of the ground state and exist even in
a thermal equilibrium. Equilibrium currents can only exist if the time reversal invariance is
broken: time reversal invariance implies that time-reversed states are degenerate and hence
occupied equally in an equilibrium, and since time-reversed states carry opposite currents,
the net current in equilibrium vanishes.

A crucial requirement for the appearance of persistent currents is that the phase coherence
of the wave function is maintained around the loop — if the state acquires an undetermined
phase during propagation around the loop, there is no reason for ` to be integer, and there is
no response to the external flux. Consequently, the effect can only be seen in relatively small
rings and at low temperatures.
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fbox

Home problem 1: Persistent currents
Consider a system of noninteracting electrons, i.e. spin- 1

2 particles
with charge −e.

1. Sketch the persistent current at zero temperature as a function
of the magnetic flux for systems with 4M , 4M + 1, 4M + 2 and
4M + 3 electrons.

2. Estimate the temperature requirement to observe persistent
current. Can you say something about how the current behaves
as a function of temperature?

1.2 Coherent transport

Let us now investigate transport in the phase-coherent regime in more detail, and pay par-
ticular attention to low-dimensional systems.

1.2.1 Landauer-Büttiker formalism

Consider an impurity-free one-dimensional wire, i.e. a wire that is so narrow that only one
transverse mode is occupied: current between two reservoirs with chemical potentials µL and
µR is given by (charge) × (density) × (velocity), which yields

I = −e
∫∞
−∞dεD(ε)[f(ε− µL) − f(ε− µR)]v(ε)

= −e
∫∞
−∞dε

1
2π

dk
dε [f(ε− µL) − f(ε− µR)] 1

~

dε
dk

= −e 1
h

∫∞
−∞dε [f(ε− µL) − f(ε− µR)]

= −e 1
h

∫∞
−∞dε [f(ε− µ− 1

2eV ) − f(ε− µ+ 1
2eV )]

and at low temperatures f(ε) ≈ Θ(−ε) giving

dI

dV
=
e2

h

which is the quantum conductance. The inverse quantum conductance RK = h/e2 is known
as the von Klitzing constant, or quantum resistance, and roughly equal to 26 kΩ. This
conductance value plays an important role in many small devices that often behave qualita-
tively differently depending on whether some device resistances are smaller or larger than the
quantum value.

A crucial ingredient of the derivation was the cancelation between the (directional) density
of states D(ε) = 1

2π
dk
dε and the velocity 1

~

dε
dk . If the wire has width W , the energy of the nth

transverse mode is ~2

2m
π2

W 2n
2, so if the Fermi energy exceeds 4 ~2

2m
π2

W 2 , two transverse modes are
occupied etc.. In the absence of scattering, each transverse mode contributes independently to
the current, and if N transverse modes are occupied, the conductance is therefore GN = N e2

h .

Allowing for two spin states, the conductance becomes GN = 2N e2

h .

Hence, we find that a one-dimensional conductor has a finite conductance at zero temper-
ature even if there are no impurities. This is in a remarkable contradiction with conventional
wisdom that states that the conductance of a pure metal diverges at zero temperature! What
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about disordered wires where an electron entering the wire has transmission amplitude t,
|t|2 ≤ 1, to get through the wire? We can analyze this case quite easily by noticing that those
electrons whose energies lie below both Fermi levels µL and µR do not contribute to a net
current through the wire — there are equally many electrons moving in both directions —
and for energies µL > ε > µR there are only electrons entering from the left; of these, only
the ones that emerge out of the wire on the right contribute to the net current, implying that

I = −e1

h

∫ µL

µR

dε |t(ε)|2 = |t|2 e
2

h
V

where I assumed that the transmission amplitude is only weakly dependent on the energy
on the relevant energy range. The result is intuitively appealing: a reduced probability for
transmission results in a reduced conductance. This result is known as the Landauer formula
for conductance after the late Rolf Landauer, and is often used to calculate conductances of
quantum mechanically coherent structures.

The expression can be generalized, firstly, to the case of many modes in a two-terminal
wire. Then electrons entering the wire in mode n may be scattered into mode n ′, and either
be transmitted through the wire with amplitude tn′n or be reflected with amplitude rn′n. The
resulting conductance for the wire can be written as

G = Tr(t†t)
e2

h

(proof left as a home problem). A generalization to a more complicated conductor with many
current terminals and voltage probes is also straightforward: At current terminals we specify
the chemical potentials, and at voltage probes the chemical potential is adjusted so that the
net current through the voltage probe is zero (ideal volt meter). The resulting expressions
for current and voltages, which only require knowledge of the different transmission and
reflection amplitudes, are occasionally lengthy but the underlying physics is quite simple.
These generalizations of the Landauer formula were first considered by Markus Büttiker in
the 1980s, and are known as Landauer-Büttiker formalism.

While the physics of the Landauer-Büttiker formalism looks simple in the formalism,
there are a number of subtleties. Firstly, the result goes against ”common knowledge”, and
initially the formalism was met with a great deal of scepticism. Alternative derivations using
slightly different arguments were presented, with a final result that assumed the form G =
|t|2

1−|t|2
e2

h that agrees with the above result for small transmissions but reproduces the classical

divergent result as |t|2 → 1. The debate was only resolved once Daniel Fisher and Patrick
Lee in 1981 derived the Landauer result using a standard field theoretical technique that was
significantly more complicated but also more acceptable to physicists at large. Somewhat
later it was realized that the difference between |t|2 and |t|2/(1 − |t|2) corresponds to two
different experiments: the first result is obtained if the wire is connected to two reservoirs with
fixed chemical potentials, and the second result corresponds to a contactless measurement.
Since one typically measures conductance with the first method, the counterintuitive result
is usually the appropriate one: it essentially states that the smallest theoretically achievable
contact resistance between a single mode quantum wire is e2/(2h), so a wire with two ends
has a minimal resistance of e2/h.

The second subtlety has to do with dissipation. Resistance implies dissipation, i.e. that
energy is transferred from the electron system to something else, and it is hard to see where
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and how such a dissipation can occur in a clean wire. This problem can be resolved by
considering a three terminal configuration where a clean wire connects the left terminal L
to a voltage probe V P and a clean wire connects the voltage probe to the right terminal R.
If the transmission probabilities between L and V P , and between V P and R, are equal to
one, then the condition that the net current in the voltage probe vanishes implies that the
the chemical potential of the voltage probe must equal the average of the chemical potentials
µL and µR, independent of where the voltage probe is located. Consequently, the interior
of the wire is at a constant potential, the internal resistance of the wire is zero, and the
entire voltage drop occurs at the end of the wire, in accordance with the contact resistance
interpretation given above. Hence, dissipation occurs at the contacts between the wire and
the reservoir (typically slightly on the reservoir side). Since in the reservoirs there are many
degrees of freedom with a dense energy spectrum, energy can easily be redistributed between
them, and the conceptual problem with dissipation disappears.

1.2.2 Integer Quantum Hall Effect

A particular system where the Landauer-Büttiker formalism can be applied very easily and
successfully is a two-dimensional electron gas in a strong perpendicular magnetic field. This
system has proven to exhibit very rich physics, and has thus far resulted in two Noble prizes
in Physics. For now we will focus on the Integer Quantum Hall Effect (IQHE) that can
be understood without considering the effects of electron-electron interactions (hence ”two-
dimensional electron gas” — technically, gas implies a non-interacting system). The Fractional
Quantum Hall Effect (FQHE) that takes place in a two-dimensional electron liquid at higher
magnetic fields is discussed in the chapter on the joined effects of coherence and interactions.2

Our starting point is the Schrödinger equation for electrons confined to a plane and sub-
jected to a magnetic field. The equation reads

1

2m
(−i~∇ + eA)2ψ(r) = Eψ(r)

where A is a vector potential associated with the magnetic field B = Bẑ through B = ∇×A.
There are many choices of the vector potential that give rise to the same magnetic field (many
gauges), and for our present purposes the choice A = Bxŷ is the most convenient (transverse
gauge). Inserting this to the Schrödinger equation yields

− ~
2

2m

[
∂2

∂x2
+

∂2

∂y2
+ 2i

eB

~
x
∂

∂y

]
ψ(x, y) +

1

2
mω2

cx
2ψ(x, y) = Eψ(x, y)

where ωc = eB
m is the cyclotron frequency. The Hamiltonian is seen to commute with ∂y,

implying that the wave functions can be chosen to be eigenfunctions of the momentum in the
y-direction, and written in the form ψ(x, y) = eikyuk(x). The remaining function uk(x) can
be solved from

− ~
2

2m

∂2

∂x2
uk(x) +

1

2
mω2

c (x+
~k

eB
)2uk(x) = Euk(x).

This is recognized as a Schrödinger equation for a harmonic oscillator with frequency ωc and

center at x0(k) = − ~k
eB = −k`2c , where `c =

√
~

eB is the magnetic length. Hence, the energy

2Experimentally the two effects are seen in similar, often the same, system. The distinction between electron
gas or electron liquid only refers to the importance of electron-electron interactions in the explanations of the
experimentally observed effects.
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spectrum of electrons in a magnetic field is given by Enk = (n+ 1
2)~ωc which is independent of

the quantum number k that determines both the momentum in the y-direction and the center
of the wave function in the x-direction. The wave functions may be visualized as spaghetti
centered at different points in the x-direction and running along the y-direction. The energy
of each strand of spaghetti is independent of its position in the sample and is entirely given by
the quantum number n. States with the same n are degenerate and form a so-called Landau
level. The number of states in a Landau level can be determined by considering periodic
boundary conditions in the y-direction, which implies a finite spacing ∆k = 2π/L between
the allowed k-values, and requiring that the center of the state falls within the sample in the
x-direction. The end result is that the degeneracy of a Landau level is AB/Φ0 where AB is
the magnetic flux through a sample of area A and Φ0 = h/e is the magnetic flux quantum.
For a typical experimental sample the area is about 10−4m2 so that at a magnetic field of
one tesla the Landau level degeneracy is roughly 2.5×1010.

When the chemical potential lies in the gap between two Landau levels, those levels that
are below µ are full and levels above µ are empty. The density of electrons in the sample is
therefore NB/Φ0. We know from simple electron transport theories that the Hall conductance
of an electron system with areal density ρ is given by ρe/B so that if ρ = NB/Φ0, the Hall

conductance equals σxy = Ne/Φ0 = N e2

h . Hence, if an integer number of Landau levels is
occupied, the Hall conductance is quantized to an integer times the von Klitzing conductance.
For the experimental discovery of this Integer Quantum Hall Effect, Klaus von Klitzing was
awarded the Nobel prize in Physics in 1985. The degree of accuracy of the quantization is such
(roughly 10−10) that it has been adopted as a resistance standard, effectively replacing the
old definition of an ampere: the ohm is defined so that the Hall resistance of a certain type of
device equals 25812.807 Ω. Experimentally it is also seen that when the Hall conductance is
quantized, the longitudinal conductance (which is the usual dissipative conductance) vanishes.
This can be understood as a direct consequence of the fact that when some Landau levels
are completely full and others completely empty, the only scattering mechanisms that could
lead to resistance require exciting electron from one Landau level to another, which requires
energy ~ωc; for a typical experiment in GaAs, this energy at a field of one tesla equals 17
meV which is quite large, comparable to thermal energy at about 200 K.3

While the above explanation of the IQHE is at first sight appealing, it does not fare well
under a more careful analysis. Firstly, all experimental samples are dirty to varying degrees,
and it seems unreasonable from the above arguments that the Hall conductance should be
quantized to the observed degree of accuracy. Secondly, in a typical experiment the electron
density is fixed by charge neutrality — deviating from charge neutrality is far too costly
energetically — and only for isolated, individual points on the magnetic field axis does the
fixed electron density correspond to a chemical potential in the gap between Landau levels; yet,
the Hall conductance assumes its quantized value over wide ranges of applied fields. Thirdly,
it appears absurd that a low-energy measurement, which typically only probes electrons near
the Fermi level, should be sensitive to electrons far below the Fermi surface. Fourthly, a more
detailed version of the above analysis, which allows for scattering by impurities, involves the
only existence proof in condensed matter physics: regardless of the level of disorder, there
exists at least one electron state per Landau level that can propagate through the sample;

3It may be surprising that a vanishing longitudinal conductance implies vanishing longitudinal resistance.
The explanation is that both conductance and resistance are 2-by-2 matrices and ρ̂ = σ̂−1. If σxx = 0 in

σ̂ =

„

σxx σxy

−σxy σxx

«

, also the diagonal element of the corresponding resistance tensor vanishes.
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Figure 1.3: Edge states in the integer quantum Hall regime. Energy of a state in a sample of
width W vs. the expectation value of the position. Note that each Landau level contributes
one state at the chemical potential near both sample edges.

typically, in physics proofs are constructive, saying something about the solution (in addition
to its existence).

All the above objections can be dealt with using the Landauer-Büttiker formalism as we
will now see. To begin with, let us introduce a potential V (x, y) that confines the electrons
to the sample. A general potential renders the Schrödinger equation unsolvable analytically
— essentially only a parabolic confinement is analytically tractable in the x-direction —
but the qualitative consequences can easily be inferred. As a result of the confinement in
x-direction, the energy of a state becomes dependent on where the state is localized in the
transverse (x) direction, hence, the energy Enk acquires a k-dependence. Also, regardless of
the value of k, the state cannot be located outside the sample as defined by V (x, y); hence, for
any k, 〈x〉nk =

∫∞
−∞dx |unk(x)|2x ∈ [−W/2,W/2] where ±W/2 are the edges of the sample.

Consequently, the energy Enk as a function of the expectation value 〈x〉nk is qualitatively given
by Figure 1.3. The figure shows, firstly, that there are states at the Fermi level regardless of
the value of the chemical potential, secondly, the states at the Fermi level are located near
the edges of the sample, and thirdly, each (even partially) occupied Landau level contributes
one state at the Fermi level near both sample edges. Additionally, since ∂k〈x〉nk < 0, states
near the right edge of the sample have negative velocities in the longitudinal (y) direction,
while states near the opposite edge have positive velocities.

Now the mysteries noted above disappear one by one: according to Landauer-Büttiker
formalism, the conductances only depend on the probabilities of electrons being transported
from one electrode to another, and since electrons on the Fermi level are confined near sample
edges, they are inevitably transported from one electrode to the next one in the clockwise
direction — transmission probability to the next electrode in the clockwise direction is 1 and
in the counterclockwise direction it is 0; the number of states at the Fermi level stays constant
over wide ranges of the magnetic field, implying wide quantization plateuax as is observed;
since each even partially occupied Landau level contributes states to the Fermi level, their
contribution to low energy experiments is natural; finally, the nature of the propagating modes
is now clear: they are edges modes propagating along the edges of the sample. We can now
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also see that sufficient disorder would allow electrons to scatter all the way across the sample
and eventually reverse their direction of propagation, thereby destroying the quantization.
Careful consideration along these lines can be used to predict the widths of the Hall plateaux
and how they depend on sample width, temperature, disorder potential etc..

1.3 Localization: coherence effects in disordered systems

All naturally occurring systems contain impurities, defects, or other imperfections to varying
degrees. These result in a potential landscape that has a random potential superimposed on a
regular one such as the potential arising from a periodic crystal. This random potential gives
rise to many different effects such as a transition from ballistic transport (transport without
scattering) to diffusive transport that is described by frequent scattering by imperfections.
The nature of these two transport regimes is most clear if we consider how far a particle
moves in time δt: in the ballistic case, if the particle was at position r1 at time t1, then at
time t2 it will be in position r2 such that 〈(r1 − r2)

2〉1/2 = v|t2 − t1| while in the diffusive case
the root mean square displacement increases as 〈(r1 − r2)

2〉1/2 = 2D
√
|t2 − t1| where v is the

speed and D the diffusion constant.
The two transport regimes are separated by the mean free path `, or the elastic scattering

time τel: transport is ballistic in length scales L < ` or time scales t < τel, and diffusive
on larger scales. Phase-breaking phenomena introduce a new time scale τφ or corresponding
length Lφ. In practice phase breaking occurs at longer length and time scales than impurity
scattering (this need not be true in the cleanest semiconductor systems) so that the system
size L may be either in the ballistic, phase-coherent regime L < `, in the diffusive, phase
coherent regime ` < L < Lφ, or in the classical regime Lφ < L.

Somewhat surprisingly, quantum phenomena may be seen even in the classical regime when
the system size is larger than either ` or Lφ. One of these phenomena is strong localization,
or simply localization, or more specifically Anderson localization after Philip W. Anderson,
one of the most influential condensed matter physicists of this and the last century and the
winner of the 1977 Nobel prize in Physics (for his work on localization). Strong localization
is an effect that arises from similar considerations that result in the concept of the mean free
path, and in some cases it results in a conductance reduction by 100%. Weak localization,
in contrast, is much weaker effect, mostly associated with phase breaking, and discussed first
in the late 1970s by a school of Russian physicists including Boris Altshuler, Arkadi Aranov,
Dmitri Khmelnitskii, Anatoly Larkin and Boris Spivak.

Strong localization

Consider a d-dimensional cubical sample with side length L — how does the conductance
between two opposite faces change with changing L? The classical answer is easy: the con-
ductance is directly proportional to the cross section of the conductor, which is Ld−1, and
inversely proportional to the length of the conductor, so that G ∼ Ld−2. This result is usually
given in the form d lnG

d lnL = β(G) where β(G) is called the scaling function, and has classically
the form β(G) = (d − 2). Hence, in three dimensions the conductance increases with sys-
tem size, in one dimension it decreases, and in two dimensions the classical conductance is
size-independent.

Quantum mechanical effects lead to corrections from this classical behavior. If the system
is very disordered, particles tend to be localized near the potential minima, and transport
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through the system becomes difficult. The eigenstates ψα(r) of a random potential have a
typical size ξ so that |ψα(r − rα)|2 ∼ e−|r−rα|/ξ for |r − rα| & ξ. At zero temperature there
is only one state at the Fermi level, and all transport involves particles entering and leaving
that state. Transport hence involves a factor that is the amplitude of an electron at one
edge of the sample being in the state on the Fermi level, and a factor that an electron in
the state on the Fermi level is on the opposite edge of the sample. The product of these two
factors is independent of where in the sample the state on the Fermi level is located, and
yields a conductance that decreases exponentially with the sample size as e−L/ξ. This simple
analysis excludes transport through extended states (such as ψk(r) = eik·r) which occur in
cleaner systems and have large amplitudes on opposite sample edges, thereby avoiding the
exponential decay. If the disorder is not strong, the classical result is only slightly modified,
and the end result is

β(G) =

{
(d− 2) − a

G , G� e2

h

lnG, G� e2

h

Here a is a constant that is usually positive.

An important feature of the scaling function is that β(G) is negative for all G in one and
two dimensions (in the two-dimensional case β(G) may become positive for large G in the
presence of an external magnetic field), while in three dimensions β(G) is negative for small
G and positive for large G. The sign of β is of substantial importance (indeed, discovering
a sign change of the corresponding scaling function in QCD gave the Nobel prize in Physics
in 2004). A positive β(G) means that the conductance increases with increasing system size,
a behavior usually associated with metals, and a negative β(G) implies that conductance
decreases with increasing system size, a behavior typical of insulators. The point separating
these two behaviors, β(Gc) = 0, is associated with a metal-insulator transition. In the
absence of magnetic fields the metal-insulator transition is only seen in three dimensions
where sufficiently clean systems behave as metals and sufficiently dirty systems as insulators.

From the above discussion it may not be completely clear why strong localization is a
quantum phenomenon: very little quantum mechanics was visible in the analysis. Firstly, in
three dimensions the existence of a metal-insulator-transition is clearly of quantum mechani-
cal origin as the classical analysis predicts always a positive β(G), and the transition appears
as a result of two asymptotic behaviors with different signs of the scaling function. Secondly,
you can understand the localization as arising from transport through a random potential
landscape with many barriers and potential wells. The total transmission through this com-
plicated potential is in general quite low as we saw in our analysis of resonant tunneling, and
only at certain resonant energies may the transmission be substantial. Since the resonant
energies for different potential wells in the random potential are different, it is quite difficult
to get a resonant transmission through the whole structure.4

There are also other mechanisms that may lead to a metal-insulator transition, typically
associated with electron-electron interactions. They will be discussed in the Chapter on cor-
relation effects. Conventionally, a metal-insulator transition that is associated with disorder
in the system is known as Anderson transition, and a transition associated with electron-
electron interactions is known as Mott transition after Sir Neville Mott who shared the 1977
Nobel prize with Phil Anderson and John van Vleck.

4Such resonances, known as stochastic or Azbel resonances, are predicted to exist even for random potentials,
but they are typically very narrow and occur at random energies.
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At T = 0 localization implies that conductance decreases exponentially with increasing
sample size. What about finite temperatures? At a finite temperature transport takes place
by electrons hopping between different localized states. If an electron hops between two states
that have energies Ei and Ef , the energy difference must be supplied by the thermal bath,
which implies that the hopping rate will be proportional to e−(Ef−Ei)/kBT . Another factor
arises from the overlap between the initial and final states: if they are centered at positions
Ri and Rf , this results in the factor e−|Ri−Rf |/ξ where ξ is a length scale describing the size
of the localized states. The first, thermal factor favors long hops since if you search over a
sphere of radius R, there are typically 4π

3 R
3D(εF ) states per unit energy near the Fermi level.

Here D(εF ) is the density of states. Consequently, searching over a sphere of this size centered
at Ri, one typically finds a final state whose energy deviates from Ei by 3

4πR3D
. Thus, the

rate for hopping a distance R is roughly given by

Γ(R) ∼ e
−R

ξ
−β 3

4πR3D

where β = (kBT )−1. The hopping rate is maximized for hops of the optimal length Ropt =[
9
4π

ξβ
D

]1/4
∼ T−1/4, that is, at low temperatures long hops are favored and at high tempera-

tures hop length decreases. Typically the hops with optimal length dominate conductance so
that the conductance is obtained by substituting Ropt to Γ(R), which yields a conductance
whose temperature dependence is given by

G ∼ e−A/T
1/4
.

This is known as Mott’s T 1/4 law, and has been verified by several experiments.

The optimal hop length cannot be shorter than the lattice spacing, which implies that
the above analysis breaks down at sufficiently high temperatures when the hopping distance
becomes a temperature-independent constant, and the hopping rate only depends on temper-
ature in the usual activated manner G ∼ e−TA/T .

Weak localization

Weak localization is a general term that refers to many quantum effects in conductance. These
effects originate from the phase coherence of the quantum states, and therefore typically
depend on the phase breaking time τφ or, equivalently, on the phase coherence length Lφ. As
a matter of fact, weak localization corrections to conductance are the most common way of
measuring the phase breaking time.

Weak localization results are derived rigorously using quantum field theoretical techniques
to analyze the effects of impurities in quantum mechanical systems, and the techniques are
beyond the scope of this course. However, many of the results can be understood based on a
simple physical picture which we will consider in the following.

The conductance is a measure of how easily electrons can move from one place to another.
Large conductance implies that it is easy for an electron to leave its original position and end
up somewhere else, while low conductance implies that an electron is likely to stay near its
original position. In diffusive systems an electron moves along a rugged trajectory, bouncing
off impurities, and after having bounced off many impurities, it may end up near its initial
position — hence, some of the possible trajectories of the electron form closed loops. In
classical physics this connection is formulated quantitatively as the Einstein relation (derived
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by Einstein in his most cited article as a connection between viscosity [the equivalent of
resistance in fluid dynamics] and diffusion constant), which relates the diffusion constant
D to the conductivity σ and the density of states dn

dµ as σ = e2D dn
dµ .5 Let the quantum

mechanical amplitude for traveling the loop Cj be Aj. Classically, the probability of the
electron returning to the vicinity of its initial position is then the sum of probabilities over
all loops, or

Pcl =
∑

j

|Aj |2

where Pj = |Aj|2 is the probability for traveling one loop. Quantum mechanically, however,
we need to sum the amplitudes first and only then take the square, so the quantum return
probability is

Pquantum = |
∑

j

Aj |2 =
∑

j

|Aj |2 +
∑

j 6=j′
AjA

∗
j′

The last sum describes interference between different loops, and each term can be written as
|Aj ||Aj′ | cos[θj − θj′] in terms of the magnitudes and phase of the individual amplitudes. If
the phases are random, the cosine averages to zero, and the classical and quantum results
coincide. For different loops the phases are usually unrelated so the interference effects can
be assumed to be small.

However, each loop can be traversed in two directions, clockwise and anticlockwise. Let
us call these loops C−

j and C+
j , and separate their contributions to the quantum probability.

We have then |A(C−
j )|2 + |A(C+

j )|2 + A(C−
j )A(C+

j )∗ + A(C−
j )∗A(C+

j ). The phases of these
two trajectories are not unrelated: if an electron has wave vector k during its passage between
point R1 and R2 on the counterclockwise path, it accumulates phase k ·(R2−R1) during that
part of the loop; on the clockwise path the electron propagates from R2 to R1 with wave vector
−k, and accumulates phase −k·(R1−R2) — exactly the same as on the counterclockwise path,
implying that A(C+

j ) = A(C−
j ), and the two countertraversed paths yield a contribution 4|Aj |2

to the quantum mechanical return probability but only contribution 2|Aj |2 to the classical
return probability. Consequently, a quantum mechanical particle is more likely to return to
its original location and less likely to move away, which results in a lower conductance than
what would be expected classically.

The above argument relies entirely on the special phase relation between the two coun-
tertraversed trajectories. This special relationship ceases to be valid if the time it takes for
the electron to traverse the loop exceeds the phase breaking time, or if the loop size exceeds
the phase breaking length. The minimum propagation time for a loop is roughly given by
the elastic scattering time τ since for times shorter than τ the electrons move ballistically
along straight trajectories. Hence, only loops with traversal times τ < t < τφ contribute to
quantum corrections in conductance. On this time scale the motion of an electron is diffusive
and the probability distribution of finding the electron at distance r from its initial position
is roughly Gaussian with a variance that increases as t, P (r) ∼ t−d/2e−r

2/(2Dt), so that the
probability of finding it near its initial position (r = 0) decreases as t−d/2. Hence, the total
number of loops with traversal times in the required range is proportional to

∫ τφ
τ dt t−d/2.

5If there is an electric field E across a sample, then the chemical potential of particles with charge q obeys
dµ
dx

= qE. The diffusive particle current due to a concentration gradient is given by j
(p)
D = −D dn

dx
= −D dn

dµ
dµ
dx

where the second equation holds under the assumption of local equilibrium. The associated diffusive charge
current is hence j

(c)
D = −q2D dn

dµ
E. If the total current vanishes, as is the case in equilibrium, this diffusive

current must be canceled by the drift current j = σE, which yields the Einstein relation.
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Since each of these loops gives a similar relative correction to the conductance, the overall
quantum correction is

δσ

σ
∼ −κ





(τφ/τ)
1/2, d = 1

ln(τφ/τ), d = 2

(τφ/τ)
−1/2, d = 3

where κ is a constant that depends on τ and hence on the amount of disorder.
Hence, since the phase breaking time depends on temperature, one way to investigate

the quantum corrections to conductance in experiments is to look for temperature dependent
contributions. This is, however, not very practical as many classical effects also depend on
temperature. A better way is to realize that the special phase relationship between the
countertraversed paths can be removed by breaking time reversal invariance by introducing
a magnetic field: a high magnetic fields changes the trajectories of the electrons, but at
low magnetic fields the trajectories are almost unaffected while the relative phases of the
two orientations of the loops differ by 2Φ/Φ0 as we determined in the persistent current
analysis. Here Φ is the magnetic flux through the loop, which equals BS where S is the cross-
sectional area of the loop in the direction perpendicular to the magnetic field. If the transport
is diffusive, the cross sectional area increases with time as 2Dt. If the phase difference
due to flux exceeds roughly 2π, the quantum effects are washed out. This happens if t &

τB = πΦ0/(2DB), and we must replace the upper limit of the integral yielding the quantum
corrections be the smaller of τB and τφ. This means that as the magnetic field is increased,
fewer and fewer loops contribute to the quantum corrections to conductance, making them
less and less important. Since the quantum corrections reduce conductance, we conclude that
the conductance of a disordered system should increase as the magnetic field is increased.
This phenomenon, known as negative magnetoresistance, has been confirmed in numerous
experiments, and is used as a standard tool to measure phase breaking times. It is particularly
well suited for the task since all classical effects lead to positive magnetoresistance and occur
at higher magnetic fields than the quantum corrections.

Universal conductance fluctuations

Another phenomenon associated with phase coherence is known as universal conductance
fluctuation. It emerges as an answer to the question How much does the conductance vary be-
tween nominally similar conductors? By nominally similar we mean that the conductors have
same dimensions, same impurity concentrations etc. — essentially, we consider an ensem-
ble of conductors and investigate the sample-to-sample variations of the conductances. The
variations arise because the impurities occupy different positions and the associated potential
variations have different magnitudes in different samples; in effect, the variations reflect the
varying potential landscapes in different samples (the potential landscape can be thought of
as the sea floor, and the charge carriers as a fluid filling the sea: the conductivity depends on
the local sea depth (carrier density) and the location and shape of islands (potential barri-
ers)). An ensemble can be created either by having several physically different samples, or by
subjecting one sample to external controls (such as electric or magnetic fields) that change
the potential landscape.

Let us again consider what happens in a classical system. Classically we can divide a
sample of length L into a series of thin slices. The slices are roughly independent of each
other if their thickness exceeds the scattering length `, so the number of slices is L/`. If each
slice is nominally similar, they all have average resistances R0, and the slice-to-slice variance
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is δR2
0. The average resistance of the full sample is then a sum of the resistances of individual

slices, Ravg = (L/`)R0, and the total variance δR2 = (L/`)δR2
0 so that the relative standard

deviation decreases with increasing length as L−1/2 as usual.

A key assumption in the above analysis was that the slices were assumed to be indepen-
dent. If the system is phase coherent, this assumption fails, and we need to reconsider. The
exact analysis is rather complicated, but a simple physical argument can be constructed by
noticing that in a sample with many transverse modes, the total reflectance R̃ (not resistance)
is given by the sum over transverse channels as

R̃ =
∑

αβ

|rαβ |2

where rαβ is the reflection amplitude from transverse mode β to mode α (note that the total
reflectance and the total transmittance T are related by R̃+T = N where N is the number of
transverse modes. Since the conductance is G = e2

h T according to Landauer, knowing R̃ will
yield conductance.) Now assume that the N 2 different contributions αβ to the reflectance
are independent so that the variance of the reflectance is given by N 2[〈|rαβ |4〉− 〈|rαβ |2〉]. We
can evaluate this by dividing the reflection amplitude rαβ into terms that come from different
particle trajectories — Feynman paths, if you are familiar with the path integral formulation
of quantum mechanics. This gives rαβ =

∑
i rαβ(i) where rαβ(i) is the contribution of the

trajectory i so that the first term of δR̃2 can be written as

〈|rαβ |4〉
=
∑

ijkl〈rαβ(i)∗rαβ(j)∗rαβ(k)rαβ(l)〉
≈ 2〈∑i rαβ(i)

∗rαβ(i)〉2
= 2〈|rαβ |2〉2

where we only included the diagonal (manifestly real) terms (i = k, j = l) and (i = l, j = k)
under the assumption that the off-diagonal terms depend on phases that average to zero.
From 〈G〉 = N e2

h − e2

h

∑
αβ〈|rαβ |2〉 and the fact that G ∝ N`/L (conductance is linearly

proportional to wire width and inversely proportional to wire length), we conclude that
〈|rαβ |2〉 ∝ (1/N)(1 − `/L) so that δR̃2 ∝ N2[(1/N)(1 − `/L)]2 = (1 − `/L)2, that is, the
variance of the reflectance is to leading order independent of the size of the sample. Since

T = N − R̃, we have δT 2 = δR̃2 ≈ 1 implying that δG2 =
(
e2

h

)2
so that the standard

deviation of conductance is equal to the conductance quantum, and independent of sample
size or the conductance: universal conductance fluctuations.6 This is in blatant contradiction
with the classical result that would imply sample size dependence (as we saw above) but also
typically yield a result that conductance fluctuation depends on the average conductance.

The above seems like a de-tour — we really wanted the conductance, or total transmit-
tance, but we started by analyzing the reflectance — was it really necessary? It turns out
that it was. The key assumption above was that the reflection amplitudes rαβ are statistically
independent so that it is possible to add averages and variances. This turns out to be a good
assumption. In contrast, the transmission amplitudes tαβ are not statistically independent,
and carrying out the analysis in those terms would either have been more complicated or,

6A more careful analysis reveals that the fluctuation are a e2

h
where the constant a depends on the shape of

the sample. The constant does not, however, depend on the size of the sample or the impurity concentration
(as long as transport is diffusive).
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Figure 1.4: A typical magnetofingerprint of a small sample, taken and Georgia University of
Technology and showing the conductance as a function of an applied magnetic field.

more likely, yielded an erroneous result. The fact that the transmission amplitudes are not
independent can be understood using the trajectory (Feynman path) picture: in a disordered
sample, there are relatively few preferred paths through the sample, and the main contribu-
tion to transmission comes from these paths (sort of like numerous small mountain streams
merging into large rivers before reaching the ocean). The reflected paths, in contrast, typ-
ically never penetrate very far into the sample, and one reflection event is therefore quite
independent of other events. If you are not satisfied by these heuristic arguments, the real
way of obtaining universal conductance fluctuations is explained by Patrick Lee and Douglas
Stone in Phys. Rev. Lett. 55, 1622 (1985). The heuristic argument was presented by Patrick
Lee a year later.

Experimentally UCF has been seen in numerous experiments. The typical experiment
measures conductance variations as a function of an external weak magnetic field as shown
in Fig. 1.4, or as a function of carrier density. The resulting G(B) plot looks like noisy data,
but the plot is perfectly reproducible for a given sample (as it should be, it is determined
by the exact positions of impurities), and is commonly known as the magnetofingerprint.
When the sample is heated up, the impurities can move around, which results in a new
magnetofingerprint.

1.4 Origins of decoherence

Wherefore decoherence? The phase of a wave function evolves in time as eiEt/~ where E is
the energy: hence, phase fluctuations are related to energy fluctuations. To analyze the origin
of phase fluctuations, we divide the universe into a ’system’ — what we are interested in —
and ’environment’ — the rest. While the universe as a whole is, presumably, described by
quantum mechanical equations of motion and possesses a phase that evolves in a deterministic
fashion, any small part of it (the system) is coupled to its environment more or less strongly
and therefore does not have a constant energy and, consequently, not entirely deterministic
phase evolution. Hence, phase coherence is lost due to interactions between the system and
its environment.

The distinction between the system and the environment is quite an abstract one. Some-
times they are two spatially separate parts — e.g. a single hydrogen molecule (the system)
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in hydrogen gas (the environment) — but more often the environment refers to those degrees
of freedom that are not explicitly accounted for in the Hamiltonian of the system, as is for
instance the case when we describe metals as a collection of independent electrons in a static
lattice: the environment of an electron contains both other electrons and lattice ions, and
the coupling between the system and the environment is in the form of electron-electron and
electron-phonon interactions.

For now, let us denote those degrees of freedom that we are interested in by {xsystem} and
the rest by {Xenv}. The Hamiltonian can then be written as

H = Hsystem({xsystem}) +Henv({Xenv}) +Hcoupling({xsystem, Xenv})

where the first two terms describe the isolated system and environment, respectively, and the
last term describe a coupling between the two parts. The isolated systems can be described
by wave functions that only depend on one set of variables and whose energies are entirely
determined by Hsystem or Henv,

Hsystem({xsystem})ψα({xsystem}) = εαψα({xsystem})
Henv({Xenv})φβ({Xenv}) = εenv

β φβ({Xenv})

The separation system-environment is only useful if the coupling between those two is so
weak that to a first approximation we may entirely neglect it. Then the starting point of our
description of the system is in terms of the eigenstates of an isolated system,

[Hsystem({xsystem}) +Henv({Xenv})] [ψA({xsystem})φB({Xenv})]
= (εA + εenv

B ) [ψA({xsystem})φB({Xenv})] .

The impact of the coupling to the environment is perturbative, resulting in mixing of eigen-
states whose energies are close to each other and slight shifts of the eigenenergies. More im-
portantly, the joint eigenfunctions of the system-environment complex are not simply given
by products of a system eigenfunction and an environment eigenfunction, as would be the
case if the two parts were completely decoupled, but are of the more general form

HΨγ({xsystem, Xenv}) = EγΨγ({xsystem, Xenv})
Ψγ({xsystem, Xenv}) =

∑
α,β Cγαβψα({xsystem)φβ({Xenv}) 6= ψA({xsystem)φB({Xenv})

To see explicitly how coupling to an environment leads to de-phasing, consider a situation
in which the system and the environment are decoupled until time t = 0, and then a coupling
is switched on. At time t = 0− the system was in its eigenstate |k〉 with energy ε but
because of the coupling, at times t > 0 the state |k〉 is no longer an eigenstate with a definite
energy, and therefore its phase does not evolve in a deterministic fashion: |k〉 splits into many
components with different energies and different phase evolutions. Because a perturbation
such as the system–environment coupling predominantly couples unperturbed states whose
energies are close to each other, the distribution of the phase of the state at t > 0 is initially
quite narrow and increases with time. In a simplest model the phase performs a random walk
with both an average and variance that increase roughly linearly with time, 〈φ(t)〉 ∼ εt and
〈[φ(t) − εt]2〉 ∼ Dφt. If the coupling with the environment is symmetric in the energy space,
we have ε ≈ ε, but in general this need not be the case.

One common way of describing the system-environment problems is to use density ma-
trices. Let us first ignore the division between the degrees of freedom, and simply consider a
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physical system with states |Ψγ〉. If the probability of the system being in state |Ψγ〉 is wγ ,
the expected result of a measurement that is described by operator Â is

〈〈A〉〉 =
∑

γ

wγ〈Ψγ |Â|Ψγ〉

where we introduced the notation 〈〈Â〉〉 to denote the ensemble average. We can re-write the
ensemble average in terms of another basis |Φ〉 as

〈〈A〉〉 =
∑

γ

wγ
∑

Φ,Φ′

〈Ψγ |Φ〉〈Φ|Â|Φ′〉〈Φ′|Ψγ〉 =
∑

Φ,Φ′

(
∑

γ

wγ〈Φ′|Ψγ〉〈Ψγ |Φ〉
)
〈Φ|Â|Φ′〉.

Defining a new operator

ρ̂ =
∑

γ

wγ |Ψγ〉〈Ψγ |

we can write the ensemble average as

〈〈A〉〉 =
∑

Φ,Φ′

〈Φ′|ρ̂|Φ〉〈Φ|Â|Φ′〉 = Tr(ρ̂Â).

The operator ρ̂ is known as a density matrix and it is quite a convenient tool in describing
coupled quantum systems.

By substituting Â = 1 we see that Trρ̂ = 1 which corresponds to normalization of proba-
bilities,

∑
γ wγ = 1. In the special case that one of the weights wγ equals unity, meaning that

the system is known to be in a particular state, we even have Trρ̂2 = 1.7

Applying the density matrix formalism to the system-environment complex, it is most
convenient to use the direct product basis ψαφβ, and write the density matrix as

ρ =
∑

α,β

wαβ |ψα〉|φβ〉〈φβ |〈ψα|.

If we now consider a measurement that is only sensitive to the system degrees of freedom,
which are included in ψ’s, we have the ensemble average

〈〈A〉〉 =
∑

α,β wαβ〈φβ |φβ〉〈ψα|Â|ψα〉
=
∑

φ,φ′,ψ,ψ′

(∑
α,β wαβ〈φ′|φβ〉〈ψ′|ψα〉〈φβ |φ〉〈ψα|ψ〉

)
〈φ|φ′〉〈ψ|Â|ψ′〉

=
∑

ψ,ψ′

(∑
φ,α,β wαβ |〈φ|φβ〉|2〈ψ′|ψα〉〈ψα|ψ〉

)
〈ψ|Â|ψ′〉.

Here we can identify the quantity inside the parentheses as a reduced density matrix for the
system

ρ̂S =
∑

φ

∑

α,β

wαβ〈φ|φβ〉〈ψ′|ψα〉〈ψα|ψ〉〈φβ |φ〉 ≡ Trφρ̂

which is a partial trace of the full density matrix ρ. The density matrix ρS only depends on
the system degrees of freedom, and has matrix elements 〈ψ|ρ̂S |ψ′〉. The system expectation
values can now be written as

〈〈A〉〉 = Tr(ρ̂SÂ).

7This special situation is known as a pure state, and the more general situation is referred to as a mixed
state.
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The reduced density matrix ρ̂S is a much more convenient quantity than the full density
matrix ρ̂. The diagonal elements of the reduced density matrix are given by

〈ψ|ρ̂S |ψ〉 =
∑

φ

∑

α,beta

wαβ〈φ|φβ〉〈ψ|ψα〉〈ψα|ψ〉〈φβ |φ〉 =
∑

φ

∑

α,β

wαβ|〈φ|φβ〉|2|〈ψ|ψα〉|2

which is manifestly real and positive. Physically, the diagonal matrix elements of the density
matrix given the probability of finding the system in a particular state. The off-diagonal
matrix elements of ρ̂S are, in contrast, given by sums of complex numbers. They represent
coupling, or coherence, between the different states of the system.

While the reduced density matrix is more manageable than the full density matrix in terms
of degrees of freedom, its dynamics is complicated to describe. In principle the time depen-
dence can be obtained by first considering the full density matrix ρ̂(t) =

∑
Ψ |Ψ(t)〉〈Ψ(t)| and

taking the partial trace over the environmental degrees of freedom. In practice, however, the
calculations tend to get quite complicated, and are usually carried out using the path integral
formalism of quantum field theory. Typically, however, the off-diagonal matrix elements of
the reduced density matrix decrease as a function of time, reflecting the reduction of coher-
ence due to coupling to the environmental modes, The diagonal elements remain non-zero as
required by the probability conservation Trρ̂ = 1. Hence, the diagonal elements of ρS have a
simple classical interpretation as probabilities while the off-diagonal elements are inherently
quantum mechanical. The exact dynamics of the density matrix typically couples the diag-
onal and off-diagonal elements (time evolution of the diagonal elements is connected to the
off-diagonal elements and vice versa). Often, however, one can show that the off-diagonal
elements are of lesser importance and one can express the system’s time evolution entirely
in terms of probabilities of the system being in a particular state. This description is known
as a master or rate equation, and is often used as a starting point for dynamic analyses in
the classical or semi-classical regime. We will employ the master equation formalism in the
discussion of Coulomb blockade systems in the next chapter.

Dissipation, or equilibration in general, is not straightforward to describe in quantum
mechanics. In classical physics dissipation is often accounted for by viscous damping terms
in the equations of motion along the lines

m∂2
t x(t) = F (x(t)) − γ∂tx(t)

where the two first terms constitute the Newtonian equation of motion for a particle of mass
m in a force field that depends on the particle’s position. The second term on the right hand
side results in an acceleration that is in opposite direction as the velocity (γ > 0), in other
words, it describes dissipation. Multiplying the equation by ∂tx, using F (x) = −∂xV (x) and
E = (m/2)[∂tx]

2 + V (x) we see that the energy of the particle decreases according to

∂tE(t) = −γ[∂tx(t)]2 = −2γ

m
Ekin(t).

In ordinary quantum mechanical treatments the energy is an eigenvalue of the Hamilton
operator, and as long as the Hamiltonian is time independent, the energy is also time indepen-
dent: quantum mechanics cannot describe dissipation. However, even in quantum mechanics,
energy can flow between two coupled subsystems, and the energy any one subsystem need
not be conserved. Using this idea one has introduced quantum descriptions coupling the
interesting degrees of freedom (the system) to uninteresting ones (the environment), thereby
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allowing some dissipation in the system. The most common implementation of this idea is
due to Caldeira and Leggett, who described the environment as a collection of independent

harmonic oscillators, Henv({Xj}) =
∑∞

j=1

[
− ~

2

2m
∂2

∂X2
j

+ 1
2mω

2
jX

2
j

]
that are linearly coupled to

the system degree of freedom x by Hcoupling =
∑

j CjxXj . This method is quite general as the
spectrum of environmental frequencies {ωj} and the coupling to the different environmental
modes Cj can be chosen to meet the requirement of the specific problem at hand. In partic-
ular, choosing a set of linearly spaced oscillator frequencies and coupling constants Cj that
increases linearly with the frequency ωj of the environmental mode, results in the classical
viscous (ohmic) damping.8

In the usual description of condensed matter systems the starting point — the system — is
to treat electrons as a collection of independent particles and the underlying lattice as a static
structure only giving rise to a periodic potential. Within this assumption, the electrons are
described as Bloch waves with well-defined band indices and quasimomenta. This description
is only valid over time scales in which it is reasonable to neglect the coupling between the
electrons themselves (electron-electron interaction) and coupling between electrons and lattice
vibrations (electron-phonon coupling), or any other perturbation that changes the energy of
the electron. These two scattering mechanisms have been considered in great detail; however,
there is only limited consensus of what the resulting phase breaking time is: for the electron-
phonon scattering it has been shown that τ−1

φ ∼ T p where the exponent p is either 4 (for
dirty 3-dimensional metals), 3 (clean metals), or 2 (dirty metals with some impurities that
do not vibrate together with the host lattice). Experimentally, values of p ranging from
roughly 1.4 (outside the wide theoretical range!) to about 4 have been observed. Typically,
the phase breaking time associated with electron-phonon scattering is of the order of 10−11 -
10−7 seconds at the temperature of one kelvin depending on, e.g., the sample dimensionality
and amount of disorder.

The issue with the phase breaking time arising from electron-electron interactions is rather
similar. Theoretically, in clean 3-dimensional metals the inverse phase breaking time due to
electron-electron scattering is predicted to vary as the second power of temperature (p = 2)
while in disordered metals it is expected to obey a p = 3/2 law.9 Experimentally, the first
prediction is confirmed (with the reservations at the lowest temperatures that we are soon to
discuss) while in disordered samples the data suggests p ≈ 1 rather than p = 3/2. For two-
dimensional electron systems t−1

φ is expected to vary as T 2 lnT at relatively high temperatures

and as T lnT at low temperatures; experimentally, the data suggests AT 2 +BT 2/3 where the
second term arises from the scattering processes involving very small energy transfers — this
term would be absent in the expression for the energy relaxation time τE . The low-energy
processes dominate at temperatures below 1 K.

Often we talk about phase breaking length Lφ instead of phase breaking time. The two
are in one-to-one correspondence to each other: phase breaking time is the distance that
an electron, on the average, travels in time τφ. If the system is clean, electron transport is
ballistic and we have Lφ = vF τφ, while if the system is disordered, electrons are scattered by
impurities and travel in a diffusive manner, leading to Lφ =

√
Dτφ where D is the diffusion

constant.

8It turns out that the ohmic limit is slightly pathological and a more reasonable model is obtained if the
linear increase of Cj is cut off at some high frequency ωD.

9The first of these results will be derived later in the discussion on Fermi liquids and electron-electron
interactions.
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Another time describing decoherence effects is the Thouless time τTh or the corresponding
Thouless energy ETh = ~/τTh and the Thouless length LTh =

√
DτTh. The Thouless energy

measures the system’s sensitivity to boundary conditions: it is the change in the energy
eigenvalue when the periodic boundary conditions ψ(x + L) = ψ(x) are replaced by the
antiperiodic ones, ψ(x+ L) = −ψ(x). If the phase of the state gets randomized between the
boundaries of the sample, or if the amplitude of the wave function vanishes on the opposite
side of the sample, the changing boundary conditions have no implications, and ETh = 0.
Since ETh may vary from one quantum state to another, the value that characterizes an entire
sample is obtained by averaging, and the average value can be approximately related to the
system size by the classical diffusion law ETh = ~D/L2. The Thouless energy appears in many
phase-sensitive results, for instance the magnitude of the persistent currents is proportional
to

√
∆ETh where ∆ is the typical level spacing; the conductance of a quantum wire is roughly

∆
ETh

e2

h , etc.. The Thouless time is not quite the same as the de-phasing time since insensitivity
to boundary conditions arises also as a consequence of strong localization.

Fact or Fiction?

As is probably evident from the above discussion, the temperature depen-
dences of the different contributions to the phase breaking time are not com-
pletely understood: the theoretical analysis is complicated by the interplay of
many physical mechanisms, and experimentally it is very hard to isolate or
even identify the different contributing scattering mechanisms.
Quite recently (1998), a group of experimentalists carried out a series of exper-
iments indicating that the phase breaking time saturates at low temperatures
as shown in Figure 1.5, instead of diverging as all theoretical analyses pre-
dict. This resulted in a heated debate where the theorists argued that the
experiments were wrong in the sense that either the electrons were heated up
by some mechanism, or that there was a scattering mechanism that was not
frozen out at the experimental temperatures (for example, magnetic impurity
scattering, or time-dependent noise that leaked into the measurement system
due to insufficient filtering). The experimentalists maintained the integrity of
their data and how it was obtained.
Subsequently, many theoretical explanations were put forward as possible ex-
planations, but most of them could be discounted on various grounds. Re-
cently, the discussion has essentially died out — the issue has become very
much of a hot potato, best not to touched — and no true consensus has been
reached. Most physicist, I believe, continue to think that the phase breaking
time increases beyond bounds as the temperature approaches absolute zero.a

Were the opposite true, this would have major consequences and invalidate
much of the theoretical foundation of condensed matter physics.

aThe leading candidate for an explanation is magnetic impurities, which have been shown
to affect the low-temperature de-phasing rate even in concentration below 1 ppm, and result
in a saturation through a compensation between the electron-electron scattering and the
Kondo effect, both discussed in the next chapter.
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Figure 1.5: Temperature dependence of the electron dephasing time τφ in a number of systems
(from R. A. Webb, P. Mohanty, and E. M. Q. Jariwala, Fortschr. Phys. 46, 779 (1998)).



Chapter 2

Correlation Effects

2.1 Correlations in classical systems: Coulomb blockade

2.1.1 Double Barrier Structure: Single Electron Transistor

Qualitative discussion

How much energy is required to add one electron to an electric conductor? The precise answer
to this question depends both on the internal structure of the conductor through electron-
ion interactions, and on the presence of other metallic bodies through the creation of image
charges. For simplicity, let us ignore all complications of the first type, assume a spherical
conductor of radius R, ground all other metallic bodies, and place them infinitely far from the
conductor. The electrostatic potential of the conductor then depends on its charge through
V (Q) = Q

4πεR so that the energy cost of charging up the conductor with charge Q is

E(Q) =

∫ Q

0
dq

q

4πεR
=

Q2

8πεR

Writing this in the usual capacitance form Q2/(2C0) shows that the ground capacitance of
the conductor is C0 = 4πεR, which is directly proportional to the size of the conductor (for
the older generation this has no news value: in older systems of units the unit of capacitance
is centimeter).

Consider now a very small grain, connected to two external electrodes by means of tunnel
junctions, and to a third electrode by a capacitive coupling as indicated in Figure 2.1. We
will refer to the first two electrodes as source and drain, and to the last one as gate. Now the
electrostatic situation is more complicated, and we need to analyze the circuit more carefully
to determine the energy E(Q). Let us indicate the potentials on the external electrodes Vj
and the capacitances between the grain and the electrodes by Cj (j = s, d, g). If we denote
the image charges on the electrodes by −Qj and on the ground plate by −Q0,

1 we have
Q = Q0 +

∑
j Qj, V = Q0/C0, and V = Vj +Qj/Cj where V is the potential on the grain.

By solving this system of equations we get V (Q) = [Q+
∑

j CjVj]/CΣ and integration yields

E(Q) =
Q2

2CΣ
+

1

CΣ
Q
∑

j

CjVj =
1

2CΣ
(Q− Q̃)2 − 1

2CΣ
Q̃2

1In practice, “ground plate” refers to all metallic bodies other s, d, and g. They are usually far from the
grain so we can often ignore the small capacitance C0.

31
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where CΣ = C0 +
∑

j Cj is the total capacitance between the grain and other conducting

bodies kept at constant potential, and Q̃ = −∑j CjVj .

C C

C

VV

V

s

s

d

d

g

g

Figure 2.1: Schematic picture of a single electron transistor (SET)

The first issue we wish to address is to determine how much the charge on the grain varies.
Let us start by considering the equilibrium case Vs = Vd. The grain charge changes only if
an electron tunnels between the grain and either the source or the drain. Let us take as a
reference state a configuration where the charge on the grain is zero, so that if M electrons
of charge −e tunnel into it, the grain charge will become −Me, and the electrostatic energy
of the grain becomes E(−Me). The total change in electrostatic energy due to the tunneling
processes is

δE(M) = [E(−Me) +MeVs] −E(0) = M 2e2/(2CΣ) −Me[−Vs −
1

CΣ
Q̃],

where we have accounted for the change in the electrostatic energy in the source (or drain)

electrode. We can simplify the expression to get δE(M) = EC [M − (Qeff
0 /(−e))]2 − (Qeff

0 )2

2CΣ

where Qeff
0 = −∑j CjVj+CΣVs is an offset charge and EC = e2/(2CΣ) is the charging energy.

Since δE(M) has its minimum at M ≈ Qeff
0 /(−e), at low temperatures charge tends to flow

between the grain and the electrodes so that the grain charge becomes approximately Qeff
0 .

The fluctuations in the grain charge are given by the variance δQ2 = 〈Q2〉−〈Q〉2, where the
angular brackets 〈. . .〉 denote average over different charge states of the grain. In equilibrium
the probabilities of different charge states of the grain are proportional to e−βδE(M) and we
have

〈Q〉 = Z−1
∑

M

(−Me)e−βδE(M)

and

〈Q2〉 = Z−1
∑

M

(Me)2e−βδE(M)

where Z =
∑

M e−βδE(M). At high temperatures the granularity of charge can be ignored and
we get by symmetry 〈Q〉 = Qeff

0 , and from the equipartition theorem [1/(2CΣ)]〈(Q−〈Q〉)2〉 =
1
2kBT or δQ2

eq = CΣkBT . At low temperatures, in contrast, the granularity of charge cannot
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be ignored, and we must do the sums numerically to obtain δQ2
eq.

2 The fluctuations are
smallest when the minimum of δE(z) occurs at an integer value of z, and they are largest
when the minimum occurs at a half-integer value of z. In terms of the offset charge Qeff

0 these
two cases correspond to an integer and half-integer multiples of e. In Figure 2.2 we have
plotted the charge fluctuations in units of e2 as a function of βEc and Qeff

0 /e. The behavior
of the system is periodic in Qeff

0 with period e, and we only need to consider offset charges
in the range Qeff

0 ∈] − e/2, e/2].3 The essential physics behind the fluctuation results is now
easy to understand: the tunneling electrons try to screen out the offset charge the best they
can; for Qeff

0 = 0 the screening is optimal if no extra electrons tunnel to or from the grain,
whereas for Qeff

0 = e/2 perfect screening is not possible due to charge granularity, and the
optimal solution is to have the number of extra electrons fluctuate equally between 0 and 1
so that the grain is charge neutral in the average.
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Figure 2.2: Fluctuations of the grain charge as a function of temperature and the offset charge.

So far we have considered the equilibrium case with Vs = Vd, and we have found that the
amplitude of charge fluctuations in the grain depend on Qeff

0 and therefore on Vg. The charge
fluctuations do not result in a net current through the grain since charges are equally likely
to enter and exit the grain through either source or drain junction. Let us now introduce a
small source-drain voltage Vsd such that Vs = Vd+Vsd. The structure is no longer symmetric,
and there is a net current flowing from source to drain through the grain. The amount of this
current is determined by the amount of asymmetry, i.e. by Vsd, and by the ease with which
charge in the grain can fluctuate, which is related to δQ2

eq.

For simplicity, let us first consider the zero temperature case so that at Vsd = 0 charge
fluctuations are completely suppressed except if Qeff

0 is a half-integer multiple of e. Then
charge can only flow through the grain if each step in the current-carrying process reduces
the total electrostatic energy — that is, if it is profitable from an energy point of view for an
electron to jump into the grain from one either the source or drain, and then continue to the
other electrode. Thus, charge can only flow through the system if (now we denote the electric

2Actually, the sums can be related to the Jacobi elliptic theta function of the third type,
ϑ3[iβEc(Q

eff
0 /(−e)), e−βEc ] and its derivatives, see e.g. I. S. Gradshteyn and I. M. Ryzhik, Table of Inte-

grals, Series, And Products, (Academic, Orlando, 1980).
3The offset charge Qeff

0 need not be an integer multiple of e since it depends on the continuously varying
voltages Vs, Vd, and Vg.
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charge of the tunneling particle by q rather than −e)

q[V (0) +
1

2
Vsd] > E(Q+ q) −E(Q) > q[V (0) − 1

2
Vsd]

where V (0) = (Vs + Vd)/2. For a symmetric structure with Cs = Cd we get that charge can
only flow if

|Vsd| >
2Qeff

0 + |q|
CΣ

Hence, if Qeff
0 vanishes, current can only flow if Vsd > eCΣ, which is the effect known as

Coulomb blockade: at low source drain voltages the charging energy cost blocks current flow
through the grain; at a finite temperature thermal fluctuations smoothen out the blockade
and some current can flow even at smaller voltages.4 Since the offset charge can be controlled
with Vg, the current blockade may be lifted if Vg is adjusted so that Qeff

0 is a half-integer
multiple of e. This can be used to construct a switch in which the source-drain current is
controlled by the gate voltage. The switch is known as the single electron transistor since its
operation is based on changing Qeff

0 by less than the charge of a single electron.

We made two implicit assumptions in the above analysis: we assumed that the number of
electrons in the grain was an integer, and we ignored any charge redistribution effects. The
former assumption is justified if the grain is sufficiently well isolated from its surroundings
so that quantum fluctuations do not destroy charge quantization. We may estimate the
typical time scale of charge variations using classical circuit theory and an equivalent circuit
for the double barrier structure (Figure 2.3) where we have included the resistances of the
tunnel barriers. A net charge Q on the grain relaxes towards zero exponentially as Q(t) =
Q(0)e−t/(ReffCΣ) where CΣ = Cs+Cd+Cg and Reff = Rs ‖ Rd ≡ RsRd/(Rs+Rd) is the total
resistance between the grain and ground. Hence, the relevant time scale for charge variations
is the RC-time τRC = ReffCΣ. The quantum mechanical lifetime of a spontaneous charge
fluctuation is τQ = ~/E(e) = 2CΣ~/e2. If this time is much shorter than the time needed to
create a charge variation on the grain, τQ � τRC or, equivalently, Reff � ~/e2, spontaneous
charge fluctuations are greatly suppressed, and the assumption of integer charge on the grain
is justified.

Our other implicit assumption, ignoring charge redistribution effects within the grain, is
valid if we only consider frequencies that are much lower than the frequency of charge motion
inside the grain, that is, plasma frequency. In the case of a three-dimensional grain this
condition is not particularly restrictive since 3D plasma frequency is very high, approximately
1THz. In 2D the situation is somewhat more difficult since the plasma frequency for two-
dimensional charge oscillations depends on the wavelength, but plasma frequencies in two-
dimensional grains that are small enough to exhibit Coulomb blockade are also in the terahertz
range.

Apart from these approximations charging phenomena are very robust. Since Coulomb
blockade is effectively a classical phenomenon, its existence does not depend on subtleties like
phase coherence. In is also quite insensitive to impurities — they may affect the precise gate
voltage values at which a transmission resonance occurs, but they do not change the spacing
of the resonance peaks. Consequently, Coulomb blockade structures are quite attractive

4The characteristic temperature scale TC , which is given by kBTC ≈ e2

2CΣ

, increases with decreasing de-
vice size, implying that practical Coulomb blockade devices must be quite small. Using the spherical grain
approximation and relative dielectric constant εr ≈ 10 we have TC ≈ 1µm

R
K.
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Figure 2.3: Equivalent circuit for a double barrier structure. The gate resistance Rg is usually
much larger than the two other tunnel resistances and therefore we can set Rg = ∞.

from an application point of view, and indeed some applications based on them are already
approaching commercialization. The major difficulty is the fabrication of sufficiently small
structures that can operate at practical temperatures (77K or higher).

Quantitative analysis

A more complete description of Coulomb blockade phenomena can be obtained from a master
(or rate) equation which describes how the probability P (N, t) of finding net charge −Ne on
the grain evolves with time. The charge on the grain may change by tunneling across either
junction, which leads to the set of equations

dP (N,t)
dt = Γs[∆E

+
s (N − 1)]P (N − 1, t) − Γs[∆E

−
s (N)]P (N, t)

+ Γs[∆E
−
s (N + 1)]P (N + 1, t) − Γs[∆E

+
s (N)]P (N, t)

+ Γd[∆E
+
d (N − 1)]P (N − 1, t) − Γd[∆E

−
d (N)]P (N, t)

+ Γd[∆E
−
d (N + 1)]P (N + 1, t) − Γd[∆E

+
d (N)]P (N, t)

(2.1)

where ∆E+
s (N) is the energy change due to an additional electron entering the grain across

the left junction if the grain initially has net charge −Ne, ∆E−
s (N) is the energy change due

an electron leaving the grain across the left junction, and ∆E±
d (N) are the corresponding

energy changes associated with tunneling events across the right junction. These energy
changes are determined by electrostatic energies; for example, for a symmetric structure with
Vd = −Vs and Cd = Cs we get

∆E+
s (N) =

e2

2CΣ
[(N + 1)2 −N2] − e(

Cg
CΣ

Vg − Vs).

If the gate capacitance is much larger than the junction capacitances, this is approximately
∆E+

s (N) ≈ (N + 1
2 ) e

2

Cg
− e(Vg − Vs).

The coefficients Γ(∆E) give the tunneling rates across the barriers, and are determined
by barrier properties and energy considerations. Probably the simplest way to obtain them
is to assume that (i) density of states is constant on both sides of the junction,5 (ii) tunneling

5Constant density of states is an approximation that can be satisfied only if the spacing between different
energy levels is much small than the other relevant energy scales kBT and |eVsd|.
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matrix element is the same for each tunneling process regardless of the quantum mechanical
states involved in the process, (iii) all dissipative mechanisms can be ignored so that energy
is conserved in each tunneling process, and (iv) chemical potentials between the two sides of
the junction differ by ∆µ. Using these assumptions, the tunneling rate Γ is proportional to∫∞
−∞ dε nF (ε− µ− ∆µ)[1 − nF (ε− µ)] where nF (ε) is the Fermi function and the two factors

give the proportions of full and empty states on the two sides of the barrier, respectively.
Changing integration variable to z = eβ(ε−µ) yields Γ(∆µ) = A∆µ/(1 − e−β∆µ) where A is a
proportionality constant. The constant A can be determined by calculating the current across
the junction, which is on one hand given by −e[Γ(∆µ)−Γ(−∆µ)] = −eA∆µ, but on the other
hand it is also given by U/RT where U = ∆µ/(−e) and RT is the tunneling resistance. This
yields A = 1/(e2RT ) and hence Γ(∆µ) = 1

e2RT

∆µ
1−e−β∆µ . The chemical potential difference ∆µ

can also be viewed as a energy difference ∆E between the states of the system before and
after a tunneling event, so that Γ(∆E) = 1

e2RT

∆E
1−e−β∆E . Note that the T = 0 limit of these

tunneling rates is particularly simple: Γ(∆E) = Θ(∆E) ∆E
e2RT

, which vanishes if the energy of
the system would increase as a result of a tunneling process.

Most of the time we are interested in the steady state behavior of the device so that
.
P (N) = 0. In this case the master equation reduces to a matrix equation the solution of which
yields the steady state probabilities P (N). As an example of the master equation approach
we now apply (2.1) to a symmetric structure Rs = Rd, Cs = Cd, and Vs = −Vd = Vsd/2,
and determine the steady state probabilities P (N) and the current through the structure as
a function of the source-drain voltage.

E(N  )

E(N   − 1)E(N  )

E(N   − 1)

d

d

s

s

E(1009)

E(1008)

E(1007)

E(1006)
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µ

µ

d

s

Grain spectrum

Figure 2.4: Definition of the continuous parameters Ns and Nd. In this particular case,
Ns ≈ 1007.5 and Nd ≈ 1006.5, which implies that in steady state (T = 0) only the probabil-
ities P (1006) and P (1007) are non-zero. The arrows indicate possible transitions involving
configurations with the indicated number of electrons in the grain before the transition.

For simplicity we start with the zero temperature case and set Vg = 0. It is useful to define
continuous parameters Ns and Nd such that µs + E(Ns − 1) = E(Ns) and similarly for Nd.
Hence, electrons can enter the grain with N electrons from lead δ (δ = s, d) if Nδ − 1 > N ,
and they can leave the grain with N electrons by tunneling into lead δ if N > Nδ, see Figure
2.4. For concreteness, let us assume that the polarity of the applied voltage is such that
µs > µd and hence Ns > Nd. We can distinguish three different ranges of grain charge N :
(i) N > Ns − 1: all rates for tunneling into the grain are zero, (ii) Nd > N : all rates for
tunneling out of the grain are zero, and (iii) net charges not covered by cases (i) or (ii): at
least some in-tunneling and out-tunneling rates are nonzero. The states corresponding to



2.1. CORRELATIONS IN CLASSICAL SYSTEMS: COULOMB BLOCKADE 37

cases (i) and (ii) can occur in steady state only if they can be reached from some state with
lower (case (i)) or higher (case (ii)) charge N , consequently, P (N) must vanish for N > Ns

and for Nd−1 > N . Let us now define N0 = [Nd] and m = [Ns]− [Nd] where [x] is the largest
integer not larger than x. Physically, N0 corresponds the smallest number of electrons the
grain may contain in steady state, and N0 +m corresponds to the largest number of electrons
in the grain in steady state, i.e., P (N0 + α) is non-zero only for α = 0, . . . ,m. At T = 0 the
tunneling rates are given by Γ+

s (N) = 1
RsCΣ

pos(Ns −N− 1) and Γ−
d (N) = 1

RsCΣ
pos(N−Nd),

where pos(x) = xΘ(x) is x if x is positive and zero otherwise.

We can now solve the master equation recursively starting from α = 0 and obtain

P (N0 + α)

P (N0)
=

α−1∏

j=0

Ns −N0 − j − 1

N0 −Nd + j + 1
=

Γ(Ns −N0)Γ(N0 −Nd + 1)

Γ(Ns −N0 − α)Γ(N0 −Nd + 1 + α)

where Γ(z) is the gamma function and we used z = Γ(z + 1)/Γ(z). For small voltages we
have [Ns] = [Nd], all rates are zero, hence only P (N0) is non-zero (P (N0) = 1), and the
current vanishes. The current can only start to flow when [Ns] − [Nd] = 1, which is exactly
the condition we obtained earlier with a simple energetics argument. For large voltages
|Vs − Vd| the width of the allowed charge interval, m, is large, and we can approximate the
distribution P (N) by a Gaussian — note, for example, that if Ns and Nd are integers, the
distribution is binomial, which may be approximated by a Gaussian for large m. We write
P (N) ∝ e−γ(N−N)2 which has its maximum for N = N . We can determine N by symmetry:
the only α-dependent terms are the two Γ-functions in the denominator, and their product is
minimized if the arguments of the functions are equal, which yields N = Ns+Nd−1

2 . The width
of the distribution we obtain by writing P (N0 + α) ∝ exp[− ln Γ(Ns − N0 − α) − lnΓ(N0 −
Nd + 1 +α)] and expanding the exponent to second order in α near N0 +α = N . This yields
γ = ψ′(Ns−Nd+1

2 ) where ψ(z) is the logarithmic derivative of the Γ-function, ψ(z) = d
dz ln Γ(z).

For large voltages, i.e. for large (Ns −Nd), we may approximate Γ(z) ≈ ez(ln z−1) (Stirling’s
formula) so that ψ(z) ≈ ln(z) and ψ′(z) ≈ 1/z, for details see e.g. I. S. Gradshteyn and
I. M. Ryzhik, Table of Integrals, Series, And Products, (Academic, Orlando, 1980). Hence,
we have

P (N) ≈ 1√
π/γ

e−γ(N−N)2

where N = Ns+Nd−1
2 and γ = 2

Ns−Nd
, and the prefactor was determined by normalization.

Thus, the probability P (N) is largest for those charge states N which are strongly coupled to
both leads, and decreases to zero near the edges of the allowed interval — roughly speaking,
states with large N are rapidly emptied into the right lead but only slowly replenished from
the left lead, while the opposite is true for states with small N . In the middle of the allowed
range tunneling-in and tunneling-out are equally fast.

Inserting this into the expression for the current at the left junction I =
∑

N
e

RsCΣ
(Ns −

N − 1)P (N) yields

I =
e

RsCΣ

Ns −Nd − 1

2
=

1

Rs

(
Vs −

e

2CΣ

)
=

1

2Rs

(
Vsd −

e

CΣ

)
.

Thus, the large-voltage IV-curve has the same slope as the IV-curve in the absence of Coulomb
blockade, but it is shifted to larger voltages by amount e/CΣ = 2EC/e.
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The finite temperature case is harder to analyze except in the limit EC � kBT � |eVsd|
when at most two charge states are occupied with significant probability. The resulting two-
state system can be solved straightforwardly to obtain

I = ∆Es∆Ed
eRs

sinh[ 1
2
β(∆Es−∆Ed)]

cosh[ 1
2
β(∆Es+∆Ed)]−cosh[ 1

2
β(∆Es−∆Ed)]

× 1
∆Es coth[ 1

2
β∆Es]+∆Ed coth[ 1

2
β∆Es]

where ∆Es = E(N − 1) −E(N) + eVs and ∆Ed = E(N − 1) −E(N) − eVs. The differential
conductance G(V ) = dI

dVsd
at zero bias is now

G(Vsd = 0) =
1

4Rs

β∆E

sinh(β∆E)
(2.2)

where ∆E = E(N−1)−E(N). As a function of gate voltage we have G(Vg) = 1
4Rs

βe(Vg−V (N)
g )

sinh[βe(Vg−V (N)
g )]

where V
(N)
g is the gate voltage value for which E(N) = E(N−1). The differential conductance

at zero applied bias voltage is plotted in Figure 2.5.
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Figure 2.5: Differential conductance at zero bias voltage as a function of the gate voltage.
The full width at half maximum is ∆Vg ≈ 4.355kBT

e .

Hence, the zero bias conductance exhibits a series of peaks and valleys as the gate voltage
is varied, corresponding to different values of N . All peaks have the same, temperature
independent height 1

4Rs
which is exactly half of the large voltage conductance, whereas the

peak widths are linearly proportional to temperature T . The peak width is directly related
to the number of single particle states that contribute to G, which increases as T , but since
the total conductance of the peak is constant, the contribution from each single particle state
decreases with increasing temperature as T−1. This behavior can be verified experimentally in
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semiconducting quantum dots, where the density of states is very small so thatD(εF )kBT � 1
and the number of contributing single particle states does not increase smoothly with T . In
this case the T -dependence of the conductance peaks follows the T −1-law as has been seen
experimentally.

In the appendix A we discuss the role if the electromagnetic environment on Coulomb
blockade. It is clear from the beginning that the electromagnetic environment — that is, the
impedance of the equipment connected to the tunnel junctions — plays an important role in
CB structures: we have thus far considered blockade in a system with two junctions and con-
cluded that the resistivities must exceed the quantum resistance for the blockade to appear.
In the appendix we analyze a more general case where a single junction is connected to an
impedance Z(ω), and we will find that a conventional blockade emerges if the low-frequency
impedance exceeds 26 kΩ, while for lower impedances the low-frequency current follows a
power law I ∼ V 1+α where α ≈ Z(0)/26kΩ. The importance of this result will become more
clear in the section on Luttinger liquids, where we discuss another origin of power laws in
conductance. Experimentally, it can be quite difficult to infer the origin of this type of simple
behavior that can be attributed to different physical reasons.

Home problem 2: Coulomb staircase
Consider a strongly asymmetric double barrier structure such
that RR � RL meaning that the central grain is much more
strongly coupled to the left lead. A voltage VL is applied to the
left lead and voltage VR = −VL is applied to the right lead. Both
leads are assumed to be internally in equilibrium at all times. For
simplicity, consider the zero temperature limit only.

1. Without doing any calculations but simply relying on physical
argumentation, determine qualitatively the N -dependence of
P (N ;VL).

2. Using the master equation (2.1) show that your result in part
1 is correct.

3. Using the result of part 2, show that the current-voltage
characteristics of this asymmetric structure are step-like, i.e. the
current is nearly constant for a range of voltages VL, and then
increases steeply to new plateau. What is the step height ∆I?
What is the physical reason for the current steps?

2.2 Correlations in quantum matter

The electron-electron interaction has also more subtle effects than those describable within
the capacitance approach used in the discussion of the Coulomb blockade. Interactions be-
tween charge carriers result in correlations in particle motion, i.e. the motion of one particle
affects that of another one. For the mesoscopic phenomena discussed in Chapter 1 these cor-
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relation effects are of little qualitative importance, and, if at all necessary, can be accounted
for by adjusting the phase breaking time (see the discussion in Sec. 1.2). The fact that we
can ”absorb” the effect of the electron interaction by simply renormalizing a parameter may
appear rather surprising. In fact, this state of affair is quite common for interacting fermions,
and applies to a variety of systems, spanning very different energy and length scales: Con-
duction electrons in ordinary metals and semiconductors, liquid He3, the interior of neutron
stars, nuclear matter, and quark-gluon plasmas all belong to this class. To a first (and often
very good!) approximation, properties of these systems can be obtained by simply treating
the fermions as independent particles with adjusted, or renormalized parameters. In the ele-
mentary text book treatment of conduction electrons in metals one does not even bother to
carry out this renormalization (c.f. Sommerfeld’s independent electron model), and still the
theory gets most of the physics right.

How can such a simple-minded approach possibly work? To answer this question, one
must include the electron-electron interaction (or, in a more general setting, the interaction
among whatever fermions that make up the system) and study its effect (or ”non-effect”!)
on the physics. There are many ways of doing this, the (historically) most important being
perturbation theory. Other approaches include variational calculations and renormalization
group methods. The picture that emerges from all these different methods may be interpreted
within Landau Fermi liquid theory, one of the high points of theoretical physics from the last
century (Lev Landau, 1956). Landau’s theory explains why the independent electron approx-
imation works so well in many condensed matter applications (like the study of electronic
properties of mesoscopic systems or bulk metals). Equally important, the theory points to
its own demise for electrons that organize to form collective phases of matter: Already the
same year as Landau worked out his theory, Leon Cooper pointed out that a weak attractive
interaction among electrons in a metal − mediated by phonons − would cause an ”instabil-
ity” of the electron liquid, leading to superconductivity. This phase of electronic quantum
matter cannot be described by Landau Fermi liquid theory but requires a very different type
of theory. Since the late 70s an increasing number of condensed matter systems have been
discovered which do not conform to Fermi liquid theory. Examples include fractional quantum
Hall systems, high-temperature superconductors and other complex oxides, ”heavy fermion”
materials, quasi-one-dimensional organic conductors and carbon nanotubes, trapped ultra
cold Fermi gases, and a rapidly growing number of specially designed semiconductor-based
nanoscale devices. Our theoretical understanding of these systems remain scattered and in-
complete. Despite a concerted effort by many researchers, real progress is coming only slow
and piecewise. In most cases we understand why Landau Fermi liquid theory fails, but there
is yet no consensus that the proposed alternative theories properly ”do the job” 6. In other
cases the very breakdown of Fermi liquid theory remains somewhat of a mystery. A case in
point is the so called ”optimally doped” metallic phase of the Cu-O based high-temperature
superconductors where every experimentally measured non-equilibrium property (resistivity,
Raman scattering, nuclear relaxation rate,...) is in conflict with the Fermi liquid picture of
how a metal should behave. A recent count estimates that more than 105 scientific articles
have been published about this problem since the discovery of the high-temperature super-
conductors in 1987. Yet, there is no consensus about what mechanism is responsible for their

6There is one striking exception to this statement: The theory of the fractional quantum Hall effect (FQHE)
pioneered by Robert Laughlin. For his achievement, Laughlin shared the 1998 Nobel Prize in Physics with
Horst Störmer and Daniel Tsui, the two experimentalists who discovered the effect. More about this fascinating
physics in the next chapter!
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violation of ”text-book” Fermi liquid physics.

The importance and depth of the problems involved − their common denominator being
the presence of strong correlations − has turned the field of strongly correlated quantum mat-
ter into one of the most active in Physics today. The impetus is two-fold: On the practical
side, the high sensitivity of many correlated-electron materials to changes in external param-
eters holds promise for the development of new technologies (sensors, elements for control
and diagnostics,...), while in other applications this same property may interfere with desired
device operation, in particular at the nano or mesoscopic scale. Either way, it is crucial to de-
velop the theoretical tools required for an understanding of the underlying physics. At a more
”fundamental” level, the very existence of strongly correlated quantum matter raises difficult
conceptual questions about how to understand the emergence of the defining properties at
the mesoscopic or macroscopic scale from those at the atomic level.

The problem is hard on two counts. First, given a model of a many-particle system where
interaction and correlation effects are built in from ”scratch” (and not simply added as a
perturbation) we lack the conceptual, mathematical, and computational tools to efficiently
carry out a reliable analysis, except in a few fortuitous circumstances.7 Secondly, materials
that exhibit effects from strong electron correlations − such as metallic oxides, intermetal-
lic compounds, or organic conductors − often have a complex structure that is difficult to
characterize in detail. Also, the typical hypersensitivity of these materials to atomic im-
perfections and sample preparation methods make experiments hard to reproduce. All is
not gloom, however. Progress in nanotechnology has made possible the manufacturing of
nanoscale structures that show strong correlation effects, and which are much easier to con-
trol experimentally than ”traditional” bulk materials. An important example is the Kondo
effect in quantum dots, where high-precision measurements have allowed tests of theory at
an unprecedented level. Another example is the Mott transition in ultra-cold fermionic gases
trapped in one-dimensional optical lattices. The study of these and related phenomena −
to be discussed in Sec. III − has opened up a vista on problems that for a long time were
considered to be out-of-reach for experiments. Indeed, the study of correlation effects in
nanoscale structures has boomed in the last few years, both in experiment and theory. There
is a perception among many researchers that this is the ”way to go” to make progress on
the notoriously difficult problem of strongly correlated quantum matter. Yet, many ques-
tions remain unanswered, and new questions − specific to the nano- or mesoscale − have
appeared. One such very basic question is how to understand the interplay between coher-
ence and correlation effects. In the single-particle picture of mesoscopic physics each electron
− or quasiparticle, to use the language of Landau Fermi liquid theory − is associated with a
wave function that carries a phase that is well-defined on time scales shorter than the phase
breaking time. This leads to all kinds of strange and beautiful coherence phenomena, some
of which have been discussed in the previous chapter. If interactions among electrons become
more pronounced, as a result of changing temperature, magnetic field, or some other exper-
imental parameter, the single-particle physics may break down and give way to a strongly
correlated system where the electrons organize into collective states. Given this, how do we
account for coherence effects at the nanoscale? Are they lost, or do they reappear at the
new collective level? This is a difficult and fascinating question that defines much of current

7The theory of the FQHE, mentioned in the previous footnote, is one example. Another class of problems
where there has been substantial theoretical progress are those that can be reduced to a one-dimensional
geometry for which there exist a number of powerful analytical and computational techniques (Bethe Ansatz,
Density Matrix Renormalization Group,...). More about that in Sec III.
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research in the field. We shall touch on it as we go along, but an answer must await progress
in experiments as well as in theory.

The rest of the chapter is organized as follows: In section 2.2.1 we give a pedestrian view of
perturbation theory applied to interacting electrons. This section serves a two-fold purpose:
First, to introduce some standard concepts and methods from many-particle physics (second
quantization, Feynman diagrams, ...), and secondly, to provide a ”microscopic” underpinning
of Fermi liquid theory. This theory is the topic of Sec 2.2.2. After a general introduction we
look at a few simple applications of Landau’s theory to liquid 3He, and then discuss how to
extend it to electrons in metals. Most of the material follows Landau’s original approach, but
we shall also look at the more ”modern” view of a Fermi liquid as a fixed point theory under the
renormalization group. Sec 2.2.3 deals with failures of Fermi liquid theory, taking us into the
exotic and sometimes bewildering realm of non-Fermi liquid physics. We shall here focus on
one particular paradigm for thinking about non-Fermi liquids, that of quantum criticality, and
briefly discuss its application to heavy fermion materials. In Sec 2.2.4 finally, we give a fairly
detailed exposition of another paradigm that replaces that of Landau’s whenever electrons
are confined to one dimension (as in quantum wires or in carbon nanotubes): the Luttinger
liquid. This section also contains an introduction to the powerful method of bosonization.

2.2.1 Interacting electrons: perturbative approach

As our case study, let us take a metal and write down its Hamiltonian H:

H = Hel +Hion +Hel−ion +Hel−imp (2.3)

where

Hel = H0 +Hint (2.4)

Hion = Hion,kin +H0
ion−ion +Hphonon (2.5)

Hel−ion = H0
el−ion +Hel−phonon (2.6)

(2.7)

The term Hel represents the part of H that contains only the conduction electrons: H0 is
the kinetic part, while Hint is the Coulomb interaction among the conduction electrons. Hion

in turn is the part that contains only the ions that make up the crystal lattice. Hion,kin is
the kinetic energy of the ions, H0

ion−ion describes the interaction between the ions in their
equilibrium positions, and Hphonon is the correction to this interaction from vibrations of the
ions around their equilibrium positions. Hel−ion in turn controls the interaction between the
conduction electrons and the ions, with the term H 0

el−ion representing the interaction with the
ions in their equilibrium positions, and Hel−phonon the electron-phonon term that encodes the
effect of the lattice vibrations on the conduction electrons. Finally, Hel−imp is an interaction
between conduction electrons and impurities or lattice defects.

Elementary text books in condensed matter physics start with

H0 +H0
el−ion =

∑

j

p2
j

2m
+

1

2

∑

j,`

Vel−ion(rj − R`), (2.8)

where the index j labels the electron momenta pj and coordinates rj , with ` labeling the
ions with coordinates R`. Vel−ion is the electron-ion potential. Assuming that the lattice
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is periodic, one shows that the effect of the potential term can be encoded by replacing
the free electron wave functions (plane waves) by Bloch wave functions. One then adds
the electron-impurity term Hel−imp and studies its effect on the Bloch electrons, most often
using a relaxation time approximation. Finally, one cranks up the temperature, and includes
also the electron-phonon term Hel−phonon. (Nota bene: The Hamiltonian knows nothing
about temperature. It is only the effect of the electron-phonon term Hel−phonon that becomes
important at finite temperature, and therefore has to be included.) But what about the
Coulomb interaction Hint among the conduction electrons? In fact, it is usually neglected!
Since all interaction terms in the Hamiltonian in (2.3) are of the same order of magnitude, all
being Coulomb interactions, it is a priori not obvious that this approach should work. That
a separation between electron-electron and electron-ion interactions makes sense is another
matter: The motions of the ions are slow while the electrons move fast, hence the two dynamics
are effectively decoupled (Born-Oppenheimer approximation). But how can one exclude the
electron-electron interaction all together? Here we ”turn the table” and focus on the electron
Hamiltonian

H ′
el =

∑

i

p2
i

2me
+

1

8πε0

∑

i,j

e2

|ri − rj |
+H+. (2.9)

To satisfy the condition of charge neutrality, we have included the lattice ions as a fixed
uniform positive charge background, representing it by the ion self-energy term H+.8 Smear-
ing out the ion charge uniformly over space and decoupling it from the conduction electrons
means that we neglect the presence of the crystal lattice and its effect on the electrons. In
particular, it means that we forsake the possibility to have a nontrivial band structure or,
for that matter, an interaction between electrons and phonons, or between electrons and
whatever defects or impurities are embedded in the lattice. It also means that we take the
electron coordinates as continuum variables. The continuum limit approximation introduces
some formal problems, which, however, can rather easily be taken care of. The neglect of
band structure and interactions with phonons or impurities may appear as a more serious
distortion of the facts. However, as long as we are only interested in the qualitative aspects
of the electron-electron interaction, the omission of the lattice is legitimate.9 The model in
Eq. (2.9) goes under many names: The jellium model, the interacting electron gas, or, maybe
most appropriate − considering the high density of conduction electrons in a metal − the
electron liquid.

To make progress we shall carry out second quantization of Hel in (2.9). (See Appendix
3.1.1 for details.) As a first step we pick a single-particle basis with states |λ〉 ≡ |kλ, σλ〉, with
kλ [σλ] the single-particle momentum [spin] in the state with label λ. Evaluating the matrix
elements

〈λ′| p2

2me
|λ〉 =

p2

2me
δλλ′ ≡ Eλδλλ′ (2.10)

8As a reminder of having added H+ to Hel in Eq. (2.3) we have put a prime on Hel.
9This is actually a bit optimistic. There exist a number of situations where lattice and impurity effects

feed back dramatically on the electron-electron interaction. A case in point is the nesting of the square
Fermi surface for electrons hopping on a two-dimensional lattice. ”Nesting” means that one section of the
Fermi surface can be connected to another section via a constant vector. This feature results in a strong
enhancement of interaction effects. Nested Fermi surfaces have been invoked by some theorists trying to
explain the strange metallic behavior of complex oxides, like the high-temperature superconductors. We shall
come back to the concept of nesting when discussing singular scattering of electrons in one dimension.
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e2

4πε0
〈λ′µ′| 1

|r − r′| |λµ〉 =
e2

4πε0k2
ν

δσλσλ′ δσµσµ′ ≡ Vνδσλσλ′ δσµσµ′ , (2.11)

with kν = |kν | ≡ |kλ − kλ′ | = |kµ′ − kµ|, and following the second-quantization manual in
the Appendix, we obtain:

H ′
el =

∑

λ

Eλc
†
λcλ +

1

2

∑

λµν

Vνc
†
λ−νc

†
µ+νcµcλ +H+. (2.12)

Here, and in what follows, we use the short-hand notation λ− ν ≡ (kλ−kν , σλ) and µ+ ν ≡
(kµ + kν , σµ), exploiting the fact that the Coulomb interaction, with momentum transfer
indexed by ν, is spin independent.

The second-quantized form of H ′
el in Eq. (2.12) allows us to write down a perturbative

expansion of the groundstate energy E on compact form:

E = 〈0|H0|0〉 + 〈0|Hint|0〉 +
∑

i

〈0|Hint|i〉〈i|Hint|0〉
Ei −E0

+ higher order terms +H+ (2.13)

with H0 ≡∑λEλc
†
λcλ and Hint ≡ (1/2)

∑
λµν Vνc

†
λ−νc

†
µ+νcµcλ, and where

|0〉 =
∏

k<kF
σ

c†
kσ

|vacuum〉 (2.14)

is the groundstate of the non-interacting theory H0.
10 The first-order term, 〈0|Hint|0〉, is a

sum over matrix elements 〈0|Vνc†λ−νc
†
µ+νcµcλ|0〉. It is convenient to represent these matrix

elements by Feynman diagrams (see Appendix C). The basic diagram for a first-order process
is depicted in Fig. 2.6.

 ν

λ µ

λ−ν µ+νV

Figure 2.6: Feynman diagram representing the matrix element 〈out|Vνc†λ−νc
†
µ+νcµcλ|in〉.

Since | in〉 =| out〉 =| 0〉 (using the notation from the Appendix) we have to identify
incoming and outgoing electron lines. There are two way of doing this, corresponding to the
Feynman diagrams in Figs. 2.7 and 2.8 (b), respectively.

10In the electron liquid model employed here, the dispersion relation is spherically symmetric, implying that
the ground state |0 〉 in D=3 is a filled Fermi sphere, with the Fermi surface the surface of the sphere. (In D=2
[D=1] the ”Fermi sphere” is a filled disc [line].) Taking the lattice into account implies the possibility of a
nontrivial bandstructure, with a Fermi surface that may take on a complex shape. The best available methods
to obtain the groundstate |0 〉 in the presence of the lattice are those method based on density functional theory
(pioneered by Walter Kohn who was awarded the 1998 Nobel Prize in Chemistry for his contribution).
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µ
V 0

λ

Figure 2.7: Feynman diagram for the matrix element 〈0|V0c
†
λc

†
µcµcλ|0〉.

 λ−µ

µ

λ

V

Figure 2.8: Feynman diagram for the matrix element 〈0|Vλ−µc†µc†λcµcλ|0〉.

The diagram in Fig. 2.7 is obtained by taking λ = λ−ν and µ = µ−ν, implying that ν = 0.
Anticommuting cλ through cµ and c†µ and carrying out the sum in Hint, it immediately follows
that the diagram in Fig. 2.7 contributes a term to the groundstate energy that is identical to
the Hartree term in mean field theory:

EHartree =
V0

2

∑

λµ

nλnµ. (2.15)

Here nλ and nµ are the groundstate densities of electrons with quantum numbers λ and
µ, respectively. In the thermodynamic limit (i.e. with a very large number of conduction
electrons) one can show that the Hartree term in Eq. (2.15) cancels the ion self-energy term
H+. This simplifying feature is special to the electron liquid, and does not hold on a lattice,
where the electrons see a non-uniform background of ions.

Turning to the diagram in Fig. 2.8, we have again identified | in〉 and |out〉 states, now by
taking λ = µ+ ν, implying that ν = λ− µ. By again anticommuting the electron operators
in Hint and performing the sum over λ and µ one obtains the contribution:

Eexchange = −
∑

λµ

Vλ−µ
2

nλnµδσλσµ , (2.16)

i.e. the well known Hartree-Fock exchange term from mean-field theory (for a review, see the
Appendix).

Summarizing, we have obtained the satisfying result that lowest-order perturbation theory
for the electron liquid exactly reproduces mean-field theory. Strengthened by this success, let
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us next tackle the second-order term in the perturbative expansion in Eq. (2.13):

∑
i
〈0|Hint|i〉〈i|Hint|0〉

Ei−E0

= 1
4

∑
i

∑
λµν

λ′µ′ν′
VνVν′

〈0|c†λ−µc
†
µ+νcµcλ|i〉〈i|c

†

λ′−µ′c
†

µ′+ν′
cµ′cλ′ |0〉

Ei−E0

= const. ×
∑

i

∫
d3kνd

3kν′
1
k2

ν

1
k2

ν′
× [......].

(2.17)

In the third line we have replaced the sums over ν and ν ′ by integrals, and used that Vν ∼ 1/k2
ν .

The ”[... ...]” is shorthand for ”everything else” (which, at this point of our analysis, is not
important). To find out about possible constraints on the integration variables kν and kν′ in
(2.17), we again pass to diagrammatic language. From the Appendix, we know that the basic
second-order Feynman diagram can be drawn as in Fig. 2.9.

 ν′
λ′

µ=µ′+ν′

λ′−ν′−ν

λ=λ′−ν′

 ν
µ′+ν′+ν

µ′

VV

V

 ν

Figure 2.9: Basic second-order Feynman diagram.

µ′

VV

V ν′

  −ν′

λ′ λ′−ν′ µ′+ν′

Figure 2.10: Feynman diagram representing the second-order process
〈0|V−ν′c†λ′c

†
µ′cλ′−ν′cµ′+ν′ |i〉〈i|Vν′c

†
λ′−ν′c

†
µ′+ν′cλ′cµ′ |0〉.

Identifying incoming and outgoing states, | in〉 = |out〉 = |0〉, produces two new diagrams,
one of which is depicted in Fig. 2.10. This particular diagram is obtained from that in Fig.
2.9, by taking λ′ = λ′ − ν ′ − ν and µ′ = µ′ + ν ′ + ν, implying that ν = −ν ′, i.e. kν = −kν′ .
Carrying out the integrations we thus obtain the second-order contribution

const. ×
∑

i

∫
d3kνd

3kν′
1

k2
ν

1

k2
ν′
δ(3)(kν + kν′) × [......] → ∞. (2.18)

The divergence in (2.18) is bad news. What to do?
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The standard route is to resort to perturbative quantum field theory which provides
a machinery to re-sum the perturbation series and obtain a finite answer. Infinite pieces
of various sums and integrals (like that coming from the second-order contribution in Eq.
(2.18) are isolated and made to cancel each other. For the electron liquid this feat was first
achieved by Gell-Mann and Brückner in 1957, building on earlier work by Bohm and Pines.
The particular calculational strategy taken by Gell-Mann and Brückner is known as the
”random phase approximation” (RPA), and becomes exact in the limit of an infinite density
of electrons. Unfortunately, its exposition goes beyond the present course.11 Here we shall
instead ”simulate” the result of the RPA calculation by using a few tricks and shortcuts (and
sticking with ordinary quantum mechanics).

By inspection of (2.18) it is clear that the heart of the problem is that we have a long-range
Coulomb interaction, falling off as 1/r, with r the distance between two electrons:

∼
∫

eik·r

r
d3r =

4π

k2
→ ∞ as |k| → 0. (2.19)

To cure the problem we ”regulate” the theory (as it is called in technical jargon). That is,
we remove the zero mode k = 0, ”cutting off” the tail of the Coulomb interaction at large
distances. This takes care of the divergence of the second-order term in (2.18). However, the
full perturbation series still diverges since the second- and higher-order terms can be made
arbitrarily large. So we need at least one more trick: We split the Coulomb interaction in two
parts; one that acts over short distances only (k > kc), and one that acts over long distances
(k < kc).

12 The short-range part roughly falls off as an exponentially screened (Yakawa)
potential, while for sufficiently large values of kc the long-range part varies very slowly in
space. This last property can be taken advantage of. Describing the effect of the long-range
Coulomb interaction by a time-dependent electric field E, we write:

E = −∂A

∂t
−∇

∑

i,j
i6=j

Vk<kc(|ri − rj |) ≈ −∂A

∂t
, (2.20)

where in the last term we have dropped the gradient contribution, exploiting the fact that
Vk<kc(r) varies slowly in space. Writing the vector potential A and the field E as Fourier
series,

A(r) =
1√
V ε0

∑

k

k̂Qk exp(ik · r), (2.21)

E(r) = − 1√
V ε0

∑

k

k̂Pk exp(ik · r), (2.22)

11The RPA calculation is a main staple of any Ph.D. level course in many-particle physics, but requires
an extensive grounding in quantum field theory techniques and Feynman diagrammatics. The notion of
”random phase approximation” comes from the neglect of certain terms in the perturbative expansion that
carry randomly varying phases. Physically, the approximation is equivalent to neglecting the coupling between
density fluctuations of different wave vectors. The RPA has been widely used in condensed matter and nuclear
physics.

12What is a ”short distance” depends on the choice of kc. One can show that a good choice is to take
kc ≈ ωp/vF , where vF is the Fermi speed and ωp the ”plasma frequency”, to be defined below. For our
qualitative discussion here, however, we may keep kc as an arbitrary parameter.
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we can take the canonically conjugate variables Qk and Pk ≡ ∂Qk/∂t as collective coordinates
that describe the effect of the long-range Coulomb interaction of the electrons.13 To see how
this procedure simplifies the problem, let us go back to first-quantized language and express
the Coulomb interaction Hint between the electrons as a Fourier series (with the zero mode
subtracted):

Hint =
e2

2V ε0

∑

i,j
i6=j



∑

0<k<kc

+
∑

k≥kc


 exp(ik · (ri − rj))

k2

=
e2

2V ε0

∑

i,j



∑

0<k<kc

+
∑

k≥kc


 exp(ik · (ri − rj))

k2
− Ne2

2V ε0

∑

k 6=0

1

k2

≡ Hk<kc +Hk>kc −
Ne2

2V ε0

∑

k 6=0

1

k2
. (2.23)

Quantizing A and E, i.e. taking [Qk
′ , Pk] = i~δk′

,k, we then replace Hk<kc by an integral

over the effective electric field E,

Hk<kc =
ε0
2

∫
d3rE2 (2.24)

and absorb the vector potential A into the kinetic term of Hel by minimal coupling

pi → pi + eA. (2.25)

We can then write Hel = H0 +Hint as

Hel ≈
∑

i

1

2me


pi +

e√
V ε0

∑

k<kc

k̂ Qk exp(ik · ri)




2

+
e2

2V ε0

∑

i,j

∑

k≥kc

exp[ik · (ri − rj]

k2
− Ne2

2V ε0

∑

k 6=0

1

k2

+
1

2V

∑

0<k<kc
0<k′<kc

k̂ · k̂′PkPk′
∫
dr exp[i(k + k′) · r] (2.26)

It is maybe not obvious that we have gained much by this detour. With a few more ma-
nipulations, however, we will easily be able to read off the physics! First, recall that pi
and rj are canonically conjugate variables, i.e. [riα, pj,β] = i~δijδαβ, with α, β = x, y, z.
This implies that pi exp(ik · ri) + exp(ik · ri)pi = 2pi exp(ik · ri) − ~k exp(ik · ri). Intro-
ducing the (”plasma frequency”) parameter ω2

p ≡ ne2/mε0 with n ≡ N/V , and using that∫
exp[i(k + k′) · r]dr = V δ(k + k′), it is then straightforward to mold Eq. (2.27) on the form

Hel ≈
∑

i

p2
i

2me
+

e2

2V ε0

∑

i,j

∑

k≥kc

exp[ik · (ri − rj]

k2
− ne2

2ε0

∑

k 6=0

1

k2

13A quick recipe for showing that Qk and Pk are canonically conjugate: Write a Hamiltonian H ∼
R

d3rE2,
insert the Fourier series for E from Eq. (2.21), differentiate with respect to Pk, and use Hamilton’s equation
∂H/∂Pk = ∂Qk/∂t.
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+
1

2

∑

0<k<kc

(P ∗
kPk + ω2

pQ
∗
kQk −

ne2

ε0k2
)

+
e√

V ε0me

∑

k<kc

k̂Qk ·
∑

i

(pi −
~k

2
) exp(ik · ri)

+
e2

2V ε0me

∑

0<k,k′<kc
k 6=−k′

QkQk′ k̂ · k̂′
∑

i

exp[i(k + k′) · ri]. (2.27)

We have here used that Q−k = −Q∗
k and Pk = −P ∗

−k, as follows by choosing a real-valued
vector potential A. The first three terms in (2.27) are written solely in ”electron variables”
(pi, ri), and hence describe electrons interacting via a short-range (screened) two-body po-
tential. The fourth term describes collective modes, with variables (Qk, Pk). The fifth term
is an interaction between the screened electrons and the collective modes, while the sixth
term, finally, corresponds to interactions among the collective modes themselves. The latter
are called (or plasmons [”quantized plasma oscillations”]). Their origin can be visualized by
imagining that we insert a test electron into the electron liquid. This electron pushes on the
surrounding electrons, which overshoot and relax, and as the effect propagates through the
liquid, a collective charge oscillation (of frequency ωp) is created.

To continue the analysis, one writes Hel in (2.27) on second-quantized form, performs a
canonical transformation, and then analyzes the resulting Hamiltonian perturbatively. We
shall not carry out this program, which − although straightforward − is calculationally some-
what cumbersome. The outcome of the analysis is that the electron-plasmon interaction in
the fifth term of (2.27) can be largely eliminated by a renormalization of the electron mass,
m → m∗. Similarly, most of the plasmon- plasmon interaction (sixth term in (2.27)) is ab-
sorbed by a renormalization of the plasmon frequency ωp. The picture that emerges is that the
strongly interacting particles in the electron liquid can be described as a collection of weakly
interacting quasiparticles (electrons with renormalized masses and interacting only over short
distances via a screened potential) and plasmons (quantized collective charge oscillations).
As it turns out, the picture can be made sharper and its origin shown to be deeper and more
ubiquitous than what our perturbative sketch may suggest. To see how, we turn to Landau
Fermi liquid theory.

Figure 2.11: Plasmon mode and particle-hole excitation continuum (hatched area) of an
electron liquid (d = 3).
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2.2.2 Fermi liquid theory

In the previous section we saw how the electron liquid may be described as a system of weakly
interacting elementary excitations. These came in two brands: Quasiparticles (screened elec-
trons with renormalized masses) and collective excitations (plasmons with renormalized fre-
quencies). This structure of excitations is not unique to the electron liquid, but applies to all
known normal Fermi liquids. Roughly speaking, a ”normal Fermi liquid” is a quantum liquid
of fermions with no broken symmetries (that is, the groundstate of the liquid respects all the
symmetries of the Hamiltonian), and with the fermions interacting via a repulsive potential
that does not cause singular scattering (i.e. all scattering amplitudes remain finite).14 At
temperatures below the degeneracy temperature TF the available phase space for scattering of
the fermions becomes highly restricted, making possible a description of the quantum liquid
in terms of a dilute collection of weakly interacting elementary excitations. This was the great
insight of Lev Landau in 1956. Landau developed the theory for explaining the properties
of liquid 3He (the simplest known Fermi liquid), but soon thereafter people realized that the
theory is more general, and can be applied also, for example, to the electron liquid.

Landau’s original approach was phenomenological. He started with some general as-
sumptions, considering only macrosocopic phenomena where momenta and frequencies of the
experimental probes (particles, fields,...) are much smaller than the Fermi momentum and
energy of the system under study. Landau then showed that the response to these probes can
be obtained by considering a collection of effectively noninteracting fermionic quasiparticles
and collective excitations (oscillatory modes of the Fermi surface) with properties encoded by
a set of parameters (effective mass, effective frequencies, and Landau parameters) that can
be determined from a few experiments. Given this, the theory then gains predictive power.
The results of Landau’s theory (and also some of his assumptions!) were subsequently de-
rived ”microscopically” (that is, starting from a microscopic Hamiltonian) using perturbative
quantum field theory (Pitaevskii 1959, Luttinger and Nozieres 1962,...).

In what follows we shall basically follow Landau. As his formulation has a certain ”airy”
quality, it is easy to get misled and believe that the theory is maybe not all that useful.
This is wrong! Landau’s theory is deep and subtle, it has made unexpected predictions, and,
most importantly, it serves as a conceptual pinnacle for thinking about a variety of condensed
matter problems. As the reader will realize when starting applying it (even at the mundane
level of homework problems), there are quite a few surprises in store! A modern and elegant
perspective on the theory from the vantage point of the renormalization group has been given
by Shankar. Quoting Shankar: ”For many readers of Landau’s work there was an element of
mystery surrounding some of the manipulations. This had to be so, since Landau substituted
forty years of subsequent developments with his remarkable intuition.” This comment will be
appreciated as we continue.

Basics

As a starter, we recall that the ground state of a system of non-interacting fermions is char-
acterized by the fact that all single particle energy levels below the Fermi energy are occupied
and all states above the Fermi level are empty. Hence, the occupation probability in ground

14This is a textbook statement that is somewhat oversimplified. There are other mechanisms besides broken
symmetries and singular scattering that may invalidate the use of Fermi liquid theory. Some of them are fairly
well understood today, like the presence of certain types of fermion-impurity interactions. Others remain to
be clarified. We shall return to this issue in section 2.2.3.
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state is n0(p) = Θ(µ− ε(p)). All excited states correspond to different occupation probabili-
ties n(p) = n0(p)+δn(p), where the deviation from the ground state is given to an eigenstate
of the Hamiltonian, then the distribution function changes with time, and after some decay
time τ the deviation from ground state differs significantly from the initial one δn(p, t = 0).

The simplest candidate for an excitation is a single particle excitation with either δn(p) =
+1 for some p such that ε(p) > µ or δn(p) = −1 for some p such that ε(p) < µ. This type
of excitation is an exact eigenstate of the Hamiltonian if the system is non-interacting and,
following Landau, we propose that it may even be a good approximate eigenstate of an inter-
acting Hamiltonian. A heuristic argument proceeds via a ”Gedanken Experiment”: Starting
with the non-interacting system, let us imagine that we ”turn on” the interaction very slowly,
so slow that the system has time to adjust itself, with the original noninteracting eigenstates
smoothly turning into new states of the interacting system. With a 1-to-1 correspondence
between non-interacting fermion states and states of the interacting system, we can use the
same quantum numbers to label the new states and also the same Fermi distribution. This
latter feature is supported by a rigorous theorem proven by Luttinger (1961): ”The Fermi
surface of an interacting system encloses the same volume as a corresponding non-interacting
system with the same particle density.” In the case of an interacting system the ground
state may differ from that of a non-interacting system and the dispersion relation ε(p) may
be modified by interactions, so it is not quite appropriate to call these excitations simply
particles and holes, instead, the terms quasiparticle and quasihole are used. A quasiparti-
cle state can be pictured ”perturbatively” as in Fig. (2.12) where a fermion added to some
single-particle state |k〉 causes other fermions to be excited out of the Fermi sphere (because
of the interaction between particles). If the resulting state − which is a superposition of
many different single-particle states − can be labelled by the momentum k of the ”original”
single-particle state (as ascertained by Landau!), we may treat it as being effectively occupied
by some particle, and this is what we call the quasiparticle.

Figure 2.12: Illustration of a perturbative expansion of the change of a single-particle state
of an added fermion due to interactions with fermions in the Fermi sphere.

This type of excitation is a good approximation to the eigenstate of the Hamiltonian
provided that the state does not decay too fast (in case the Gedanken Experiment above
would not make any sense: the new states would decay before we have had time to switch on
the full interaction!). The decay is due to interactions between quasiparticles — hence, we
can determine the plausibility of Landau’s quasiparticle picture by calculating the scattering
rate between elementary excitations.

Let us calculate the decay rate for a quasiparticle with momentum p1 in a d-dimensional
system. The state of the system can change if a quasiparticle with momentum p1 scatters of
another quasiparticle with momentum p2 and after the scattering event the two quasiparticles
move with momenta p3 and p4. If the number of excitations is small, the state p2 is only
occupied if p2 < pF , and the states p3 and p4 are available to be scattered into if p3 > pF and
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Figure 2.13: (a) Fermi surface, a quasiparticle, and a quasihole. (b) Collective excitation.

p4 > pF as shown in Figure 2.14. Hence, taking into both momentum and energy conservation
as well as an interaction strength which depends on the momentum exchange we obtain

Γ(p1) ∝
∫

(dp2)

∫
(dp3)

∫
(dp4)Θ(pF − p2)Θ(p3 − pF )Θ(p4 − pF )

|V (|p1 − p3|)|2δ(p1 + p2 − p3 − p4)δ(ε(p1) + ε(p2) − ε(p3) − ε(p4))

where (dpi) = ddpi

(2π)d . Assuming a parabolic dispersion ε(p) = p2

2m and using the two conserva-

tion laws we can write Θ(p4 − pF ) = Θ(p2
1 + p2

2 − p2
3 − p2

F ) and simplify the argument of the
δ-function so that we get

Γ(p1) ∝
∫ pF

√
2p2F−p21

dp2 p
d−1
2

∫ √
p21+p

2
2−p2F

pF

dp3 p
d−1
3

∫
dΩ2

∫
dΩ3|V (|p1 − p3|)|2δ(2p1 · p2 − 2p3 · p4)

where Ωi denotes the direction angles of pi. Hence, if p1 & pF , both p2 and p3 lie in the

vicinity of the Fermi surface, and we can take (p2p3)
d−1 ≈ p

2(d−1)
F outside as a constant factor

to obtain

Γ(p1) ∝
∫ pF

√
2p2F−p21

dp2

∫ √
p21+p

2
2−p2F

pF

dp3

∫
dΩ2

∫
dΩ3|V (2pF sin(θ13))|2δ(2p1 · p2 − 2p3 · p4).

Since the lengths of all the four momenta are nearly equal, the δ-function forces the angle
between p3 and p4 to be nearly the same as the angle between p1 and p2. In general, this
angular correlation is uninteresting, and we get

Γ(p1) ∝ (p1 − pF )2 ∝ |ε(p1) − µ|2.

Hence, the scattering phase space is greatly reduced near the Fermi surface, and quasipar-
ticles are indeed good approximations for low-energy excited states. At a positive temperature
the distribution functions are smoothened and we obtain Γ(p1) ∝ max[(kBT )2, |ε(p1) − µ|2].
This means that near the Fermi level quasiparticles behave essentially as free particles, and a
perturbative treatment of interactions may well succeed. Whether or not perturbation theory
actually does yield reliable results must be investigated more carefully using renormalization
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Figure 2.14: Scattering of quasiparticles near the Fermi level.

group (RG) techniques, but at least we can be initially somewhat optimistic. However, after
a second thought one realizes that there is an obvious loophole in the preceding analysis: If
p1 = −p2 then p3 = −p4 can take any value, and we are no longer assured that the quasipar-
ticles essentially behave as free particles near the Fermi surface. Do the quasiparticles take
advantage of this possibility so as to invalidate the Fermi liquid picture? An RG analysis
shows that they don’t as long as the interaction is repulsive. However, for a weak attractive
interaction they do, and this leads to a superfluid state (superconductivity, in the case of
electrons).

The above analysis also breaks down in one dimension. In one dimension, it is not possible
for the angle ∠(p3,p4) to be “nearly the same as” as the angle ∠(p1,p2): all angles are either
0 or π. In general, for a nonlinear dispersion relation ε(p) the only possible scattering events
in one dimension are (p1,p2) → (p1,p2) or (p1,p2) → (p2,p1). Therefore, we cannot argue
that the interaction strength is effectively reduced near Fermi level, and the validity of a
perturbative approach in one dimension cannot be ascertained with phase space arguments.
We shall look closer at the one-dimensional case in Sec. 2.2.4.

Ordinary Fermi liquids have also other types of excitations in addition to the quasiparticles
discussed above. These collective excitations correspond to different deformations δn(p), and
can be visualized as breathing modes of n0(p). The simplest of these modes, the isotropic
breathing δn(p) = f(p), corresponds to changing the particle density, and can therefore only
occur if it has a spatial dependence δn(r,p) = f(r, p) such that the total number of particles
in the system remains constant (i.e.

∫ ∫
ddrddp δn(r,p) = 0). In charged systems (like in the

electron liquid) this density oscillation corresponds to a plasmon (c.f. the previous section),
and has a dispersion relation ω(q) ∼ q(3−d)/2 as can be seen by dimensional analysis (ω2 ∼
(1/m)(e2/4πε)ρqα). For a neutral Fermi liquid such as liquid 3He the isotropic breathing
mode is known as zero sound and has a linear dispersion relation ω = v0q. Note that in one
dimension even the plasmon dispersion relation is linear, ω(q) = vpq. These types of collective
excitations exist even in one-dimensional conductors as we will see in the next sections.

Applications

In this section we shall look at a few applications, mostly so as to get aquainted with the
spirit of Landau’s theory. To keep things simple we assume that we are dealing with liquid
3He: an isotropic translationally invariant neutral Fermi liquid wih short-range repulsive
(”hard-core”) interactions between the particles. At the end of the section we will discuss
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Figure 2.15: Distribution functions for the groundstate (n0(p)), an excited state with an
added quasiparticle at p = p′ (n(p)), and the corresponding single quasi-particle excitation
δn(p) = δ(p − p′).

what complications arise when applying the theory to conduction electrons in a metal or a
semiconductor.

Let us start by considering the simplest type of elementary excitation in liquid 3He; a
single-particle excitation obtained by adding an extra atom to the liquid. This process is
depicted in Fig. 2.15, with n0(p) [n(p)] the Fermi-Dirac distribution in the groundstate
[excited state].

Note that this innocent-looking figure rests on the strong assumption that the states of the
interacting fermion system are distributed in the same way as those of a non-interacting Fermi
gas (for which, by definition, a Fermi-Dirac distribution applies). Introducing the notation
E [E0] for the energy of the groundstate [excited state], and F = E−µN [F0 = E0−µN0] the
corresponding free energies at zero temperature (where µ ≡ εF = ∂E0/∂N is the chemical
potential of the groundstate), Landau proposed the following expansion of F − F0:

F − F0 =
∑

p

(ε(p) − µ)δn(p) +
1

2

∑

pp′

f(p,p′)δn(p)δn(p′) + O(δn3(p)). (2.28)

The first term in (2.28) describes propagating free quasiparticles with kinetic energy ε(p) ≡
δE/δn(p), where δE = E−E0 and δn(p) = n(p)−n0(p). The second term in (2.28) encodes
the leading contribution to the interaction between quasiparticles, with interaction energy
f(p,p′) = δ2E/δn(p)δ(p′). It is important to realize that on the order of the free energy F
both εp−µ and δnp are infinitesimal, ∼ δ, and the first and second term are of the same order
of magnitude (assuming that f(p,p′) ∼ O(1)). Next, it is useful to define a renormalized
single quasi-particle energy ε̄(p) that includes the lowest-order effect of the interaction,

ε̄(p) = ε(p) +
1

2

∑

p′

f(p,p′)δn(p′), (2.29)

and a quasiparticle effective mass m∗,

1

m∗ ≡ vF
pF

=
|∇pε(p)|

pF
|p=pF

(2.30)

with vF = ∇pε(pF ) the group velocity at the Fermi surface. To include spin in the formalism
one endows the interaction energy with spin indices: fσσ′(p,p

′), where for liquid 3He, σ, σ′ =
±1/2 are the projections of the nuclear spins on some chosen quantization axis. In the absence
of a magnetic field the theory is invariant under time-reversal invariance which implies that

fσσ′(p,p
′) = f−σ,−σ′(−p,−p′). (2.31)
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Reflection invariance of the spherical Fermi surface in turn implies that

fσσ′(p,p
′) = fσ,σ′(−p,−p′) = f−σ,−σ′(p,p

′), (2.32)

and it follows that fσσ′(p,p
′) can only depend on the relative spin orientation, σσ ′ = ±1/4.

We can thus write
fσσ′(p,p

′) = f(p,p′) + 4σσ′ϕ(p,p′). (2.33)

At the low energies at which we are working |p| ≈ |p′| ≈ pF , and the pair of momenta (p,p′)
can be specified by their relative polar angle ϑ (taking advantage of the spherical symmetry
of the Fermi surface which makes the value of the azimuthal angle immaterial). It follows
that fσσ′(p,p

′) in (2.33) can be expressed as

fσσ′(p,p
′) = f(ϑ) + 4σσ′ϕ(ϑ)

=
∞∑

L=0

(fL + 4σσ′ϕL)PL(cosϑ) (2.34)

where in the second line we have expanded the functions f(ϑ) and ϕ(ϑ) in Legendre poly-
nomials PL(cosϑ). In simple applications, as for liquid 3He, f0 > f1 � f2 � ... and
ϕ0 > ϕ1 � ϕ2 � ..., and one may truncate the theory to contain only a small number
of parameters. This yields a ”good” phenomenological theory that is well prescribed by fit-
ting these Landau parameters to known experimental data. Given this, the theory can then
be used to make predictions of new experiments.

To illustrate the theory, let us sketch how to calculate the specific heat and the com-
pressibility of a Fermi liquid. These are both observables that measure the response of the
system to a weak perturbation at equilibrium, and can be obtained by studying properties of
the quasiparticles only. Other observables, like the intriguing ”zero sound” of liquid 3He, or
spin density waves, are instead determined by the collective modes, which, roughly speaking,
correspond to oscillations of the Fermi surface. However, we shall not make an endeavor on
this here.

Specific heat (T → 0 limit)

The specific heat per unit volume is defined by cV ≡ T (∂s/∂T )V where

s =
−kB
V

∑

pσ

[nσ(p) ln(nσ(p)) + (1 − nσ(p) ln(1 − nσ(p))] (2.35)

is the entropy per unit volume. Note that the expression in (2.35) is identical to that for an
ideal Fermi gas: the entropy only depends on the combinatorics of states, and since − by
assumption − the states in the Fermi liquid are in one-to-one correspondence with those in
the Fermi gas, the combinatorics is the same. Inserting

nσ(p) =
1

1 + exp[(ε̄(p) − µ)/kBT ]
(2.36)

into (2.35), with ε̄(p) the renormalized quasiparticle energy from Eq. (2.29), and replacing
the sum over n(p) by an integral, one obtains

s =
π2

3
g(µ)k2

BT + ... (2.37)
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Here ′′...′′ indicates higher-order terms which are irrelevant in the T → 0 limit, and g(µ) is
the density of states at the Fermi surface,

g(µ) =
∑

p

δ(ε(p) − µ) =
m∗pF
π2~3

(2.38)

(which is the same as for a Fermi gas, but with m→ m∗). Differentiating (2.37) with respect
to T one obtains

cV ≈ m∗pF
3~

k2
BT. (2.39)

The linear temperature dependence of the specific heat is one of the hallmarks of a Fermi
liquid. Note in particular that the quasiparticle effective mass can be directly obtained by
measuring the specific heat of the Fermi liquid. A simple physical explanation of the linearity
is that only those fermions that are within kBT of the Fermi energy (hence, a fraction of
kBT/εF of all fermions) are affected by temperature, and their energies change roughly by
kBT due to thermal excitations, so that the energy change is proportional to T 2 and the
specific heat to the derivative of this, i.e. to T . The fermionicity of this argument lies of
course in the first part.

Compressibility

As a further illustration, let us calculate the compressibility κ of a Fermi liquid, related
to the speed of sound c by

c2 =
1

κmρ
, (2.40)

where ρ is the particle density. To set the stage, we first recall the definition of a pressure.
At zero temperature,

P ≡ −∂E0

∂V
= −f(ρ) + ρ∂f(ρ)∂ρ, (2.41)

with f(ρ) = E0/V the energy density. The inverse compressibility 1/κ is then given by

1

κ
≡ −V ∂P

∂V
= ρ2∂

2f

∂ρ2
, (2.42)

where the second identity follows from Eq. (2.41). The chemical potential µ = ∂E0/∂N can
be written as

µ =
∂f

∂ρ
, (2.43)

and combined with Eq. (2.42) this yields that

1

κ
= Nρ(

∂µ

∂N
)V . (2.44)

Thus, to obtain the compressibility we must find out how the number of particles N changes
as we change the chemical potential µ. Let us first ask a different question: ”How does the
renormalized quasiparticle energy change if we change the chemical potential by an amount
dµ?” On the Fermi surface its change is clearly equal to dµ, but it is still instructive to
track down its two distinct contributions: One comes from the change of momenta of the
quasiparticles,

dε(1) = ∇pε(p) · dpF = vpdpF , (2.45)
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the other from a change δn(p) in the number of other quasiparticles:

dε(2) =
∑

p′

f(p,p′)δn(p′). (2.46)

Adding Eqs. (2.45) and (2.46), dividing by dµ = dε(1) + dε(2), and using that

δn(p) = −∂n0(p)

∂ε(p)

∂ε(p)

∂p
dpF = δ(ε(p) − µ)vpdpF , (2.47)

we obtain an equation for dpF /dµ telling us how the Fermi surface changes as the chemical
potential changes:

vp
dpF
dµ

+
∑

p′

f(p,p′)δ(εp′ − µ)vp′
dp′F
dµ

= 1. (2.48)

How does this help us to obtain dN/dµ? Well, from (2.47) we learn that

dN =
∑

p

δn(p) =
∑

p

δ(ε(p) − µ)vpdpF , (2.49)

implying that
dN

dµ
=
∑

p

δ(ε(p) − µ)[vp
dpF
dµ

]. (2.50)

The expression within the square bracket in (2.50) is most easily obtained from (2.48) by
replacing the sum by an integral,

∑
p ... → 2π

∫
p2 sinϑdpdϑ. Inserting the spin index on

f(p,p′) and summing over it, and using the expansion in Eq. (2.34) for fσσ′(p,p
′), we find

that

vp
dpF
dµ

=
1

1 + F0
, (2.51)

where

F0 =
~

3

4
g(µ)

∑

σ′

∞∑

L=0

∫ π

0
(fL + 4σσ′ϕL)PL(cos ϑ) sinϑdϑ

=
~

3

4
g(µ)f0. (2.52)

Combining Eqs. (2.40), (2.42), and (2.50) - (2.52), we can finally write a closed expression
for the sound velocity c:

c2 =
N

mg(µ)
(1 + F0). (2.53)

We have gone to some length in deriving the result in Eq. (2.53), for two reasons. First, it
well illustrates how the interaction among quasiparticles gets encoded by a Landau parameter,
F0, on top of the mass renormalization m→ m∗. Also, the result in Eq. (2.53) is instructive
as it reveals a potential ”instability” of the Fermi liquid: A value of F0 < −1 results in an
unphysical imaginary sound velocity, implying that F0 → −1 signals a transition to a new
phase of matter that cannot be described as a Fermi liquid. Whereas this particular instability
never happens, other do as we shall see below.
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The approach used to derive the sound velocity in Eq. (2.53) can easily be adapted to
obtain other thermodynamic (equilibrium) properties, such as the magnetic susceptibility χ
of a Fermi liquid,

χ = g(µ)
µ2
B

1 + Z0
, (2.54)

where Z0 = g(µ)ϕ0. As Z0 → −1, the susceptibility diverges, signaling a transition to a
ferromagnetic state. This instability also does not happen for liquid 3He, but it may occur in
the electron liquid − or to be more precise − for electrons in metals. More generally one can
show that whenever

FL ≤ −(2L+ 1) and/or ZL ≤ −(2L+ 1), (2.55)

Landau Fermi liquid theory breaks down. The only experimentally identified case of such
a Landau-Pomeranchuk instability is the transition to a ferromagnetic state, signalled by a
divergence of χ in Eq. (2.54), with Z0 → −1.

At this point, let us briefly comment upon the description of the non-equilibrium properties
of a Fermi liquid. Restricting ourselves to the case where the system is close to equilibrium,
the dynamics gets governed by a Boltzmann equation for the local quasiparticle distribution
np(r, t). One finds that in addition to excited single quasiparticles, also collective modes −
corresponding to oscillations of the Fermi surface − may now be excited. A case in point
are the plasmons of the electron liquid (cf. Sec 2.2.1). Another famous example is the zero
sound mode of liquid 3He. At small frequencies ω and quasiparticle collision times τ , ωτ � 1,
sound in a Fermi liquid behaves as ordinary hydrodynamic (”first”) sound, with the velocity
parameterized as in Eq. (2.53). As the temperature is lowered, however, we know that the
average quasiparticle scattering time increases as T −2, and this eventually leads to a situation
where ωτ � 1. The quasiparticles then no longer have time to relax during one period of the
sound wave, and one would have guessed that the excess quasiparticles in a region of space
caused by a compression would simply diffuse away, and no sound would propagate. However,
Landau noted that if there are quasiparticle interactions, a local change of the density may still
drive a change in the neighboring density, thus setting up a sound-like longitudinal collective
mode of the liquid, known as zero sound.15

What about electrons in metals? Like 3He atoms in the liquid phase these also form a
Fermi liquid, but there are some complications. First, the electrons are charged and experience
a long-ranged Coulomb interaction. This can be taken care of in exact analogy with our
perturbative approach in the previous section where we split the quasiparticle interaction
in a long-range Coulombic part plus a short-range part. The fact that the electrons are
charged, however, implies that spin and spatial degrees of freedom get coupled via a spin-
orbit interaction ∼ gµBσ · (v ×E), with E the electric field from surrounding electrons (and
ions), and where gµBσ is the effective electron magnetic moment. As a consequence, the
spin- and spatial rotational symmetries are no longer independent, in contrast to 3He. For
most metals the spin-orbit interaction is weak and can be included as a perturbation, with the
Fermi liquid serving as an unperturbed ”reference system”. However, for a strong spin-orbit
interaction the applicability of Fermi liquid theory becomes doubtful.

The lattice of ions in which the electrons move not only contributes to the spin-orbit
interaction, but also breaks the translational and rotational space symmetries by introducing a
band structure. Moreover, the lattice produces additional interactions with phonons, and also

15The first measurements of zero sound in pure liquid 3He were carried out by Abel, Anderson, and Wheatley
in 1966, showing excellent agreement with Landau Fermi liquid theory
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with whatever defects and impurities that are embedded in the lattice. Starting with the band
structure, this can easily be taken care of when the Fermi surface remains almost spherical, as
is the case for e.g. the alkali metals. Roughly speaking, the role of the Landau quasiparticle is
now taken by a ”quasi-Bloch electron”, with an effective mass that encodes both the presence
of the lattice and the electron-electron interaction. The case of non-spherical Fermi surfaces
is more tricky, in particular when the bands are narrow, with a multiband structure. This
typically leads to a strong renormalization of the effective mass and/or the Landau parameters,
and in addition may require that other types of parameters are introduced. The details of
the problem then become intractable within a Landau Fermi liquid description, although the
theory may still be used to conceptualize the basic physics. The strong renormalization can be
understood qualitatively as coming from a change of the density of states induced by the bands
tructure, leading to an enhanced quasiparticle interaction. In some cases this may cause an
instability at a critical temperature or pressure, resulting in a transition to a new phase (such
as an itinerant ferromagnet or a Mott insulator). As to the effect of interactions with phonons,
these may be absorbed by a renormalization of the effective mass if the electron frequencies
are smaller than the phonon Debye frequency. (In the opposite limit the electron ”shakes off”
the cloud of phonons and no mass renormalization is required.) However, at low temperatures
the phonons may mediate an attractive interaction between quasiparticles, leading to a BCS
(or Cooper) instability where the metal turns into a superconductor. Again, this phase cannot
be described by Fermi liquid theory. Considering finally the interactions with impurities and
defects, their effect have to be carefully analyzed on a case-to-case basis. Dilute concentrations
of local potential scatterers are usually harmless for the applicability of Fermi liquid theory.
In contrast, a dense array of magnetic moments that interact dynamically with the electrons
(a Kondo lattice) may lead to a breakdown of Landau’s theory. Let us here stress that all of
the above applies to conduction electrons moving in a three- (or two-dimensional) lattice. As
we shall see in Sec. 2.2.4, in one dimension Fermi liquid theory breaks down for any fermionic
system, be it conduction electrons in a semiconducting quantum wire, electrons in a metallic
carbon nanotube, or a cold fermionic gas trapped in a one-dimensional optical lattice.

Home problem 3: Compressibility of a Fermi liquid
Try to fill out the gaps and holes in the somewhat sketchy
derivation of the compressibility of a Fermi liquid as given above.
In particular, give a careful argument for Eq. (2.47), and tighten
the link to the final result in Eq. (2.53).

2.2.3 Non-Fermi liquids: Broken symmetries, quantum criticality, disor-

der, and all that...

See A. J. Schoefield, Non-Fermi Liquids, Contemporary Physics 40, 95 (1999).
http://fy.chalmers.se/ tfkhj/QuantumMatter/Schoefield.pdf

2.2.4 The Importance of Dimensionality: Luttinger liquid

In Section 2.2.2 we sketched an argument suggesting that Fermi liquid theory breaks down
in one spatial (1D) dimension. It is instructive to look a bit closer at what goes wrong. For
that purpose, let us consider a gas of free fermions under the influence of a weak potential
φ(r). The rearrangement of the fermion density due to the potential can be described by an
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induced fermion density ρ(r). Going over to Fourier transforms we have the relation

ρ(k) = χ(k)φ(k), (2.56)

where χ(k) is the free-particle response function. The Danish physicist Jens Lindhard derived
an expression for this function, which is therefore called the Lindhard function:

χ(k) =

∫
dk′

(2π)d
f(k′) − f(k′ + k)

ε(k′) − ε(k′ + k)
. (2.57)

Here f(k) is the Fermi distribution, ε(k) is the energy of a fermion, and d denotes the
dimension. We shall not attempt to rederive this function but only note that the integrand in
Eq. (2.57) tells us that (at T = 0) the dominant response comes from fermions weakly excited
out of the Fermi sea, giving rise to low-energy particle-hole pairs, in agreement with intuition.
The response function can be calculated and plotted in one, two, and three dimensions. One
finds that the 1D curve diverges at k = 2kF , while in 2D (3D) the curves have a cusp (a
logarithmic divergent derivative) at this wave vector. This has implications for the response
of a free fermion gas to a potential. For example, if we consider the potential coming from
ions on a lattice, phonons will couple to the electrons leading to a lattice instability in 1D
(the Peierls instability), while in 2D and 3D the electron-phonon coupling results in a Kohn
anomaly in the phonon dispersion curve.

The potential φ(k) does not necessarily originate from an applied field or the ions on a
lattice. Much more important for our discussion is that it can be effectively induced by the
other fermions in the gas if these are interacting. Let us assume that we move one of the
fermions a small distance. If the system consists of non-interacting fermions nothing will
happen, but if we consider a system with interacting fermions this displacement will change
the potential felt by the other fermions and they will adjust according to Eq. (2.56). These
adjustments will in turn lead to a new induced potential, leading to new rearrangements. In
higher dimensions these adjustments will be damped since the response functions are finite
and the system will return to its initial state. This is equivalent to the statement that
quasiparticles have finite lifetime. In 1D, in contrast, the original disturbance will not be
damped but turn into something new that cannot be described by Fermi liquid theory.

The hypothesis of the one-to-one correspondence between eigenstates in a degenerate
Fermi gas and the quasiparticle states of a Fermi liquid is represented by the requirement of
a nonsingular ”adiabatic switching on” of the interaction. The instability in the 1D Fermi
gas described above will thus ruin Landau’s fundamental hypothesis: Turning on interactions
among fermions in 1D will not create quasiparticles, at least not of the Fermi liquid brand.
The origin of the singular response function is the topology of the 1D Fermi surface, as we shall
see now. As we have already noted, the main contribution to the integral in Eq. (2.57) comes
from particle- hole excitations where the particle and the hole have almost the same energy,
causing the denominator of the integrand to almost vanish. Given that the Fermi surface
in 1D consists of two distinct points ±kF one immediately realizes that such particle-hole
pairs are connected by a momentum difference ∆k = 2kF . In two and three dimensions the
measure keeps the integral finite while this is not the case in 1D; thus a singularity appears.

The non-existence of Landau quasiparticles in 1D is thus entirely due to the structure of the
particle-hole pair spectrum, dictated by the topology of the 1D Fermi surface. The particle-
hole spectrum is easily constructed from that of the free Fermi gas single-particle spectrum and
is depicted in Fig. (2.16). The characteristic feature of the particle-hole spectrum prohibiting
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the creation of quasiparticles is the empty region between k = 0 and k = ±2kF . As we
have discussed, a quasiparticle can be visualized as an electron with a cloud of low-energy
excitations around it, and, since these low-energy particle-hole excitations are very rare in
1D (occurring only on lines through k = 0,±2k), quasiparticles are not easily formed. This
is to be contrasted to the situation in three dimensions, with a broad band of low-energy
particle-hole excitations (see Fig. (2.11)).

Figure 2.16: Particle-hole pair spectrum in 1D.

A final word before we go on. Interacting fermions, of course, exist also in one dimen-
sion, but they cannot form quasiparticles, and these interacting fermions must therefore be
described using another theory than Landau Fermi liquid theory. The basis of such a theory,
replacing that of a Fermi liquid, is the Luttinger liquid where, as we shall see, interactions are
included from the very beginning. To set up this theory we shall use the second quantized
formalism that is reviewed in the Appendix C.

Let us start by considering a non-interacting system of fermions on a 1D lattice with lattice
constant a. The dispersion relation is given by ε(k) = −2t cos(ka) where t is the hopping
matrix element between adjacent lattice sites. This dispersion relation is rather cumbersome
to deal with, but as long as we are interested in low energy properties only, we can linearize
ε(k) near the Fermi energy EF as shown in Figure 2.17. Since there are two Fermi points ±kF ,
we get two linear branches so that one has ∂ε

∂k > 0 corresponding to right-moving particles

and the other has ∂ε
∂k < 0 corresponding to left-moving particles. Although the linearization

is a good approximation of the dispersion relation only in the vicinity of the Fermi points,
we use the linear dispersion relations for all k — as long as we are only interested in the
low-energy excitations this extension of the approximation has no physical consequences, but
mathematically it turns out to be very convenient. The resulting Hamiltonian with two linear
branches is given by

H0 = vF
∑

k,s

[
(k − kF )c†+,k,sc+,k,s + (−k − kF )c†−,k,sc−,k,s

]
(2.58)

where the operator cr,k,s annihilates a left- or right-moving fermion (corresponding to r = ±)
with momentum k and spin s. The Hamiltonian H0 is known as the Luttinger model for
non-interacting fermions; later we will see how we can include interactions in the model as
well.

The analysis ofH0 is greatly simplified by introducing the so-called partial densities ρ±,s(q)
for left-movers and right-movers,

ρ+,s(q) =
∑

k

c†+,k+q,sc+,k,s
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Figure 2.17: Dispersion relation for non-interacting fermions on a lattice, and the linearized
approximation for ε(k) ≈ EF . In the plot EF = 0 corresponding to a half-filled band.

ρ−,s(q) =
∑

k

c†−,k+q,sc−,k,s.

In the following we will need the commutation relations between ρr,s(q), and it turns out that
most of them vanish; the only potentially complicated ones are

[ρr,s(−q), ρr,s(q)]
=
∑

k,k′

(c†r,k−q,scr,k,sc
†
r,k′+q,scr,k′,s − c†r,k′+q,scr,k′,sc

†
r,k−q,scr,k,s)

=
∑

k,k′

( −c†r,k−q,sc
†
r,k′+q,scr,k,scr,k′,s + c†r,k−q,scr,k′,sδk,k′+q

+c†r,k′+q,sc
†
r,k−q,scr,k′,scr,k,s − c†r,k′+q,scr,k,s)δk−q,k′)

=
∑

k

(c†r,k−q,scr,k−q,s − c†r,k,scr,k,s)

=
∑

k

[nr,s(k − q) − nr,s(k)]

where we used the fermionic anticommutation relations {c†r,k,s, cr′,k′,s′} = δr,r′δk,k′δs,s′ If the
sum over k extended only over a finite range, the last expression would yield zero. Now,
however, we have extended the branches ’+’ and ’−’ for all k, and we have to be more careful.
Let us therefore assume that all states with rk < k0 are occupied (i.e. n+,s(k) = 1 for k < k0

and n−,s(k) = 1 for k > −k0), and carefully cancel out the (infinite) contributions from states
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that are assumed to be fully occupied. Then the last expression is

∑

k

(nr,s(k − q) − nr,s(k))

=




∑

r(k−q)>k0
nr,s(k − q) +

∑

rk<k0+rq

1


−



∑

rk>k0

nr,s(k) +
∑

rk<k0

1




=



∑

rk>k0

nr,s(k) −
∑

rk>k0

nr,s(k)


+




∑

rk<k0+rq

1 −
∑

rk<k0

1




= rq
L

2π
.

Note that this result is independent of k0, and we can safely take k0 → −∞ which amounts
to assuming that states which are infinitely far below the Fermi level are fully occupied.16 In
conclusion, we have

[ρr,s(−q), ρr′,s′(q′)] = δrr′δss′δqq′r
qL

2π
(2.59)

Comparing with the usual commutation relations for bosons, [b, b†] = 1, we see that17 for
q > 0 the partial densities ρ+,s(−q) and ρ−,s(q) correspond to boson destruction operators
and ρ+,s(q) and ρ−,s(−q) to boson creation operators. This is not all that surprising since
ρr,s(q) are constructed from products of two fermion operators.

The usefulness of the partial densities becomes apparent once we evaluate the commutators
between them and the Hamiltonian:

[H0, ρr,s(q)]

= vF
∑

k,k′

(rk − kF )[c†r,k,scr,k,sc
†
r,k′+q,scr,k′,s − c†r,k′+q,scr,k′,sc

†
r,k,scr,k,s]

= vF
∑

k,k′

(rk − kF )[ −c†r,k,sc
†
r,k′+q,scr,k,scr,k′,s + c†r,k,scr,k′,sδk,k′+q

+c†r,k′+q,sc
†
r,k,scr,k′,scr,k,s − c†r,k′+q,scr,k,sδk,k′ ]

= vF
∑

k

(rk − kF )[c†r,(k−q)+q,scr,k−q,s − c†r,k+q,scr,k,s]

= vF rq
∑

k

c†r,k+q,scr,k,s

= vF rqρr,s(q)

Hence, the commutator is proportional to the partial density operator — note that this only
works because the spectrum is linear, which allowed us to change variables on the third line
to cancel the factors (rk − kF ).

Another way to see why linear dispersion is crucial is to note that the operator c†r,k+q,scr,k,s
can be thought of as creating a particle-hole pair with momentum q. Since the dispersion
law is linear, the energy of this pair is independent of k, and particle-hole excitations with
different k (but same q) get mixed by energy-conserving scattering processes. The partial
densities ρr,s(q) represent such linear combinations.

16We are tacitly assuming that the operators n(k) only act on states which satisfy this condition; if the
system is subjected to strong enough perturbation so that deep states are not fully occupied, the commutation
relations must be modified. An example of this is the fractional quantum Hall effect, where the occupation
probability of single particle states far below the Fermi level is a fraction p/q (with q odd) rather than one.

17Apart from a scale factor.
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Similar commutation relations can be obtained between ρr,s(q) and the Hamiltonian H̃0 =
vF

2π
L

∑
s,k>0[ρ+,s(k)ρ+,s(−k) + ρ−,s(−k)ρ−,s(k)] which is quadratic in the operators ρr,s(q),

[H̃0, ρr,s(q)]

= vF
2π

L

∑

k>0

[ρr,s(k)ρr,s(−k), ρr,s(q)]

= vF
2π

L
rρr,s(−k)

qL

2π
δ−k,qΘ(k) + vF rρr,s(k)

qL

2π
δk,qΘ(k)

= vF rqρr,s(q).

This suggests that H0 and H̃0 are in some sense equivalent: most physical quantities can be
expressed in terms of commutators between different operators, and since H0 and H̃0 give the
same commutators, they can be expected to yield similar physical results.

Let us at this point not worry too much about to what extent H0 and H̃0 are indeed
equivalent, but rather examine why the description in terms of H̃0 might be useful. This
will be clear if we consider what happens when we introduce an interaction term to the
Hamiltonian. In the language of electron operators cr,k,s an electron-electron interaction
term involves a product of four operators, and the Hamiltonian becomes very difficult to
analyze. In terms of the density operators ρr,s(q), however, the electron-electron interaction
can be expressed as a product of only two operators, and the Hamiltonian remains quadratic.
The simplest type of an interaction does not scatter right-moving and left-moving electrons
into each other. Since the directions of motion of all electrons are conserved, this interaction
is known as forward scattering. It is described by18

HFW =
1

L

∑

s,s′,q>0

{
2g2(q)ρ+,s(q)ρ−,s′(−q)+

g4(q)[ρ+,s(q)ρ+,s′(−q) + ρ−,s′(−q)ρ−,s(q)]
}

In most physical cases the interactions are equally strong between the two branches as they
are within a branch meaning that g2(q) = g4(q) but for generality it is useful to keep the
two processes formally separate. The precise form of the interaction is not important for the
following discussion, and we set both g2(q) and g4(q) to q-independent constants g2 and g4.
These can be viewed as the long wavelength limits of the original interaction constants. Since
the pure Coulomb interaction is long range and has a diverging Fourier transform for small q,
we implicitly assume that there are some mobile charges in the vicinity of the one dimensional
system that act to screen out the long range part of the interaction and result in finite values
for g2 and g4.

Before we diagonalize the Hamiltonian H̃0 + HFW , it is instructive to consider what
happens if only one spin state is present. The corresponding Hamiltonian, the so-called
spinless Luttinger model, reads

H ′ =
1

L

∑

q>0

{(2πvF + g4)[ρ+(q)ρ+(−q) + ρ−(−q)ρ−(q)]
+2g2ρ+(q)ρ−(−q)]}

(2.60)

18The names g2 and g4 for the two coupling constants are historical, and originate from the so-called g-ology
— see e.g. Solyom.



2.2. CORRELATIONS IN QUANTUM MATTER 65

This Hamiltonian can be diagonalized with a Bogolubov transformation ρj(q) = αjρ+(q) +
α′
jρ−(q) where j ∈ {1, 2}. Requiring that ρj obey similar commutation relations as ρ+ and
ρ− for j = 1 and j = 2, respectively, we get α1 = cosh(ϕ1), α

′
1 = sinh(ϕ1), α2 = sinh(ϕ2),

and α′
2 = cosh(ϕ2). Requiring furthermore that ρ1 and ρ2 commute gives ϕ1 = ϕ2 = ϕ. The

transformation angle ϕ is determined by requiring that the Hamiltonian can be written as

H ′ =
2π

L

∑

q>0

[v1ρ1(q)ρ1(−q) + v2ρ2(−q)ρ2(q)],

which yields

v1 cosh2(ϕ) + v2 sinh2(ϕ) = vF + g4/(2π)

v1 sinh2(ϕ) + v2 cosh2(ϕ) = vF + g4/(2π)

(v1 + v2) cosh(ϕ) sinh(ϕ) = g2/(2π)

or tanh(2ϕ) = g2/(2πvF + g4) and v2 = v1 = v = [g2/(2π)]/ sinh(2ϕ). Using functional
relations between hyperbolic functions this can be simplified to

v =
√

[vF + g4/(2π)]2 − [g2/(2π)]2. (2.61)

The diagonalized Hamiltonian is now given by

H ′ =
2π

L
v
∑

q>0

[ρ1(q)ρ1(−q) + ρ2(−q)ρ2(q)]. (2.62)

It is customary to define the interaction parameter g = e−2ϕ =
√

2πvF +g4−g2
2πvF +g4+g2

so that g < 1

corresponds to the physical case of repulsion between charge carriers (g2 > 0), g = 1 is the
limiting case of a non-interacting system, and g > 1 corresponds to an attractive interaction.

In the case of fermions with spin it is useful to first transform the partial densities into
charge (c) and spin (σ) degrees of freedom by defining (r = ±)

ρrc(q) =
1√
2

(ρr↑(q) + ρr↓(q)) (2.63)

ρrσ(q) =
1√
2

(ρr↑(q) − ρr↓(q)) (2.64)

so that we have H̃0 = vF
2π
L

∑
k>0,α=c,σ[ρ+α(k)ρ+α(−k) + ρ−α(−k)ρ−α(k)] and

HFW =
2

L

∑

k>0

[4g2ρ+c(−k)ρ−c(k) + 2g4 (ρ+c(k)ρ+c(−k) + ρ−c(−k)ρ−c(k))] .

Hence, the interaction only affects the charge branches ρ±c, and the Hamiltonian can be
diagonalized as before to obtain

H =
2π

L

∑

q>0,α

vα [ρ1α(q)ρ1α(−q) + ρ2α(−q)ρ2α(q)] (2.65)

where vc =
√

[vF + g4/π]2 − [g2/π]2 is the charge velocity and vs = vF is the spin velocity.
The charge operators ρ1c and ρ2c are related to ρ±c through a similar Bogolubov transforma-
tion as in the spinless case, and the spin operators are given by ρ1s = ρ+s and ρ2s = ρ−s.
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We have now exactly diagonalized the bosonic Hamiltonian H, and we must next address
the question to what extend it is equivalent with the original fermion Hamiltonian. The
operators ρ±c(q) and ρ±σ(q) create charge and spin waves that travel either to the right or
to the left. As is often the case with collective excitations, there is no excitation of this type
at zero wave vector — this can be seen for instance from the commutation relations (2.59).
An excitation with zero wave vector would correspond a uniform change in either the charge
(or spin) density, or in the (electric or spin) current density; while such excitation are clearly
possible in the fermionic system, they are not present in the bosonized Hamiltonian, and
must be added by hand.19 These so-called zero modes or topological excitations contribute
an extra term in the Hamiltonian that is given by

Hzero modes =
π

2L

(
vc
gc
N2
c + gcvcJ

2
c +

vσ
gσ
N2
σ + gσJ

2
σ

)
(2.66)

where gc = e−2ϕc and gσ = 1, Nc is the particle number, Jc the particle current, Nσ the
total spin, and Jσ the spin current.20 Note that the zero mode contribution is inversely
proportional to the system size L, and we can therefore associate for instance the term
π
2L

vc
gc
N2
c with the usual charging term Q2/(2C).21 It can be shown quite rigorously22 that the

bosonized Hamiltonian with the zero mode terms corresponds exactly to the original fermion
Hamiltonian, and the two can be used interchangeably depending on which form is more
convenient. Usually, of course, the bosonic form is preferred since it is only second order in
the boson operators whereas the fermionic Hamiltonian is quadratic in the fermion operators.

The bosonic Hamiltonian (2.65) shows that the spin and charge waves travel with different
velocities (except in the non-interacting limit), which is known as spin-charge separation.
This means that the excitations in a one-dimensional metal cannot be mapped continuously
to the quasiparticles of a non-interacting fermion system — quasiparticles carry both charge
and spin so that the charge and spin degrees of freedom are tied together. Consequently, one
dimensional metals are qualitatively different from their higher dimensional counterparts, and
do not belong to the category of Fermi liquids. In one dimension the Luttinger model possesses
a similar status as the non-interacting Fermi gas in higher dimensions: most one-dimensional
systems can be described starting from the Luttinger model, perhaps with some renormalized
parameters. Therefore, one-dimensional metals are often called Luttinger liquids — they may
not be exactly described by the Luttinger model, but they are qualitatively similar in the
same way as higher dimensional metals are not exactly described by non-interacting Fermi
gas but are qualitatively similar to it. However, sometimes strange things happen even in
one dimension, and the behavior of a system may deviate qualitatively from a Luttinger
model. Usually this type of behavior results from the opening of a gap at the Fermi level (cf.
superconductivity in 3D), which may arise, e.g., due to a scattering process that transfers
right-moving fermions into left-moving fermions and vice versa. This backscattering process,
when translated into the bosonic language, results in a complicated additional term in the
boson Hamiltonian that renders the problem no longer exactly diagonalizable. Fortunately,
it can be shown using renormalization group arguments that such backscattering terms are

19They can, however, also be implicitly included by meticulously defining the q → 0 limit for the bosonic
operators.

20By ‘current’ we mean the difference in the numbers of left moving and right moving charges or spins.
21The analogy is not perfect since the term π

2L
vc

gc
N2

c is non-zero even for non-interacting particles (gc = 1)
and hence contains a kinetic energy contribution as well.

22F.D.M. Haldane, J. Phys. C 14, 2585 (1981).



2.2. CORRELATIONS IN QUANTUM MATTER 67

only important (relevant) if the Fermi level is exactly at EF = 0 corresponding to a half-filled
band.

Bosonization

Although we have now obtained the bosonized form of the Luttinger Hamiltonian, we are
not quite done. Most physical quantities can be related to the expectation values of products
of electron operators and are readily expressible in the fermion language, but it is not clear
how one can write them in term of the bosonic operators. Hence, we need a fermion-boson
dictionary that allows us to translate operators in one language to operators in another
language.

What is an electron? Fundamentally, it is a particle that carries charge 1 and spin 1 (in
units of −e and ~

2 , respectively), and obeys fermionic anticommutation relations. Hence, if we
can (uniquely) construct an operator (in the bosonic picture) that satisfies these conditions,
we have found a bosonic expression for a fermion operator.

Let us start by laying out the strategy, and worry about mathematical details only later.
Consider charge 1 particles in general (spin is treated similarly). An operator ψ̃†(x) creates
a charge 1 at position x if, as a result of an application of ψ̃†(x), the charge density ρc(x

′)
increases by δ(x′ − x), that is, if we have [ρc(x

′), ψ̃†(x)] = δ(x − x′)ψ̃†(x). This looks like
a doable task since we have a bosonic representation for the density operators, and we may
be able construct a bosonic version of ψ̃†(x). The operator ψ̃†(x) is not quite what we need
since it does not satisfy fermionic commutation relations. To do this final step we employ
the Jordan-Wigner transformation and write ψ(x) = eiπNL(x)ψ̃(x) where NL(x) is the total
number of charges to the left of the position x. Also NL(x) is likely to be expressible in
terms of boson operators since it is just

∫ x
−L/2 dx

′ρ(x′). To show that the Jordan-Wigner
transformation does the trick and results in fermionic anticommutation relations, let us eval-
uate the anticommutator {ψ(x), ψ(x′)} in a state that contains N1 electrons to the left of
x, N2 electrons to the left of x′, and assume x′ > x. Neglecting the commuting parts we
have {ψ(x), ψ(x′)} ∝ (−1)N1(−1)N2 + (−1)N2−1(−1)N1 = 0 since acting with ψ(x) reduces
the number of electrons to the left of x′ by one while acting with ψ(x′) has no effect on the
number of electrons to the left of x. Formally, we need to be quite careful with the imple-
mentation of this idea since we usually deal with infinite systems so the both N1 and N2 are
infinite, and therefore we may easily get results like N2 − 1 = N2.

Now that we have a plan we can proceed with the mathematical construction of ψ†(x).
First we need a density operator ρΣ(q) = ρ+(q) + ρ−(q) (we ignore spin for the moment).
It is useful to introduce even the other linear combination ρ∆(q) = ρ+(q) − ρ−(q) which is
related to particle current. Using the identity [eA, B] = eA[A,B] (valid if [A, [A,B]] = 0) we
see that the commutation relation [ρΣ(x′), ψ̃†(x)] = δ(x−x′)ψ̃†(x) is satisfied by the operator
ψ̃†(x) = eA(x) if [ρΣ(x′), A(x)] = δ(x− x′). Fourier transforming we obtain [ρΣ(−q′), A(q)] =
Lδq,q′ which is solved by A(q) = π

q ρ∆(q) or A(x) =
∑

q e
−iqx π

Lqρ∆(q). For the Jordan-Wigner

transformation we need NL(x) =
∫ x
−L/2 dx

′ρΣ(x′) and we arrive at our first guess for the
electron operator,

ψ†(x)
?
= e

P

q

h

iπ
R x
−L/2 dx

′
“

1
L
e−iqx′

”

ρΣ(q)+e−iqx π
Lq
ρ∆(q)

i

Two questions remain: is this a possible electron creation operator, and if so, is this
construction unique? Unfortunately, the answer to both these questions is no. Since we
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started by dividing the electron spectrum into right-moving and left-moving branches, we
must have two electron operators, one for each branch. Furthermore, the bosonic operators
ρ±(q) do not exist for q = 0, and therefore our present form for ψ†(x) cannot create a net
charge, it can only redistribute existing charges in the system. Hence, we must introduce four
more operators U †

± and U± which add and remove, uniformly, charge in the two branches
thereby changing the zero-mode quantum numbers N± by one. These additional ladder
operators for different branches anticommute, {U+, U

†
−} = 0 and {U+, U−} = 0, while they

commute for the same branch U+U
†
+ = U †

+U+. There is even another ambiguity in our first

guess: we could have chosen the Jordan-Wigner factor to be e−iπNL(x) just as well as eiπNL(x),
and we could even have chosen the reference point to be anything and not just −L/2. Finally,
the units of ψ†(x) are not correct, and the sum over wave vectors does not converge (large q
behavior ∼ q−1), and we must fix both these problems. In the end we arrive at a new guess
(r = ±)

ψ†
r(x) =

1√
2πα

e
−irkFx−r

P

q e
− 1

2 α|q|
h

− 2π
Lq
eiqxρr(q)

i

−irNr
2πx
L U †

r (2.67)

where α is a convergence factor that will be set to zero (α→ 0+) at the end of the calculations.
The proof that the definition (2.67) indeed yields the proper fermionic commutation relations
is given in Appendix D.

Power laws

Having obtained the bosonic form of the electron operator, we are ready to determine some
physical properties of the system. To demonstrate one of the differences between a Luttinger
liquid and Fermi liquid we calculate the occupation probability n+(k) = 〈ψ†

+(k)ψ+(k)〉 at
zero temperature. We carry out the calculation for a spinless Luttinger model but the result
is the same for model with spin since the interaction does not mix spin states. For free
fermions (in any dimension) we have n+(k) = Θ(kF − k) ∼ |k − kF |0 where the second form
is for future convenience. For a Luttinger model it is easiest to calculate n+(k) through its

Fourier transform as n+(k) = L−1
∫ L/2
−L/2 dx

∫ L/2
−L/2 dx

′eik(x−x
′)〈ψ†

+(x)ψ+(x′)〉T=0. Inserting the
bosonized forms for the fermion operators we get

〈ψ†
+(x)ψ+(x′)〉T=0 =

1

2πα

〈
e−i(kF +

2πN+
L

)(x−x′)
〉

T=0

e−
1
2

P

q
2π
Lq
e−α|q|+iq(x−x′)

〈
e

P

q
2π
Lq
e−

1
2 α|q|[eiqxρ+(q)+e−iqx′ρ+(−q)]

〉

T=0

where the first average only depends on the zero modes and the second average only on the
bosonic forms. We obtained this form by using eAeB = eA+Be

1
2
[A,B] to combine the two

exponentials into one, which resulted in the commutator term that appears as the second
exponential factor. The zero mode average is easy at T = 0 when only N+ = 0 contributes,
but the average over the bosonic modes is more complicated since ρ+ does not appear in the
bosonized Hamiltonian (2.62). It is convenient to write ρ+(q) in terms of the eigenmodes
as ρ+(q) = cosh(ϕ)ρ1(q) − sinh(ϕ)ρ2(q) and separate the resulting exponential as eC+D =

eCeDe−
1
2
[C,D] where C only contains creation operators and D only annihilation operators.

Since the zero temperature average involves only the ground state and since annihilation
operators acting on a ground state yield zero, the operator factors eCeD collapse into unity,
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and only the factor containing the commutator remains. This gives, after some algebra,

〈ψ†
+(x)ψ+(x′)〉T=0 = e−ikF (x−x′) 1

2πα
e
− 1

2

P

q>0
2π
Lq

[e−q(α−i(x−x′))−e−q(α+i(x−x′))]

e
− cosh(2ϕ) 1

2

P

q>0
2π
Lq

[2e−αq−e−q(α−i(x−x′))−e−q(α+i(x−x′))]
.

The sums we can do using the Taylor expansion of logarithm
∑∞

n=1
1
nz

n = − ln(1 − z), and
we find

〈ψ†
+(x)ψ+(x′)〉T=0 = e−ikF (x−x′) 1 − e−

2πα
L

2πα

1

1 − e−
2π
L

(α+i(x−x′))

 1 − e−

2πα
L(

1 − e−
2π
L

(α+i(x−x′))
)(

1 − e−
2π
L

(α−i(x−x′))
)




2 sinh2(ϕ)

.

Now we let L→ ∞ and get the simple expression

〈ψ†
+(x)ψ+(x′)〉T=0 =

1

2πi
e−ikF (x−x′) 1

x− x′ − iα

[
α2

(x− x′)2 + α2

]sinh2(ϕ)

so that the occupation probability is given by

n+(k) =
1

2πi

∫ ∞

−∞
dx
ei(k−kF )x

x− iα

[
α2

x2 + α2

]sinh2(ϕ)

.

By changing variables to ζ = x/α we find that the integral can be written in terms of the

function Fa(q) =
∫∞
0 dζ cos(qζ)

(1+ζ2)a+1 (with a = sinh2(ϕ)); this integral satisfies a differential

equation that allows it to be connected to the modified Bessel functions, and in the end we
get

n+(k) ∼ |k − kF |2 sinh2(ϕ) (2.68)

which shows that for ϕ 6= 0 there is no discontinuity of occupation at kF , showing that a
Luttinger model is fundamentally different from a Fermi liquid for all g 6= 1. Recalling the
connection between g and ϕ we see that the occupation probability near Fermi surface obeys

a power law with exponent ν − 1 = 1
2

(
g + 1

g

)
− 1 ≥ 0. This result is typical for Luttinger

liquids: most physical dependences take the form of power laws with exponents depending on
the interaction parameter g.
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Home problem 4: Density of states of a Luttinger liquid
The “tunneling density of states” D(ω), which measures how easy
or difficult it is for an extra electron to enter the system by a
local tunneling process, can be obtained as a Fourier transform
of F (t) = 〈0|eiHtΨ†(0)e−iHtΨ(0)|0〉 where H is the Hamiltonian,
Ψ(x) = ψ+(x) + ψ−(x) is the physical electron operator taking into
account that electrons can travel either to the left or to the right,
and |0〉 the ground state. For simplicity, set T = 0, ignore spin, and
neglect the zero-mode contribution to the Hamiltonian. Note that
the cross terms involving products like ψ†

−(x′)ψ+(x) vanish, and note
further that if you know the result for the +-branch, the result for
the −-branch can be obtained be replacing v → −v. Hence, it is
sufficient to only consider the +-branch.

1. Following the same procedure as in the calculation of
〈ψ†

+(x)ψ+(x′)〉T=0, obtain F (t)

Hints: (a) show that U † exp(A)U = exp(U †AU)
where U is an arbitrary unitary operator
(expand exp(A) as a power series).
Hence, since e−iHt is unitary, it is sufficient to know
eiHtρ±e−iHt to obtain eiHtΨ†(0)e−iHt

(b) write ρ± in terms of the diagonalizing fields ρ1,2, and
obtain ρ1,2(q, t) ≡ eiHtρ1,2(q)e

−iHt

(c) use the same trick as in the calculation of n+(k)
to combine all factors to the form a single
exponential eA+B

(d) separate the exponential to factors eCeDF (t)
where C only contains bosonic creation operators,
D only contains bosonic annihilation operators, and
F (t) is a function of time that contains no operators.

(e) note that an annihilation operator acting on the
ground state yields zero, so eD|0〉 = |0〉,
and the final result is given by the function F (t).

2. Fourier transform this to show that D(ω) ≡ F [F (t)] behaves like a
power law near the Fermi energy, D(ω) ∼ |ω|ν−1, where the exponent
ν depends on the interaction parameter g.

3. Show that ν − 1 > 0 for all g, and find the interaction strength g
such that ν − 1 = 0, corresponding to a constant tunneling density
of states near the Fermi level.

In the home problem you will find out that the density of states in a Luttinger liquid
vanishes for small energies, i.e., near the Fermi surface. Again the functional form is given
by a power law D(ω) ∼ |ω|ν−1. This behavior means that it is very difficult to add particles
to a Luttinger liquid without supplying some energy in excess of εF . This can be physically
understood as an orthogonality catastrophe: the ground state of a system with (N + 1) par-
ticles cannot be obtained from the ground state of an N particle system simply by occupying
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one more single particle state — a state so obtained would be nearly orthogonal to the true
ground state regardless of how the new single particle state was chosen. Instead, due to
interactions between the particles, the original N particles must adjust their quantum state
to accommodate the extra one roughly the same way as pearls in a necklace must move aside
when a new pearl is added. This rearrangement is achieved more easily if there is some energy
available to carry it through.23 The difference between one dimension and higher dimensions
is that in 1D such rearrangements affect the entire system, while in higher dimensions they
are restricted to some vicinity of the perturbation.

The orthogonality catastrophe has far-reaching consequences for a number of physical
quantities. The additional energy that facilitates change in the relatively rigid one-dimensional
systems usually comes from either temperature or an external voltage source, and conse-
quently most observables obey power laws as a function of T or V . Since the naive power law
exponent is determined by dimensional analysis, the anomalous power laws can appear only
as (T/T0)

γ or (V/V0)
γ where kBT0 and eV0 are some energy scales that are determined by

“high energy” phenomena where our approximations begin to fail. Such energy scales may
come from e.g. length dependence of interactions (g(k) ≈ g(k = 0) break down), curvature
of the kinetic energy dispersion (εkin ≈ ±vF (k∓ kF ) breaks down), some other effects due to
the underlying lattice, or effects connected with the finite length of the one-dimensional wire
(this energy scale is typically ≈ v/L).

23An alternative, more rigorous way is to say that while the naive construction of occupying one additional
single particle state results in an (N + 1) electron state that is orthogonal to the true ground state, it is not
orthogonal to excited states so that if there is some excitation energy available, it is possible (albeit still quite
difficult) to add particles by single particle tunneling.
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Chapter 3

Examples

3.1 Quantum wires

3.1.1 Carbon nanotubes

Carbon is one of the most versatile elements. Since historical times it is known to possess two
allotropes, the stable graphite and the quasistable diamond (the title of the old James Bond
film Diamonds Are Forever is misleading). In 1985 a new form of carbon was discovered, a
class of structures known as fullerenes. The most common fullerene is C60 which is like a
miniature soccer ball consisting of 60 carbon atoms in a geometrical structure that combines
hexagons and pentagons, but similar carbon structures exist for atom number ranging from
20 to the hundreds. The structures that are usually regarded as the most recently discovered
form of carbon, the carbon nanotubes, were actually seen by Morinobu Endo already in 1976,
but they were largely ignored until their rediscovery by Sumio Iijima in 1991.

To understand the structure of carbon nanotubes it is useful to consider graphite first.
Graphite is made up of two-dimensional sheets — graphene layers — that are stacked above
each other. Interactions that keep the layers together are quite weak van der Waals forces
which makes graphite one of the best dry lubricants. Each graphene layer is a honeycomb
lattice of carbon atoms that are covalently bonded through sp2 hybridization (the three-
dimensional structure of diamond arises as a result of sp3 hybridization). In terms of its
electric properties graphene is a semimetal where the valence and conductance bands touch
each other at six points of the Brillouin zone as shown in Fig. 3.1.

A carbon nanotube can be thought of as a wrapped up graphene sheet. There are many
ways of wrapping the sheet to form a cylinder, and different wrappings result in nanotubes
with different structures. One consequence of the wrapping is that the k-vector in the cir-
cumferential direction ϕ can only assume such values that kϕ2πR, where R is the nanotube
radius, equals an integer times 2π — this is required for the wave function to be single valued.
Hence, only discrete values of the circumferential wave vector are allowed. This implies that
it is not at all obvious that the K-points of the graphene Brillouin zone correspond to allowed
values of the nanotube k-vector; if they are not among the allowed values, the valence and
conduction bands of the nanotube do not touch, and the nanotube is an insulator or, at best,
a semiconductor.1

1The difference between these two being the size of the gap compared to the temperature. Since the gaps
in nanotubes are quite small, it is often better to regard the non-metallic nanotubes as semiconductors rather
than as insulators.
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Figure 3.1: Graphene band structure showing that the occupied (E < 0) and unoccupied
(E > 0) bands touch only at the six corners (K-points) of the Brillouin zone.
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Figure 3.2: Graphene sheet showing the basis vectors a1 and a2 and some wrapping vectors.
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Whether the graphene K-points are allowed wave vectors for nanotubes depends on how
the graphene sheet is wrapped, which means that we need a description of different wrapping
procedures in order to be able to classify nanotubes. This is usually done by introducing two
basis vectors a1 and a2 for the graphene sheet as shown in Fig. 3.2. Wrapping means that
the carbon atom in the origin will be folded on top of another carbon atom in the sheet, and
the separation between these two defines the wrapping. If the two atoms are separated by
vector na1 + ma2, the resulting nanotube is known as a (n,m) tube. The nanotubes that
are of the type (n, 0) are known as zig-zag tubes, those of type (n, n) are known as armchair
tubes, and the rest are known as chiral tubes. It turns out that only tubes for which n−m
is an integer multiple of three are metallic, and the rest are semiconducting (some deviations
to this rule exist for the very smallest tubes).

The mechanical properties of carbon nanotubes are determined by the strong carbon-
carbon bonds. It turns out that carbon nanotubes are the stiffest material known to man,
with Young’s modulus of approximately 1 TPa, compared to for instance 200 GPa for steel.2

They are also the strongest material, and can stretch by about 30% before breaking. Nano-
tubes are also tend to deform elastically so that when the external forces are removed, they
return to their original shapes. These unique mechanical properties of nanotubes make them
very interesting for a wide range of applications ranging from badminton rackets and golf
clubs to reinforcements in concrete or mechanical support in cell phone batteries. Many
other applications utilize the electrical properties of nanotubes, and both nanotube displays
and nanotube transistors are being developed. A particularly interesting category of ap-
plications relies on combining electrical and mechanical functionalities in a field known as
nanoelectromechanics, which is an important research direction at Chalmers and Göteborg
University.

In reality carbon nanotubes are of course not made by peeling sheets of graphene of
pencils are rolling them into small cylinders. There are by now many methods of producing
nanotubes, all of which involve heating some carboneous substance to a high temperature
and then letting the carbon gas cool down and form new structures. If the circumstances are
right, a larger or smaller fraction of the structures are nanotubes. There are many ways of
providing the heat — initially this was done either by an electric discharge or by a laser —
but the method that is now most popular is chemical vapor deposition (CVD). CVD growth
requires a catalyst (for instance iron), and by controlling the placement of catalyst particles
one can grow nanotubes at selected positions. The direction of growth can be controlled by
applying an AC electric field, and a combination of these two techniques has been developed
to quite a versatile method. There are still, however, some difficulties: first and foremost,
one cannot, yet, selectively grow nanotubes with specific (n,m) values, the thickness of the
grown tubes is not perfectly controlled, and electric contacts between the tubes and external
circuits are difficult. Also, often the nanotubes consist of several concentric cylinders (multi-
walled nanotubes, MWNTs) and coupling between the different shells (walls) is not perfectly
understood yet. In many applications, however, multi-walled tubes are preferred since they are
predominantly metallic (any metallic shell is sufficient to make the whole tube metallic), they
are larger than the single-walled tubes (SWNTs) which makes them sturdier mechanically and
easier to contact, and their growth conditions are not quite as restricted as those of SWNTs.

From the theoretical point of view SWNTs are a very interesting system. They have very

2Young’s modulus E gives the relationship between the strain δL
L

and the stress σ. Larger E implies that
the material stretches less when subjected to the same force per area of cross section.
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small radii, of the order of one nanometer, they have few impurities, and they can be metallic:
they are very close to being ideal one-dimensional wires. The armchair metallic tubes have a
band structure where two one-dimensional bands cross the Fermi level at k = +kF and two
at k = −kF , implying that they are effectively like quantum wires with two transverse modes.
Since each mode can carry electrons with spin up or spin down, the maximal conductance
of a single armchair SWNT is predicted to be 4 e

2

h corresponding to a resistance of about 6.5
kΩ. The bands of SWNTs are linear over quite a large energy range near k = ±kF , which
suggests that the Luttinger approximation should be quite good.
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Fact or Fiction?

Experiments carried by Paul McEuen’s group at UC Berkeley and Cees
Dekker’s group at TU Delft measured the conductance of a SWNT connected
to external electrodes by tunnel junctions that were placed either near the end
of the nanotube, or far from the ends. The conductance was measured as a
function of both the voltage and the temperature, and compared to predic-
tions based on the Luttinger model. The free parameters in the model were
the interaction constant g which could be roughly estimated, and should be
the same for the two experiments, and the proportion of the applied voltage
that actually drops across the tunnel junction rather than elsewhere in the

circuit. The theoretical prediction is (α = 1
2

(
1
g − 1

)
)

dI
dV ∼ Tα sinh

(
eV

2kBT
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where ψ(z) is the logarithmic derivative of the gamma function.
The agreement between theory and experiment appears quite good except
at the lowest temperatures where the Coulomb blockade of the SWNT be-
comes important. The interaction parameter g that gives the best fit ir
roughly g ≈ 0.24 which compares quite favorably with the theoretical esti-
mate g ≈ 0.28. Hence, the interaction is very strong, g � 1, and in particular
g < 0.5 which is the smallest g-value that is compatible with a short range
interaction, implying that the long range of the Coulomb interaction is impor-
tant. However, the curve does not exhibit many features (essentially just the
slope and the position of the kink at kBT ≈ eV ), and other explanations have
been suggested, such as the role of the electromagnetic environment which
also leads to power laws similar to those predicted by the Luttinger model.
Consequently, not everybody is convinced that nanotubes behave as Luttinger
liquids.
What would it take to convince those in doubt? Detecting the separation
between spin and charge would probably constitute smoking gun evidence that
would be hard to reject. This could be done, for instance, by measuring the
so-called spectral function A(k, ω) that exhibits peaks at such combinations of
k and ω that are connected by a dispersion relation ω = ωα(k): in Luttinger
liquids there are the charge α = ρ and spin α = σ excitations have different
velocities and hence different dispersions (ω = vk), so a spin-charge separation
should result in the splitting of peaks in the spectral function. Unfortunately,
the spectral function is not directly measurable, and its value must be inferred
from experiments that are usually sensitive to some integral of A(k, ω), and
an integral can assume the same value due to two small peaks or one large
one.



78 CHAPTER 3. EXAMPLES

Figure 3.3: Current through a SWNT, multiplied by a power of temperature, as a function
of eV/kBT . The solid line is the prediction of the Luttinger model. Data by Marc Bockrath
et al., Nature 397, 598, 1999.

3.1.2 Other quantum wires

Carbon nanotubes can be described as bottom-up fabricated quantum wires: one starts from
simpler structures, carbon atoms, and creates suitable circumstances so that the ingredients
coalesce to form the desired end results. Bottom-up fabrication is what one finds in Nature,
but the conventional engineering approach has been to take a large piece of material, and
work on it to create the desired end structure. This method has been applied all the way
from the Stone Age, when it was used to make arrow heads, to the Silicon Age of microchips,
and it has served countless generations of engineers quite well — we should at least investigate
if the method can be applied to create quantum wires, too.

To create a quantum wire we need confinement in two directions, call them z and y, in
order to create a wire in the third, x, direction. Confinement in z direction is straightforward:
one can either (i) coat a semiconducting material such as silicon with an insulating oxide, build
a metal gate on top of the oxide, and apply a voltage to the gate to attract charge carriers
to the interface between the semiconductor and the insulator, or (ii) bring two different
semiconductors together which generically results in carrier flow (diffusion) from one material
to another until an internal electric field builds up to stop the flow, with the end result that
there are electrons on one side of the interface. The first method is the standard engineering
recipe to create MOSFETs, and was used e.g. in the study of the integer quantum Hall
effect. The second method typically employs GaAs and AlGaAs as the two semiconductors
and results in the creation of thin electron layer on the GaAs side of the interface. In both
cases the potential well that confines carriers to the interface is so narrow that only the lowest
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mode in the z-direction is occupied, rendering the carrier systems effectively two dimensional
(2DES). The advantage of the latter method is that it allows for higher mobilities, i.e. lower
resistivities, which makes it easier to study many of the more exotic phenomena.

Confinement in the lateral (y) direction is usually achieved lithographically. In order for
the quantum wire of width W to be one-dimensional, the Fermi level must not be too high,
in particular,

~
2k2
F

2m
+

~
2

2m

( π
W

)2
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~
2

2m

(
2π

W
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where the left hand side is the kinetic energy of an electron on the Fermi level and in the
lowest transverse mode, and the right hand side is the energy of an electron in the next
lowest transverse mode and with no longitudinal momentum. Hence, the Fermi wave vector

must be kF <
π
√

3
W . This Fermi wave vector corresponds to a two-dimensional carrier density

n = k2
F /(2π) = 3π

2W 2 . It is hard to maintain good mobility in a 2DES if the carrier density falls
below 1010 cm−2 (the Fermi sea is so shallow that the impurities can completely block carrier
flow), which implies that the channel width must be smaller than about 200 nm. In practice
the carrier density must be higher since quantum wires are more sensitive to impurities, and
the maximal quantum wire width falls well below 100 nm. In the above analysis we assumed
that the confining potential was like a square well, which is a reasonable model for etched
quantum wires. Another way to create quantum wires using a top-down method is to pattern
closely spaced metallic gates on top of the 2DES, and expel electrons underneath the gates to
create a narrow channel in the 2DES between the gates. This method results in a considerably
softer confinement, roughly similar to a parabolic potential, and must be modeled accordingly.

Lithographically defined quantum wires have been seen to exhibit quantized conductance
in accordance with the Landauer model, but they are quite prone to disorder effects — impu-
rities or surface roughness — which has hampered effects to detect Luttinger-type interaction
effects in them. This is in part due to the asymmetry of the fabrication technique: control in
the z-direction (growth direction) is on the level of individual atomic layers, about 0.4 nm, so
interfaces are very sharp, whereas control in the lateral direction is accurate only to about 10
nm. An obvious way to try to improve the situation is to use the growth control even in the
lateral direction. This results in the so-called cleaved edge overgrowth technique developed
by Amir Yacoby and coworkers in the late 1990s. In this technique one grows a conventional
AlGaAs-GaAs sandwich, stops the growth, cleaves the sample along a suitable crystal plane,
rotates the sample, and starts to grown on what used to be the edge of the sample. The wires
produced by this technique are the cleanest semiconductor wires to date, and Luttinger-type
effects may have been seen in them; however, just like in the case of carbon nanotubes, the
evidence is not entirely convincing.

Apart from carbon nanotubes, there are other bottom-up -type quantum wires. In the
category of linear organic molecules probably the most famous is DNA, but the conductivity
of DNA is a matter of some debate at present (in the words of one researcher in the field, the
conductivity of DNA is comparable to that of silicon dioxide), and DNA may not be the best
example of a one-dimensional metal. Other molecules such as polyacetylene are promising in
some aspects but prohibitively difficult to work with (polyacetylene combusts spontaneously).
The category that is perhaps most promising is a group of organic salts known as Bechgaard
salts, which have exhibited power law dependences characteristic of Luttinger liquids but also
some signs of spin-charge separation in both optical and transport experiments.
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3.2 Fractional Quantum Hall Effect

3.2.1 Bulk properties

In the Chapter on coherence effects we discussed the Integer Quantum Hall Effect, IQHE,
which could be explained entirely without reference to interactions between electrons. The
Fractional Quantum Hall Effect (FQHE), on the other hand, owes its existence entirely to
electron-electron interactions.

Before embarking on the analysis of FQHE in particular let us first consider the relative
importances of interactions in electron fluids. The kinetic energy of an electron in the absence
of a magnetic field is ~

2k2

2m and at T = 0 so many k-states are occupied that all electrons
can be accommodated. The wave vector of the highest occupied state is hence given by

N = 2V
∫ kF

0 Sd−1
dk

(2π)d k
d−1 = 2V Sd−1

1
(2π)dd

kdF or kF = 2π
(

dn
Sd−1

)1/d
where N is the number

of electrons, V is the volume of the sample, n = N/V is the electron density, and Sd−1 is
the area of the (d − 1)-dimensional surface of a d-dimensional unit sphere, i.e., S2 = 4π,
S1 = 2π and S0 = 2. Consequently, the kinetic energy of electrons on the Fermi level scales
as n2/d. The Coulomb interaction between electrons scales as their inverse separation, i.e.
as n1/d. This means that the relative importance of interactions vs. kinetic energy scales
as n−1/d, which means that dense electron systems are effectively weakly interacting (their
energetics is dominated by the kinetic energy) while sparse electron systems are strongly
interacting. Also, we see that the density dependence is stronger in low-dimensional systems,
implying that strong interaction effects are more likely to be seen in systems with reduced
dimensionality.

The above argument relies on the specific form of the kinetic energy that is valid at
zero magnetic field. In the discussion of the IQHE we saw that in large magnetic fields the
kinetic energy falls into Landau levels with energies εn = (n+ 1

2 )~ωc where ωc = eB/m and
n = 0, 1, 2, . . .. Each Landau level is hugely degenerate, and in the absence of interactions
it makes no difference, from an energetics point of view, in which order states in a Landau
level are occupied. If a Landau level is completely full, all states in it must be occupied, but
for a partially filled Landau level there are many ways to choose the occupied states: if the

level has N1 degenerate states that must accommodate N < N1 electrons, there are

(
N1

N

)

ways of choosing the occupied states. Consider now a 1/3-filled Landau level of a 1 cm2

sample at a magnetic field of one tesla: the number of ways of choosing the occupied states

is

(
2.5 × 1010

(2.5/3) × 1010

)
≈ 107×109

. In the presence of interactions, this degeneracy is broken,

and among all the 107×109
states there is one with the lowest energy, the ground state, and

a few that have energies slightly above that of the ground state. We will now set out to find
these states. An exhaustive search does not seem feasible; instead, at some point along the
way, we must think.

In the discussion of the IQHE we employed the transverse gauge but for the FQHE discus-
sion it is simpler to use the symmetric gauge that we encountered in the analysis of persistent
currents. Not all too surprisingly, the Schrödinger equation in this gauge also becomes a
harmonic oscillator (this is almost obvious from the beginning — physical features such as
energy spectrum are gauge independent, and in the transverse gauge we obtained a harmonic
oscillator). The appropriate quantum numbers are now the principal quantum number n,
which is the Landau level index and determines the energy εn = (n+ 1

2)~ωc, and the angular
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momentum quantum number `. In the symmetric gauge the (unnormalized) states can be
written as

ψn,`(r, θ) = r`e−i`θe
− r2

4`2c L`n

(
r2

2`2c

)

where `c =
√

~/(eB) is the magnetic length and L`n(x) an associated Laguerre polynomial.
In the following we only consider the lowest Landau level when the Laguerre polynomial is
identically equal to unity. It is convenient to introduce the complex position variable z = reiθ

so that the lowest Landau level wave functions can be written as z `e−|z|2/4 where all lengths
are measured in units of `c.

The fractional quantum Hall state will turn out to be a true many-body state that can-
not be described in terms of single-electron wave functions. Therefore, we will need the
many-particle wave functions that depend on all electrons’ coordinates simultaneously. To
this end we begin by considering the many-particle state describing the full lowest Landau
level. Since electrons are fermions, the many-particle state Ψ(z1, . . . , zN ) must be odd under
particle exchange, Ψ(z1, . . . , zi, . . . , zj , . . . , zN ) = −Ψ(z1, . . . , zj , . . . , zi, . . . , zN ), which can be
accomplished by a Slater determinant. The Slater determinant is the determinant of a matrix
whose entries are ψi(zj) = zije

−|zj |2/4. When we expand the determinant, we see that each
term contains the same Gaussian factor, and the many-particle state for a full lowest Landau
level can be written as

Ψ1(z1, . . . , zN ) =

∣∣∣∣∣∣∣∣

1 1 . . . 1
z1 z2 . . . zN
. . .

zN−1
1 zN−1

2 . . . zN−1
N

∣∣∣∣∣∣∣∣
e−

1
4

PN
j=1 |zj |2

This determinant can be evaluated in a closed form by noticing that (i) the polynomial
prefactor is of order 0 + 1 + . . .+ (N − 1) = N(N − 1)/2 since each term in the determinant
contains one factor from each row, and (ii) the polynomial is odd under exchange zi ↔ zj ,
which implies that it must be proportional to (an odd power of) (zi − zj) for any choice of
indices i 6= j. The second observation implies that the polynomial prefactor is proportional
to
∏
i<j(zi − zj), possibly multiplied by a symmetric polynomial of the coordinates, but this

polynomial is already of the order determined by argument (i), so the symmetric polynomial
must be just a constant. Inspection reveals that the constant is one, and hence the many-
particle state describing a full Landau level is uniquely given by Ψ1(z1, . . . , zN ) =

∏
i<j(zi −

zj)e
− 1

4

PN
j=1 |zj |2 .

A possible many-electron state Ψ describing a partially filled lowest Landau level shares
many features with Ψ1. Since it is made up from the same single particle states, it must
contain the same Gaussian factor, multiplied by an analytic function of the coordinates zi —
analytic since it is a polynomial of zi and does not involve any complex conjugates z∗i . Since
the wave function must be odd with respect to particle exchange, it must also be proportional
to
∏
i<j(zi−zj), but unlike Ψ1, it may (and must) be multiplied by some symmetric polynomial

of the coordinates. The choice of symmetric multipliers may be reduced by noticing that since
the system is cylindrically symmetric (this is where the gauge choice is useful), the angular
momentum Lz is a good quantum number. The angular momentum of a single particle state
is simply `, and the angular momentum of a many-particle state is given by the sum of the `-
quantum numbers. Hence, if Ψ is an eigenstate of Lz, each term in the polynomial multiplying
the Gaussian factor must have the same order. Now, following Robert Laughlin, we postulate
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that Ψ has the form3

Ψ(z1, . . . , zN ) =
∏

i<j

f(zi − zj)e
− 1

4

PN
j=1 |zj |2

where f(z) is some odd polynomial of a uniform degree. ”Polynomial of a uniform degree”
is simply a power, f(z) = zm, where m must be odd. Hence, provided that Ψ is of the form
above, the only possibilities are

Ψm(z1, . . . , zN ) =
∏

i<j

(zi − zj)
me−

1
4

PN
j=1 |zj |2 , m odd.

Now we have established that Ψm is a possible many-electron state describing electrons on
the lowest Landau level and consistent with the conservation of angular momentum. What
kind of a state is Ψm, in particular, what is the density of the electron system it describes?
To address this point, we again follow Laughlin’s neat trick that relies on experience from
two seemingly disjoint fields of physics. In quantum mechanics the probability density of
finding particles at positions {zi} is given by |Ψm({zi})|2. In classical statistical mechanics,
the probability density of finding particles at positions {zi} is proportional to e−βHcl({zi})

where β = (kBT )−1 and Hcl({zi}) is the classical Hamiltonian. Laughlin asked “What is the
classical Hamiltonian that yields the probability density |Ψm({zi})|2 in classical statistical
mechanics?” — if we know that, we can apply our knowledge of the classical system to infer
the nature of the state Ψm({zi}). This is easy, simply a matter of taking a square and a
logarithm, and yields

Hcl({zi}) = β
1

2

N∑

j=1

|zj |2 − 2βm
∑

i<j

ln |zi − zj |

where β is arbitrary. The second term looks like what you get for a collection of particles
at positions {zi} that interact with each other through a logarithmic potential. Choosing
β = m/2 yields a form where we can identify m as some kind of a charge of the particles and
− ln r as the interaction potential.

Consider now, for no obvious reason, a purely two-dimensional universe. In that Flatland
(as it was called in a famous novel by Edwin A. Abbott) the Coulomb potential still obeys
the Poisson equation ∇2ϕ(r) = −2πρ(r) whose solution for a point charge is ϕ(r) = − ln(r).
Hence, the second term of Hcl describes point charges in Flatland. The first term can be iden-
tified by considering the Flatland potential that is connected to a constant charge distribution,
which is obtained by solving ∇2V (r) = −2πρ. Integrating twice yields V (r) = − 1

2πρr
2, which

shows that the first term of Hcl describes Flatland point charges of magnitude m interacting
with a uniform background with charge density ρ = 1

2π . Thus, we have established that
the classical Hamiltonian describes a system of Flatland point charges interacting with each
other and a uniform background charge. In the limit of large N , the energy of this system
blows up unless the density of the point charges precisely neutralizes the background charge,
which implies that the classical probability density is maximized for a uniform distribution of
point charges, and that the uniform density is given by 1

2πm . Since the Flatland point charges
are in a one-to-one correspondence with the electrons of the FQHE system, we have now

3The choice of this form was motivated in part by analysis of interaction nucleon systems in nuclei, where
this Ansatz is known as the Jastrow form.
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established that the probability density associated with Ψm({zi}) is maximized for a uniform
distribution of electrons with density ρm = 1

2πm`2c
, corresponding to filling factor ν = 1/m.

Thus, the Laughlin wave function can only be constructed a particular densities.

A more complete study — e.g. exact diagonalization of a small system — shows that
the Laughlin states are extraordinarily good approximations to the true ground states at
the corresponding densities. Further evidence to their particular role can be obtained by
considering excitations above these ground states. We will not go into details here, but merely
point out that in the Flatland analogy a possible excitation is to create some inhomogeneities
in the charge distribution. Since the corresponding wave function must still be of the form of
an antisymmetric polynomial times a Gaussian (lest we wish to pay the kinetic energy cost
of involving higher Landau levels), the simplest excitation to create is a charge deficiency:
simply multiply the ground state by factor

∏
i(zi − z0), which results in a reduced electron

density near the point z0. The Flatland analogy can be used to establish that proportion
1/m of an electron charge is missing near the point z0 (compared to the uniform charge
distribution). This charge deficiency may move around, and forms an elementary excitation
(known as a quasihole) in the FQHE system. A corresponding charge bump, or quasielectron,
can also be constructed. If the system is subjected to electric fields or other perturbations,
the quasielectrons and quasiholes move almost as independent particles, except for the sum
rule that the total charge in the system must be an integer times the electron charge. These
fractionally charged excitations have been seen experimentally in shot noise measurements,
and they constitute a serious deviation from the Landau Fermi liquid theory in which all
excitations are in one-to-one correspondence with excitations of a non-interacting system.

The Hall conductance can be calculated as in the Integer Quantum Hall Effect, and is
again found to have the classical form ν e

2

h . Indeed, experiments reveal that at high enough
magnetic fields two-dimensional electron systems exhibit quantized Hall conductances at val-
ues 1

m
e2

h wherem is an odd integer. However, the experimental system exhibits quantized Hall
conductance at many other fractional multiples p/q of the quantum conductance as shown
in Figure 3.4, but only at fractions where the denominator q is odd. This hierarchy of levels
can be explained in many ways (they may be equivalent in the end) where the basic idea is
that the higher hierarchy levels can be interpreted as quantum Hall effects of the excitations
of the lower states in the hierarchy — for instance, the excitations of the 1/3 state can give
rise to the 2/5 state etc..

We will not pursue this analysis any longer in this course, but conclude that a particularly
simple hierarchy construction has been provided by Jainandra Jain who considered fictitious
particles that carry not only an electric charge but also an even number of magnetic flux
quanta Φ0 = h/e. In the Jain construction, for instance, the 1/3 state is understood as a
full lowest Landau level of of fictitious particles carrying two flux quanta: the total flux per
particle is Φ0 since it is a full lowest Landau level plus 2Φ0 since each particles carries two flux
quanta, so that the total flux per particle is 3Φ0, which implies filling factor 1/3. Similarly,
if these fictitious particles fill p Landau levels, the total flux per particle is 2 + 1/p and the
filling factor is (2+1/p)−1 = p/(2p+1), i.e. 1/3, 2/5, 3/7. . . Binding four flux quanta to each
particle results in filling factors 1/5, 2/9, 3/13. . . The Jain construction can even be used to
write down wave functions for the different states and the results agree with the Laughlin
construction for the 1/m states.

The Jain construction can even be employed at filling factor ν = 1/2, which does not
allow for a fractional quantum Hall state, and experimentally no quantized Hall conductance



84 CHAPTER 3. EXAMPLES

Figure 3.4: Hall resistance and longitudinal resistance of a very pure two-dimensional electron
system as a function of the magnetic field. Note the quantized values of ρxy at q

p
h
e2 where q

is an odd integer. The quantization plateaux are accompanied by minima of the longitudinal
resistance indicating a gap in the excitation spectrum.

is observed at this filling factor. However, experiments reveal that even at this filling factor
the electron fluid forms a special kind of a state with unusual properties. This special state
corresponds to Jain’s fictitious particles in zero magnetic field (as all of the magnetic flux is
accounted for by the flux quanta bound to particles), and turns out to be a Fermi liquid, albeit
an unusual one — the special nature of these even denominator states has prompted some
researchers to introduce a classification of the quantized Hall effects as the Integer Quantum
Hall Effect, the Fractional Quantum Hall Effect, and the Unquantized Quantum Hall Effect
(the last term is not yet in universal use). This ν = 1

2 state was first studied theoretically in
a joint publication by Bertrand Halperin, Patrick Lee, and Nicholas Read in the early 1990s.

3.2.2 Edges

In the Integer Quantum Hall Effect the edges of the sample played an important role, which
was essentially due to the fact that there was a gap to excitations in the bulk — such excita-
tions would require promoting a particle to the next Landau level at the cost of ~ωc — while
excitations near the edge were gapless and could respond to small perturbing fields. In the
Fractional Quantum Hall Effect the excitations in the bulk are quasielectrons and quasiholes
whose creation also requires a finite amount of energy (of the order of 0.03e2/(4πε0`c) ≈ 5
meV = 60 K at a field of 10 teslas. Thus, FQHE experiments must be carried out at higher
magnetic fields and at low temperatures so that thermally excited quasiparticles do not smear
out the effect). Hence, even in the FQHE, the edges can be expected to pay a large role in
the response of the system.

The role of the FQHE edge states has been studied in particular by Xiao-Gang Wen and
coworkers, who have concluded that the FQHE edges differ from the IQHE edges in one
fundamental aspect. Both edge states are chiral, that is, they only support excitations that
move in one direction along the edge; this we saw in the IQHE case. The difference is that
while the IQHE edges behave like non-interacting uni-directional (chiral) one-dimensional
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wires, the FQHE edges behave as interacting uni-directional one-dimensional wires. In view
of the crucial role that interactions play in the FQHE, it is hardly surprising that they are
important at the edge, too. The precise arguments leading to a theoretical description of the
FQHE edges are too involved to be considered here, but the end result is that the FQHE
edges can be described as chiral Luttinger liquids. For the simple filling factors ν = 1/m the
interaction constant of the edge Luttinger liquid is given by g = ν, that is, its value is uniquely
determined by the bulk properties.4 Therefore, the FQHE system provides an interesting
opportunity to test the Luttinger liquid model as the predicted power law exponents are
well known, and are predicted to change in a well-defined fashion as the filling factor is
changed. A difficulty in this testing method is that when an FQHE sample is connected to
a measurement apparatus, the intricate correlations inside the sample must somehow evolve
into the ordinary Fermi liquid inside the apparatus. That evolution is difficult to describe,
and it is quite likely that the Luttinger effects do not survive the invasive measurement;
instead, contactless measurements or measurements that are sensitive to internal correlations
are needed. One such measurement focused on scattering across a thin neck in an FQHE
system, and showed that the scattering was consisted with transport of fractionally charged
quasiparticles or the chiral edge Luttinger liquid model.

3.3 Quantum magnets

HJ

3.4 Kondo effect

HJ

3.5 Mott insulators

HJ

3.6 Bose-Einstein condensation

HJ

4At more complicated filling factors the edge is also more complicated, and may consist of several chiral
Luttinger liquids propagating in different directions and only weakly interacting with one another.
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Chapter 4

Toolbox

4.1 Renormalization group

4.1.1 Position space renormalization group

Renormalization group (RG) technique was developed by Kenneth Wilson in the early 1970s
as a formal implementation of scaling ideas of Leo Kadanoff. It has become the standard
tool for analyzing the properties of a wide range of models in theoretical physics, and the
ideas have been applied to many other fields as well (e.g. turbulence). The basic idea
behind renormalization group is to relate the system’s behavior on a macroscopic, large length
scale to its description on a microscopic scale by systematically inspected how small scale
phenomena manifest themselves on longer length scales. This is done by carefully eliminating
those degrees of freedom that describe small scale variations — in real space, short range
fluctuations, or in fourier space, modes with larger wave vectors — and determining how the
small scale properties lead to couplings between the degrees of freedom in a larger scale. We
have already seen results that have the flavor of an RG analysis when we discussed localization:
the scaling function β(G) tells how conductance on one length scale relates to conductance on
a larger length scale. This scaling behavior allowed us to understand why in three dimensions
some systems behave as metals while others behave as insulators; such an identification of
macroscopic phases is one common outcome of an RG analysis as we will see in the following.

The method is easiest to illustrate in real space, and particularly easy if there is only one
spatial dimension. Real applications of the technique are usually carried out in momentum
space, so for the purposes of this course we start with position space renormalization group,
move then on to a more general discussion of the method, and conclude with a momentum
space application.

Decimation

We will start our study of the renormalization group technique by considering a special case,
decimation, which can often be carried out exactly for one-dimensional models. In higher
dimensions exact decimation is usually not possible and some approximations are needed.

Let us consider the infinite one-dimensional Ising model

H = −J
∞∑

i=−∞
sisi+1 − h

∞∑

i=−∞
si (4.1)

87
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where si = ±1 are dimensionless spin variables on lattice sites i and J and h are parameters
that describe the interactions between adjacent spins and the effect of external magnetic field,
respectively. Both J and h have units of energy. The partition function is given by

Z(T, h) =
∑

{si}∞i=−∞

exp

[
K

∞∑

i=−∞
sisi+1 + βh

∞∑

i=−∞
si

]
(4.2)

where K = βJ . This would be easy to evaluate if the different spins were not coupled —
in that case we could do sum over each spin independently — but the term sisi+1 couples
two neighboring spins, which makes the evaluation of Z more complicated. However, we can
divide all spins into two subsets in such a way that spins in one subset interact only with
spins in the other subset1: the neighbors of an even site are odd, and the neighbors of an odd
site are even. To take advantage of this separation into mutually non-interacting lattices we
write the partition function as

Z(T, h) =
∑

{s2n−1}∞n=−∞

∑

{s2l}∞l=−∞

exp

[
K

∞∑

k=−∞
(s2k−1s2k + s2ks2k+1) + βh

∞∑

k=−∞
s2k + βh

∞∑

k=−∞
s2k+1

]
,

(4.3)
where we separated the contributions from even and odd sites. Let us now consider the sum
over the spin at a particular even site 2l. There are only three terms in the exponent that
depend on s2l, so the sum over s2l gives

∑

s2l=±1

exp [Ks2l(s2l−1 + s2l+1) + βhs2l] = 2 cosh [K(s2l−1 + s2l+1) + βh] .

We can do the same for all other even terms, and find that the partition function can be
written as

Z(T, h) =
∑

{s2n−1}∞n=−∞

∞∏

n=−∞
2 cosh [K(s2n−1 + s2n+1) + βh] e

1
2
βh(s2n−1+s2n+1), (4.4)

where I wrote the last term in a symmetric way for convenience.

Now we have expressed the partition function of the original system as a sum of only half
of the degrees of freedom — only the odd spins. We can imagine that the partition function
(4.4) could arise as a partition function for a system consisting of only the odd spins, but
since it is not in the usual form Tre−βH

′
, it is not immediately clear what Hamiltonian H ′ of

the odd-spin-system would result in the partition function (4.4). Let us proceed by making
the Ansatz that the Hamiltonian H ′ is also of the Ising type, i.e.

H ′ = −J ′
∞∑

n=−∞
s2n−1s2n+1 −

∞∑

n=−∞
(h′s2n−1 + g′). (4.5)

1Lattices for which such a division is possible are called bipartite, and they are frequently much simpler to
deal with than more general lattices. The difference is particularly important in the case of an antiferromagnet:
a bipartite lattice has a vanishing entropy as T → 0 but a non-bipartite lattice has a large number of degenerate
ground states and therefore does not obey the third law of thermodynamics, i.e. the entropy does not vanish
as temperature goes to zero.
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s2l−1 s2l+1 LHS RHS

1 1 2eβh cosh[βh+ 2K] eK
′+βh′+βg′

-1 1 2 cosh[βh] e−K
′+βg′

1 -1 2 cosh[βh] e−K
′+βg′

-1 -1 2e−βh cosh[βh− 2K] eK
′−βh′+βg′

Table 4.1: Decimation equations (4.7). LHS = “left hand side”, RHS = “right hand side”.

Here J ′ describes the interaction between the odd spins, h′ describes their coupling to the
external magnetic field, and g′ is included to allow for a shift in the zero of energy. The
parameter g′ does not affect the behavior of the model.

It is by no means clear that this Ansatz is correct, that is, that we can find constants J ′,
h′, and g′ so that the Hamiltonian H ′ gives rise to the partition function (4.4). To proceed
we write down the partition function for the Hamiltonian H ′,

Z ′(T, h′) =
∑

{s2n−1}∞n=−∞

exp

[
K ′

∞∑

n=−∞
s2n−1s2n+1 + β

∞∑

n=−∞
(
1

2
h′(s2n−1 + s2n+1) + g′)

]
.

(4.6)
We isolate the terms in (4.4) and in Z ′ that depend on spins s2l−1 and s2l+1, and set them
equal to each other — that is necessary if the partition functions are to agree. That gives the
equations

2 cosh [K(s2l−1 + s2l+1) + βh] e
1
2
βh(s2l−1+s2l+1)

= exp
[
K ′s2l−1s2l−1 + 1

2βh
′(s2l−1 + s2l+1) + βg′

] (4.7)

where s2l−1 = ±1 and s2l+1 = ±1. Thus, we have four equations and only three unknowns
K ′, h′ and g′, and the correctness of our Ansatz appears to be in doubt. It is convenient to
write out all the equations, which I have done in Table 4.1. We see that the second and third
equations collapse into one, so that there are only three independent equations and therefore
we may expect to find a solution. Dividing the first equation by the fourth yields

h′ = h+
1

2β
log

[
cosh[2K + βh]

cosh[−2K + βh]

]
; (4.8)

dividing the product of the first and fourth equations by the product of the second and third
equations gives

K ′ =
1

4
log

[
cosh[2K + βh] cosh[−2K + βh]

cosh2[βh]

]
. (4.9)

A few remarks are now in order. We have obtained the result that if we perform a partial
sum over half of the degrees of freedom, i.e. the even spins, the resulting partition function
describes an Ising-type interaction between the remaining degrees of freedom. The form of the
Hamiltonian is exactly the same as before but the coupling constant has changed, K → K ′

as has the effective magnetic field, h → h′. Nothing prevents us from doing another partial
sum over half of the remaining degrees of freedom (say, sites 4l+1). If we were to do that, we
would find that the partition function after the partial summation would describe an Ising-
interaction between the remaining degrees of freedom (s4l+3). The coupling constant of the



90 CHAPTER 4. TOOLBOX

resulting model is K ′′ and the effective magnetic field is h′′, which describe the behavior of the
model at a length scale that is four times the original length scale (the separation between the
remaining degrees of freedom has increased by a factor of four). Thus, we can coarse-grain
the original Ising chain by successively removing every second spin, and the result at each
stage is another Ising model with a new coupling constant K (n) and a new effective magnetic
field h(n). The equations (4.8) and (4.9) that describe how the parameters of the Hamiltonian
change when we remove some degrees of freedom are called renormalization group equations.

Let us analyze the renormalization group equations a little more carefully. First of all,
we notice that if the original magnetic field h vanishes, so does the renormalized field h ′: no
magnetic field is spontaneously generated in the rescaling process. This has to be the case
since a zero magnetic field implies that there is no preferred direction for the spins (either up
or down); if there is no preferred direction in the small length scale description, there cannot
be one in the large length scale description either. Secondly, if the external magnetic field
vanishes, we have K ′ = 1

2 log cosh[2K]. If K ′ < K, the interaction between the coarse-grained
spins is weaker than between the adjacent spins. This means that if two spins are very far
apart, interaction between them is very weak, and their directions are not correlated. If
on the other hand K ′ > K, the interactions between coarse-grained spins is stronger than
between adjacent spins and their directions are strongly correlated. In the intermediate case
K ′ = K the interaction strength does not depend on the separation between spins. The
equation K ′ = 1

2 log cosh[2K] = K has two solutions, K = 0 and K = ∞ which correspond to
the intermediate case when the effective coupling is independent of the distance between the
spins. Since K = βJ , this implies that the interaction strength is scale independent if T = 0
or T = ∞. In the first case interactions are strong, and the system is ordered, whereas in the
second (infinite temperature) case interactions are very weak and the system is disordered.
In this particular model we have K ′ < K for all 0 < K < ∞, so unless the temperature is
exactly zero, the interactions get weaker with coarse-graining and the system is disordered
at sufficiently large length scales. Hence, the one-dimensional Ising model is disordered at all
non-zero temperatures, meaning that the knowledge of spin orientation at one point does not
allow one to determing the spin orientation far away from the initial point.2 This result was
first obtained by Ernst Ising in his doctoral thesis in 1920.

It is useful to describe the renormalization group equations graphically as I have done in
Fig. 4.1. The starting points of the arrows indicate the original parameters (K,h), and the end
points indicate the renormalized parameters (K ′, h′) after one decimation procedure, i.e. on a
length scale that is twice the original length scale. We see that upon successive decimations,
the parameters flow towards one of four different points, depending on the original parameters
(K,h): if h > 0, the flow is towards (K∗ = 0, h∗ = +∞), if h < 0 the parameters flow towards
(K∗ = 0, h∗ = −∞), and if h = 0, they flow towards (K∗ = 0, h∗ = 0) unless K = ∞ in which
case the parameters remain (K = ∞, h∗ = 0). The flow diagram tells us that even a small
magnetic field changes the system’s large scale behavior qualitatively — the magnetic field
becomes more and more important upon successive decimations as the remaining degrees of
freedom represent more and more spins — and therefore the magnetic field is called a relevant
variable. We can imagine that some other perturbations get weaker at longer length scales, in
which case they are called irrelevant. The concepts of renormalization group flow and relevant
and irrelevant variables will be discussed in more detail in later sections.

2Technically, the correlation function 〈sisj〉 decays exponentially as e−|i−j|a/ξ where a is the lattice constant
and ξ the correlation length.
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Kh

Figure 4.1: Renormalization group flows for the one-dimensional Ising chain under decimation.

General properties of a renormalization group

Let us consider a Hamiltonian H({sj}) which describes a system of spins {sj} on a d-
dimensional lattice with lattice constant a. The Hamiltonian has some parameters like the
external magnetic field, the coupling constant etc., which we will call {Kn} — thus, we can
have for instance

H = −βH = −β(−J
∑

〈i,j〉
sisj − h

∑

i

si) = K1

∑

〈i,j〉
sisj +K2

∑

i

si, (4.10)

where we multiplied by −β for convenience. The space {Kn} is called the parameter space of
the Hamiltonian. The parameters ~K = {Kn} determine all the properties of the system. In
particular, they determine the probability that the spins {si} assume particular values {σj}
— this is given by P ({sj = σj}) = 1

Z exp[−βH({σj})]. They also determine the correlation

length ξ = af( ~K) where f( ~K) is some function of the parameters. Note that the correlation
length is proportional to the lattice spacing a.

An RG transformation of the Hamiltonian consists of several steps. First we form block
spins, in the way that was introduced by Kadanoff, by grouping Λd spins together to cre-

ate block spins {s(b)
j }. Block spins are effective, macroscopic degrees of freedom that de-

scribe the blocks. They are chosen to be same type of objects as the microscopic degrees
of freedom (spins si = ±1 on the microscopic lattice), and their values are defined by the
microscopic degrees of freedom within the blocks they represent; typically in position space
renormalization the block spin values are determined by a majority rule. The distance be-
tween adjacent block spins is Λ times larger than the distance between the original spins so
that the new lattice constant is a′ = Λa. Since the block spins are functions of the origi-
nal spins, the probability distribution of the block spins must be related to the probability
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distribution of the original spins. Writing the probability distribution for the block spins as

P ({s(b)j = σ′j}) = 1
Z′ exp[−βH ′({σ′j})] we can define the block spin Hamiltonian H ′({s(b)j }).

We assert that the block spin Hamiltonian H ′ is of the same form as the original Hamiltonian
H, and only the parameters {Kn} may change.3 The parameters ~K ′ = {K ′

n} of the block spin
Hamiltonian are connected to the original parameters ~K = {Kn} through a transformation
RΛ,

~K ′ = RΛ
~K. (4.12)

The transformation RΛ is called a renormalization group transformation. Note that RΛ is a
mapping from one vector in the parameter space to another — if RΛ were a linear mapping it
would be a matrix, but in general it is nonlinear; equation (4.12) is nothing but a shorthand
notation forK ′

j = Fj(Λ;K1,K2, . . . ,Kn). It is usually not possible to find RΛ exactly, instead,
we will have to resort to various approximate techniques some of which we will study in the
subsequent sections. Furthermore, there is no unique way to rescale a particular problem so
the transformations RΛ are not uniquely determined by the microscopic Hamiltonian.

Equation (4.12) tells how the parameters describing the system depend on the length
scale that we are considering. Each RG transformation corresponds to an additional level of
coarse graining through the construction of block spins. The new, coarse-grained description
ignores some short scale structure of the original microscopic description, but preserves the
long wavelength properties of the model. If we successively increase the scale by a factor Λ,
the parameters {Kn} move along some trajectories in the parameter space. This motion is
called the renormalization group flow.

If we perform two scale transformations RΛ1 and RΛ2 in succession, their combined effect
is to change the scale by the factor Λ = Λ1Λ2; thus, the transformations RΛ form a semigroup
satisfying

RΛ1Λ2 = RΛ1RΛ2 . (4.13)

However, in general there is no way to reconstruct the small scale Hamiltonian if we know
the system’s large scale behavior and therefore the inverse transformation (RΛ)−1 does not
exist — consequently, the operations RΛ do not form a group and the term renormalization
group is something of a misnomer.

Fixed points and renormalization group flow. There are usually a number of points
in the parameter space that satisfy RΛ

~K∗ = ~K∗, i.e. points that are invariant under the
renormalization group transformation RΛ. These fixed points are particularly important: for
instance, in the localization analysis in the beginning of the course, the fixed point β(Gc) = 0
could be identified as the point separating metallic and insulating behavior. To see the
importance of fixed points, recall that the correlation length is given by ξ = af( ~K) where
a is the lattice constant and f( ~K) is some function of the parameters {Kn}. Since the
correlation function is a measurable quantity, it cannot depend on whether we describe the

system in terms of the microscopic spins {si} or block spins {s(b)
j }. When we perform the RG

transformation that takes us over from the microscopic description H to the coarse-grained

3This is actually no restriction since the original Hamiltonian can include all kinds of terms, for instance
we could write

H = K1

X

〈i,j〉

sisj + K2

X

i

si + K3

X

i,j n.n.n

sisj + K4

X

〈i,j,k,l〉

sisjsksl (4.11)

where the last two terms run over pairs of next-nearest neighbors and and groups of four neighboring spins,
respectively. If the last two terms are not present on the microscopic level we just set K3 = K4 = 0.
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description H′, the parameters change from ~K to RΛ
~K, and the lattice constant changes from

a to Λa. Thus, we have the result

ξ = af( ~K) = Λaf(RΛ
~K). (4.14)

Now, if ~K is a fixed point ~K∗ then RΛ
~K∗ = ~K∗ and we have ξ∗ = af( ~K∗) = Λaf( ~K∗). This

equation has only two solutions: either ξ∗ = 0, or ξ∗ = ∞. The first case corresponds to
a completely uncorrelated phase whereas the second case is a critical point: the correlation
length is divergent. Thus, all points ~K∗ in the parameter space that are invariant under RG
transformations correspond either to an uncorrelated phase, or to a critical point. The former
are called trivial fixed points and the latter are called critical fixed points.

Each critical fixed point has its basin of attraction which consists of those points in the pa-
rameter space that flow towards the fixed point, that is, of points ~K such that limΛ→∞RΛ

~K =
~K∗.4 This basin of attraction is called the critical manifold. Let us consider a point ~K on the
critical manifold, and perform successive RG transformations RΛ so that ~K(n) = (RΛ)n ~K.
Since ξ is independent of n we have ξ = af( ~K) = Λaf( ~K(1)) = . . . = Λnaf( ~K(n)) = . . ..
Since Λ > 1 and f( ~K∗) = ∞ the right hand side diverges as n → ∞, and therefore ξ = ∞.
Thus, the correlation length is divergent for all parameter values ~K that lie in the basin of
attraction of a critical fixed point, which justifies the term critical manifold.

Thus, we have determined that the RG analysis allows us, by determining the fixed points
of the RG transformation, to determine the critical points and critical manifolds. We are often
interested not only in the fixed points that descrbe the different macroscopic behaviors of the
system but also how the properties of actual systems approach the fixed points as the system
size is increased. This is described by the so-called critical, or scaling exponents. The fixed
point and scaling exponents are the main outcomes of an RG analysis. At the fixed points
the system possesses a new type of symmetry — scale invariance — that is exact at the fixed
point, but near a fixed point it is only approximate. We knew from experience that symmetries
often lead to simplifications in physical problems 5. In the example of quantum mechanics,
identifying rotational symmetry allows us to organize and understand atomic spectra in great
detail. So far RG falls short of such great expectations. This suggests that we have not yet
fully utilized the potential of the symmetry in the present problem. In particular, we have
not found any “quantum numbers”. Recalling that angular momentum quantum numbers
appear in quantum mechanics as eigenvalues of rotation operators suggests that if we wish
to find some counterpart of quantum numbers in the present problem, we should analyze the
eigenvalue problem for the symmetry operations.

Since the symmetry in the present case is only approximate, and valid only near criticality
when the correlation length is large, we proceed by analyzing the RG equation near the fixed
points. Writing ~K = ~K∗ + δ ~K and applying the transformation RΛ we get

~K ′ = ~K∗ + δ ~K ′ = RΛ( ~K∗ + δ ~K) ≈ ~K∗ +

(
∂RΛ

∂ ~K

)

~K∗

δ ~K (4.15)

4Sometimes the basin of attraction of a fixed point only contains the point itself, which is then known as a
repulsive fixed point.

5Scale invariance implies that the equations describing critical phenomena are invariant under global scale
transformations (stretching). It is believed nowadays that the invariance extends to local scale transformations
as well (spatially varying stretching). This more general conformal invariance leads to great simplifications in
particular for two-dimensional models.
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where we linearized the RG transformation near the fixed point. In component notation we
now have linearized RG equations

δK ′
m =

∑

n

(
∂K ′

m

∂Kn

)

K∗

δKn (4.16)

and we can define the corresponding eigenvalue problem. However, since we do not know

anything about the matrix M̂Λ
mn =

(
∂K′

m
∂Kn

)
K∗

(except that it is real), it is not clear that the

matrix is diagonalizable or that its eigenvalues are real.

For simplicity we assume that the matrix is diagonalizable. We can then write down the
eigenvalue problem ∑

n

M̂Λ
mne

n
σ = λΛ,σe

m
σ (4.17)

where enσ is the nth component of the σth eigenvector and λΛ,σ is the corresponding eigenvalue.
Since two successive RG transformations are equivalent to one RG transformation with a
larger rescaling factor, RΛ1RΛ2 = RΛ1Λ2 , the matrices M̂ satisfy M̂Λ1M̂Λ2 = M̂Λ1Λ2 and
therefore

λΛ1,σλΛ2,σ = λΛ1Λ2,σ. (4.18)

This implies λΛ,σ = Λyσ where yσ is a number that depends on σ but not on Λ. The usefulness

of the eigenvalue analysis becomes apparent if we write in (4.16) δ ~K =
∑

σ aσ~eσ so that

δ ~K ′ =
∑

σ aσλΛ,σ~eσ. We see now that if |λΛ,σ| < 1 and aσ 6= 0 the renormalized parameters
K ′ are closer to the fixed point that the original parameters. Therefore the critical manifold
is spanned by those eigenvectors whose eigenvalue has a modulus less than one.

We can now be more specific about the definition of relevant, irrelevant, and marginal
directions in the parameter space. The direction ~eσ is called

• relevant, if |λΛ,σ| > 1 or yσ > 0

• irrelevant, if |λΛ,σ| < 1 or yσ < 0

• marginal, if |λΛ,σ| = 1 or yσ = 0

Thus, the critical manifold is spanned by the directions that are irrelevant near the critical
fixed point (hence the terminology: it does not matter if the system is displaced from a
critical point to an irrelevant direction, upon RG transformations it will flow towards the
critical point and reach it in the infinitely large scale limit). Relevant directions, in contrast,
are directions that take the system away from the critical fixed point. Marginal directions
require more careful analysis and often lead to logarithmic corrections in various quantities.

Position-Space Renormalization

In the previous discussion of the renormalization group there was one crucial step that we
did not address in any detail: once we have H = −βH, how do we get H ′ = −βH ′? If we can
obtain H′, it is (at least in principle) straightforward to find the fixed points, identify stable
phases, linearize the transformations near critical fixed points, and obtain critical exponents.
In this section we will discuss one approximate scheme to obtain the renormalized Hamiltonian
for a set of lattice models. The method is called position-space renormalization. It is best
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Figure 4.2: Triangular lattice and the block spin construction. The blocks j, j ′, j′′, and j′′′

have been named and interactions between them are indicated by solid lines.

illustrated with an example, and the easiest example to deal with is once again the Ising model.
This time we will study the model in two dimensions on a triangular lattice; the advantage
of concentrating on this model is that it was solved exactly by the Norwegian physicist Lars
Onsager in 1944, which allows us to determine the accuracy of the approximations we will
make.

The triangular lattice is shown in Figure 4.2. We start by constructing block spins s
(b)
j

from three spins sj1, sj2 and sj3 that lie in the corners of a triangle j. The natural way to
assign a value to the block spin is to use majority rule: if the majority of the spins sj1, sj2

and sj3 are +1, the block spin s
(b)
j = +1, otherwise s

(b)
j = −1. The majority rule can be

generalized to all position-space renormalization problems, although if the number of spins in
the block is even we must come up with a special rule for the case when equally many spins
in the block are +1 and −1. Note that the block spins also form a triangular lattice but the
lattice constant has increased from a to

√
3a, hence, the RG parameter is Λ =

√
3 in this

case.
The second step is to rewrite the original Hamiltonian

H = −βH = K
∑

〈ij〉
sisj + βh

∑

i

si (4.19)

as a sum of two terms H0 + H1 so that the term H0 does not couple different blocks. This
gives

H0 =
∑

j

[K(sj1sj2 + sj2sj3 + sj3sj1) + βh(sj1 + sj2 + sj3)] (4.20)

H1 =
∑

j

K(sj1sj′2 + sj1sj′3 + sj1sj′′2 + sj3sj′′2 + sj3sj′′′1 + sj3sj′′′2) (4.21)
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where j′ is the block right above block j and j ′′ is the block that is slightly above and to
the right of block j, see Fig. 4.2. Since j runs over all blocks, including the interactions
between the block j and its neighbors to the left or below would result in double counting
in the expression for H1. The probability for a particular block spin configuration is given
by the sum of the probabilities of those microscopic spin configurations that give rise to the
right block spins. The coarse-grained Hamiltonian is thus given by

eH
′({s(b)j }) =

∑

{si}

′eH0({si})+H1({si}) (4.22)

where the sum runs over configurations {si} such that s
(b)
j = sign(sj1 +sj2+sj3) for all blocks

j.
The difficulty in evaluating this expression comes from the term eH1({si}) which couples

neighboring blocks. We will treat the difficult term perturbatively. To do that, we first define
the average of the observable A with respect to H0 as

〈A({s(b)j })〉0 =

∑′
{si} e

H0({si})A({si})
∑′

{si} e
H0({si})

. (4.23)

The average is a function of the block spins {s(b)
j } because the sums are restricted to corre-

spond to a particular block spin configuration. With this definition the equation for H ′ can
be written as

eH
′({s(b)j }) =

∑

{si}

′eH0({si})〈eH1({s(b)j })〉0. (4.24)

The first factor in this expression is easy to evaluate since it contains terms only within
one block. Therefore,

eH0({si}) =
∏

j

e[K(sj1sj2+sj2sj3+sj3sj1)+βh(sj1+sj2+sj3)] (4.25)

and

Z0({s(b)j }) =
∑

{si}

′eH0({si}) =

∏

j

∑

sj1 = ±1
sj2 = ±1
sj3 = ±1

δ[sign(sj1 + sj2 + sj3), s
(b)
j ]e[K(sj1sj2+sj2sj3+sj3sj1)+βh(sj1+sj2+sj3)] (4.26)

where δ(i, j) is the Kronecker delta. Here Z0({s(b)j }) =
∏
j z0(s

(b)
j ) is defined as an analog

to the partition function. The sum is easiest to evaluate if we tabulate all the possible

combinations of sj1, sj2 and sj3 and the corresponding s
(b)
j . This is done in Table 4.2. From

the table we can read

z0(s
(b)
j ) = exp[3K + 3s

(b)
j βh] + 3 exp[−K + s

(b)
j βh]. (4.27)

For simplicity we will now concentrate on the case of no external magnetic field so that

z0(s
(b)
j ) = exp[3K] + 3 exp[−K] is independent of s

(b)
j and Z0 = [exp(3K) + 3 exp(−K)]N/3

where N/3 is the number of blocks (N is the number of spins).
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sj1 sj2 sj3 s
(b)
j exp[H0]

+1 +1 +1 +1 exp(3K + 3βh)
+1 +1 -1 +1 exp(−K + βh)
+1 -1 +1 +1 exp(−K + βh)
-1 +1 +1 +1 exp(−K + βh)

+1 -1 -1 -1 exp(−K − βh)
-1 +1 -1 -1 exp(−K − βh)
-1 -1 +1 -1 exp(−K − βh)
-1 -1 -1 -1 exp(3K − 3βh)

Table 4.2: Evaluation of z0(s
(b)
j ).

It remains to evaluate the average 〈eH1〉0. We do that using the cumulant expansion: we
have

〈eH1〉0 = 1 + 〈H1〉0 + 1
2〈H2

1〉0 + . . .
= exp

[
〈H1〉0 + 1

2

(
〈H2

1〉0 − 〈H1〉20
)

+ . . .
]
.

(4.28)

The last line is called a cumulant expansion, and the first term in the exponent is called
the first cumulant, the second one is the second cumulant etc.. The cumulant expansion is
frequently much more accurate than the simple Taylor expansion. We will be satisfied with
the first order cumulant expansion so we only need to evaluate 〈H1〉0. The only operators that
appear in H1 are products of two spins, and therefore we must evaluate terms like 〈sj1sj′2〉0.
Since the average is performed relative to H0 which does not couple different blocks, we have
simply 〈sj1sj′2〉0 = 〈sj1〉0〈sj′2〉0. The averages 〈sj1〉0 can be read from Table 4.2, which gives
(for h = 0)

〈sj1〉0 =
1

z0
s
(b)
j [1 × exp(3K) + (1 + 1 − 1) × exp(−K)] = s

(b)
j

e3K + e−K

e3K + 3e−K
. (4.29)

The averages of sj2 and sj3 are obtained similarly. Inserting this into the expression for H1

gives

〈H1({s(b)j })〉0 = 2K
∑

〈j,j′〉
s
(b)
j s

(b)
j′

(
e3K + e−K

e3K + 3e−K

)2

. (4.30)

Here the factor two arises since in our expression for H1 there are six products of two spins
which describe the interactions between the block j and its nearest neighbors. Thus, each
pair of nearest neighbors is coupled by two interaction lines. Hence, we have

eH
′
= [e3K + 3e−K ]N/3e

2K
P

〈j,j′〉 s
(b)
j s

(b)

j′

“

e3K+e−K

e3K+3e−K

”2

. (4.31)

Taking the logarithms gives

H′ =
N

3
log[e3K + 3e−K ] + 2K

(
e3K + e−K

e3K + 3e−K

)2 ∑

〈j,j′〉
s
(b)
j s

(b)
j′ . (4.32)

The first term is an additive constant which we are not interested in, and the second term
looks like an Ising coupling between the block spins. This is exactly what we hoped to get,
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and now we just read off the renormalized coupling constant

K ′ = 2K

(
e3K + e−K

e3K + 3e−K

)2

(4.33)

which is our RG equation.
The fixed point K∗ is given by

1√
2

=
e3K

∗
+ e−K

∗

e3K∗ + 3e−K∗ (4.34)

which gives e4K
∗

= 2
√

2 + 1 or K∗ = 1
4 log[2

√
2 + 1] ≈ 0.336 or Tc ≈ 2.98J/kB . The exact

result is Kc = 1
4 log[3] ≈ 0.275 so we are off by about 20%. To calculate the critical exponents

we must differentiate the expression (4.33) with respect to K. This is most conveniently done
with Mathematica or some other symbolic manipulation software, which gives

dK ′

dK
= 2

(1 + e4K)(3 + 4e4K + e8K + 16e4KK)

(3 + e4K)3
(4.35)

which yields at K = K∗

λt =
dK ′

dK
= 2(1 +

√
2)

4 + 3
√

2 + log(1 + 2
√

2)

(2 +
√

2)3
≈ 1.62352. (4.36)

Recalling Λ =
√

3 and λt = Λyt gives yt ≈ 0.882203; the exact result is yt = 1 so that the
exponent is off by 12%.

An obvious way to improve the analysis is to include the next term in the cumulant ex-
pansion. That, however, gets rather complicated since the second order cumulant introduces
interactions between next-nearest neighbor blocks and third-nearest neighbor blocks. The
analysis can nevertheless be carried through and the result is Kc ≈ 0.2575 and yt ≈ 1.042,
which is a significant improvement over the first order result. However, conceptually the pos-
sibility of improving the calculation systematically is a major improvement over the previous
theories: we now have a tool, position space renormalization, that allows us to analyze large
scale manifestations of small scale interactions. On the level that we have discussed the tool is
still rather rough and actual calculations can get rather involved. Most practical applications
of the renormalization group method are carried out in wavevector space rather than in po-
sition space, but the general idea is the same: careful elimination of those degrees of freedom
that correspond to small scale structure (i.e. short length scales or large wavevectors).

Home problem 2: Position-space renormalization: 2D Ising model —
Consider an Ising model on a two-dimensional square lattice (zero
external magnetic field). Form block spins by grouping together four
spins of the original lattice — this will lead to a difficulty in treat-
ing the case when two of the original spins are up and two down
(the majority voting rule ends up in a tie). Distribute the Boltz-
mann weights of these contributions equally among the s(b) = +1
and s(b) = −1 cases (i.e. put a factor of 1

2 in front of the Boltzmann
weights of the tied configurations and include them in both block spin
states). Apply the position-space renormalization group techniques
to determine the critical temperature and the critical exponents α
and ν. Compare the PSRG results with the exact ones.
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4.1.2 Momentum space renormalization group

HJ

4.2 Approximate analytic techniques

4.2.1 Mean field theory

HJ

4.2.2 Dynamic mean field theory

HJ

4.3 Exact analytic techniques

4.3.1 Bethe Ansatz

HJ

4.3.2 Bosonization

HJ

4.4 Numerical techniques

4.4.1 Density functional theory

In materials science, and increasingly in chemistry, one of the most successful computational
strategies in describing systems comprising a large number of interacting particles is known
as density functional theory, DFT. The origins of DFT are quite old, in the 1920s, but it was
developed into a complete tool by Walter Kohn and co-workers only in the 1960s.

The basic starting point of density functional theory is the discovery by Kohn and Pierre
Hohenberg that the ground state energy of an interacting many-particle system is in a 1-to-1
correspondence with the density of the system. Hence, if we somehow manage to find out the
bijection n(r) ↔ E0, and can determine the ground state density, we can obtain the ground
state energy.

Some parts of the ground state energy can be easily related to the density — for instance
an external potential Vext(r) results in the energy contribution

∫
d3r Vext(r)n(r) — while for

others the connection is more complicated. Kohn, together with Lu Sham, devised a scheme
that works out quite well. The idea is that the ground state energy is written as

E0 = T0[n] +

∫
d3r Vext(r)n(r) +

1

2

∫ ∫
d3rd3r′ n(r)U(r − r′)n(r′) +Exc[n]

where the first term is the kinetic energy of a non-interacting system with density n(r), the
second term is the energy associated with the external potential, the third term is the classical
(Hartree, or direct) interaction energy arising from an interaction potential U(r), and the final
term is whatever is needed to make the equation valid. Obviously, all problems have been
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placed in evaluating the final term, known as the exchange-correlation energy. The usefulness
of this approach arises from the fact the last term is usually quite small. Let us postpone the
discussion of the exchange-correlation energy for a little while and consider the other terms
first.

Another term that leads to difficulties is the kinetic energy which is not readily expressible
in terms of the density. To address this problem, Kohn and Sham wrote the density in the
form n(r) =

∑
α |ψα(r)|2 using single-particle wave functions ψα(r). By requiring that the

energy is at its minimum, one can derive a set of (Euler-Lagrange) equations for the wave
functions ψα, which typically assume the form

− ~
2

2m
ψα(r) + Vext(r)ψα(r) +

∫
d3r′U(r− r′)n(r′)ψα(r) +

δExc
δn(r)

ψα(r) = εαψα(r) (4.37)

which resembles the Schrödinger equation for a single particle. Here εα is technically a
Lagrange multiplier and, technically, ψα(r) is just a calculational tool to construct a density.
In practice, however, one often regards both εα and ψα as physical quantities — the energy and
wave function of a meaningful single-particle state. In an interacting many-particle system
this interpretation cannot be justified, but experience has shown that it has more value than
can be rigorously proven.6

Now the many-particle problem has been reduced to a set of single-particle equations
for the functions ψα(r). However, since the left hand side of the Kohn-Sham equation 4.37
depends on the density n(r) which depends on the functions ψα, the equations must be solved
iteratively, and at each cycle the density n(r) must be constructed from the functions ψα(r)
whose Lagrange multipliers εα are lowest. For spinless fermions, the number of functions used
equals the number of particles, while for fermions with spin, the number of functions used
equals [(N − 1)/2] + 1 with [N/2] functions with smallest εα contributing to the density by
2|ψα(r)|2.

There are many numerical implementations of how to solve the Kohn-Sham equations,
and we shall not discuss them here; several of the implementations have been commercialized.
Typically, the solution time of a set of Kohn-Sham equations increases as N p with p ≈ 2 − 3
but there is some hope to improve the scaling to p = 1 by exploiting the fact that, typically,
the particles are near-sighted: their interactions with particles far away can be described
in an average fashion, and only the nearby particles are treated by pairwise interactions.
Presently, the number of electrons that can be reasonably described using DFT ranges from
a few hundred on a PC to a few thousand on a more powerful computer.

The Achilles’ heel of DFT is the fact that we do not know how the exchange-correlation
energy depends on the density. There are many approaches to determine this dependence. His-
torically the first was the Thomas-Fermi approximation, which is based on treating a uniform
electron system in the Hartree-Fock approximation: this results, in three dimensions, in an

exchange (Fock) contribution to the total energy that can be written as −V 3
4

(
3
π

)1/3 e2

4πε0
n4/3.

Assuming that the exchange-correlation energy of a non-uniform electron system can be writ-
ten as an integral over space with an integrand that only depends on the local density results
in the approximation

Exc = −
∫
d3r

3

4

(
3

π

)1/3 e2

4πε0
n(r)4/3.

6It turns out that the Lagrange multiplier for the highest occupied level can be rigorously interpreted as
an ionization energy (Koopman’s theorem).
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This is quite a rough approximation since it only includes exchange, and assumes that the
local density is the only relevant degree of freedom. The first aspect can be resolved by
doing higher order perturbation theory on the uniform electron system — typically, in a
more accurate formulation, one sums certain perturbative contributions to infinite order in
the perturbation theory (e.g. random phase approximation), and thereby obtains a more
accurate description of a uniform system. This local density approximation, LDA, form of the
exchange-correlation energy is usually written as

ELDAxc =

∫
d3rn(r)εLDAxc (r)

where εLDAxc (r) is the exchange-correlation energy of an electron in a uniform electron gas with

density n(r); in the Kohn-Sham equations this results in a potential term vLDAxc = δELDA
xc

δn(r) =
∂n(r)ε(r)
∂n(r) . Extending the discussion to non-uniform charge densities is harder, and the first

attempts in this direction actually gave results that were inferior to those obtained in the local
density approximation. The reason of the failure of these so-called gradient corrections was
identified as having to do with certain exact constraints being violated — simple gradient
corrections describe a system that is fundamentally non-physical — and improved scheme
known generalized gradient approximation (GGA) were introduced. The GGA has proven
quite successful.

Apart from perturbative methods, one can find approximations for the exchange-correlation
energy by using other numerical techniques in connection with analytic constraints. The
analytic constraints typically require specific limits (form at low or high density, positive
compressibility or pressure etc.), and the numerical methods are usually some techniques
that allow high accuracy for small systems such as exact diagonalization or Quantum Monte
Carlo. Even available experimental results may be used to constrain the form for the exchange-
correlation energy.

The density functional theory was developed for the purposes of materials science where
it has been used successfully to obtain electronic structures of large varieties of materials and
individual molecules. It forms, together with psudopotential methods that describe the most
energetic (valence) electrons of an atom, the backbone of computational materials science.
The technique has also been used to discuss the properties of interacting electron systems
such as quantum dots where it has revealed intricate correlated states.

A limitation of DFT is that in its original form it only addresses the ground state prop-
erties, and in most systems in condensed matter, the ground state is inert and completely
uninteresting. The interesting physics is associated with the excitations above the ground
state: they determine the system’s dynamics and response to external stimuli. Also, in its
original form DFT has difficulty dealing with systems with large degeneracy such as the quan-
tum Hall effect, or systems where spin plays a crucial role, or where time dependence is of
fundamental importance (e.g. most non-equilibrium systems), or many other cases.

However, DFT has been extended to cover many of these applications: in the presence of
magnetic field one has to use current density functional theory (CDFT) with Exc[n, j]; in the
case of spin, spin-DFT (SDFT, Exc[n↑, n↓]) is used; to describe dynamics time-dependent DFT
is used (TDDFT, Exc[n] used with a time-dependent Kohn-Sham equations); if degeneracy is
important, one can use ensemble DFT etc. — in the worst case, you may need time-dependent
ensemble spin current DFT, or its extension to transport in non-equilibrium problems. All
these extensions come at their cost in terms of complications and, sometimes, in terms of
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having to relax the rigor of the Kohn-Hohenberg theorem to some weaker form of assumed
truth. They also come with limitations: for instance, the time-dependent DFT runs out
of steam after a few femtoseconds, which makes it purely suited for most applications that
involve macroscopic timescales. Lately much effort has been invested in combining the power
of DFT with description of transport in different systems, and while it is generally believed
that this is a reasonable direction to aim at, there is no real consensus of the merit of the
implementations used thus far.

The extensions result even in practical difficulties in addition to the formal ones. In the
case of the spin-DFT, for instance, the dependence of the exchange-correlation energy on the
two spin densities cannot be deduced from the spin-polarized version Exc[n(r)]: the exchange
term acts only between electrons with the same spin, Ex[n↑, n↓] = Ex[n↑] + Ex[n↓] but the
correlation part does not separate in the same way. Typically one resolves this problem
by making the Ansatz that the exchange-correlation energy depends on the total density
n = n↑ + n↓ and the polarization ξ = (n↑ − n↓)/n and invokes the interpolation formula

εxc(n, ξ) = εpol
xc (n)+f(ξ)[εunpol

xc (n)−εpol
xc (n)] where εpol

xc and εunpol
xc ) are the exchange-correlation

energy densities for fully polarized and fully unpolarized systems, respectively, and f(ξ) is an
interpolation form that yields the correct polarization dependence for the dominant exchange
part. The exchange-correlation energy densities for ξ = 0 and ξ = 1 must be extracted using
any of the standard methods. This method has been applied quite successfully to, e.g., the
determination of ground state electron structures of semiconductor quantum dots. However,
from a fundamental point of view it is not as firmly established as the stadard DFT, and one
can actually construct cases when there is no one-to-one correspondence between the spin
densities and the ground state energy (K. Capelle and G. Vignale, Phys. Rev. Lett. 86,
5546 (2001)) thereby violating the fundamental assumption behind SDFT; fortunately, these
examples appear to be of little practical consequence.

For the case of the current-DFT the current density must be introduced as an extra
parameter; for systems with time reversal invariance the current density must vanish in the
ground state but in cases when the time reversal symmetry is broken by an external magnetic
field the ground state may well carry a current as we saw in the persistent current discussion.
In the same way as the density dependence of Exc results in an extra potential vLDAxc in the
Kohn-Sham equations, the current dependence results in an extra vector potential ALCDA

xc .
The current density dependence of Exc is restricted by gauge invariance, and it turns out that
the exchange-correlation energy can only depend on current densities through the vorticity
∇ × j(r)/n(r). While approximations for the exchange-correlation vector potential can be
derived in the same as those for the exchange-correlation potential, one usually employs a
mapping that allows ALCDAxc to be related to vLDAxc of a uniform system in a fictitious magnetic
field whose strength is related to the current density of the original system. The CDFT
method has also been applied to study the electronic structure of variety of nanoscale systems
in external magnetic fields, with results that are in good agreement with those obtained by
other methods. Yet, similar non-uniqueness concerns apply to CDFT as to SDFT.

Despite the complications and shortcomings listed above, even rudimentary applications of
DFT often yield surprisingly good results for interacting electron systems. As an example we
consider analysis of Coulomb blockade in a two-dimensional semiconducting quantum dot in
the presence of a perpendicular magnetic field. This system has been studied extensively both
experimentally and theoretically since the late 1980s. The experimental structure typically
comprises a two-dimensional electron system (e.g. at the interface between GaAs and AlGaAs)
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Figure 4.3: Electron densities for a parabolic quantum dot as predicted by the simplest
capacitive model (“cake model) and the simplest DFT model.

and some way to deplete the electron system except in a small region that forms the quantum
dot. The depletion can be described by an external potential which typically assumes a
parabolic form V (r) = 1

2mω
2
0r

2 where the potentials curvature ω0 depends on the design;
typical values are ~ω0 ≈ 1-2 meV. The system’s leading behavior is similar to what we saw
in our analysis of Coulomb blockade in metallic quantum dots: the conductance through the
dot is in general small, except at a series of gate voltage values at which two charge states
are degenerate, and conductance has a maximum. These conductance maxima are equally
spaced on the gate voltage axis, and the peak spacing is related to the gate capacitance by
∆Vg = e/Cg. This simple picture suggests that magnetic field plays no role — the capacitances
are simple geometric quantities, unaffected by a magnetic field.

Experimentally, however, it is seen that the positions of conductance peaks change with
B. The first explanation that was suggested for this behavior was based on the Hamiltonian

H =
∑

α

εαc
†
αcα +

Q2

2C

where the first term is the single particle energy of the states |α〉 obtained by solving the
Schrödinger equation for electrons in a strong magnetic field and subject to a parabolic
confining potential, and the second term is the interaction energy in the capacitance approx-
imation. Although the capacitance is independent of B, the single-particle energies depend
on the magnetic field, and consequently the gate voltage values at which charge degeneracy
occurs is B-dependent.7 The resulting electron distribution resembles a multi-layered wed-
ding cake: the states on different Landau levels and with different spins are occupied up to
some maximum angular momentum value, i.e. up to some radius, and within this disk they
have a nearly constant density corresponding to n1 = (2π`2c)

−1. While this explanation seems
to be able to explain some experimental features, it requires certain unphysical assumptions
such as that the electron density in the dot must be higher than that in the leads; this is
profoundly unreasonable as quantum dots are created by expelling electrons from a 2DES so
that only a small puddle of the electron liquid remains.

The next level of theoretical sophistication was to implement a Thomas-Fermi-type density
functional description. The kinetic energy is now quite simple if the system is in a strong

7In metallic structures the density of levels is so high that the magnetic field has little impact — as the field
is changed, the set of occupied levels changes but the total energy is rather insensitive to B. In semiconducting
dots the level separation is large so that the set of occupied levels is not easily affected, and therefore the
magnetic field dependence of individual energy levels is more important.
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magnetic field as is the case in the experiments: the kinetic energy is quantized to Landau
levels which can accommodate electrons up to a maximum density that depends on the
magnetic field. In this first DFT description the exchange-correlation energy was simply
set to zero, and the electron density was written as a sum of contributions from occupied
single particle states as n(r =

∑
n,σ ψ

†
n,σ(r)ψn,σ(r) where the states |n, σ〉 satisfy Kohn-Sham

equations. Compared to the “cake model, the electron density resulting from this model is
considerably smoother. It can be understood from the classical limit: the classical electron
density for a two-dimensional charge distribution in a parabolic external potential is n(r) =
n0

√
r2 −R2

0 where R0 is the radius of the charge distribution.8 Quantum effects manifest
themselves in the fact that as long as n(r) is below n1 = (2π`2c)

−1, all electrons have equal
kinetic and Zeeman energies, for the range n1 < n < 2n1 two spin states (with different
Zeeman energies) are needed, for 2n1 < n at least two Landau levels (with different kinetic
energies) are needed etc.. Since the electrostatic energy scale dominates in the problem,
deviations from the classical distribution are rather small; typically, the electron density
follows the classical form except near the points when n(r) is approximately an integer times
n1 when it is preferable from an energy point of view to transfer some charge from a higher spin
or Landau state to a lower one, thereby losing some Coulomb energy but gaining Zeeman or
kinetic energy. This results in the formation of (narrow) density plateaux n(r) = pn1, p ∈ N,
which are known as incompressible strips. This level of description results in an excellent
agreement between theoretical and experimental results as shown in Fig. 4.4.

The next level of improvement is to include a non-zero exchange-correlation term. This
modifies the results of the Thomas-Fermi theory particularly at the edges of the charge dis-
tribution where the system is compressible. A fair amount of effort has been invested in
the regime where n(r) = n1 for a large range of radii r, which is known as the maximum
density droplet as it corresponds to the maximum density consistent with the lowest spin and
Landau state. When the magnetic field is increased, the lowest level could occupy even more
electrons but that would cost more Coulomb energy so the system faces a dilemma: on one
hand the confining potential favors compact, small electron densities, but on the other hand
the electron-electron interaction favors more spread out charge densities. The energetically
favorable distribution turns out to be one where the edge of the maximum density droplet
undergoes a reconstruction and the compact central droplet is surrounded by circular charge
density rings — the electron density no longer decreases monotonically as a function of the
distance from the center of the quantum dot as shown in Fig. 4.5. The exchange-correlation
effects are needed to describe these edge reconstruction effects accurately. Further refinement
of the theoretical description in terms of current density functional theory predicts detailed
internal structures in the charge and spin densities inside the quantum dots as shown in Fig.
4.6 (see S.M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)). However,
these higher correlation get increasingly more difficult to detect experimentally.

4.4.2 Quantum Monte Carlo

Monte Carlo methods are a stochastic techniques for evaluating definite integrals.9 A sim-
ple argument shows that they are likely to be more powerful than deterministic techniques

8Deriving this result is referred to as an amusing exercise by the mathematical physicist Elliot Lieb at
Princeton University. Feel welcome to check if you agree with him (it’s not that hard).

9This section follows closely the lecture notes Matthias Troyer presented at the Boulder summer school in
Colorado, USa, in 2004.
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Figure 4.4: Comparison between the predictions of the “cake model” (top), experiment (mid-
dle), and Thomas-Fermi model (bottom). The positions of conductance peaks are seen to
move to higher energies with an increasing magnetic field. The simple model predicts that
the oscillations in the peak position disappear when only the lowest Landau level is occupied
while the experiment and the more sophisticated model show a different behavior.
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Figure 4.5: Reconstruction of the maximum density droplet edge as the magnetic field is
increased, calculated by current spin density functional theory for a semiconducting quantum
dot with 20 electrons — note the non-monotonic occupation of single-particle states (Kohn-
Sham orbitals) in terms of their angular momentum, and the intricate internal structure at
even higher magnetic fields. From S.M. Reimann and M. Manninen, Rev. Mod. Phys. 74,
1282 (2002).

Figure 4.6: Ground states currents calculated using CSDFT for a quantum dot with 20
electrons. From S.M. Reimann and M. Manninen, op.cit..
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provided that the domain of integration is at least two-dimensional: the error of a stochastic
method decreases typically as N−1/2 where N is the number of sampling points, while the
error of a deterministic method decreases typically as the lattice spacing a of the discretiza-
tion lattice; if the N points are equally distributed in all dimensions, the number of point in
any given direction is N 1/d and the lattice spacing, and integration error, is given by N−1/d

so that for d = 1 a deterministic method converges faster, for d ≥ 3 a stochastic method
is faster, and for d = 2 the two have comparable scaling properties. Since problems that
involve many interacting degrees of freedom typically lead to multi-dimensional integrals,
Monte Carlo methods seem well suited for them.10

In classical physics Monte Carlo methods are often used to evaluate thermal expectation
values

〈A〉 =

∫
ddr p(r)A(r)∫
ddr P (r)

where P (r) is a probability distribution that in equilibrium is given by e−βE(r). Typically,
one creates an ensemble which has the property that a point r is sampled with probability
P (r), which can be done by e.g. the well-known Metropolis algortithm where one starts from
a position ri, suggests a move to a position ri+1, and accepts or rejects the move with a
probability that corresponds to a detailed balance criterion determined by the energies of
the two positions involved. This method works well on paper, and even in reality provided
that the sampled points are statistically independent, that is, that they are separated by a
distance that is large compared to the correlation length of the system. If the two points
are not independent, the number of statistically independent samples is less than the actual
number of samples, and convergence is poorer than expected. This often happens near phase
transitions where the correlation length grows dramatically, and results in a phenomenon
known as critical slowing down.

More generally the integral in the Monte Carlo method is a more general sum (or integral)
over the degrees of freedom of the system at hand — for a model of magnetic material one
typically sums over all possible orientations of the magnetics moments (spins) at all lattice
sites. In this case critical slowing down is encountered near the Curie (for ferromagnets) or
Neel (for antiferromagnets) temperature at which the materials becomes magnetically ordered.
The reason for critical slowing down is easy to identify: near the ferromagnetic transition, the
material forms domains such that magnetization is constant within a domain but varies from
one domain to another. It is energetically very costly to flip one spin in a domain but flipping
all spins in a domain would carry much lower a cost. This also suggests a way to fight the
effects of critical slowing down: instead of updating one spin at a time, one tries to identify
clusters of spins and update them all at once. Many implementations of cluster algorithms
have been suggested, all of them consisting of two parts that first identify suitable clusters
and then decide how the cluster spins should be updated to create the next, statistically
independent sampling point. A key requirement for these algorithms is that they must obey
ergodicity, that is, each configuration must be reachable with a finite number of steps from
any initial configurations, and that the configurations the algorithm generates must follow
the appropriate distribution function. Two of the best known cluster Monte Carlo algorithms

10It turns out that there is an intermediate category of integration techniques known as quasi-random
algorithms based on so-called minimum discrepancy sequences that are, simple stated, irregular but fixed
multi-dimensional lattices. For these minimum discrepancy methods the number of lattice points needed to
achieve accuracy ε varies as N ∼ ε−1[ln(ε−1](d−1)/2, cf. Monte Carlo N ∼ ε−2 and regular lattice N ∼ ε−d.
For further information see H. Woźniakowski, Bull. Am. Math. Soc. 24, 185 (1991).
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are the Wolff algorithm (U. Wolff, Phys. Rev. Lett. 62, 361 (1989)) and the Swendsen-Wang
algorithm (R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987)).

In quantum mechanics we have a further complication that specifying the degrees of
freedom of a quantum system does not usually specify its energy. Typical example is a
quantum particle in an external potential: specifying the particle’s momentum allows its
kinetic energy to be calculated, but makes it impossible to determine the potential energy,
while specifying the particle’s position results in opposite problems; simultaneous specification
of both momentum and position is not allowed. This would seem to render Monte Carlo
methods unusable in quantum mechanics.

Fortunately, the problem can be overcome. We will illustrate this with a spin model, the
quantum mechanical Heisenberg model, with the Hamiltonian

H = −J
∑

〈i,j〉

(
Sxi S

x
j + Syi S

y
j + Szi S

z
j

)

where J is a coupling constant with units of energy, Sx,y,zi are the (dimensionless) components
of the spin at site i, and 〈i, j〉 is a set of nearest neighbors. Hence, the model describes a
lattice of atoms where each atom carries a spin and spins between nearest neighbor atoms
interact. The quantum nature of this model is reflected by the fact that for any atom i we can
only specify one component of the spin due to the commutation relation [Sx, Sy] = iSz and its
cyclic permutations — the different components of spin are like the position and momentum
of a quantum particle.

The thermal average of an operator A is now given by

〈A〉 =
Tr
(
Ae−βH

)

Tr (e−βH)

where TrA =
∑

{Sz
i }〈{S

z
i }|A|{Szi }〉 is the trace of the operator A, i.e. sum over all diagonal

matrix elements in some complete basis (here I chose the z-component of the spin at each site).
The problem is that the matrix elements are not straightforward to calculate. The way around

is to introduce a large integer M such that β = M∆τ and e−βH = e−M∆τH =
(
e−∆τH

)M
.

For sufficiently large M the quantity in the paranthesis can be approximated as 1 − ∆τH so
that the denominator of the above expression can be written as

Z = Tr
[
(1 − ∆τH)M

]
=
∑

{Sz
0,i}
∑

{Sz
1,i}
∑

{Sz
2,i} . . .

∑
{Sz

M−1,i}
〈{Sz0,i}|(1 − ∆τH)|{Sz1,i}〉〈{Sz1,i}|(1 − ∆τH)|{Sz1,i}〉〈{Sz2,i}| . . . (1 − ∆τH)|{Sz0,i}〉

where I inserted a complete set of states (1 =
∑

i |i〉〈i|) between each of the factors (1−∆τH).
For future refererence, we can write Z as Z =

∑
{Sz

k,i}
P ({Szk,i}) where P can, hopefullly, be

interpreted as the unnormalized probability of a configuration {S zk,i}. A similar expansion
can be written for the numerator.

The price of this has been that the number of dimensions has effectively increased by one:
the configurations {Szk,i} have acquired a new label, k, that determines between which factors
this complete set of states has been inserted. This extra dimension is known as imaginary
time, for reasons we will not go into, and is a general feature of equilibrium problems: a
quantum problem has effectively one more degree of freedom than the corresponding classical
problem. Thus, we have the expression

〈A〉 =

∑
P ({Szk,i})A({Szk,i})∑

P ({Szk,i})
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Figure 4.7: Worldlines showing the trajectories of up-spins in imaginary time. The vertical
direction is given by k~∆τ with 0 ≤ k ≤ M − 1 so that it extends from 0 to (nearly) β; the
y-axuis is often multiplied by ~ so that the direction has units of time.

for the thermal expectation value. Here A({Szk,i}) represents a product of the relevant matrix
elements; in the ordinary case the operator A acts only at one instance of the artificially
introduced imaginary time argument and A({Szk,i}) = 〈{Sz0,i}|A|{Sz1,i}〉.

Now that the Hamiltonian no longer appears in the exponent, evaluating the matrix
elements is much easier. Introducing new operators S+ = Sx + iSy and S− = Sx − iSy so
that [Sz, S+] = iSy + Sx = S+ which means that S+ increases the z-component of spin by
one. With this notation we can write

H = −J
∑

〈i,j〉

(
Szi S

z
j +

1

2
(S+
i S

−
j S

−
i S

+
j )

)

which shows that the non-zero factors in the product expression for Z are either diago-

nal, Szk,i = Szk+1,i, or involve two opposite spin flips,
(
Szk,i, S

z
k,j

)
→
(
Szk+1,i ± 1, Szk+1,j ∓ 1

)
.

Hence, if one draws lines in the k-direction connecting up-spins, the lines are either vertical,
or move diagonally between adjacent lattice points. These so-called world lines, shown in
Fig. 4.7, form a basis for quantum cluster algorithms, usually known as loop algorithms,
that introduce larger moves than single spin updates, thereby reducing the effects of critical
slowing down.

The Quantum Monte Carlo method as described above works quite well for boson prob-
lems. For fermion problems, however, there is a serious difficulty: the quantities P are not
positive definite, and cannot therefore be interpreted as probabilities, which makes Metropolis-
type algorithms unfeasible. This is the infamous fermion sign problem. Formally, however,
there is no problem: we just define a new (unnormalized) probability density through |P | and
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write the expectation value as

〈A〉 =

P

|P ({nz
k,i})|sign(P ({nz

k,i}))A({nz
k,i})

P

|P ({nz
k,i})|

P

|P ({nz
k,i})|sign(P ({nz

k,i}))
P

|P ({nz
k,i})|

.

where ni is the probability of finding a fermion at site i — we simply interpret the up-spins as
full sites and the down-spins as empty sites on some discrete lattice.11 In practice, however,
the average of the sign of P can be very small — typically the expectation value of the sign
varies as e−βN — which leads to numerical difficulties. Great deal of effort has been invested
in overcoming the sign problem, and every now and then researchers announce that they have
found the solution to the fermion sign problem, although thus far the announcers have failed
to convince their colleagues. One authority in the field has promised the Nobel prize (without
any authority to do so!) to whoever solves the problem, so you are welcome to try your luck.

11More complicated fermions problems can also be treated using QMC, this simple example of a single
fermion species on a lattice serves only as an example.
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Appendix A

Coulomb Blockade at a Single

Barrier

So far we have ignored the effects that the appearance or disappearance of an electron might
have in the two leads. If the leads are large metallic bodies, such effects are vanishingly small
— the charge disturbance is screened within a few plasma oscillations — but if the leads
are narrow wires, the effects may be more significant. We now turn our attention to charge
redistribution in the leads and examine how it affects tunneling across a tunnel junction.

We can model a lead as a lossless transmission line which is terminated by a capacitance
C0. The capacitance C0 we interpret as the junction capacitance so that a tunneling event
corresponds to charging the end capacitor by charge ±e. For simplicity we use a discrete
model for the transmission line as indicated in Figure A.1. The continuum limit can be
obtained by letting the inductance L, capacitance C, and cell size a approach zero such that
the specific inductance ` = L/a and specific capacitance c = C/a remain constants.

CC C C C

L L L L L

0

I

Q

n

n

C

a

Figure A.1: Coupling of the capacitor C0 to a (lossless) transmission line

We define variables Qn and In so that
.
Qn= −In+1 + In. The inductive and capacitive

energies are then 1
2L
∑∞

n=1 I
2
n and 1

2C
−1
0 Q2

0 + 1
2C

−1
∑∞

n=1Q
2
n. The inductive energy can

be identified as a kinetic term and the capacitive energy as a potential term so that the

113
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Lagrangian is1

L =
1

2
L

∞∑

n=1

I2
n −

1

2
C−1

∞∑

n=1

Q2
n −

1

2
C−1

0 Q2
0

For the quantum mechanical treatment we would like to have a Hamiltonian, and therefore

we need the momenta conjugate to the charges Qn. We have (note In = −∑n−1
k=0

.
Qk)

Pn =
∂L

∂
.
Qn

= L

∞∑

k=1

Ik
∂Ik

∂
.
Qn

= −L
∞∑

k=n+1

Ik

so that In = L−1(Pn − Pn−1),
.
Q0= −L−1(P1 − P0), and

.
Qn6=0= −L−1(Pn−1 − 2Pn − Pn+1).

The Hamiltonian is then

H =
∞∑

n=1

Pn
.
Qn −L =

1

2L

∞∑

n=1

(Pn − Pn−1)
2 +

1

2C

∞∑

n=1

Q2
n +

1

2C0
Q2

0

The task we now set for ourselves is to investigate what happens if the charge Q0 suddenly
changes due to a tunneling process — how does the transmission line react to this disturbance?
We will find that the transmission line’s inability to instantaneously carry away the extra
charge results in a modification of the tunneling rates Γ, and consequently also changes the
current-voltage characteristics of the structure.2

Although H is nothing but a collection of harmonic oscillators, exact diagonalization is
cumbersome due to lack of translational invariance. Let us therefore make the approximation
that the dynamics of the transmission line is not greatly affected by the difference of the
terminal capacitance C0 and the other capacitances C. The Hamiltonian with C0 = C is
diagonalized by the transformation

Qn =

√
2

π

∫ π

0
dsQ(s) cos[s(n+

1

2
)]

Pn =

√
2

π

∫ π

0
dsP (s) cos[s(n+

1

2
)]

which yields

H ≈ 1

2

∫ π

0
ds

[
4 sin2(s/2)

L
P 2(s) +

1

C
Q2(s)

]

This is analogous to a collection of elastic string Hamiltonians with massesm(s) = L/[4 sin2(s/2)],
spring constants K(s) = 1/C, frequencies ω(s) = 2√

LC
sin(s/2), and length scales α(s) =

(L/C~
2)1/4[2 sin(s/2)]−1/2. The classical ground state is Qj = 0 = Pj , but quantum me-

chanically we cannot simultaneously specify the values of Qj and Pj . Instead, the quantum
mechanical ground state of the transmission line is given by the wave functions

ψ(0)
s (q) = A(0)

s e−
1
2
α2(s)q2

1In order to avoid confusion between the inductance L and the Lagrangian I have chosen to denote the
latter by L, and for consistency the Hamiltonian is denoted by H.

2The analysis we are about to carry out is quite a standard one in condensed matter physics: we consider
a harmonic system (e.g. a crystal with phonons), perturb the system suddenly and locally, and see how the
perturbation is smeared out by vibrations. Usually the analysis is carried out using the second quantized
formalism (see e.g. G.D. Mahan, Many-Particle Physics, Plenum, New York, 1991, chapter 4.3.), but we will
instead use the more elementary first quantized approach.
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where A
(0)
s is a normalization constant. Hence, the probability density that the charge in

mode s deviates from the classical ground state charge by amount q is given by |ψ (0)
s (q)|2,

and a similar distribution is obtain for the deviation between momentum in mode s and the
classical ground state momentum. From now on we will concentrate on the T = 0 case so
that initially the transmission line is in its ground state.

Let us now consider what happens if the charge Q0 changes instantaneously by amount δQ
due to a tunneling event. Since Q0 does not have a well-specified value before the tunneling
event (a distribution of Q0-values is possible), it is at first sight not clear how to describe the
state of the system after tunneling. Actually, it is very easy! If the initial distribution of charge
is given by ψs(q), a shifted distribution is ψs(q − δQ(s)), and we only need to determine the
proper δQ(s) for each mode using the diagonalizing transformation. An equivalent way to look
at the problem is to say that the tunneling event does not instantaneously change the quantum
state of the transmission line, but instead it shifts the classical ground state of the harmonic
oscillators by δQ(s) = δQ

√
2/π cos(s/2), and the quantum mechanical wave functions after a

tunneling event are centered around these new minima. The new eigenfunctions are given by

φjs(q) = A(j)
s e−

1
2
α2(s)[q−δQ(s)]2Hj[α(s)(q − δQ(s))]

where Hj(z) is a Hermite polynomial. Since the transmission line is described as a collection

of harmonic oscillators, the energy of φjs(q) is (j + 1/2)~ω(s).
The instantaneous charging of C0 shifts the ground states of the harmonic oscillators but

it does not change the quantum state {ψ(0)
s (q)} of the transmission line. Therefore, after the

tunneling event has taken place, the transmission line is no longer in an eigenstate of H, and
in particular it is not in its ground state. Instead, after tunneling each mode s is in linear
combination

ψ(0)
s (q) =

∞∑

j=0

γ0j(s)φ
j
s(q)

of eigenstates. The coefficients γ0j(s) can be obtained using the properties of Hermite polyno-

mials, and after some algebra we get γ0j(s) = (j!)−1/2e−α
2(s)δQ2(s)/4[−α(s)δQ(s)/

√
2]j . (Note

that
∑∞

j=0 |γ0j(s)|2 = 1 as must be the case.)
This has some rather remarkable consequences. Since we assume that energy is conserved

in each tunneling process, the initial state (one extra electron to the left of C0, transmission
line in its ground state) and the final state (one extra electron to the right of C0, transmission
line in some excited state) must have the same energies. The probability of finding extra
energy j~ω(s) in the sth mode of the transmission line is given by |γ0j(s)|2 and therefore the
probability density of having excess energy ε in mode s is

A(s, ε) =

∞∑

j=0

|γ0j(s)|2δ(ε − j~ω(s)).

The energy in the initial state can be distributed in many ways among the different modes s,
and it is easier to consider first what happens if there are S discrete modes. The probability
density A(E) of finding the transmission line with total excess energy E is given by a product
of the probabilities associated with different modes, subject to the condition that the total
excitation energy is E, i.e.

A(E) =

∫ ∞

−∞

∏

s

dεs

[
∏

s

A(s, εs)

]
δ(E −

∑

s

εs).
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By writing the delta function in terms of its Fourier transform and by defining the Fourier
transform of A(s, ε) to be exp[B(s, θ)], we get

A(E) =

∫ ∞

−∞

dθ

2π
e−iθEe

P

s B(s,θ) =

∫ ∞

−∞

dθ

2π
e−iθEe

R π
0
dsB(s,θ)

where we took the continuum limit again.
To obtain the tunneling rates we divide the energy of the system after tunneling has taken

place into two parts: some of the energy is taken up by a single-particle energy of the extra
electron (e.g. its kinetic energy), while some is used to excite the transmission line. In our
approximation that all energy-conserving tunneling events are equivalent, the tunneling rate
to charge the capacitor C0 is given by

Γ(V ) =
1

Rte2

∫ ∞

−∞
dE

∫ ∞

−∞
dE′f(E)[1 − f(E ′)]A(E + eV −E ′)

where f(E) counts the number of occupied states to the left of C0, [1 − f(E′)] counts the
number of available states to the right of C0, and A(E+ eV −E ′) accounts for the possibility
of exciting the transmission line with the available energy (note that the Fermi levels on the
two sides of C0 differ by eV ). At zero temperature — which is the only case we can consider
since we have assumed the transmission line to be initially in its ground state — the tunneling
rate reduces to

Γ(V ) =
1

Rte2

∫ 0

−∞
dE

∫ ∞

0
dE′A(E + eV −E ′) =

1

Rte2

∫ eV

0
dE

∫ E

0
dE′A(E′)

where we used that A(E) = 0 for E < 0. The current through the junction is given by

I(V ) = eΓ(V ) =
1

Rt

[
V

∫ eV

0
dEA(E) − 1

e

∫ eV

0
dEEA(E)

]

since at zero temperature the tunneling rate in the reverse direction vanishes.
Hence, we need to find A(E) and therefore the Fourier transform of A(s, ε). Some algebra

yields A(s, θ) = exp
[(
eiθ~ω(s) − 1

)
1
2α

2(s)δQ2(s)
]

so that

A(E) =

∫ ∞

−∞

dθ

2π
e−iθEe

R π
0 ds 1

2
α2(s)δQ2(s)(eiθ~ω(s)−1)

and the task of obtaining A(E) has been reduced to a Fourier transform, albeit a complicated

one. We carry out the transform in Appendix B, and find A(E) ∝ E
e2

h

q

L
C
−1 ≡ Eg−1.

Consequently, the current at small voltage is I(V ) ∝ V g+1. For a more general transmission
line with resistive elements one finds g = Z(0)/(h/e2) where Z(ω) is the (frequency dependent)
impedance of the transmission line. For an LC-line we have Z(ω) =

√
L/C.

We have now obtained the main result of this appendix: the impedance of the environment
manifests itself in the power law current-voltage characteristics. A simple way to understand
this result qualitatively is to think of the environmental impedance as a quantity that deter-
mines the charge relaxation rate, the rate at which the junction capacitance can be charged
or discharged. If the relaxation rate is fast, a tunneling charge disappears in the leads before
the next tunneling event, and we cannot obtain Coulomb blockade. If the relaxation is slow,
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corresponding to a high impedance, a charge that has tunneled through the capacitor provides
an extra barrier for the next tunneling event, and current flow is impeded. Figuratively, you
can think of difference of lifting water or sand over a barrier using a bucket: the effort to lift
one bucket remains the same as the previously poured water flows away, while the effort for
lifting sand gets harder and harder as the sand piles up.

At this point we must examine the validity of our earlier approximation that the trans-
mission line dynamics is unaffected by the difference between C and C0. Mathematically,
having a capacitance C0 � C at the end of a transmission line is equivalent to having a
large weight at the end of an elastic string. Since the disturbance is localized at one end
of the string, it has little effect on the low-energy modes, and therefore our relatively sim-
ple analysis can be expected to be quite accurate in the low-voltage limit. The high-energy
modes, however, are affected by the difference between C0 and C. This we can see e.g.
by calculating the how much the total energy of the transmission line changes as a result
of a tunneling event. The energy expectation value in mode s after tunneling is given by
E(s) =

∑∞
j=0 |γ0j(s)|2~ω(s)(j+1/2) = ~ω(s)( 1

2α
2(s)δQ2(s)+ 1

2). The last term is nothing but
the zero point energy, which is present even in the ground state, so the energy change in mode
s due to the tunneling event is in our approximation given by δE(s) = 1

2~ω(s)α2(s)δQ2(s),
and the total energy change due to tunneling is δE =

∫ π
0 dsδE(s) = δQ2/(2C). This result

is not quite correct: since the relevant capacitance is C0 rather than C, the energy should
also be δQ2/(2C0) rather than δQ2/(2C). Classically, the energy of the transmission line
immediately after a tunneling event is δQ2/(2C0) (the classical state is Qn = δQδn,0, Pn = 0)
and later this energy is only redistributed between different inductors and capacitors but not
lost. Quantum mechanically the energy of the transmission line after tunneling is not fully
determined — the line is not in an energy eigenstate — but the energy expectation value∫∞
0 dEEA(E) must nevertheless be given by its classical value δQ2/(2C0). This error is a

consequence of our earlier substitution C0 → C, which was necessary to explicitly find out
the eigenmodes. The total excitation energy can also be obtained as

∫∞
0 dEEA(E) which in

our approximation yields e2/(2C) rather than the exact value EC = e2/(2C0) showing that
our result for A(E) is too large at larger energies. Using this exact sum rule we find that
at large voltages (eV � EC) the current voltage characteristics are approximately given by
I(V ) = 1

Rt
[V − e/(2C0)] so that the IV-curve is shifted to slightly larger voltages.3

3Actually, it is possible to carry out the analysis without explicitly diagonalizing the transmission line
thereby avoiding the replacement C0 → C. The result agrees with our simpler approach.
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Appendix B

The Minnhagen method

Let us consider the function F (x) = eif(x) and obtain its Fourier transform F (k). Often direct
integration is quite difficult unless f(x) is particularly simple. Another way of finding F (k)
was introduced by Petter Minnhagen of Ume̊a University. We start by differentiating F (x)
and finding the Fourier transform of F ′(x). On one hand it is ikF (k), but on the other hand
we have, by direct differentiation,

F [F ′(x)] =
∫∞
−∞ dxeikxif ′(x)F (x)

=
∫∞
−∞

dk′

2π F (k′)
∫∞
−∞ dxei(k−k

′)xif ′(x)

=
∫∞
−∞

dk′

2π F (k′)ig(k − k′)

where g(k) is the Fourier transform of f ′(x). Hence, we have the integral equation

kF (k) =

∫ ∞

−∞
dk′g(k′)F (k − k′).

While this integral equation is in general quite difficult to solve, we can easily find a solution if
we have some additional information about F (k) and g(k). Often in the problems of physical
interest F (k−k′) vanishes if k−k′ < 0 — this is for instance the case if k measures excitation
energy and F (k) is a spectral function. Furthermore, if the small-k value of g(k) approaches
a constant g(k ≈ 0) ≈ g, we get

kF (k) = g

∫ k

0
dk′F (k − k′)

which has the solution F (k) = kg−1.
In the specific case of tunneling into a lossless transmission line we must obtain the Fourier

transform of A(θ), which is exactly of the type we discussed above if we identify

f(θ) = −i1
2

∫ π

0
dsα2(s)δQ2(s)

[
eiθ~ω(s) − 1

]
.

Taking the derivative, Fourier transforming, and setting E → 0+ yields

g(0) =
δQ2

C

2

π

∫ π/2

0
du cos2 u

∫ ∞

−∞

dθ

2π
exp

[
i

2θ~√
LC

sinu− iEθ

]

E→0

=
1

h
δQ2

√
L

C

and hence A(E) ≈ E
1
h
δQ2

q

L
C
−1

.
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Appendix C

Second quantization

The formalism that goes under the somewhat mysterious name of second quantization1

underpins all theories of quantum many-body systems. A basic feature of these is that one is
dealing with identical particles: For bosons [fermions] one thus has to work with states that
are symmetric [anti-symmetric] under the exchange of two particles. Although conceptually
straightforward, this would become a daunting task if trying to use the ordinary (”first-
quantized”) formalism of quantum mechanics. Just imagine explicitly calculating matrix
elements in a basis of the symmetrized [anti-symmetrized] many-particle states

|λ1, λ2, ..., λN 〉 ≡ 1√
N !
∏m
i=1 nλi

!

∑

P
ζsgnP |λP1〉⊗|λP2〉 ⊗ ...⊗|λPN 〉 (C.1)

when the particle number N is large! Here λ1, λ2, ..., λN are quantum numbers labeling the
single-particle states | λ1〉,| λ2〉, ...,| λN 〉, nλi

is the number of particles in the single-particle
state |λi〉, with m the number of distinct quantum numbers.2 ζ = 1[−1] for bosons [fermions],
and sgnP ≡ 0(1) when the number of transpositions that take (1, 2, ..., N) to the permutation
(P1,P2, ...PN) is even (odd). (Note that the product of single-particle states on the right-
hand side of Eq. (C.1) is ordered: the first state |λP1〉 is that of the ”first” particle, the second
state | λP2〉 is that of the ”second” particle, and so on...; ”first”, ”second”, etc. referring to
some fixed book keeping of the (identical!) particles.)

Another difficulty with the ”first-quantized” description is that the particle number N is
assumed to be fixed, with a Hilbert space

HN = H1 ⊗H2 ⊗ ...⊗HN , (C.2)

1The notion of ”second quantization” first appeared in work by Paul Jordan in 1927, where he tried to
extend the canonical quantization scheme of ordinary quantum mechanics to the quantization of fields. (A
definite breakthrough came a year later with a paper that Jordan co-authored with Oskar Klein and Eugene
Wigner.) Conceptually, however, there is only one step to be taken when quantizing a classical theory, with
”second quantization” being a formalism adapted for quantizing a classical field theory. In the present context
of many-particle physics (where, depending on the particular application, a classical field may, or may not be
present), ”second quantization” simply offers a convenient language in which to describe the statistics of many
identical particles.

2Note that the piece 1/
p

Qm
i=1 nλi

! of the normalization factor only comes into play for bosons, since for
fermions there is only one particle in each single-particle state. The expression nλi

! counts the number of
permutations of particles in the same single-particle state |λi〉. To account for all states, one then forms the
product

Qm
i=1 nλi

!.
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where Hj is the Hilbert space of the j:th particle. Now, we know from statistical physics that it
is often convenient to allow the particle number to fluctuate (grand canonical ensemble). The
”first-quantized” formalism, however, is ill-adapted to handle this situation. An additional,
maybe less obvious reason why one would like to develop a more powerful formalism is that
quantum many-body systems generically exhibit collective excitations which are hard to come
to grips with in the ”first-quantized” formalism. One reason for this − among others − is that
these excitations (the quantized plasmon excitations of the electron liquid being an example
that we discussed in the the chapter on Fermi liquids) also fluctuate in number.

Second quantization removes all these difficulties in one stroke. The idea behind the
formalism is as simple as beautiful. One first introduces a convenient way of denoting the
many-particle states in Eq. (C.1), the so-called occupation number representation:
Instead of enumerating all the single particles, specifying in which states they are (cf. the left-
hand side of Eq. (C.1)), one simply specifies how many particles there are in each available
single-particle state. As an example, consider a state in Eq. (C.1) with, say, N=7, and with
λ1 =λ2 =λ5 ≡λ, λ3 =λ6 ≡µ, and λ4 =λ7 ≡ ν. In the notation introduced in Eq. (C.1), this
state would be written as | λ, λ, µ, ν, λ, µ, ν〉. In the occupation number representation one
writes this state more economically as | 3, 2, 2〉, saying that there are three particles in the
single-particle state |λ〉, and two particles each in |µ〉 and |ν〉, (having agreed on the ordering
λ, µ, ν of the quantum numbers). Generalizing, | nλ1 , nλ2 , ..., nλm〉 is the symmetrized [anti-
symmetrized] state with nλi

particles in the single-particle state | λi〉, i = 1, 2, ...,m, with∑m
i=1 nλi

= N , N being the number of particles. The parameters nλi
are the occupation

numbers which give the name to this representation. Note that, by the Pauli principle,
fermionic occupation numbers can only take the values 0 or 1. Also note that when specifying
a state, we write out only those occupation numbers that take non-zero values. The states in
Eq. (C.1), compactly denoted3 by |nλ1 , nλ2 , ..., nλm 〉 in the occupation number representation,
form an orthonormal basis of the physical Hilbert space FN ⊂ HN , ”physical” meaning
that FN contains only states that are properly symmetrized [anti-symmetrized]. Thus, any
symmetrized [anti-symmetrized] state |ψ〉 in FN can be written as

|ψ〉 =
∑

nλ1
,nλ2

,...

cnλ1
,nλ1

,... |nλ1 , nλ2 ...〉, (C.3)

with
∑

i nλi
= N , and where

〈nλ1 , nλ2 ... | n′λ1
, n′λ2

...〉 = δnλ1
n′

λ1
δnλ2

n′
λ2
... (C.4)

To allow for fluctuating particle numbers one forms the so-called Fock space4

F = F0 ⊕F1 ⊕F2...⊕FN , (C.5)

3Let us here comment that one often simplifies the notation by replacing nλj
by nj , assuming that we have

agreed upon an ordered set of quantum numbers {λj} to label the single-particle states. We can then do the
replacement |nλ1

, nλ2
, ..., nλm〉 →

| n1, n2, ..., nm〉. In this tool box, however, we shall choose to stick to the more pedantic notation where the
quantum numbers are explicitly written out.

4Vladimir Fock, 1898 - 1974, was one of the leading theoretical physicists in the former Soviet Union. He
did important work in the foundations of quantum mechanics, general relativity, and elasticity theory. He has
given his name not only to the concept of a Fock space, but to a number of other contributions, maybe the best
known being Hartree-Fock theory, an extension of the original Hartree theory that Fock developed in 1930.
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where FN is the physical Hilbert space of N particles (Fock N-particle subspace). Note that
the peculiar 0-particle space F 0 contains only one state, the ”empty” state | 0〉 (vacuum
state). A basis of F is obtained by taking all of our previous basis states, dropping the
condition

∑m
i=1 nλi

= N on the occupation numbers. Given this, one may now form linear
superpositions of states | nλ1 , nλ2 , ...〉 containing different numbers of particles. This is not
only convenient, but sometimes crucial for properly describing the physics at hand, a famous
example being the BCS ground state.

Although the occupation number representation is nice and handy, by itself it does not
offer a big improvement over the ”first-quantized” formalism. All that we have done so far is to
replace the ”first-quantized” way of labeling a symmetrized [anti-symmetrized] many-particle
state (cf. the left-hand side of Eq. (C.1)) by a more compact notation, using occupation
numbers, then removing the condition that the particle number is fixed. To make some real
progress we have to introduce operators that take us from one Fock subspace to another:

a†λ : FN −→ FN+1, aλ : FN −→ FN−1. (C.6)

Here a†λ is a creation operator that adds one particle in the single-particle state | λ〉 to the

system. Similarly, aλ is a destruction operator that removes one particle in the state | λ〉
from the system. (The ”dagger” on a†λ signifies that a†λ is the Hermitian adjoint of aλ.) This
step may seem innocent, but a second thought makes us realize that it is far from obvious
how to consistently construct these operators. Recall that FN and FN±1 are physical Hilbert
spaces, that is, a†λ must have the property of mapping a symmetrized [anti-symmetrized] state
with N particles onto a symmetrized [anti-symmetrized] state with N + 1 particles (with aλ
effecting the inverse mapping). One may worry that this non-trivial property will lead to
complicated relations between operators labeled by different quantum numbers, making the
whole approach intractable.

The magic of ”second quantization” is that this is not so! All that we have to require is
that the creation- and destruction operators satisfy the algebras

BOSONS: [a†λ, aµ] = δλµ, [a†λ, a
†
µ] = [aλ, aµ] = 0 (C.7)

FERMIONS: {a†λ, aµ} = δλµ, {a†λ, a†µ} = {aλ, aµ} = 0 (C.8)

and that their actions on an arbitrary Fock basis state is such that

a†λj
|nλ1 , nλ2 , ..., nλj

, ...〉 ≡
√
nλj

+ 1 ζsj |nλ1 , nλ2 , ..., nλj
+1, ...〉 (C.9)

aλj
|nλ1 , nλ2 , ..., nλj

, ...〉 =
√
nλj

ζsj |nλ1 , nλ2 , ..., nλj
−1, ...〉 (C.10)

As before, ζ = 1[−1] for bosons [fermions], with sj =
∑j−1

i=1 ni. It may be worth pointing

out that the fact that aλj
and a†λj

are Hermitian adjoints of each other implies that Eq.

(C.10) is a consequence of the definition in Eq. (C.9). This is the reason why in Eq. (C.9)
the symbol ”≡” appears, whereas in Eq. (C.10) we have an equals sign. More importantly,
note that the non-trivial sign-factor (−1)sj for fermions follows from the algebra in (C.8). To
see how, let us look at the simple case of two fermions. Eq. (C.9) here implies that

a†λ2
a†λ1

|0〉 = −|nλ1 =1, nλ2 =1〉
a†λ1

a†λ2
|0〉 = |nλ1 =1, nλ2 =1〉 (C.11)
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as is indeed enforced by the anti-commutator in (C.8). This example makes it clear and
simple that the antisymmetry of a fermionic many-particle state is built into the second
quantization formalism by the algebra in (C.8): When exchanging two particles5 the anti-
commutator produces the required minus sign! The analogous observation holds for bosons:
The symmetry of a bosonic many-particle state is ensured by the operator algebra in (C.7).

It is convenient to introduce a number operator

n̂λ ≡ a†λaλ (C.12)

that counts the number of particles in the single-particle state |λ〉. That is,

n̂λj
|nλ1 , nλ2 , ..., nλj

, ...〉 = nλj
|nλ1 , nλ2 , ..., nλj

, ...〉. (C.13)

To develop some intuition, the reader is encouraged to convince herself how Eq. (C.13) follows
from Eqs. (C.9) and (C.10).

The formalism encoded by Eqs. (C.7), (C.8), (C.9), and (C.10), with the states in (C.9)
and (C.10) being basis states of the Fock space F in Eq. (C.5), is what we call second
quantization. Its power and economy becomes immediate when noting that by iteration of
Eq. (C.9) we can generate any basis state | nλ1 , nλ2 , ...〉 in F by simply hitting the vacuum
state |0〉 by the appropriate product of creation operators:

|nλ1 , nλ2 , ...〉 =
∏

i

1√
nλi

!
(a†λi

)nλi |0〉, (C.14)

with 1/
√
nλi

! being a normalization factor. Compare the simplicity and elegance of Eq.
(C.14) with the horror lurking behind Eq. (C.1)! Instead of N ! permutations that yield the
unwieldy structure of the state in (C.1), the Fock states |nλ1 , nλ2 , ...〉 are simply generated by
applying a product of creation operators to a single reference state (the vacuum state | 0〉).
The symmetry properties of the states automatically come out right via the operator algebras
in Eqs. (C.7) and (C.8). There is no need to symmetrize [anti-symmetrize] ”by hand” as in
the first-quantized formalism. The symmetry [anti-symmetry] of a many-particle state is piece
and parcel of the second-quantized language! We note in passing that the anti-commutator
{a†λ, a

†
µ}=0 in (C.8) implies that (a†λ)

2 =0, and hence (reassuringly!) we can never obtain a
state where two fermions are in the same single-particle state.

As in any application of quantum mechanics, a change of basis is sometimes what makes
the day! This is easily carried out in second quantization. Writing a†λ |0〉 = |nλ=1〉 ≡|λ〉 and

a†λ′ | 0〉 = |nλ′ =1〉 ≡ |λ′〉, and using the resolution of the identity 1 =
∑

λ |λ〉〈λ | (assuming,
as before, that the states {|λ〉} form a complete single-particle basis) we have that

a†λ′ |0〉 =
∑

λ

|λ〉〈λ |a†λ′ |0〉 (C.15)

=
∑

λ

|λ〉〈λ | λ′〉 (C.16)

=
∑

λ

〈λ | λ′〉a†λ |0〉. (C.17)

5The exchange of two particles is here emulated by an exchange of two creation operator, a†
λ1

and a†
λ2

. Since
these operators do not carry particle indices, we ”keep track” on the particles by the order in which they are
”created”: In the first (second) line of Eq. (C.11) the ”first” (”second”) particle is that in the single-particle
state |λ1〉, while the ”second” (”first”) particle is that in the single-particle state |λ2〉.
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Since any state can be generated from the vacuum state |0〉 (cf. Eq. (C.14)), it follows that
Eq. (C.15) can be elevated to an operator identity:

a†λ′ =
∑

λ

〈λ | λ′〉a†λ. (C.18)

The Hermitian adjoint of (C.18) reads:

aλ′ =
∑

λ

〈λ′ | λ〉aλ. (C.19)

In the case of a continuous set of quantum numbers (like the coordinates λ ≡ x in configuration

space) one usually uses the bracket notation a†(x), a(x) instead of a†x, ax. It goes without
saying that the sum in Eq. (C.18) now gets replaced by an integral. As an example, consider
the transformation between a coordinate (λ= x) and a momentum (λ′ = k) basis in a one-
dimensional system of length `. An adaption of Eq. (C.18) yields that

a†k =

∫ `

0
dx 〈x | k〉a†(x) (C.20)

with the inverse transformation

a†(x) =
∑

k

〈k | x〉a†k. (C.21)

For a translationally invariant system (periodic boundary conditions), we have that 〈x | k〉 =
〈k | x〉∗ = exp(ikx)/

√
`, allowing us to write Eqs. (C.20) and (C.21) as the Fourier transforms

a†k =
1√
`

∫ `

0
dx exp(ikx)a†(x), a†(x) =

1√
`

∑

k

exp(−ikx)a†k. (C.22)

To complete the machinery of second quantization, we must specify how an arbitrary
operator gets represented in terms of the creation- and annihilation operators. In the case
of a one-body operator Ô1 =

∑
n ôn, with ôn an operator that acts on the n:th particle only

(reverting to the language of first quantization where we put labels on the particles!), this is
readily achieved. Consider a basis in which the operators ôn are diagonal:

ôn =
∑

i

ci |λi〉nn〈λi |, (C.23)

with ci = n〈λi | ôn | λi〉n, and where {|λi〉n} is a complete set of single-particle states in the
Hilbert space of the n:th particle.6 Given (C.23) we have that

〈n′λ1
, n′λ2

, ... | Ô1 | nλ1 , nλ2 , ...〉=
∑

n

∑

i

ci〈n′λ1
, n′λ2

, ... | λi〉nn〈λi|nλ1 , nλ2 , ...〉. (C.24)

6For book keeping purposes, having regressed to first-quantized language, we here label the single particle
states not only by the quantum numbers λi but also by the ”particle index” n, thus keeping track on which
particular single-particle Hilbert space a state belongs to. Note that the coefficients ci = n〈λi | ôn | λi〉n
are independent of n, since the expectation values n〈λi | ôn | λi〉n do not care about in which particular
single-particle Hilbert space Hn they have been evaluated, all states | λi〉1,| λi〉2, ...,| λi〉n, ... being identical
copies of each other!
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Recall that |nλ1 , nλ2 , ...〉 represents a symmetrized [anti-symmetrized] state, with each term
containing factors ... |λi〉1⊗|λi〉2 ⊗ ...⊗|λi〉nλi

.... As in Eq. (C.23) we have here labeled the
single-particles states by the quantum numbers λi and the particle indices n = 1, 2, ..., nλi

, so
as to keep track on the single-particle space to which a state belongs (in contrast to the right-
hand side of Eq. (C.1) where we relied on a fixed ordering of the single-particle states). When
acting with ci |λi〉nn〈λi | on the state |nλ1 , nλ2 , ...〉 it is then easy see that when 1 ≤ n ≤ nλi

we get back this state, multiplied by ci. On the other hand, when the condition 1 ≤ n ≤ nλi

is not satisfied the state gets ”killed”, by the orthogonality of the single-particle states, giving
an outcome = 0. It follows from Eqs. (C.23) and (C.24) that

〈n′λ1
, n′λ2

, ... | Ô1 | nλ1 , nλ2 , ...〉 =
∑

i

cinλi
〈n′λ1

, n′λ2
, ... | nλ1 , nλ2 , ...〉 (C.25)

Using Eq. (C.12) we can mold Eq. (C.25) on the form

〈n′λ1
, n′λ2

, ... | Ô1 | nλ1 , nλ2 , ...〉 = 〈n′λ1
, n′λ2

, ... |
∑

i

cin̂λi
| nλ1 , nλ2 , ...〉. (C.26)

Since this equality is valid for any set of states, we infer that

Ô1 =
∑

i

cin̂λi
=
∑

i

a†λi
〈λi | ô | λi〉aλi

, (C.27)

where we have used that n̂λi
= a†λi

aλi
and ci = 〈λi | ô | λi〉 to write the expression in the last

term. (The matrix element 〈λi | ô | λi〉 is a c-number and can of course be placed anywhere

in the product. Our choice to sandwich it between the two operators a†λi
and aλi

is the
conventional one.)

Going to an arbitrary basis, using Eqs. (C.18) and (C.19), we finally obtain from (C.27):

Ô1 =
∑

i,j

a†λi
〈λi | ô | λj〉aλj

. (C.28)

This is our desired representation of a single-body operator in second quantization.7

To put some flesh on the bones, let us look at two ubiquitous examples of one-body
operators: (i) the spin operator Ŝ for a system of spin-1/2 fermions, and (ii) the Hamiltonian
Ĥ for non-interacting particles (fermions or bosons).
(i) Starting with the single-particle spin-1/2 operator ~σ/2=(~/2)(σx, σy, σz), with σx, σy,
and σz the Pauli matrices, we identify |↑〉 and |↓〉 as the eigenstates of σz which form the
single-particle basis. Reading off from Eq. (C.28), setting λi ≡ λ, λj ≡ µ, we then find the
second-quantized representation of the spin operator:

Ŝ =
∑

λ,µ=↑,↓
a†λσλµaµ, (C.29)

where σλµ = 〈λ | σ̂ | µ〉. Quite frequently there are additional quantum numbers hanging
around, labeling e.g. the sites α of the lattice on which the particles live. In such cases one

7Note that we have suppressed the particle indices n in Eqs. (C.27) and (C.28), since these have now become
immaterial: All single-particle Hilbert spaces Hj are spanned by the same complete set of states {|λi〉}, and
there is no need to single out one of them as a particular representative. The particle indices n only make
sense as a book-keeping device in first-quantized language!
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may write a generalized version of Eq. (C.29):

Ŝ =
∑

α

a†αλσλµaαµ, (C.30)

using the ”Einstein convention” to sum over the repeated spin indices λ =↑, ↓ and µ =↑, ↓
(without writing out the summation explicitly).
(ii) Taking off from a basis of momentum states where the (one-dimensional) kinetic energy
operator K = −p2/2m is diagonal, and then changing to a coordinate basis where K =
−(~2/2m)∂2

x, Eq. (C.27) implies that

Ĥ =

∫
dx a†(x)

(
− ~

2

2m
∂2
x + V (x)

)
a(x), (C.31)

replacing the sum in (C.27) by an integral. The extension to higher dimensions is immediate:

Ĥ =

∫
ddr a†(r)

(
− ~

2

2m
∇2 + V (r)

)
a(r). (C.32)

Turning to the case of two-body operators Ô2 =
∑

n,n′ ônn′ , as needed for describing the
pairwise interaction among particles (labeled by n and n′), we may use an analysis that is a
blue-copy of that for a single-body operator. Although straightforward, its explicit execution
is a bit cumbersome, though. For this reason, we here only give the result, which is simple
and transparent. In fact, it is precisely what one would have guessed given the result for the
one-body operator in Eq. (C.28):

Ô2 =
∑

λλ′µµ′

a†µa
†
µ′〈µ, µ′ | ô | λ, λ′〉aλ′aλ. (C.33)

Here ô is a two-particle operator acting on the two-particle state |λ, λ′〉 =|λ〉⊗ |λ′〉, in exact
analogy with the case of the one-particle operator above (which we also called ô after having
erased the particle index!). Given the result in Eq. (C.33) we easily read off the second-
quantized expression for a two-body potential V (r, r ′) that acts between two particles with
coordinates r and r′:

V̂ =
1

2

∫
ddr

∫
ddr′ a†(r′)a†(r)V (r, r′)a(r)a(r′). (C.34)

We have here used that the two-particle potential operator V is diagonal in the two-particle
basis |r, r′〉, with matrix elements V (r, r′).

The extension to n-body operators with n > 2 is more or less automatic, but not partic-
ularly relevant for applications. We may thus stop here, having exposed the reader to the
basic facts about second quantization.
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Appendix D

Bosonic form for ψr(x)

The bosonic form for the fermion operators is given by Eq. (2.67)

ψ†
r(x) =

1√
2πα

e
−irkF x−r

P

q e
− 1

2 α|q|
h

− 2π
Lq
eiqxρr(q)

i

−irNr
2πx
L U †

r . (D.1)

We will prove this assertion by evaluating the anticommutation relations {ψr(x), ψ†
r(x′)} and

showing that they yield δrr′δ(x − x′) as required.

The anticommutation relations between different branches are satisfied automatically due
to the fact that the partial density operators between different branches commute and the
ladder operators anticommute. The anticommutation relations within a branch must, in
contrast, be checked explicitly, and we obtain

{ψ+(x), ψ†
+(x′)} = 1

2παe
ikF (x−x′)

×
[
U+e

−
P

q
2π
qL
e−

1
2 α|q|−iqxρ+(q)+iN+

2πx
L e−

P

q
2π
qL
e−

1
2 α|q|+iqx′ρ+(−q)−iN+

2πx′

L U †
+

+e
−

P

q
2π
qL
e−

1
2 α|q|+iqx′ρ+(−q)−iN+

2πx′

L U †
+U+e

−
P

q
2π
qL
e−

1
2 α|q|−iqxρ+(q)+iN+

2πx
L

]
.

The ladder operators can be commuted to the right by noticing that U †
+ increases N+

by one, and U †
+U+ = 1 = U+U

†
+. It is useful to divide the sums over q into q > 0 and

q < 0 parts, which results in an expression like ei
2π(x−x′)

L eA−BeC−D + eC−DeA−B where A =
−∑q>0

2π
qLe

− 1
2
αq−iqxρ+(q), B = −∑q>0

2π
qLe

− 1
2
αq+iqxρ+(−q), C = −∑q>0

2π
qLe

− 1
2
αq+iqx′ρ+(−q),

and D = −
∑

q>0
2π
qLe

− 1
2
αq−iqx′ρ+(q). Applying the relation eAeB = eA+B+ 1

2
[A,B] repeatedly

yields

{ψ+(x), ψ†
+(x′)}

= eikF (x−x′)+iN+
2π(x−x′)

L

2πα

e
−

P

q>0
2π
qL
e−

1
2 αq

“

e−iqx−e−iqx′
”

ρ+(q)
e

P

q>0
2π
qL
e−

1
2 αq

“

eiqx−eiqx′
”

ρ+(−q)
[
ei

2π(x−x′)
L e

P

q>0
2π
qL
e−αq+iq(x−x′)

+ e
P

q>0
2π
qL
e−αq−iq(x−x′)

]
e
−

P

q>0
2π
qL
e−αq

.

The sums over q can be evaluated using q = n 2π
L and

∑ 1
nz

n = − ln(1 − z). This yields
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e−
P

q>0
2π
qL
e−αq

= 1 − e−
2πα

L and

{ψ+(x), ψ†
+(x′)}

= 1−e−
2πα
L

2πα eikF (x−x′)+iN+
2π(x−x′)

L

e
−

P

q>0
2π
qL
e−

1
2 αq

“

e−iqx−e−iqx′
”

ρ+(q)
e

P

q>0
2π
qL
e−

1
2 αq

“

eiqx−eiqx′
”

ρ+(−q)

ei
π(x−x′)

L

[
1

e−i
π(x−x′)

L −e−
2πα
L ei

π(x−x′)
L

+ 1

ei
π(x−x′)

L −e−
2πα
L e−i

π(x−x′)
L

]

and taking the α→ 0+ limit gives

{ψ+(x), ψ†
+(x′)}

= 1
Le

ikF (x−x′)+iN+
2π(x−x′)

L

e
−

P

q>0
2π
qL

“

e−iqx−e−iqx′
”

ρ+(q)
e

P

q>0
2π
qL

“

eiqx−eiqx′
”

ρ+(−q)

ei
π(x−x′)

L

[
iL
2π

1
x−x′+i0+ − iL

2π
1

x−x′−i0+

]

or {ψ+(x), ψ†
+(x′)} = δ(x−x′) as required. The anticommutator {ψ+(x), ψ+(x′)} is evaluated

similarly.



Appendix E

Alternate forms for the Luttinger H

For future reference it is useful to write the Hamiltonian in terms of the operators ρΣ and
ρ∆. Expressing ρ± in terms of the sum and difference fields yields immediately (apart from
constants)

H ′ =
π

L

∑

q>0

[(vF + g4 + g2)ρΣ(q)ρΣ(−q) + (vF + g4 − g2)ρ∆(q)ρ∆(−q)] .

In terms of the velocity v defined in Eq. (2.61) this can be written as

H ′ =
π

L

∑

q>0

[
v

g
ρΣ(q)ρΣ(−q) + gvρ∆(q)ρ∆(−q)

]

where g is the interaction parameter. Note that although this expression appears to be diago-
nal, the commutation relation [ρΣ(−q′), ρ∆(q)] = Lq

π makes this form less convenient than the
form (2.62). Using the Heisenberg equation of motion ∂tρΣ = −i[ρΣ,H

′] shows that the time
derivative of the particle number density is ∂tρΣ(q) = (iq)gvρ∆(q), and therefore if we define
the field (2π)−1/2Φ(x) that counts the amount of charge left of x, Φ(x) =

√
2π
∫ x

dx′ρΣ(x′),
we see that ∂tΦ(x) = gv

√
2πρ∆(x). It is customary to rename

√
2πρ∆(x) = ∂xφ(x)so that

the Hamiltonian is given by

H ′ =
v

2

∫ L/2

−L/2
dx
[
g−1(∂xΦ(x))2 + g(∂xφ(x))2

]
.

Alternative notation is to denote ∂xφ(x) = Π(x) to obtain

H ′ =
v

2

∫ L/2

−L/2
dx
[
g−1(∂xΦ(x))2 + gΠ2(x)

]
.

Both these forms are often used in the literature.
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