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Ultracold quantum gases in optical lattices
Artifi cial crystals of light, consisting of hundreds of thousands of optical microtraps, are routinely 

created by interfering optical laser beams. These so-called optical lattices act as versatile potential 

landscapes to trap ultracold quantum gases of bosons and fermions. They form powerful model 

systems of quantum many-body systems in periodic potentials for probing nonlinear wave 

dynamics and strongly correlated quantum phases, building fundamental quantum gates or 

observing Fermi surfaces in periodic potentials. Optical lattices represent a fast-paced modern 

and interdisciplinary fi eld of research.
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Ultracold bosonic and fermionic quantum gases are 
versatile and robust systems for probing fundamental 
condensed-matter physics problems1–12, as well as 
fi nding applications in quantum optics and quantum 
information processing13 and understanding atomic 
and molecular physics14,15. Storing such ultracold 
quantum gases in artifi cial periodic potentials of light 
has opened innovative manipulation and control 
possibilities, in many cases creating structures 
far beyond those currently achievable in typical 
condensed-matter physics systems. Amazingly, 
strong correlation eff ects can be observed in dilute 
atomic gases despite the densities of the particles in 
the trapping potentials being more than fi ve orders 
of magnitude less than that of the air surrounding 
us! Ultracold quantum gases in optical lattices can in 
fact be considered as quantum simulators, as Richard 
P. Feynman originally conceived for a quantum 
computer: a powerful simulator in which a highly 
controllable quantum system can be used to simulate 
the dynamical behaviour of another complex quantum 
system16,17. As a simulator, an optical lattice off ers 
remarkably clean access to a particular hamiltonian 
and thereby serves as a model system for testing 
fundamental theoretical concepts, at times providing 
textbook examples of quantum many-body eff ects.

STORING NEUTRAL ATOMS IN OPTICAL POTENTIALS

Typically, ultracold neutral atoms are stored in 
magnetic traps, in which only a small subset of the 
available atomic spin states — the so-called weak-
fi eld-seeking states — can be trapped. Th is limitation 
is generally overcome by using optical dipole traps 
that rely on the interaction between an induced 
dipole moment in an atom and an external electric 

fi eld. Such a fi eld can, for example, be provided by 
the oscillating electric light fi eld from a laser, which 
induces an oscillating dipole moment in the atom 
while at the same time interacts with this dipole 
moment in order to create a trapping potential18 
Vdip(r) for the atoms:

Vdip(r) = –d•E(r) ∝ α(ωL)⎜E(r)  ⎜2.

Here α(ωL) denotes the polarizability of an atom and 
I(r) ∝ ⎜E(r)  ⎜2 characterizes the intensity of the laser 
light fi eld, with E(r) its electric fi eld amplitude at 
position r. Th e laser light is usually tuned far away from 
an atomic resonance frequency, such that spontaneous 
emission eff ects from resonant excitations can be 
neglected and the resulting dipole potential is purely 
conservative in nature. It can be attractive for laser light 
with a frequency ωL smaller than the atomic resonance 
frequency ω0, or repulsive for a laser frequency larger 
than the atomic resonance frequency.

A periodic potential can then be formed simply 
by overlapping two counter-propagating laser beams. 
Th e interference between the two laser beams forms 
an optical standing wave with period λL/2, which can 
trap the atoms. By interfering more laser beams, one 
can obtain one-, two- and three-dimensional (1D, 2D 
and 3D) periodic potentials. Th e 1D lattice, formed 
by a pair of laser beams, creates a single standing-
wave interference pattern — eff ectively an array of 
2D disk-like trapping potentials. Two orthogonal 
optical standing waves create an array of 1D potential 
tubes (see Fig. 1a), in which the atoms can only move 
along the weakly confi ning axis of the potential tube, 
thus realizing 1D quantum behaviour, with the radial 
motion being completely frozen out for low-enough 
temperatures. Th ree orthogonal optical standing 
waves correspond to a 3D simple cubic crystal (see 
Fig. 1b), in which each trapping site acts as a tightly 
confi ning harmonic oscillator potential.

One important advantage of using optical fi elds 
to create a periodic trapping potential is that the 
geometry and depth of the potential are under the 
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complete control of the experimentalist. For example, 
the geometry of the trapping potentials can be changed 
by interfering laser beams under a diff erent angle, thus 
making even more complex lattice confi gurations19, 
such as Kagomé lattices20. Th e depth of such optical 
potentials can even be varied dynamically during 
an experimental sequence by simply increasing or 
decreasing the intensity of the laser light, thus turning 
experimental investigations of the time dynamics of 
fundmental phase transitions into a reality.

Each periodic potential formed by a single 
standing wave has the form

Vlat(x) = V0sin2(kLx),

where kL = 2π/λL is the wave vector of the laser 
light used to form the optical standing wave and V0 
represents the lattice potential depth, usually given 
in units of the recoil energy ER = h 

_
 2kL

2/2m (m being 
the mass of a single neutral atom), which is a natural 
energy scale for neutral atoms in periodic light fi elds. 
Note that by choosing to interfere two laser beams 
at an angle less than 180°, one can form periodic 
potentials with a larger period.

Th e motion of a single particle in such periodic 
potentials is described in terms of Bloch waves 
with crystal momentum q. However, an additional 
harmonic confi nement arises due to the gaussian 
profi le of the laser beams (see Fig. 2). Although this 
harmonic confi nement is usually weak (typically 
around 10–200 Hz oscillation frequencies) 
compared with the confi nement of the atoms on 
each lattice site (typically around 10–40 kHz), it 
generally leads to an inhomogeneous environment 
for the trapped atoms. One must be careful, 
therefore, when comparing experimental results 
derived for a homogeneous periodic potential case 
to the ones obtained under the inhomogeneous 
trapping conditions as described.

Owing to the large degree of control over the 
optical lattice parameters, a number of detection 
techniques have become available to directly measure 
the band populations present in the periodic potential. 
A good example of such a measurement technique 
is the mapping of a Bloch state in the nth energy 
band with crystal momentum q onto a free-particle 
momentum in the nth Brillouin zone (see Fig. 3). Th is 
can be achieved by adiabatically lowering the lattice 
potential depth, such that the crystal momentum 
of the excitation is preserved during ramp-down. 
Th en, the crystal momentum is eventually mapped 
onto a free-particle momentum in the corresponding 
Brillouin zone21,22 (see Fig. 3). For instance, for an 
equal statistical mixture of Bloch states in the lowest 
energy band, one expects a homogeneously fi lled 
momentum distribution of the atom cloud within 
the fi rst Brillouin zone (a square in momentum space 
with width 2h 

_
 kL). Th e atom cloud for such an input 

state should then expand like a square box aft er the 
adiabatic lowering of the optical lattice potential, 
which has indeed been observed experimently22–24. 
Occupation of higher energy bands becomes visible 
as higher Brillouin zones are populated, and the atom 
cloud expands in a stair-case density distribution aft er 
adiabatic turn-off 23 (see Fig. 3e).
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Figure 1 Optical lattice potentials formed by superimposing two or three orthogonal standing waves. 
a, For a 2D optical lattice, the atoms are confi ned to an array of tightly confi ning 1D potential tubes. 
b, In the 3D case, the optical lattice can be approximated by a 3D simple cubic array of tightly 
confi ning harmonic oscillator potentials at each lattice site.
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Figure 2 Optical lattice potentials. a, The standing-wave interference pattern creates a periodic 
potential in which the atoms move by tunnel coupling between the individual wells. b, The gaussian 
beam profi le of the lasers, a residual harmonic trapping potential, leads to a weak harmonic confi nement 
superimposed over the periodic potential. Thus the overall trapping confi guration is inhomogeneous.
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NONLINEAR DYNAMICS IN PERIODIC POTENTIALS

For a weakly interacting Bose–Einstein condensate 
(BEC) in an optical lattice potential, the motion 
of the particles should at fi rst sight resemble that 
of single particles moving in a periodic potential. 
However, the interactions between the particles, 
although weak, can lead to important nonlinear 
eff ects in the static and dynamic behaviour of the 
matter waves. For example, a BEC in a weak periodic 
potential can be described as an array of Josephson 
junctions25,26, with atom–atom interactions 
leading to nonlinear dynamics. Very recently, in a 
textbook experiment, researchers have been able 
to confi ne a BEC to just two wells of a periodic 
potential27, thus creating a double-well situation. 
Th e two condensates are coupled by a tunnelling 
potential through the barrier between the two sites. 
Such a double-well potential is eff ectively a single 
Josephson junction28–31 for atomic quantum gases27. 
Th e small separation between the two lattice sites 
means a rather strong tunnel coupling between the 
two condensates, which brings the experimental 
timescale for the observation of the ensuing 
nonlinear dynamics into a measurable regime. Th e 
researchers measured the populations and phase 
diff erence of the two condensates in the double well 
(see Fig. 4) and observed two distinct regimes27. For 
a small initial population diff erence between the 
two lattice sites, the system showed clear Josephson 
oscillations in the population imbalance between 
the two sites, whereas for a large initial population 

imbalance the system exhibited ‘self-trapping’, in 
which the initial population imbalance remained 
almost fi xed over time (t), and the phase diff erence 
(φ) between the two condensates increased linearly 
over time due to the chemical potential (µ) diff erence 
between the condensates φ = (µ1 – µ2)t/h 

_
 .

Th e nonlinear interactions between particles 
in periodic potentials can also lead to pronounced 
instabilities that eventually destroy a BEC propagating 
through a periodic optical potential. Th is was recently 
demonstrated unambiguously32. A condensate in 
a weak optical potential was set into motion and 
propagated through an optical lattice. With increasing 
crystal momentum of the wavepacket, the researchers 
observed a sudden onset in the loss rate of condensed 
atom32 (see Fig. 5). Amazingly, this happened close 
to the point at which the crystal momentum q is 
close to half of the reciprocal lattice vector qB, that 
is, q/qB ≈ 0.5, providing strong evidence for the 
observation of the predicted dynamical instability 
behaviour33,34. Why does this instability occur close 
to these values of the crystal momentum? Intuitively 
this can be explained in the following way: for crystal 
momenta q > qB/2 the eff ective mass of the particles 
propagating through the lattice potential changes 
sign and becomes negative. A negative eff ective 
mass and repulsive interaction between the particles 
can be equally described by a system with positive 
eff ective mass but attractive interactions between 
the particles. However, the density distribution of a 
system with attractive interactions becomes unstable 
even for small population imbalances between 
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Figure 3 Adiabatic mapping 
of crystal momentum onto 
free-space momentum of 
an atom. a, Bloch bands for 
different potential depths. 
During an adiabatic ramp-
down the crystal momentum 
is conserved. b, A Bloch wave 
with crystal momentum q 
in the nth energy band is 
mapped onto a free particle 
with momentum p in the nth 
Brillouin zone of the lattice. 
c, 2D Brillouin zone scheme 
for a 2D simple cubic lattice 
confi guration. d, Adiabatic 
mapping of a statistical 
mixture of Bloch states within 
the lowest energy band 
leads to the observation of a 
box-shaped expanding atom 
cloud, corresponding to a 
homogeneously fi lled central 
Brillouin zone. e, When the 
higher energy bands are 
occupied, populations of higher 
Brillouin zones become visible.
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diff erent wells, which leads to an enhancement of 
the density fl uctuations. Consider the simpler case 
of a double-well system with attractive interactions; 
an equal population between particles in the left  

and right potential well of the system will result in 
a metastable situation because the particles cannot 
decide which well to occupy in order to lower the 
total energy of the system. But for a small initial 
population imbalance between the wells, the particles 
will prefer to amplify this imbalance by moving into 
the well with more particles. Th e same eff ect acts on 
particles in the periodic potential. A small density 
fl uctuation, which is always present in the system 
due to fi nite temperature eff ects, for example, will 
eventually be amplifi ed and lead to the destruction of 
the condensate (see Fig. 5a).

STRONGLY CORRELATED QUANTUM PHASES

Despite the presence of interactions between the 
particles trapped in an optical lattice, which lead to 
nonlinear terms in the Schrödinger-like equation 
known as the Gross–Pitaevskii equation35, a 
macroscopic wavefunction still very well describes 
the quantum many-body system in the weakly 
interacting regime. If the interactions become 
increasingly stronger relative to their kinetic energy, 
the system becomes strongly interacting and, in 
general, can no longer be described as a simple 
matter wave. Th e resulting strongly correlated 
quantum states are diffi  cult to handle theoretically, 
and are extremely challenging for modern 
condensed-matter theory. A prominent example 
of such a transition from a weakly interacting 
quantum system to a strongly correlated quantum 
many-body system is the superfl uid-to-Mott 
insulating state of matter for bosons1–4, originally 
predicted in a seminal work by Fisher et al.1 and 
later introduced to ultracold atoms2. But how does 
this transition come about? If one considers only 
occupations of the lowest Bloch band, interacting 
bosons in optical potentials can be described by the 
Bose–Hubbard hamiltonian1

 
H = – J  – 1+ – U1

2
∑ ∑â â n̂†
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Th e fi rst term is the kinetic energy term, describing 
the tunnel coupling J between neighbouring lattice 
sites 〈i,j〉 and âi

†(âi) creates (destroys) a particle 
on lattice site i.  Th e second term describes the 
onsite interactions U between the particles, with 
n̂i counting the number of particles on site i. Only 
when two particles are placed on the same lattice 
site can they interact with each other, leading to 
an interaction energy U. Such an interaction term 
works well for ultracold neutral atoms in periodic 
potentials, as their interactions are very short-ranged 
and no long-range Coulomb forces exist between 
the particles. Th is system exhibits two prominent 
ground states. For weak interactions relative to 
the kinetic energy U/J << 1, the system forms a 
Bose–Einstein condensed state of matter, where 
each atom is delocalized over the entire lattice. Such 
a state is favoured as the kinetic energy term is 
minimized for single-particle wavefunctions spread 
out throughout the lattice. In this case, the total 
system can be described by a giant matter wave and 
the atom number per lattice site follows a poissonian 
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Figure 4 Nonlinear dynamics for a BEC in a double-well system. a, For a small population imbalance 
between the two wells, Josephson oscillations between the two condensates in different wells are 
observed. b, For large population differences, the system enters a self-trapping mode, in which 
the population difference remains locked, but the phase difference between the two condensates 
increases linearly with time. With kind permission from M. Oberthaler, University of Heidelberg. 
Reprinted with permission from ref. 27. Copyright (2005) by the American Physical Society.
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distribution. Upon sudden release of the matter 
wave from the optical lattice potential, one observes 
a multiple matter-wave interference pattern (see 
Fig. 6a). For the case of large interactions relative 
to the kinetic energy, U/J >> 1, the system enters 
the strongly correlated state of a Mott insulator, in 
which the atoms are localized to single lattice sites, 
with a fi xed particle number per site (see Fig. 6b). 
Th erefore, the system cannot be described by a 
giant coherent matter wave, and for very strong 
interactions, no interference pattern can be observed 
upon releasing the particles from the lattice. Instead, 
perfect correlations in the particle number per site 
exist. Intriguingly, we found the timescale for the 
many-body system to switch from a Mott insulating 
state to a superfl uid state to be of the order of a few 
tunnelling time constants3, which is remarkable 
considering the huge rearrangement of the system. 
Indeed, the dynamical evolution of the quantum 
many-body system across the transition remains an 
active and intriguing fi eld of research, possibly even 
with analogues to cosmological phase transitions36,37.

Recently, Mott insulators in 1D have become 
attainable through the use of a deep 2D optical lattice 
loaded with a BEC6,38,39. Th e condensate then splits 
up into several thousand individual 1D BECs in each 
of the potential tubes. Subsequently, a third lattice 
potential applied along the direction of the tubes 
can drive the transition to the Mott insulating state, 
as explained above. For the one-dimensional case, a 
shift  in the critical value for the transition in U/J was 
observed38, as predicted by theory. Surprisingly, the 
transport properties were already strongly aff ected 
well before the transition to a Mott insulator. One 
group40 has recently investigated the oscillations 
of a 1D BEC along the weakly confi ning axes of 
the potential tubes in the presence of an additional 
lattice along the tubes, and found heavily damped 
oscillations for very shallow lattices, even before the 
system enters an insulating state, and such damping is 
expected. Although still somewhat puzzling, the eff ect 
has been attributed to zero-temperature quantum 
fl uctuations, which are predicted to lead to signifi cant 
damping in the 1D case41.

One-dimensional quantum systems are peculiar 
in many other respects. In 1960 Marvin Girardeau 
found5 an exact mapping that relates the many-body 

state of strongly interacting bosons with infi nite 
repulsion between the particles (hardcore bosons) to 
the one of non-interacting fermions in an amazingly 
simple way:

ΨB(x1,…,xN) = |ΨF(x1,…,xN)| .      (1)

Th at is, the wavefunction of the strongly interacting 
hardcore bosons in 1D is nothing but the absolute 
value of the many-body wavefunction of the same 
number of non-interacting fermions! Th is remarkable 
mapping, known as fermionization, relies on the 
fact that the strongly interacting bosons in one 
dimension resemble non-interacting fermions. Th e 
strong repulsion between the particles eff ectively 
mimics Pauli’s exclusion principle for fermions. Many 
properties of a fermionized Bose gas are identical 
to those of non-interacting fermions, such as their 
density distribution, though other properties, such 
as their momentum distribution, are distinctly 
diff erent from both a non-interacting Fermi gas and a 
weakly interacting Bose gas. Initial evidence for such 
fermionic behaviour came from the observation of 
reduced three-body losses41 for a 1D BEC approaching 
the strongly correlated regime of a Tonks–Girardeau 
gas. Furthermore, a shift  of the collective excitation 
frequencies of the 1D gas was observed in this regime 
from the one expected for a 3D weakly interacting 
BEC, but still well described by 1D theories for weakly 
interacting condensates.

During the past year two groups were able to 
increase the interactions to a regime in which the 
measurements extend into the fermionized regime. 
Th is is again characterized by the ratio of interaction 
energy to kinetic energy, usually given by the parameter 
γ = Eint/Ekin. In a fi rst experiment6, γ was increased 
by the addition of a weak lattice along the potential 
tubes, which amounts to an increase of the eff ective 
mass of the particles and, therefore, an increase in 
γ (up to 200). For low fi lling factors and γ>>1, the 
many-body quantum system enters the regime of a 
Tonks–Girardeau gas. Our group (see ref. 6) measured 
momentum distributions along the potential tubes, 
which are characteristic for a fermionized gas in 1D. We 
used a fermionization approach based on the mapping 
theorem of Girardeau (see equation 1) to explain the 
observed momentum distribution, obtaining good 
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a b Figure 5 Dynamical 
instability of a BEC in a 
periodic potential. a, For a 
movement of a BEC through 
a 1D optical lattice with a 
lattice depth of 0.2ER an 
instability is observed close 
to crystal momenta q/qB>0.5. 
With kind permission from 
M. Inguscio. Reprinted with 
permission from ref. 32. 
Copyright (2004) by the 
American Physical Society. 
b, This can be intuitively 
explained by a change of 
sign in the effective mass of 
the particles at q/qB = 0.5, 
which is formally equivalent 
to a change of sign in the 
interaction strength between 
the atoms. Formerly repulsive 
interactions then become 
effectively attractive leading 
to an instability that destroys 
the condensate and leads 
to a large loss rate. Here qB 
denotes the momentum at the 
band edge. 
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agreement between theory and experiment. In another 
experiment7, no further lattice was present along the 
direction of the tubes, but the confi nement of the 
atoms in the radial direction was further increased, 
leading to values of γ of up to 5.5. Th ey measured the 
1D energy per particle and size of the atom clouds 
along the axial direction of the potential tubes and 
found good agreement with the exact results for the 
1D case42, showing increasing deviations from the 
weakly interacting results upon increasing γ. In general, 
1D quantum systems can be very well described 
by Luttinger-liquid theory43, applicable also in the 
intermediate regime for γ, which can be tested in future 
experiments. Th e realization of the quantum states of 
a Tonks–Girardeau gas emphasizes the versatility of 
ultracold quantum gases in the search for novel, or 
long-predicted quantum phases, which have so far 
eluded observation.

FERMIONIC QUANTUM GASES IN OPTICAL LATTICES

Only recently have we begun to explore the potential 
of ultracold fermions in an optical lattice. In one 
of the pioneering experiments with fermions in 
1D optical lattices, researchers studied the peculiar 

transport properties of bosons and fermions in 
periodic potentials44. Th ey found that applying steep 
potential gradients inhibited transport for fermions 
in optical lattices, but that collisions with added 
bosonic atoms can stimulate transport in the system 
again. In a diff erent experiment45 they also observed 
the onset of insulating behaviour in a trapped 
Fermi gas (a single-component Fermi gas) as the 
Fermi energy approaches the bandgap. For this, the 
researchers observed oscillations of their ultracold 
fermions in a 1D optical lattice, superimposed 
harmonic confi nement and found that these 
oscillations were strongly suppressed for increased 
fi lling of the lowest energy band. In another very 
recent experiment24, ultracold fermionic 40K atoms 
were loaded into a 3D optical lattice. Using the 
adiabatic mapping outlined above, they directly 
observed the Fermi surface of a Fermi gas (see 
Fig. 7). As the fi lling factor was increased, the 
fermionic system was driven into a band insulating 
state. Th e authors point out that such a band 
insulator, with one fermion per site, could also be 
used as a quantum register for quantum information 
purposes, as an alternative to a Mott insulator for 
bosonic atoms. Th e researchers also demonstrated 
that the usual restriction of atoms to the lowest 
Bloch band may break down if the interactions 
between two fermionic atoms in diff erent spin states 
are increased such that the onsite interaction energy 
approaches the value of the vibrational splitting 
of the harmonic oscillator levels. Th eir impressive 
demonstration involved enhancing the interactions 
between two fermions in diff erent spin states 
through a Feshbach resonance and observing the 
subsequent population of higher energy bands.

OUTLOOK

What are the prospects for future investigations 
of ultracold atoms in optical lattices? I believe 
we have just cracked open the door to a wide 
interdisciplinary fi eld of physics ranging from 
nonlinear dynamics to strongly correlated 
quantum phases and quantum information 
processing, which will provide us with many 
research highlights throughout the coming years. 
One natural step forward is to load spin-mixtures 
into the lattice potential. Th eorists have predicted 
fascinating quantum phases, such as a counterfl ow 
superfl uid46,47, for which the total density of a two-
component spin-mixture in a lattice is fi xed, but 
the individual spin components remain completely 
superfl uid. Further predictions include Cooper-
pair-like states48, possible ways to realize spin-Bose 
models49 or even single-atom transistors50 with 
neutral atoms. Moreover, by using spin-dependent 
lattice potentials one can map the hamiltonian of 
a two-component Bose mixture onto a controlled 
quantum-spin-system hamiltonian and investigate 
fundamental quantum magnetic systems46,51,52 in a 
highly controllable environment.

Another research eff ort will be directed towards 
disordered systems53–56. Strongly interacting quantum 
systems in random potentials are among the most 
diffi  cult systems to analyse theoretically. As one of the 

a

b

Figure 6 Transition from a superfl uid to a Mott insulator. a, In the superfl uid state of a BEC, the 
underlying atoms can be described as a giant macroscopic matter wave. When such a condensate 
is released from the periodic potential, a multiple matter-wave interference pattern appears, owing 
to the phase coherence between the atomic wavefunctions on different lattice sites. In this case, the 
phase of the macroscopic matter wave is well defi ned. However, the atom number on each lattice 
site fl uctuates. b, In the other limit of a Mott insulating state of matter, each lattice site is fi lled with 
a fi xed number of atoms but the phase of the matter-wave fi eld remains uncertain. No matter-wave 
interference can be seen in this case when the quantum gases are released from the lattice potential 
(see for example, ref. 3).
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highlights under discussion, theorists have predicted 
the existence of a Bose-glass phase1, an insulator 
without an energy gap, which should be observable 
experimentally. More recently, experimentalists have 
investigated random potentials in a 1D optical lattice, 
which were constructed by means of a laser speckle 
pattern, enabling them to measure the transport 
properties of a BEC in this random potential57. 
In addition to bosons, fermions in optical lattice 
potentials require further study in order for them 
to reveal their ‘hidden’ quantum phases. Fermions 
in a 3D optical lattice can be described by the 
famous Hubbard hamiltonian, which is believed to 
contain a possible explanation for high-temperature 
superconductivity58–60. Although this system has been 
investigated theoretically for decades, the exact form of 
the phase diagram remains unknown. Here, fermions 
in an optical lattice could be used to investigate 
this fundamental hamiltonian and fi nd where 
antiferromagnetic and superfl uid phases of fermions 
with repulsive interactions in periodic potentials 
are located60. Fermions in optical lattices are also 
suitable for precision interferometry measurements 
of the gravitational acceleration due to the absence of 
collisional shift s in single-species Fermi gases61.

In addition to single-species fermionic and 
bosonic gases, mixtures of bosonic and fermionic 
quantum gases in an optical lattice are predicted to 
contain exotic quantum phases20,53,56,62–65, which have 
never been observed in conventional condensed-
matter physics. For example, several quantum phases 
consisting of composite fermions in superfl uid or 
metallic phases have been found65. For many of the 
predicted strongly correlated quantum phases, it has 
not been clear how detectable they might be. Th e 
following clever idea could do the trick for many 
of those phases: quantum noise-correlations66 in 
expanding atom clouds can reveal many ground 
states of the fermionic or bosonic atoms in optical 
lattices, for example, antiferromagnetic phases or 
charge-density waves. Th ese noise correlations were 
recently observed simultaneously by two groups, 
using dissociating ultracold molecules67 or Mott-
insulator quantum gases in optical lattices68 (see 
Fig. 8). We expect these quantum noise correlations 
to fi nd many uses for the detection of other strongly 
correlated quantum phases. Th e discovery of such 

quantum phases will advance our understanding of 
complex quantum matter under extreme conditions, 
undoubtedly bringing many exciting developments 
to our doorstep.
DOI:10.1038/NPHYS138
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