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Abstract

Different effects from electron-electron interactions and disorder in
helical and quasi-helical conductors are studied using bosonisation and
renormalisation group methods.

The combined effects of Rashba spin-orbit interaction and magnetic
Kondo-type impurities in the helical edge liquids of quantum spin Hall
insulators, are investigated. The Kondo temperature is shown to depend
on the strength of the Rashba coupling, which allows for electrical control
of the Kondo physics by an external electric field.

Anderson localisation due to disordered impurity backscattering in
a quasi-helical conductor is also studied. A quasi-helical conductor is a
one-dimensional system which in which half of the available states are
effectively removed from the system with the combination of spin-orbit
interaction and magnetic or electric fields. The resulting conductor have
counterpropagating modes that are approximately, but not completely,
spin-filtered. It is shown that an applied magnetic field can be tuned
to make the system pass through two metal-insulator transitions at dif-
ferent magnetic fields, allowing for a conducting quasi-helical phase for
intermediate field strengths.

Furthermore, biased and unbiased point contact tunnelling between
two quantum spin Hall edges are investigated, in addition to the study
of combined effects of electron-electron interaction and different types
of Rashba interactions on the quantum spin Hall edges. A disordered
Rashba coupling is shown to localise the electrons for sufficiently large
Rashba and electron-electron interaction strengths.

The thesis also contains a quick introduction to one-dimensional physics,
bosonisation and renormalisation group theory, to set the stage for the
topics to be discussed.
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1
Introduction

In this thesis we will explore how interaction and disorder influence the
physics in a helical conductor. Helical conductors appear at the edge
(or surface) of topological insulators, a newly discovered state of matter,
but similar systems mimicking helical conductors can also be constructed
from different types of one-dimensional conductors. To set the stage, let
us therefore begin by introducing and briefly discussing the notions of
interaction, disorder, and topological insulators.

1.1 Interactions in condensed matter physics

Interactions between the electrons in a solid state system may seem like
the first thing one needs to consider when setting up a mathematical
description of the system. Many properties of for instance metals can,
however, be described by considering the conduction electrons as non-
interacting and free to move around in the metal, like the atoms that
constitute an ideal gas. A non-interacting electron system is called an
ideal Fermi gas. In a Fermi gas, all available states with energy lower
than the Fermi energy are occupied. This picture is not good enough
when electron-electron interactions become important. The most suc-
cessful and useful theory that properly describe solid state systems with
electron-electron interaction is the so called Fermi liquid theory, first pro-
posed by Landau [1]. The basic idea is that interactions are accounted for
by regarding the elementary excitations as quasiparticles, i.e. the micro-
scopically complicated system behaves as if it were made up of particles
interacting only very weakly with each other. The situation is similar to
the one in quantum electrodynamics, where a charged particle is travel-
ling with a cloud of photons, thereby changing it’s effective charge. In
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2 Chapter 1 Introduction

close analogy, the conduction electrons in a metal will stir up density fluc-
tuations around it as it travels through the system, thereby changing for
instance its effective mass. The quasiparticles will share some properties
with the ”bare” electrons from which they are made, while other proper-
ties will be determined by collective effects of the system. Remarkably,
many observable properties of a normal metal or semiconductor can be
predicted from Landau’s Fermi liquid theory, neglecting collective effects,
and replacing the electrons by quasiparticles with a new effective mass,
and, a finite life time.

However successful, there are many examples of physical systems that
cannot be described by Fermi liquid theory. Throughout this thesis,
we will consider one of these examples, namely systems of interacting
electrons in one dimension, in their standard setting often well modelled
by the so called Luttinger liquid theory [2, 3].

Physics in one dimension - realised for instance by electrons confined
to a quantum wire, a carbon nanotube or the edge of a two-dimensional
quantum well - is often radically different from physics in higher dimen-
sions. Put simply, the difference most often lies in the fact that it is no
longer possible for a single electron to move through the system with-
out significantly influencing the surrounding electrons. In one dimension,
any moving electron will bump into other electrons and any movement
of an electron in one dimension will therefore have to be a collective phe-
nomenon. Some of these are quite counterintuitive. For instance, the
charge and spin attached to a single electron that is inserted into the
system (e.g. via tunnelling from an STM tip) will break up and be split
into two separate collective excitations carrying spin and charge individ-
ually. The fact that the electrons will only have two directions to choose
from will also have dramatic consequences. In particular, the Fermi level
will consist of two points in the Brillouin zone, at k = ±kF and the
low-energy excitations around these points will be limited, so that any
particle-hole excitation will have a well-defined energy and momentum,
implying that electrons in one dimension can effectively be described as
a system of bosons. As we shall see in this thesis, this remarkable feature
can be taken advantage of to probe the physics with powerful analytical
methods.

1.2 Disorder

It was shown by Anderson over 50 years ago that a disorder potential, i.e.
a randomly distributed scattering potential, can cause a metallic system
to undergo a transition into an insulator [4]. This effect is known as
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Anderson localisation. Real systems are not perfect, so disorder and,
potentially, Anderson localisation, is something that has to be accounted
for.

Anderson localisation is a quantum effect that can be understood in
terms of the electron waves. If one regards the electron system as a
system of standing waves, each confined in space to a lattice site, the
electrons will have a finite amplitude to tunnel between the sites. In
a disordered system, the potential energy experienced by the electrons
will be randomly distributed between the sites, and thus, the phases of
the quantum interference between the possible tunnelling paths for the
electrons vanish on average.

In a three-dimensional system, Anderson localisation is a rather weak
and subtle effect that comes into play only if the disorder is strong
enough. In two dimensions, the scattering against the disorder potential
becomes more important, and a free electron system in two dimensions
is always localised. However, the localisation length, the characteristic
length with which the extension of electron wave functions decay, can be
very large. Anderson localisation is most dramatic in a one-dimensional
electron system, though, where the localisation length is often of the
same order of magnitude as the mean free path.

Since the individual effects of both interactions and disorder are
most pronounced in one dimension, the combined effect of these become
very interesting. As we shall see, in a helical liquid - the type of one-
dimensional electron system that we study in this thesis - the interplay
between interactions and disorder indeed lead to some fascinating and
unexpected phenomena.

1.3 Topological insulators

Ever since the important work on phase transitions by Landau [5] in the
1940’s, different states of matter have typically been classified accord-
ing to which symmetries are spontaneously broken. It has been realised,
however, that there is a large class of states that can be characterised
not by what symmetries they break, but by the value of some topological
invariant. These matter states are said to be topologically ordered [6,7].
This notion of topological order have sprung from studies of the integer
and fractional quantum Hall effects. Recent additions to this family of
topologically ordered systems are the two- and three-dimensional topo-
logical insulators and the topological superconductors and superfluids.
Good reviews on these subjects are found in refs. [8] and [9].

The two-dimensional incarnation of the topological insulator state,
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also known as the quantum spin Hall effect, was first predicted to be
present in graphene, by Kane and Mele [10] in 2005. It turned out, how-
ever, that the spin-orbit interaction in graphene is too weak to produce
the large band gap required to sustain a topologically ordered state. In
2006 Bernevig, Hughes and Zhang predicted the quantum spin Hall ef-
fect to be present in HgTe quantum wells, which was then experimentally
confirmed in 2007 by König et al. [11].

A quantum spin Hall insulator has a band gap in the bulk, just as
an ordinary insulator, but with topologically protected edge states with
a dispersion crossing in the bulk gap. These states are helical, which
means that they move in opposite directions for opposite spins. Possible
applications for these materials include dissipationless transport along
the edges, which would be useful in all sorts of devices in the future.
Since, in the ideal case, the edge transport is spin filtered, one may
envision promising applications particularly in spintronics [12].

Three-dimensional topological insulators, with surface states also pro-
tected by time-reversal symmetry, were predicted to exist in certain BiSb
alloys by Fu and Kane in 2007 [13]. This was experimentally confirmed
by Hsieh et al. in 2008 [14] using ARPES. Later, more materials have
been predicted and some of them experimentally tested [15,16]. Though
interesting, 3D topological insulators are not treated in the thesis. The
same goes for topological superconductors and superfluids, which are
other related states of matter [17–20].

This thesis deals with both helical and quasi-helical conductors, i.e.
one-dimensional conductors where opposite spins move primarily in op-
posite directions. As we shall discuss, quasi-helical conductors, where
the counterpropagating electrons are not completely spin-filtered, can be
realised in quantum wires and carbon nanotubes under certain condi-
tions [21, 22].

1.4 Outline

The thesis addresses the problem of interaction and disorder on the edges
of quantum spin Hall insulators and in quasi-helical conductors. It is
arranged as follows. Chapter 2 provides a very brief introduction to
topology in physics and topological insulators, with the focus on the first
experimentally realised quantum spin Hall system, the HgTe quantum
wells.

In chapters 3 and 4, the investigations of tunnelling at a point con-
tact on the edge of a quantum spin Hall system (chapter 3) and of a
spatially disordered Rashba on the edge (chapter 4) is presented in some
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detail. One-dimensional field theory and the methods of bosonisation
and renormalisation group theory are presented in short introductory
sections, with additional details introduced when needed in the appli-
cations . The work of these two chapters were published in refs. [23]
and [24], respectively. These articles will be referred to as Paper I and
Paper II, respectively. Chapter 5 deals with metal-insulator transitions
through Anderson localisation in quasi-helical conductors. The RG anal-
ysis of Anderson localisation is demonstrated quite thoroughly, and a
novel two-fold RG scheme is presented. This work has been submitted
for publication and will be referred to as Paper III [25]. In Chapter 6,
the combined effect of Rashba and Kondo interactions on a quantum spin
Hall edge is discussed. This work is also submitted for publication will
be referred to as Paper IV [26]. Papers I-IV are attached to the thesis.

Chapter 7 contains a summary of the work and also a brief outlook
on interesting topics that await solutions.
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2
Topological insulators

A topological insulator has an insulating bulk, but massless conducting
edge modes. The insulating bulk has a certain topological invariant that
differs from that of an ordinary insulator. The edge, or surface, con-
stitutes an interface between materials with different topology of their
Hamiltonians and it turns out that the bulk energy gap must close pre-
cisely when going from a topological to a regular insulator. Thus, gapless
states must exist on the insulator surface. A two-dimensional topologi-
cal insulator is called a quantum spin Hall (QSH) system and its edge is
a helical conductor. This means that counterpropagating electrons will
have opposite spins, or more correct, they will transform into each other
under time reversal symmetry. This is something that turns out to give
rise to a multitude of theoretically interesting effects and potential ap-
plications. Throughout this thesis, we will investigate different aspects
of interactions and disorder in helical conductors, so to understand the
context, this chapter gives a brief introduction to topological insulators
and the notion of topology in physics.

This chapter follows very closely the exposition in ref. [27]. Other,
more extensive reviews, can be found in refs. [9] and [8].

2.1 Homotopy

Before saying anything about topological insulators, we have to know
what is ”topological” about them. The topological concepts that will be
important are those of homotopy and homeomorphisms, so we will start
with the necessary definitions. First, we need to know what topological
spaces and manifolds are. A good introduction to the subject of topology
in physics is found in Nakahara’s textbook [28].

7
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Figure 2.1: x ∈ R on the horizontal axis and f(x) ∈ R on the vertical
axis.

A topological space is defined to be the pair (X, T ), where X is just
a set and T is a collection of open subsets satisfying:

i. ∅ and X ∈ T .

ii. The union of a finite number of the subsets in T is also in T .

iii. The intersection of a finite number of the subsets in T is also in T .

We will refer to X alone as a topological space which is given a topol-
ogy by T .

A map f : X → Y , where X and Y are two topological spaces, is
continuous if the inverse image of an open set in Y is an open set in X.
As an example, consider the map shown in fig. 2.1, f : R→ R defined as

f(x) =

{
−x+ 2, x ≤ 0
−x, x > 0

. (2.1)

As a function of x, f is clearly discontinuous. We use what is called the
usual topology on R, i.e. T consists of all open intervals and their unions.
Consider the two open intervals I1 = (3, 4) and I2 = (1, 3). The inverse
images of I1 is an open set, f−1(I1) = (−2,−1), but the inverse image
of I2 is a half-closed set, f−1(I2) = (−1, 0]. Thus, by definition, f is not
continuous.

The map f : X → Y , is called a homeomorphism if it is continuous
and has an inverse f−1 : Y → X which is also continuous. An equiv-
alence relation X ∼ Y can then be defined if such a homeomorphism
exists between X and Y . Two topological spaces can be thought of as
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homeomorphic to each other if one can be continuously deformed into the
other, that is, without any tearing or pasting being done. A topological
invariant is a quantity conserved under homeomorphisms. This means
that two spaces with differences in their topological invariants are not
homeomorphic to each other

An m-dimensional manifold is an m-dimensional topological space
that is locally Euclidian, i.e. there is a neighbourhood that is homeomor-
phic to Rm around every point on it. More exactly, a topological space
M is a smooth manifold if it comes with an atlas of charts {(Ui, φ)},
where {Ui} is a family of open sets covering M , i.e. ∪iUi = M , and φi,
called a coordinate function, is a homeomorphism onto an open subset of
Rm.

We are now finally ready to discuss Homotopy classes, which are
equivalence classes of loops on a manifold. Two loops are equivalent
if they can be continuously deformed into one another. To get a clear
definition of homotopy, we have to define what a loop is:

Let X be a topological space and I = [0, 1]. A path is a continuous
map α : I → X with initial point α(0) = x0 and end point α(1) = x1. A
loop is a path which starts and ends at the same point, α(0) = α(1) = x0,
called the base point of the loop.

Now, let α, β : I → X be two different loops on X with the same base
point x0. We introduce an equivalence relation ∼, stating that α ∼ β if
there exists a continuous map F : I × I → X such that

F (s, 0) = α(s), F (s, 1) = β(s) ∀ s ∈ I (2.2)

and

F (0, t) = F (1, t) = x0 ∀ t ∈ I. (2.3)

If α ∼ β under this equivalence relation, they are said to be homo-
topic. The meaning of this definition is just that α and β are homotopic
if they have the same base point and can be continuously deformed into
one another.

The homotopy classes form the elements of the first homotopy group,
or the fundamental group, of X at x0, denoted π1(X, x0). The homotopy
group of a manifold is thus defined at each point on the manifold. How-
ever, one can show that in most cases, π1 can be defined on the whole
manifold and there is no need for choosing a base point:

An arcwise connected topological space is a topological space on which
for all pairs of points x0, x1 ∈ X there exists a path α so that α(0) = x0

and α(1) = x1. Let X be an arcwise connected topological space and
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let x, y ∈ X. Then π1(X, x) = π1(X, y). A manifold that has a trivial
fundamental group, π1 = 1, is said to be simply connected.

As an example, let us look at the fundamental group of a circle. It
is actually easy to understand that π1(S1) ' Z: a loop that goes around
the circle n ∈ Z times can only be continuously deformed into a loop
that goes around the circle m ∈ Z times if n = m. Furthermore, a
loop encircling S1 n times plus a loop encircling it m times yields a loop
encircling S1 n+m times. Thus, the loops can be characterised with an
integer, up to homotopy.

We can also calculate the fundamental groups of manifolds that are
products of arcwise connected topological spaces, using the following
theorem:

Let X and Y be arcwise connected topological spaces. Then π1(X ×
Y ) ' π1(X)⊕ π1(Y ).

Using this, we can easily obtain the fundamental group of a torus:

π1(T 2) ' π1(S1 × S1) ' π1(S1)⊕ π1(S1) ' Z⊕ Z. (2.4)

We have now only talked about the first homotopy group. Higher
homotopy groups πn, n > 1, are concerned with equivalence classes of
higher dimensional loops, for instance π2(S2) = Z, since spheres can
wrap themselves around other spheres an integer number of times.

The homotopy groups of a manifold (or, more generally, a topological
space), are examples of topological invariants, so they can be used to
determine whether two manifolds are homeomorphic to each other or
not.

2.2 Topology in physics

So what does all this have to do with condensed matter physics? A field
in physics is a function φ(z) associating a physical quantity to each point
z in space-time, or rather, to each point in the part of space-time relevant
to the physical system we are dealing with. In a classical field theory, the
values of the fields can be represented by numbers, while in a quantum
field theory, the values are represented by quantum operators.

Mathematically, a quantum field can be viewed as a map

φ : M → T (2.5)

z 7→ φ(z) (2.6)

from a base manifold M to a target manifold T . This base manifold M
will almost always be equivalent to Sd. This is because the microscopic
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theory is usually defined on Rd, which will be infinitely large in the
thermodynamic limit. In order for us to have a finite action of the theory,
the fields must be constant at infinity. If we then identify all boundary
points to a point, the whole manifold becomes a sphere, and M ' Sd.
The target manifold T contains the values that the fields take. In a
quantum field theory, this is typically the symmetry group G of the
fields, often O(N), U(N) or Sp(N), divided by a subgroup H of G.

The simplest example of topology in physics is perhaps the well-known
problem of a particle in a ring with a magnetic flux Φ going through
it [29]. In that case, the field is a map

φ : S1 → S1 (2.7)

τ 7→ φ(τ), (2.8)

where τ ∈ [0, β] is imaginary time, and the base manifold is equivalent
to S1, because τ is periodic with 0 = β. The target manifold is also
S1, because the field φ(τ) is also periodic. There is a unique map from
the value of φ(τ) to the particle’s position on the ring, but the opposite
is not true. If, for instance, the particle goes around the ring twice
when τ goes from 0 to β, every point on the ring is associated with two
different values of φ(τ), for two different values of τ , with the difference
φ(τ1)− φ(τ2) = 2π.

The partition function of the system is

Z =

∫
φ(β)−φ(0)=2πn

Dφe−
R

dτ( 1
2
φ̇2−iAφ̇), (2.9)

where A = Φ/Φ0 is the vector potential of the magnetic field and n ∈
Z. The number n is called the winding number and is equal to the
number of times the particle goes around the ring as τ goes from 0 to
β. We are thus integrating over all possible realisations of the field φ(τ),
with the boundary condition that the particle must have gone a whole
number of times around the ring as τ goes from 0 to β. What makes this
different from ordinary path integrals over field configurations is the term
proportional to A in the Langrangian. The constraint φ(β)−φ(0) = 2πn
gives us ∫

dτ(−iAφ̇) = −iA(φ(β)− φ(0)) = −iA2πn, (2.10)

and so, we have a term in the Lagrangian proportional to the winding
number, but independent of the field. We can thus write
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Z =
∑
n

e2πinA

∫
φ(β)−φ(0)=2πn

Dφe−
R

dτ 1
2
φ̇2

. (2.11)

We now have a theory which depends not only on the field, but also
on the winding number. This is where the concept of homotopy comes
in. The fields are maps from Sd onto a target space T , or put differently,
ways of putting d-dimensional loops on T . They thus fulfil the definition
of loops and we can thus define a homotopy in the same way as before,
i.e. an equivalence class of all fields that can be continuously deformed
into one another. In the case of the particle on a ring, all fields with the
same winding number are homotopic, and the fundamental group of the
target space is π1(S1) = Z.

We define a topological action, Stop as a part of an action that depends
only on the homotopy class of the field. This means that the topological
action will not affect the equations of motion of a system, since these tell
us how the action changes under small variations of the field configura-
tion. In the case of the particle on a ring, the relevant homotopy group
was Z, so the different classes were defined by an integer (the winding
number n). In these cases, the homotopy class is called the topologi-
cal charge of the configuration. We had S[φ] = S0[φ] + Stop[φ], where
S0[φ] = 1/2

∫
dτ φ̇2 and Stop[φ] = 2πinA. More generally, in all cases

where the relevant homotopy group is ' Z, the topological action can be
written on the form

Stop[φ] = iθn, (2.12)

where θ is called a topological angle and the factor exp(−Stop) = exp(−iθn)
weighing the different topological sectors in the partition function be-
comes a phase. A topological action like this is often referred to as a
θ-term. In our example, the topological angle was

θ = 2πA = 2π
Φ

Φ0

. (2.13)

We have only considered the simplest example here, but more com-
plicated topological actions are indeed possible. Examples are found in
the integer [6] and fractional [30] quantum Hall effects, and of course in
the theory of topological insulators. The important thing to remember
is that the action encodes a homotopy group of the target space of the
fields in the theory. The homotopy group is a topological invariant, so in
this sense the action decides what target spaces are homeomorphic. In
the following, when switching to band theory, we will discuss whether a
Hamiltonian is topologically equivalent to another. What we mean then,
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is that we want to decide whether the actions of the two theories have
topological parts that make the target spaces of their respective fields
homeomorphic.

To summarise, certain properties of certain systems will remain un-
changed under smooth deformations of the target manifold of the fields,
i.e. under continuous changes of the Hamiltonians.

2.3 Topological band theory

So far, we have discussed topology in physics in terms of the quantum
field theory underlying the theory. The easiest way to understand topo-
logical insulators is however to consider the band theory of the physical
systems.

Most insulators are explained by band theory. They are then called
band insulators and this explanation of the difference between insulators
and metals is one of the most important aspects of the band theory.
The eigenvalues En(k) of the Bloch Hamiltonian H(k) define the energy
bands of the band structure. Both insulators and semiconductors have
an energy band where all states are occupied (the valence band) and a
band of higher energy where all states are empty (the conduction band).
The difference between an insulator and a semiconductor is just the size
of the band gap between the valence band and the conduction band. In
an insulator, the gap is large enough so that in an ordinary situation, the
electrons will never gain energy enough to move up to the conduction
band. The gap in a semiconductor is smaller, making the jump to the
conduction band for the electrons possible.

Topologically, these two states of matter are equivalent in the sense
that the Hamiltonian, encoding the dispersion relation leading to the
band structure, can be continuously deformed from one of the two to the
other, without closing this gap.

As a first example of a topologically non-trivial state with a band gap,
we consider the integer quantum Hall state [6]. When a two-dimensional
electron system is exposed to a strong magnetic field, the electrons start
to move in cyclotron orbits. Energetically, they will arrange themselves in
so called Landau levels with certain energies. Their structure resembles
that of a band structure, with gaps between the levels. A two dimen-
sional band structure is a map from the crystal momentum k defined
on a 2-torus T 2 to the Bloch Hamiltonian H(k) with eigenvalues Em(k).
Consider the case where the bands are occupied up to the level m = N ,
and an energy gap EN+1(k) − EN(k) is formed. We can classify these
possible band structures by forming equivalence classes of Hamiltonians
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that can be continuously deformed into one another without closing the
gap. We can also characterise the Bloch Hamiltonians by the set of N oc-
cupied Bloch wavefunctions {um(k)}. This set defines the groundstate of
the system. The groundstate is symmetric under U(N) rotations among
these occupied states, so the wavefunctions {um(k)} form a U(N) fibre
bundle over the Brillouin zone torus. A fibre bundle is a base manifold,
together with a map that associates another manifold to each point in
the base manifold. In this case, the base manifold is the Brillouin zone
and the manifold associated to each point in the Brillouin zone is the
Hilbert space of the wavefunctions {um(k)}. These bundles are classified
by the integers, and can be distinguished by their first Chern class [6],

n =
1

2π

∫
d2kF , (2.14)

related to the Bloch wavefunction through the Berry’s curvature F =
∇ × A, with the Berry’s connection A = i

∑N
m=1 〈um|∇k|um〉. This

Chern class is always an integer, and it can be interpreted as the Berry’s
phase that the valence band states acquire when they are transported
around the outline of the Brillouin zone, so it bears a resemblance with
the winding number that we discussed for the particle on a ring. The
Chern number n is another example of a topological invariant, so it can
not be changed through continuous deformations of the Hamiltonian.

The physical significance of the Chern number n is found in the Hall
conductance of the system. When an electric field is applied to an integer
quantum Hall state, the cyclotron orbits start to drift, which leads to a
Hall current with the quantised Hall conductivity σxy = ne2/h. Since
the number n is robust against smooth variations of H(k), the Hall con-
ductivity is incredibly precise, a feature used both for the definition of
electrical resistance and for the calculation of the fine structure constant.

Relating this to the band theory, the dispersion relations and thereby
the band structure of the edge states can be changed by modifying the
Hamiltonian near the edge. For instance, if we have a single edge state
to start with, going in one direction, this crosses the Fermi energy at
precisely one point. The Hamiltonian can now be smoothly varied so that
the edge states will cross the Fermi energy three times instead, adding
one right moving and one left moving mode. We see that this smooth
variation of the Hamiltonian can change the number of right and left
movers individually, but the difference between these numbers, NR−NL,
is constant. Since the Hamiltonian was only smoothly varied, the new
Hamiltonian is homeomorphic to the old one and thus, the Chern number
n, being a topological invariant, cannot change. This is determined by
the topological structure of the bulk states, and so the relation between
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these two is called the bulk-boundary correspondence [8],

NR −NL = ∆n. (2.15)

At interfaces between gapped systems with different topological in-
variants there will be gapless conducting states. This is because a topo-
logical invariant will not change as long as the gap stays open. For in-
stance, consider the edge of an integer quantum Hall system with n = 1,
bordering to a topologically trivial insulator with n = 0. In changing
the topological invariant n, the gap has to go to zero, and when it does,
there will be low energy electronic states.

2.3.1 Topological insulators

The Chern number in eq. (2.14) is odd under time reversal, so in order
to have a system like the integer quantum Hall one, time-reversal sym-
metry has to be broken (in this case explicitly by the strong magnetic
field). It is however possible to use a spin-orbit interaction to obtain
a time-reversal symmetric class of topologically nontrivial gapped sys-
tems. The antiunitary time-reversal operator T squares to T 2 = −1 for
spin-1/2 particles, which leads to the quite simple, but very important
Kramers’ theorem [31]. It states that all eigenstates of a time-reversal
invariant Hamiltonian commuting with T must be at least twofold de-
generate. In systems without spin-orbit interaction, this is automatically
fulfilled, since states with different spins are degenerate in the absence of
a magnetic field (which would break T symmetry).

In the presence of SO interaction, however, the energy levels of dif-
ferent spin will be shifted. If there are electronic states inside the band
gap, bound to the surface of the system (or the edge in the case of a 2D
topological insulator), they have to be degenerate. This becomes inter-
esting at the points in the Brillouin zone where k = 0 and k = ±π/a0,
where a0 is the lattice spacing, since these points transform to themselves
under time reversal. Consider the states at the Γ point, k = 0. Kramers’
theorem demands these to be degenerate, so the only possibility for a
gap to open, is if the states are pairwise connected at k = 0. If there is
only one state available for each spin, the opening of a gap would lead to
non-degenerate edge states, which would violate Kramers’ theorem. Fig.
2.2a shows a band configuration with a pair of gapless edge states. Every
energy is fourfold degenerate, so we have two Kramers’ pairs. This state
can be transformed into the gapped configuration in fig. 2.2b without vi-
olating Kramers’ theorem, since the states at k = 0 are still degenerate.
The edge states can be further pushed into the bulk states, which would
make the edge as insulating as the bulk.
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Figure 2.2: A gapless (a) and a gapped (b) configuration of edge bands
in the gap between the bulk bands, with two Kramers’ pairs. Red and
blue colours denote opposite spins.

Now, consider the configuration in fig. 2.3a. At all energies, the sys-
tem is doubly degenerate, i.e. it has one Kramers’ pair. This is also
true at the Γ point k = 0, but in the configuration shown in fig. 2.3b
the degeneracy has been lifted. In this case Kramers’ theorem would be
violated, which is impossible in a time-reversal invariant system.
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Figure 2.3: A gapless (a) and a forbidden, gapped, (b) configuration with
one Kramers’ pair on the edge. Red and blue colours denote opposite
spins.

Kramers’ theorem thus allows the band structure to be continuously
deformed into a gapped configuration if the Kramers’ pairs form the
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gap two by two. This means that we have two topologically distinct
configurations, one with an even number of Kramers’ pairs, where a
gap can form, and one with an odd number of pairs, where one pair
will always be left gapless. Which of these two alternatives that occurs
depends on the topological class of the bulk structure. There is thus a Z2

topological invariant ν, defined modulo 2, which tells us if the system is a
topologically trivial insulator or a topological insulator with conducting
edge states.

Comparing with the integer quantum Hall case, the Chern number
is n = 0 in these systems, but we now have a new topological invariant
to consider, ν, with the values 0 or 1, corresponding to an even or an
odd number of Kramers’ pairs, respectively. We can now form a ”bulk-
boundary correspondence” for the Kramers’ pairs,

NK = ∆ν mod 2, (2.16)

where NK is the number of Kramers’ pairs intersecting the Fermi energy
and ∆ν is the change of the value of ν as the interface between two
different materials is crossed.

So, just as for the integer quantum Hall effect, we can consider home-
omorphisms between target spaces of the fields of the theory. This will be
determined by the action, or the Hamiltonian. The fact that we have to
change a topological invariant, in this case ν, in order to destroy the gap-
less edge modes, tells us that the gapless edge modes are robust against
smooth deformations of the Hamiltonian.

The very simplicity of using band theory to explain the topological
nature of topological insulators is both the primary advantage and the
disadvantage of this. A more mathematical approach to the Z2 invariant
ν is given for instance in ref. [10].

We have chosen to explain the topological insulators in terms of band
theory, which has the advantage of being easy to comprehend. The dis-
advantages are both that we will not be able to treat interactions on
the edge, and that the field theory provides more powerful tools when it
comes to classification of topological invariants and in looking for candi-
dates for being topological insulators. The field theory can be shown to
be equivalent to the band theory in the non-interacting limit [32].

We again compare with the integer quantum Hall effect. Field the-
oretically, the Chern number n from (2.14) appears in the topological
action of the system [33],

Stop =
n

4π

∫
d2x

∫
dtAµε

µντ∂νAτ . (2.17)

It can be shown that the Chern number can be expressed in terms of the
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Figure 2.4: The band structure of CdTe near k = 0.

nonsingular Green’s functions, so the field theory of this system consti-
tutes a map from the three dimensional momentum space ' S3 to the
space of nonsingular Green’s functions, belonging to the group GL(n,C)
(the integer n is the number of relevant bands). The relevant homotopy
group is therefore π3(GL(n,C)) ' Z [32].

In 2001, Zhang and Hu [34] generalised this time-reversal symmetry
breaking theory in 2+1 dimensions to a similar theory in 4+1 dimensions,
which turns out to be time-reversal symmetric. The theory of (3 + 1)-
dimensional topological insulators was then formed from this via dimen-
sional reduction, and from this, further dimensional reduction yields the
(2 + 1)-dimensional topological insulators, or QSH insulators. Here, the
characteristic Z2 topological invariant discussed previously arises directly
from the field theory [35].

2.4 The quantum spin Hall effect in HgTe
quantum wells

For a good review of the physics of the QSH effect in HgTe/CdTe quan-
tum wells (QW:s), including the earliest experiments, see the article by
König et al. [36]. We will here sketch only the basics.

The idea of using HgTe QW:s as QSH systems was presented by
Bernevig, Hughes and Zhang in 2006 [37]. These authors were looking
for a band structure of the type depicted in fig. 2.3a. As shown by Kane
and Mele [10], graphene could be a candidate for this type of band struc-
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Figure 2.5: The inverted band structure of HgTe near k = 0.

ture and indeed, the degeneracy at the Dirac point gives the appropriate
helical edge states, protected by time-reversal symmetry. The problem
with graphene is that the carbon atoms are too light to produce a spin-
orbit coupling strong enough to give a large enough energy gap for the
bulk states.

Instead, Bernevig et al. started to look for a heavier material, with
the same Kramer’s degeneracy at k = 0, i.e. the Γ point in the Brillouin
zone. Let us have a look at the energy bands near the Fermi level in two
heavy semiconductor materials, namely CdTe and HgTe. In CdTe (as
in GaAs), the conductance band is an s-type antibondning Γ6 band. Its
molecular orbitals are odd under parity. The valence band is a p-type
binding Γ8 band with with parity-even molecular orbitals. This band
structure is sketched in fig. 2.4.

In HgTe on the other hand, the spin-orbit interaction is large enough
to push the Γ8 band above the Γ6 band, thus shifting the valence and
conductance bands one step, as shown in fig. 2.5. The importance of
the inversion of the bands lies in the fact that the parity eigenvalues
are shifted between the valence and conductance bands. In an interface
between a material with normal and one with inverted bandstructure,
the parity eigenvalue switches sign. One can then show that this will
give rise to gapless states, exponentially confined to the interface, i.e. the
surface of the material with the inverted bandstructure, in analogy with
the discussion of the bulk-boundary correspondence around eq. (2.15).

This theory was tested experimentally by König et al. [11]. They
used a HgTe quantum well with thickness d that was sandwiched between
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Figure 2.6: A simple sketch of a HgTe QW. For a more detailed figure,
see ref. [36].

Hg0.3Cd0.7Te layers (see figure 2.6). The idea was that the QW should
behave more like HgTe, with the inverted band gap, for a thick HgTe
layer and more like CdTe, with the normal band gap, when the HgTe is
thinner. In ref. [36], the critical thickness, where the SO coupling of the
QW material pushes the Γ8 band above the Γ6 band, was calculated to
be dc = 6.3 nm. In the experiment, the thickness of the HgTe layer was
varied between d = 5.5 nm and d = 12 nm, so that the critical thick-
ness dc should be covered. The fundamental quantum of conductance is
G0 = e2/h. Since the edges of a QSH system together carry two chan-
nels of dissipationless current, the Hall conductance should be twice this
value, i.e. σxy = 2e2/h. A four-terminal conductance measurement was
performed to see if this was possible to detect.

Indeed, a quantised Landauer conductance of 2e2/h was found as
predicted for d > dc, while the QW was shown to be an ordinary insulator
for d < dc. This predicted conductance was found in samples of size
∼ 1 µm. Larger samples (∼ 20 µm) also showed the behaviour of a
conventional insulator for d < dc and a finite conductance for d > dc, but
with a lower, non-quantised, value.

Importantly, they also found that breaking time-reversal symmetry
with even a small magnetic field destroyed the conductivity, again making
the QW an ordinary insulator.



3
Tunnelling at a point contact

A very interesting problem is to understand what happens when two
edges of a quantum spin Hall insulator are connected via a point contact,
through which a tunnelling current may flow. We start by considering
an unbiased point contact and use perturbative renormalisation group
methods to investigate the conditions for electron tunnelling. We then
consider the effect of connecting a battery to the bar, driving a spin-
current through the contact. Using linear response theory, we investigate
the temperature dependence of the conductivity, and also consider the
effects of applying an alternating voltage over the quantum spin Hall
sample. To set the stage, we will begin the chapter by a brief introduction
to the theoretical tools that we use: bosonisation and the renormalisation
group. Much of the exposition of this chapter follows ref. [27]. This work
was published as Paper I, as a collaboration with Henrik Johannesson
[23].

3.1 Introduction to bosonisation and the renor-
malisation group

All problems treated in this thesis will be approached primarily by dif-
ferent takes on bosonisation and renormalisation group (RG) methods.
We will therefore start this chapter by a very brief introduction to these
techniques, and then show their applications by applying them to the
different research works presented in the thesis.

21
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3.1.1 One dimensional field theory

In this chapter, and the following, we will almost invariably use a quan-
tum field theory description of the physics. The concept of a quantum
field was touched upon in chapter section 2.2, but we need to understand
a little better how a quantum field theory works in condensed matter
physics. For a nice introduction to quantum field theory in general,
ref. [38] is recommended, while ref. [29] is specifically aimed at the use of
quantum field theory in condensed matter physics. This thesis is exclu-
sively concerned with one-dimensional physics, so the derivation of the
field theory we will use will be specific to one dimension, even though
most of the concepts apply also to higher dimensions.

For this introduction to condensed matter field theory, we start by
introducing electron annihilation and creation operators c(k) and c†(k)
respectively, which annihilate or create an electron with momentum k.
Considering the low-energy theory just around the Fermi level, we can
define an annihilation operator a(k) = c(kF + k) for an electron with
momentum kF + k, and similarly one b(k) = c(kF − k) for a hole with
momentum kF − k. These have positive momenta, meaning they move
in a specific direction, which we may choose to call ”right”. Annihilation
and creation operators for ”left-moving” (negative k) electrons and holes
are defined in the same way by changing kF +k → −kF −k and kF −k →
−kF + k.

Taking the theory to the continuum limit, i.e. considering the physics
on length scales much larger than the lattice constant a0, the low-energy
physics can now be captured in continuum fields defined as

c(x)√
a0

= ψR(x)eikF x + ψL(x)e−ikF x (3.1)

in position space. The two fields ψR(x) and ψL(x) vary only slowly, while
the fast fluctuations are expressed through the exponential factors. The
indices R and L (”right” and ”left”) indicate whether the particle and
holes described exist around the positive or negative Fermi point. The
fields are fermionic and anticommute.

We also write down Fourier expansions of the continuum fields:

ψR(x) =

∫
k>0

dk

2π

(
a(k)eikx + b(k)e−ikx

)
(3.2)

ψL(x) =

∫
k<0

dk

2π

(
a(k)eikx + b(k)e−ikx

)
. (3.3)

Sometimes a convenient way to treat the time-dependence of the field
theory is to use complex coordinates z and z̄ together with imaginary
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time τ = it. Then we may define z = i(vt − x) = τ − ix and z̄ =
i(vt+x) = τ + ix. The time dependence of the creation and annihilation
operators can be added with phase factors e−ivf |k|t, so that the time-
dependent fields take the form

ψR(z) =

∫
k>0

dk

2π

(
a(k)e−kz + b(k)ekz

)
(3.4)

ψL(z̄) =

∫
k<0

dk

2π

(
a(k)ekz̄ + b(k)e−kz̄

)
, (3.5)

showing that ψR and ψL depend solely on z and z̄, respectively. In the
following, the time dependence of the fields will be used when needed.
In terms of the continuum fields, the fermionic Hamiltonian without in-
teraction then becomes the Dirac Hamiltonian in one dimension,

H = −ivF
∫

dx
(
ψ†R(x)∂xψR(x)− ψ†L(x)∂xψL(x)

)
. (3.6)

This Hamiltonian is spinless, because we didn’t specify the spins of
the electrons annihilated and created by the operators we started with.
If we would have started with operators cµ carrying spin indices µ =↑ or
µ =↓, we would have arrived with the spinful Hamiltonian

H = −ivF
∫

dx
∑
µ=↑,↓

(
ψ†R,µ(x)∂xψR,µ(x)− ψ†L,µ(x)∂xψL,µ(x)

)
. (3.7)

Of course, we would also like to be able to treat interactions. We will
classify the different possible interactions into four different types, with
the following Hamiltonians

H1 =

∫
dx
∑
µ=↑,↓

(
vFg1⊥ψ

†
R,µ(x)ψLµ(x)ψ†L,−µ(x)ψR,−µ(x) +H.c.

+vFg1‖ψ
†
Rµ(x)ψLµ(x)ψ†L,µ(x)ψR,µ(x)

) (3.8)

H2 =

∫
dx
∑
µ=↑,↓

(
vFg2‖ρR,µ(x)ρL,µ(x) + vFg2⊥ρR,µ(x)ρL,−µ(x)

)
(3.9)

H3 =

∫
dx
∑
µ=↑,↓

vFg3

2
ψ†R,µ(x)ψ†R,−µ(x)ψL,µ(x)ψL,−µ(x) +H.c. (3.10)

H4 =

∫
dx

∑
r=R,L

∑
µ=↑,↓

(vFg4‖

2
ρr,µ(x)ρr,µ(x) +

vFg4⊥

2
ρr,µ(x)ρr,−µ(x)

)
,

(3.11)
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where ρrµ(x) = ψ†rµ(x)ψrµ(x) are the electron density fluctuation opera-
tors of the different fermion fields with r = R,L;µ =↑, ↓. They describe
particle-hole excitations near the Fermi points and thus the fluctuations
of the electron density of the system. The four different interaction types
are backward scattering, with coupling constants g1‖,⊥; dispersion scat-
tering, with coupling constants g2‖,⊥; Umklapp, with coupling constant
g3 and forward scattering, with coupling constants g4‖,⊥. The diagrams
for the interactions are shown in Fig. 3.1. This classification is often
referred to as ”g-ology” [39].

scattering
Backward

(a) g1

scattering
Dispersive

(b) g2

scattering
Umklapp

(c) g3

scattering
Forward

(d) g4

Figure 3.1: The low-energy ”g-ology” scattering processes. Red and blue
colours denote opposite momenta.

Note that Umklapp scattering needs to be accounted for only when
the one-dimensional conduction band is half-filled, i.e. when it carries
one electron per lattice site (Umklapp scattering at other commensurate
fillings, such as quarter-filling, is also possible, but requires the transition
of more than two particles from one of the Fermi points to the other, and
is therefore a higher-order, less relevant process than the ones we consider
here). In a semiconductor quantum well, such as the HgTe well which
have been found to support a quantum spin Hall state, the filling of the
edge bands is always far below half-filling, and hence Umklapp processes
can be neglected [40]. From now on, we thus only consider the g1, g2 and
g3 scatterings.

3.1.2 Bosonisation

The idea of bosonisation is to express the fermionic fields of a theory
in terms of bosonic fields. It is a very powerful tool in one-dimensional
physics, allowing us to rewrite a fermionic theory with interactions as
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a non-interacting bosonic theory [40, 41]. We use the notation φrµ for
the bosonic fields corresponding to the fermionic fields ψrµ. Since we
want to arrive at the non-interacting bosonic theory, we write down its
Hamiltonian,

H0 =
vF
2

∫
dx
(
Π2 + (∂xϕ)2) , (3.12)

which is valid for any massless bosonic field ϕ. The conjugate momen-
tum to ϕ is Π = ∂tϕ/vF , and the two conjugate fields obey the canoni-
cal commutation relations [ϕ(x),Π(x′)] = iδ(x − x′) and [ϕ(x), ϕ(x′)] =
[Π(x),Π(x′)] = 0. From this, a dual boson θ is also defined as ∂xθ ≡
−Π = −∂tϕ/vF . It will be useful to define ϕ = φR + φL, which will have
the conjugate field θ = φR − φL.

Without going through the derivation, we simply state the transfor-
mation rules for going from the fermionic fields ψrµ to bosonic fields φrµ

ψRµ(z) = ηRµ
1√

2πa0

e−2i
√
πφRµ(z) (3.13)

ψLµ(z) = ηLµ
1√

2πa0

e2i
√
πφLµ(z), (3.14)

where ηL/Rµ are Klein factors, taking care of the fermionic anticommu-
tation rules. They obey the Clifford algebra {ηrµ, ηsν} = 2δµνδrs. A
pedagogic derivation of eqs.(3.13) and (3.14) can be found in ref. [40].

We now want to use the bosonisation formulas, eqs. (3.13) and (3.14),
to bosonise the interactions in eqs.(3.8) − (3.10). For that, we need to
write down the bosonisation formulas for the density fluctuations ρrµ.
Naively employing the bosonisation rules in eqs.(3.13) and (3.14) on ρrµ
would result in a constant, since the two constituent fields are defined in
the same point, so we need to be slightly more clever. First, we use the
mode expansion of the fermion fields, eqs. (3.4) and (3.5), to calculate
the expectation value

〈
ψ†R(z)ψR(z′)

〉
=

∫
k>0

dk

2π

∫
k′>0

dk′

2π
〈0|a(k)b†(k′)|0〉e−kz+k′z′

=

∫
k>0

dk

2πa0

e−k(z−z′) =
1

2π

1

z − z′ . (3.15)

Time ordering is here ensured by choosing τ > τ ′. In order to have
a well-defined theory, we need to normal order the density fluctuation
operators, and for that we use what is often referred to as point-splitting,
i.e.
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ρ(z) ≡ lim
ε→0

(
ψ†(z + ε)ψ(z)−

〈
ψ†(z + ε)ψ(z)

〉)
, (3.16)

where z + ε has a slightly larger τ component than z. This is again to
ensure that time-ordering is done correctly. With eq. (3.15),

〈
ψ†(z + ε)ψ(z)

〉
=

1

2πε
(3.17)

and hence,

ρR(z) = lim
ε→0

(
ψ†R(z + ε)ψR(z)− 1

2πa0ε

)
=

1

2π
lim
ε→0

(
e2i
√
πφR(z+ε)e−2i

√
πφR(z) − 1

ε

)
=

1

2π
lim
ε→0

(
e2i
√
π(φR(z+ε)−φR(z))e4π〈φR(z+ε)φ(z)〉 − 1

ε

)
=

1

2π
lim
ε→0

(
e2i
√
πε∂zφR(z)e−4π 1

4π
ln ε − 1

ε

)
=

1

2π
lim
ε→0

1

ε
2i
√
πε∂zφR(z) =

i√
π
∂zφR(z), (3.18)

where we have used the relation eiaφ(z)eibφ(z′) = eiaφ(z)+ibφ(z′)e−ab〈φ(z)φ(z′)〉,
which is valid for normal ordered exponentials, together with the bosonic
Green’s function 〈φ(z)φ(z′)〉 = − ln(z − z′)/(4π). Similarly,

ρL(z̄) = − i√
π
∂z̄φL(z̄). (3.19)

The free fermionic Hamiltonian of eq. (3.6) can with these rules be
shown to bosonise into the free bosonic Hamiltonian of eq. (3.12). Defin-
ing the charge and spin fields

φρ ≡
1√
2

(ϕ↑ + ϕ↓) (3.20)

θρ ≡
1√
2

(θ↑ + θ↓) (3.21)

φσ ≡
1√
2

(ϕ↑ − ϕ↓) (3.22)

θσ ≡
1√
2

(θ↑ − θ↓), (3.23)



3.1 Introduction to bosonisation and the renormalisation group 27

the spinful Dirac Hamiltonian, eq. (3.7), can be written

H0 =
vF
2

∫
dx
(
Π2
ρ + (∂xφρ)

2 + Π2
σ + (∂xφσ)2)2

, (3.24)

where now Πρ = ∂tφρ/vF and Πσ = ∂tφσ/vF .
We are now ready to bosonise the g-ology interactions H1, H2 and H4

from eqs. (3.8), (3.9) and (3.11). Starting with the backscattering Hamil-
tonian H1, we treat the spin-parallel and spin-perpendicular backscatter-
ings independently. Using the bosonisation rules of eqns. (3.13)-(3.14),

H1⊥ =

∫
dx
∑
µ=↑,↓

vFg1⊥ψ
†
Rµ(x)ψLµ(x)ψ†L,−µ(x)ψR,−µ(x)

=

∫
dx
∑
µ=↑,↓

vFg1⊥ψ
†
Rµ(x)ψLµ(x)ψ†L,−µ(x)ψR,−µ(x)

=

∫
dx
∑
µ=↑,↓

vFg1⊥

(2πa0)2
e2i
√
π(φRµ(x)+φLµ(x)−φR,−µ(x)−φL,−µ(x))

=

∫
dx

vFg1⊥

(2πa0)2

(
e2i
√

2πφµ(x) + e−2i
√

2πφµ(x)
)

=

∫
dx

2vFg1⊥

(2πa0)2
cos(2

√
2πφµ(x)). (3.25)

This term is a so called sine-Gordon term (a pun on the related ”Klein-
Gordon” equation [42]), and it has been discussed extensively in the
literature. Sine-Gordon terms often appear in bosonised theories, and
the study of the flow of their coupling constants during renormalisation
is crucial for determining physical properties.

The remainder of H1 (eq. (3.8)), together with H2 and H4 (eq. (3.9)
and eq. (3.11), respectively), will be a part of a free bosonic theory. The
spin-parallel part of H1 is

H1‖ =

∫
dx
∑
µ=↑,↓

vFg1‖ψ
†
Rµ(x)ψLµ(x)ψ†L,µ(x)ψR,µ(x)

=

∫
dx
∑
µ=↑,↓

−vFg1‖ψ
†
Rµ(x)ψRµ(x)ψ†L,µ(x)ψL,µ(x)

=

∫
dx
∑
µ=↑,↓

−vFg1‖ρR,µ(x)ρL,µ(x)

(3.26)
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and we see that it is equivalent to the g2‖ term of eq. (3.9). We may thus
account for g1‖ by just changing g2‖ → g2‖ − g1‖. If we now introduce
spin- and charge-separated versions of the coupling constants according
to

gρ = g1‖ − g2‖ − g2⊥ (3.27)

gσ = g1‖ − g2‖ + g2⊥ (3.28)

g4ρ = g4‖ + g4⊥ (3.29)

g4σ = g4‖ − g4⊥, (3.30)

the bosonised versions of the g-ology Hamiltonians can, after some easy
but rather lengthy algebra, be written

H1‖+2 =
vF
4π2

∫
dx
(
gρ
[
(∂xφρ)

2 + (∂xθρ)
2]+ gσ

[
(∂xφσ)2 + (∂xθσ)2])

(3.31)

H4 =
vF
4π2

∫
dx
(
g4ρ

[
(∂xφρ)

2 − (∂xθρ)
2]+ g4σ

[
(∂xφσ)2 − (∂xθσ)2]) .

(3.32)

We have now shown that the full Hamiltonian H0 + H1‖+2 + H4 can
be separated into a spin and a charge part, Hρ and Hσ, respectively. If
we also introduce

Kλ =

√
π − gλ + g4λ

π + gλ + g4λ

(3.33)

vλ = vF

√(
1 +

g4λ

π

)2

−
(gλ
π

)2

, (3.34)

the interacting Hamiltonian (with the backscattering term H1⊥ sub-
tracted) can be written as

∑
λ=σ,ρHµ with

Hλ =
vλ
2

∫
dx

(
KλΠ

2
λ +

1

Kλ

(∂xφλ)
2

)
. (3.35)

The interactions are thus accounted for in the definitions of the param-
eters vλ, which we will refer to as the renormalised velocity, and Kλ, the
Luttinger liquid parameter, with λ = ρ and λ = σ in the charge and spin
sectors of the theory, respectively. For repulsive electron-electron inter-
actions, Kρ < 1 and the strength of the interactions is encoded in the
magnitude of Kρ. A non-interacting theory has Kρ = 1 and the stronger
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the interaction the lower K is. As for the Kσ parameter, spin-rotational
invariance of the electron-electron interaction requires that Kσ = 1. The
fact that eq. (3.27) implies a value of Kσ 6= 1 is an artifact of the particu-
lar version of bosonisation we use (Abelian bosonisation, to be contrasted
to non-Abelian bosonisation, see ref. [40]).

Comparing eq. (3.12) and eq. (3.35), we see that Hλ is not yet written
on canonical form. This can be fixed by defining φ′λ ≡ φλ/

√
Kλ and

Π′λ ≡
√
KλΠλ. Then

Hλ =
vλ
2

∫
dx
(

(Π′λ)
2 + (∂xφ

′
λ)

2
)
, (3.36)

which has the same form as eq. (3.12).
Other aspects of bosonisation will be introduced further on.

3.1.3 Renormalisation

Quantum field theory in its early days was notorious for producing di-
vergent integrals in the high-energy limit where it was used. This was
considered a serious problem for a long time. Whereas the infinities
in quantum electro dynamics (QED), the quantum field theory describ-
ing the electromagnetic field, were tamed by Feynman, Schwinger, and
Tomonaga already in the 1940s, it was not until Ken Wilson’s work on
the renormalisation group in the early 1970s that a conceptually satisfac-
tory account of the very meaning of regularisation and renormalisation
was presented [43]. We will return to Wilson and the renormalisation
group below. If we regard quantum field theory as a low-energy effective
theory valid up to a certain momentum (or energy) scale Λ, the encoun-
tered infinities are merely a sign that we are trying to use the theory in
a realm where it is not valid.

There is also an associated cutoff in space, below which a quantum
field theory formulation looses its meaning. In condensed matter physics
this cutoff is given by the lattice spacing a0 that defines the character-
istic length of the underlying crystal lattice. It makes no sense to use a
continuum theory at this length scale. The high momentum cutoff Λ is
then naturally defined as the inverse of the lattice spacing (or Λ = vF/a0

if we want a high-energy cutoff).
Since we are interested in the low-energy physics of excitations close

to the Fermi level, it is important to understand how the physics change
if we integrate out, or average over, the degrees of freedom that belong to
higher energy physics. The way to do it is to start by integrating over all
momenta between Λ and a slightly lower momentum Λ/b, where b > 1,
so that Λ/b becomes the new high-momentum cutoff for the effective



30 Chapter 3 Tunnelling at a point contact

low-energy theory. If this theory is similar to the original one, apart
from the new cutoff and, importantly, a new set of coupling constants,
it is a sign that this way of focusing on the low-energy theory makes
sense. The new set of coupling constants is referred to as renormalised
coupling constants. By iterating this procedure, successively integrating
over larger and larger momentum shells between Λ/b and Λ increasing
b, the coupling constants will change, or flow, from their original values,
until the cutoff Λ/b is comparable to the energy scales of the physics we
are interested in. In this chapter, the coupling constant we are interested
in is a tunnelling amplitude, to be defined below and denoted u. When
b grows large, u will approach a certain effective value in the low-energy
theory. If u → ∞, the coupling is said to be relevant, meaning in this
case that tunnelling is certain to happen. If on the other hand u → 0
under renormalisation, the coupling is irrelevant, and we will have no
tunnelling.

The theory of these rescaling flows, or renormalisation group flows as
they are known, was developed primarily by Kenneth Wilson in the 1970s,
a work for which he was awarded the Nobel Prize in physics in 1982 [43].
Before moving on, a few words on the term ”renormalisation group” (RG)
is in place. Particle physics in the 1960s was to a large extent concerned
with understanding physics in terms of symmetries and group structures
of these. The sequence of renormalisation transformations was viewed as
constituting a semi-group, where the mapping between the actions before
and after renormalisation made up the group elements. The iteration of
the mappings was thought to be the group multiplication, which indeed
is associative. There is a unit element (not integrating out anything),
but there is no inverse, since the RG procedure is irreversible. In that
sense, one can talk about a semi-group. This view is however completely
useless, and there is no connection with the use of groups for instance in
organising elementary particles according to how they transform under
symmetries [29].

The practical use of RG will be demonstrated in this chapter, by go-
ing through the RG analysis of the coupling constant for the tunnelling
operator in the problem of point-contact tunnelling on a QSH edge. Con-
cepts and techniques important for the RG analysis will be introduced
as we go along.

3.2 Model

The system we are interested in consists of a QSH bar connected to a
battery with left and right contacts, as in fig. 3.2. The point contact is
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spin up
0

spin up

µµL R

x=

spin down

spin down

Figure 3.2: The point contact. The full (dashed) lines represent helical
edge states in equilibrium with the left (right) contact.

formed by applying a gate voltage perpendicular to the edges, allowing
the electrons to tunnel between the edges. The right-moving electrons
are in equilibrium with the left reservoir, so that their Fermi energy is
the same as the chemical potential µL of that reservoir. In the same way,
the left-movers are in equilibrium with the right reservoir, with chemical
potential µR. Turning on the battery means that a voltage, chosen to
be V ≡ (µL − µR)/e, will drive a current from the left to the right end
of the bar. We will investigate the possibility of tunnelling when V = 0
and the conductivity associated with the tunnelling when V 6= 0. In fig.
3.2, the right-movers of the upper edge have their spin pointing ”up”,
while on the lower edge, the right-movers have spin ”down”. Since the
point contact also allows the electrons to travel between the edges, and
there is a potential difference between electrons with the same spin on
the different edges, right-movers from the lower edge and from the upper
edge will also tunnel to the opposite edge, where they become left-movers.
We here assume that the spin is conserved in the tunnelling process, and
since the right-movers on the opposite edges come with opposite spin and
an equal amount of electrons tunnel from both edges, a spin current, but
no charge current, will flow between the edges through the tunnelling
junction. One may also consider possible spin-flip processes during the
tunnelling, as was done by Dolcini in ref. [44], where the use of tunnelling
between QSH edges as quantum interferometers was studied.

As a preamble, we must first define our Hamiltonian and then bosonise
it. This is the topic of the next section.
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3.2.1 Hamiltonian formulation and bosonisation

Our Hamiltonian will consist of a free part, representing the kinetic en-
ergy of the system, plus one term for each allowed interaction. We will
also include a tunnelling Hamiltonian, to model the tunnelling through
the point contact. The time-reversal symmetry of the QSH system makes
backscattering impossible and we will also have no Umklapp scattering,
assuming the system to be away from half-filling.

When writing down our theory, we will use a one-dimensional low-
energy field theory, as discussed in section 3.1.1, and write the electron
fields as

Ψσ(x) = ψRσe
ikF x + ψLσe

−ikF x. (3.37)

Having the experimentally realised HgTe QW in mind, the spins are ”up”
and ”down”, quantised along the growth direction ẑ of the quantum well
(even though, as we have pointed out earlier, the two ”spin” indices
would in a real system denote the two Kramers’ partners). Moreover, L
and R denote ”left” and ”right” respectively, meaning left and right as
seen from the point contact. This means that a ”right” electron moves
clockwise on the upper edge and vice versa. Here, the slowly varying
fields ψασ(x) annihilate an electron-hole pair just above/below the Fermi
level at x moving in the α = L or R direction with spin σ =↑ or ↓. The
fast variations are encoded in the e±ikF x factors.

In writing down the Hamiltonian, there are a only two allowed scat-
tering processes that need to be accounted for. The system is one-
dimensional and the energies of the particles are assumed to be close
to the Fermi energy, so the processes are specified by the direction(s)
and the spin(s) of the particles involved. This already limits the number
of possible interactions to a handful, but the presence of time-reversal
symmetry leaves us with two interaction processes only. These are for-
ward and dispersive scattering (see figs. 3.1d and 3.1b, respectively).

In our case, we also need to model the tunnelling. We do this by
introducing a tunnelling term in the Hamiltonian,

Ht = u
(
ψ†L↑ψR↑ + ψ†R↑ψL↑ + ψ†R↓ψL↓ + ψ†L↓ψR↓

)
, (3.38)

where u is the strength of the tunnelling. The idea is to use RG analysis,
to see whether the coupling constant u is a relevant or an irrelevant
coupling. The high-momentum cutoff will be Λ = vF/κ, and in our case,
the short-distance cutoff κ, where the continuum theory breaks down, is
the penetration depth of the edge states into the QW.

The allowed parts of the Hamiltonian are thus the free part, H0, the
forward-scattering part, H4, the dispersive scattering part, H2 and the
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tunnelling part, Ht. The fermionic operators belonging to the upper edge
of the system are ψR↑ and ψL↓ and the ones living on the lower edge are
ψL↑ and ψR↓. The four parts of the Hamiltonian are then:

H0 = −ivF
(
ψ†R↑∂xψR↑ − ψ†L↓∂xψL↓ + ψ†R↓∂xψR↓ − ψ†L↑∂xψL↑

)
(3.39)

H2 = g2

(
ψ†R↑ψR↑ψ

†
L↓ψL↓ + ψ†L↑ψL↑ψ

†
R↓ψR↓

)
(3.40)

H4 = g4

∑
α=R,L
σ=↑,↓

ψ†ασψασψ
†
ασψασ (3.41)

Ht = u
(
ψ†L↑ψR↑ + ψ†R↑ψL↑ + ψ†R↓ψL↓ + ψ†L↓ψR↓

)
, (3.42)

The next step is to bosonise the different parts of the Hamiltonian. We
obtain for H0, using eq. (3.14) and eq. (3.13),

H0 = vF
[
(∂xφR↑)

2 + (∂xφL↑)
2 + (∂xφR↓)

2 + (∂xφL↓)
2
]
, (3.43)

while the bosonised versions of H2, H4 and Ht become:

H2 = − g2

2π

[
(∂xφR↑)

2 + (∂xφL↑)
2 + (∂xφR↓)

2 + (∂xφL↓)
2
]

(3.44)

H4 =
g4

π
(∂xφR↑∂xφL↓ + ∂xφR↓∂xφL↑) (3.45)

Ht =
2u

π

(
sin[
√
π(φL↑ + φR↑ + φL↓ + φR↓)] (3.46)

× cos[
√
π(φL↑ + φR↑ − φL↓ − φR↓)]

)
. (3.47)

In order to write H0 + H2 + H4 on the form of a free Hamiltonian, we
introduce the fields:

φ1 = φR↑ + φL↓ θ1 = φR↑ − φL↓ (3.48)

φ2 = φL↑ + φR↓ θ2 = φL↑ − φR↓, (3.49)

so that the indices 1 and 2 now denote the upper and the lower edge of
the system, respectively. Expressed in these fields, the four parts of the
Hamiltonian can be written

H0 +H2 +H4 =
v

2

(
1

K

[
(∂xφ1)2) + (∂xφ2)2

]
+K

[
(∂xθ1)2 + (∂xθ2)2

])
(3.50)

Ht =
2u

π
sin[
√
π(φ1 + φ2)] cos[

√
π(θ1 + θ2)], (3.51)
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where we have introduced

v =

√(
vF +

g4

π

)2

−
( g2

2π

)2

(3.52)

and

K =

√
2πvF + 2g4 − g2

2πvF + 2g4 + g2

. (3.53)

As expected, the bosonised Hamiltonian looks like a free Hamiltonian,
apart from the K and K−1 factors, the Luttinger liquid parameter for
a spinless theory and its inverse. (A mix-up between the parameters
caused a different parametrisation of v and K in Paper I. This has no
effect on the final results, though.)

3.2.2 Lagrangian formulation

We now set the stage for the RG analysis by rewriting the Hamiltonian
density as a Lagrangian density. We will use the notation L0 for the part
of the Lagrangian that comes from H0 +H4 +H2, i.e. L0 =

∑
i Πi∂tφi−

(H0 +H4 +H2). Also, we write Lt = −Ht.
In order to re-express eq. (3.50) as a Lagrangian, we put it in an

explicitly canonical form with the aid of the fields φ′i = 1√
K
φi and θ′i =√

Kθi, so that

H0 +H2 +H4 =
v

2

[
(∂xφ

′
1)2 + (∂xφ

′
2)2 + (∂xθ

′
1)2 + (∂xθ

′
2)2
]
. (3.54)

Using the relations

∂xθ
′
i = −1

v
∂tφ
′
i (3.55)

∂xφ
′
i = −1

v
∂tθ
′
i, (3.56)

which are valid for a canonical theory, we can write the Hamiltonian
expressed exclusively in the φ′- or θ′-fields:

H0 +H4 =
v

2

([
(∂xφ

′
1)2 + (∂xφ

′
2)2
]

+
1

v2

[
(∂tφ

′
1)2 + (∂tφ

′
2)2
])

=
v

2

(
1

v2

[
(∂tθ

′
1)2 + (∂tθ

′
2)2
]

+
[
(∂xθ

′
1)2 + (∂xθ

′
2)2
])

.

(3.57)
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This makes it possible for us to write the Lagrangian in the φ′-fields:

L0 =
∑
i

Πi∂tφ
′
i − (H0 +Hfw)

=
1

2

(
1

v

[
(∂tφ

′
1)2 + (∂tφ

′
2)2
]
− v

[
(∂xφ

′
1)2 + (∂xφ

′
2)2
])

=
1

2

(
1

vK

[
(∂tφ1)2 + (∂tφ2)2

]
− v

K

[
(∂xφ1)2 + (∂xφ2)2

])
,

(3.58)

where the canonical momentum is Π = ∂L0

∂φ̇′i
= 1

v
φ̇′i. We may also, equiv-

alently, use the θ′-fields:

L0 =
∑
i

Πi∂tθ
′
i − (H0 +Hfw)

=
1

2

(
1

v

[
(∂tθ

′
1)2 + (∂tθ

′
2)2
]
− v

[
(∂xθ

′
1)2 + (∂xθ

′
2)2
])

=
1

2

(
K

v

[
(∂tθ1)2 + (∂tθ2)2

]
− vK

[
(∂xθ1)2 + (∂xθ2)2

])
,

(3.59)

Putting these two expressions together gives us a ”free” Lagrangian
consisting of four different fields:

L0 =
1

4

(
1

vK

[
(∂tφ1)2 + (∂tφ2)2

]
− v

K

[
(∂xφ1)2 + (∂xφ2)2

]
+
K

v

[
(∂tθ1)2 + (∂tθ2)2

]
− vK

[
(∂xθ1)2 + (∂xθ2)2

])
.

(3.60)

The total Lagrangian is now L = L0 +Lt. Written in imaginary time
τ = it, the two parts of the Lagrangian are:

L0 = −1

4

2∑
i=1

(
1

vK
(∂τφi)

2 +
K

v
(∂τθi)

2 +
v

K
(∂xφi)

2 + vK(∂xθi)
2

)

= −1

4

2∑
i=1

(
v(∂xφ

′
i) + v−1(∂τφ

′
i) + v(∂xθ

′
i) + v−1(∂τθ

′
i)
)

(3.61)

Lt = −2u

π
sin
[√
π (φ1(0, τ) + φ2(0, τ))

]
cos
[√
π (θ1(0, τ) + θ2(0, τ))

]
(3.62)

=
2u

π
sin
[√

πK (φ′1(0, τ) + φ′2(0, τ))
]

cos

[√
π

K
(θ′1(0, τ) + θ′2(0, τ))

]
.

(3.63)
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3.2.3 Local partition function

Before we start extracting the scaling equations for the system, we want
to write the partition function in a local form, i.e. expressed in space-
independent fields describing the system at the point contact, where x =
0. Inspired by [45] and [46], we do this by integrating over the fields
everywhere except at x = 0. This is quite easily done because the only
part of the Lagrangian that is not Gaussian in the fields is Lt, which
precisely describes the system at the point contact.

The partition function is

Z =

∫
Dφ1Dφ2Dθ1Dθ2 exp(−S[φ1, φ2, θ1, θ2]), (3.64)

with the action

S = −
∫ β

0

dτ

∫ L/2

−L/2
dxL

=

∫
dxdτ

{
1

4

2∑
i=1

(
v(∂xφ

′
i) + v−1(∂τφ

′
i) + v(∂xθ

′
i) + v−1(∂τθ

′
i)
)

+
2u

π
sin
[√

πK (φ′1(0, τ) + φ′2(0, τ))
]

cos

[√
π

K
(θ′1(0, τ) + θ′2(0, τ))

]}
.

(3.65)

We rewrite Z as:

Z =

∫
Dφ1Dφ2Dθ1Dθ2Dφ̃1Dφ̃2Dθ̃1Dθ̃2

× e−S
∏
τ

[
δ
(
φ̃1(τ)− φ1(0, τ)

)
δ
(
φ̃2(τ)− φ2(0, τ)

)
× δ

(
θ̃1(τ)− θ1(0, τ)

)
δ
(
θ̃2(τ)− θ2(0, τ)

)]
=

∫
Dφ1 . . .Dθ̃2Dkφ1 . . .Dkθ2 exp

[
− S

+ i

∫
dτ
[
kφ1(τ)

(
φ̃1 − φ1(0, τ)

)
+ . . .+ kθ2(τ)

(
θ̃2 − θ2(0, τ)

)] ]
,

(3.66)

where the relation δ(φ̃1(τ)−φ1(0, τ)) = 1
2π

∫
dkφ1(τ) exp(ik(φ̃−φ(0, τ)))

has been used. The action in eq. (3.65) contains
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I =

∫
dxdτ

(
v(∂xϕi)

2 + v−1(∂τϕi)
2
)

(3.67)

for both ϕ = φ′ and ϕ = θ′. This integral can be rewritten in terms of
Fourier sums as

I =

∫
dxdτ

×

v(βL)−1
∑
q,ωn

iqϕq,ωne
i(qx−ωnτ)(βL)−1

∑
q′,ω′n

(−iq′ϕ∗q′,ω′n)e−i(q
′x−ω′nτ)

+v−1(βL)−1
∑
q,ωn

(−iωnϕq,ωn)ei(qx−ωnτ)(βL)−1
∑
q′,ω′n

iω′nϕ
∗
q′,ω′n

e−i(q
′x−ω′nτ


=

∫
dxdτ

1

(βL)2

∑
q,q′,ωn,ω′n

(
vqq′ϕq,ωnϕ

∗
q′,ω′n

ei(q−q
′)xei(ωn−ω

′
n)τ

+v−1ωnω
′
nϕq,ωnϕ

∗
q′,ω′n

ei(q−q
′)xei(ωn−ω

′
n)τ
)

=
1

βL

∑
q,q′,ωn,ω′n

(vqq′ + v−1ωnω
′
n)ϕq,ωnϕ

∗
q′,ω′n

δq,q′δωn,ω′n

=
1

βL

∑
q,ωn

(vq2 + v−1ω2
n)|ϕ|2. (3.68)

We use this for both ϕ = φ′i and ϕ = θ′i. Also, in the same manner,

i

∫
dτkφ̃(τ) = i

∫
dτβ−1

∑
ωn,ω′n

k(ωn)φ̃ω′ne
i(ωn+ω′n)τ =

i

β

∑
ωn

kωnφ̃−ωn

(3.69)
and

−i
∫

dτkφ(0, τ) = −i
∫

dτβ−1
∑
ωn

k(ωn)e−iωnτ (βL)−1
∑
q,ω′n

φq,ω′ne
i(qx−ω′nτ)

= −i
∫

dτ
1

β2L

∑
q,ωn,ω′n

k(ωn)φq,ω′ne
−i(ωn+ω′n)τeiqx

= − i

βL

∑
q,ωn

k(−ωn)φq,ωn ,

(3.70)



38 Chapter 3 Tunnelling at a point contact

where in the last expression we have used that exp[iqx] = 1 when x = 0.
The partition function can now be rewritten as

Z =

∫
Dφ1 . . .Dθ̃2Dkφ1 . . .Dkθ2

×exp
2∑
i=1

[
− 1

4

1

βL

∑
q,ωn

{(
1

vK
ω2
n +

v

K
q2

)
|φi|2 +

(
K

v
ω2
n +Kvq2

)
|θi|2

− 4ikφi(−ωn)φi(q, ωn)− 4ikθi(−ωn)θi(q, ωn)

}
+
i

β

∑
ωn

(
kφi(ωn)φ̃i(−ωn) + kθi(ωn)θ̃i(−ωn)

)
−
∫

dxdτLt
[
φ̃i, θ̃i

] ]
. (3.71)

We are now ready to perform the Gaussian integrations, first over φ1,
φ2, θ1 and θ2:

Z ∝
∫
Dφ̃1Dφ̃2Dθ̃1Dθ̃2Dkφ1Dkφ2Dkθ1Dkθ2

exp
2∑
i=1

[
− 1

βL

∑
q,ωn

{
kφi(−ωn)

(
1

vK
ω2
n +

v

K
q2

)−1

kφi(ωn)

kθi(−ωn)

(
K

v
ω2
n +Kvq2

)−1

kθi(ωn)

}
+
i

β

∑
ωn

(
kφi(ωn)φ̃i(−ωn) + kθi(ωn)θ̃i(−ωn)

)
−
∫

dxdτLt
[
φ̃i, θ̃i

] ]
.

(3.72)

Taking the q-sums to the continuum limit and performing the resulting
integrals,
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Z ∝
∫
Dφ̃1Dφ̃2Dθ̃1Dθ̃2Dkφ1Dkφ2Dkθ1Dkθ2

exp
2∑
i=1

[
− 1

β

∑
ωn

{
kφi(−ωn)kφi(ωn)K

∫
dq

2π

(
1

v
ω2
n + vq2

)−1

+ kθi(−ωn)kθi(ωn)
1

K

∫
dq

2π

(
1

v
ω2
n + vq2

)−1}
+
i

β

∑
ωn

(
kφi(ωn)φ̃i(−ωn) + kθi(ωn)θ̃i(−ωn)

)
−
∫

dxdτLt
[
φ̃i, θ̃i

] ]
=

∫
Dφ̃1Dφ̃2Dθ̃1Dθ̃2Dkφ1Dkφ2Dkθ1Dkθ2

exp
2∑
i=1

[
− 1

β

∑
ωn

{
kφi(−ωn)kφi(ωn)K

(
π

2π|ωn|

)
+ kθi(−ωn)kθi(ωn)

1

K

(
π

2π|ωn|

)}
+
i

β

∑
ωn

(
kφi(ωn)φ̃i(−ωn) + kθi(ωn)θ̃i(−ωn)

)
−
∫

dxdτLt
[
φ̃i, θ̃i

] ]
.

(3.73)

Finally, we perform the Gaussian integrals over kφ1 , kφ2 , kθ1 and kθ2 :

Z ∝
∫
Dφ̃1Dφ̃2Dθ̃1Dθ̃2 exp

∑
i

[
− 1

2β

∑
ωn

( |ωn|
K
|φ̃i|2 +K|ωn||θ̃i|2

)
−
∫

dxdτLt
[
φ̃i, θ̃i

] ]
. (3.74)

In the continuum limit of ωn, this is

Z ∝
∫
Dφ̃1Dφ̃2Dθ̃1Dθ̃2

× exp
∑
i

[
−
∫ Λ

−Λ

dω

2π
|ω|
(

1

2K
|φ̃i(ω)|2 +

K

2
|θ̃i(ω)|2

)

−
∫

dxdτLt
[
φ̃i, θ̃i

] ]
. (3.75)

In the time domain, this can be written as
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Z ∝
∫
Dφ̃1Dφ̃2Dθ̃1Dθ̃2

× exp
∑
i

[
−
∫ β

0

∫ ∞
−∞

dtdt′
(

1

2K

φ(t)φ(t′)

πt
+
K

2

θ(t)θ(t′)

πt

)

−
∫

dxdτLt
[
φ̃i, θ̃i

] ]
. (3.76)

3.3 RG analysis

The partition function is now written in a form appropriate for the RG
analysis. The coupling constant u that enters the tunnelling Lagrangian
Lt is treated as a perturbation to the theory, and we will start with
extracting the scaling equations to first order in u. This is done by
integrating out a larger and larger portion of the high-energy part of the
theory. This will yield a set of differential equations for the flow of the
different variables with the renormalisation parameter, and these will in
turn tell us what happens with u in the low-energy limit. After that, we
perform the renormalisation to order u2. As we will see, this will yield
some new terms different from the tunnelling term, so we will have to
analyse these as well.

3.3.1 First order scaling equation

We now focus on the tunnelling part of the action, St = −
∫

dxdτLt
[
φ̃i, θ̃i

]
.

From now on, we will skip the tilde on the fields, assuming all the fields
are x-independent, living at the point x = 0. The idea is to divide the
fields into a slow and a fast part, i.e. φ(τ) = φs(τ) + φf (τ) with

φs(τ) =
∑

|ωn|<Λ/b

e−iωnτφωn =

∫ Λ/b

−Λ/b

dω

2π
e−iωτφ(ω) (3.77)

φf (τ) =
∑

Λ/b<|ωn|<Λ

e−iωnτφωn =

∫
Λ/b<|ωn|<Λ

dω

2π
e−iωτφ(ω). (3.78)

We want to find an expression for the effective action, Seff, of the slow
fields. It is:

e−Seff[φs] = e−Ss[φs]
〈
e−St[φs,φf ]

〉
f
, (3.79)
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where 〈A〉f =
∫
Dφfe−Sf [φf ]A. Since

St = −2u

π

∫
dτ sin

[√
π (φ1(0, τ) + φ2(0, τ))

]
cos
[√
π (θ1(0, τ) + θ2(0, τ))

]
,

(3.80)

we can write e−St = 1 − St + . . . and make the observation that the
approximation

〈
e−St

〉
f
≈ e−〈St〉f holds to first order in u. Thus, e−Seff ≈

e−Ss[φs]e
−〈St[φs,φf ]〉

f . We will do the first order calculation here and the
second order in the next section. The average is

〈St〉f =
2u

π

∫
Dφ1fDφ2fDθ1fDθ2fe

−Sf [φ1f ,φ2f ,θ1f ,θ2f ]

×
∫

dτ sin
[√
π (φ1(τ) + φ2(τ))

]
cos
[√
π (θ1(τ) + θ2(τ))

]
. (3.81)

Using

sin
[√
π(φ1 + φ2)

]
=

1

2i

(
ei
√
π(φ1s+φ2s)ei

√
π(φ1f+φ2f ) − H.c.

)
=

1

2i

(
ei
√
π(φ1s+φ2s)ei

√
π(
R
f

dω
2π
eiωτ (φ1(ω)+φ2(ω))) − H.c.

)
, (3.82)

and similarly for the θ fields, we can perform two Gaussian integrations
of eq. (3.81), first over the φ fields and then over the θ fields. Here, ”H.c.”
denotes Hermitian conjugate. Using the notation

∫
f
≡
∫

Λ/b<|ω|<Λ
for the

integrals over the fast fields, we obtain



42 Chapter 3 Tunnelling at a point contact

〈St〉f =
u

iπ

(∫
dτei

√
π(φ1s+φ2s)

∫
Dφ1f . . .Dθ2f cos

[√
π(θ1 + θ2)

]
× exp

[∫
f

dω

2π

∑
i

(
i
√
πeiωτφif (ω)− 1

2K
|ω||φif |2

)]
− H.c.

)

=
u

iπ

(∫
dτei

√
π(φ1s+φ2s)

∫
Dθ1fDθ2f cos

[√
π(θ1 + θ2)

]
× exp

[∫
f

dω

2π

(
−π

2

( |ω|
K

)−1

− π

2

( |ω|
K

)−1
)]
− H.c.

)

=
2u

π

(∫
dτ sin

[√
π(φ1s + φ2s)

]
e−

R
f dω K

2|ω|

×
∫
Dθ1fDθ2f cos

[√
π(θ1 + θ2)

])
=
u

π

(∫
dτ sin

[√
π(φ1s + φ2s)

]
e−

R
f dω K

2|ω| ei
√
π(θ1s+θ2s)

∫
Dθ1fDθ2f

× exp

[∫
f

dω

2π

∑
i

(
i
√
πeiωτθif (ω)− K

2
|ω||θif |2

)]
+ H.c.

)

=
2u

π

(∫
dτ sin

[√
π(φ1s + φ2s)

]
cos
[√
π(θ1s + θ2s)

]
e−(K2 + 1

2K )
R
f

dω
|ω|

)
.

(3.83)

Now, the integral∫
f

dω

|ω| ≡
∫

Λ/b<|ω|<Λ

dω

|ω| =

∫ Λ

Λ/b

dω

ω
= ln b, (3.84)

so that

e−
1
2(K+ 1

K )
R
f

dω
|ω| = e−

ln b
2 (K+ 1

K ) = b−
1
2(K+ 1

K ). (3.85)

We can now write the exponential of the effective action as

e−Seff ≈ exp
[
−Ss[φ1s, φ2s, θ1s, θ2s]− b−

1
2(K+ 1

K )St[φ1s, φ2s, θ1s, θ2s]
]
,

(3.86)
i.e. our effective action is the same as the one we started from, apart from
two crucial differences: firstly, the cutoff momentum Λ has been rescaled
to Λ/b, so that the fields can only fluctuate on energy scales |ω| < Λ/b,
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and secondly, the coupling constant of the tunnelling has been rescaled

from u to b
1
2(K+ 1

K )u. In order to complete the RG program and obtain
the scaling equations, we want to compare the model before and after the
integration over the fast fields. For this, we rescale τ and ω so that the
fields fluctuate over the same energy/time scale in both of the actions.
Since the ω-integrations before and after the fast-field integration are
taken over |ω| < Λ and |ω| < Λ/b respectively, the rescaling is simply
ω → ω′ = bω and, consequently, τ → τ ′ = τ/b. We choose the rescaled
fields to be φ′(τ ′) = φs(τ), and from eq. (3.77), we see that this implies
φ′(ω′) = φ(ω)/b (and, of course, θ′(τ ′) = θ(τ)⇒ θ′(ω′) = θ(ω)/b).

Putting this together, the rescaled effective action is

Seff[φ1s, φ2s, θ1s, θ2s] = S ′[φ′1, φ
′
2, θ
′
1, θ
′
2]

=
∑
i

∫ Λ

−Λ

dω′

2π
|ω′|

(
1

2K
|φ′i(ω′)|2 +

K

2
|θ′i(ω′)|2

)
+ b−

1
2(K+ 1

K ) u

2π

∫
bdτ ′ sin

[√
π (φ′1(τ ′) + φ′2(τ ′))

]
× cos

[√
π (θ′1(τ ′) + θ′2(τ ′))

]
(3.87)

and from this, we see that the effect of ”lowering the cutoff”, i.e. look-
ing at the theory with slower fluctuating fields, is the rescaling of the

tunnelling coupling constant with u → u′ = ub1− 1
2(K+ 1

K ). We can now
obtain the scaling equation to first order in u:

du′

d ln b
= u′

(
1− 1

2

(
K +

1

K

))
. (3.88)

This tells us that the coupling constant u will be renormalised to
zero when K + 1/K < 2 and to infinity when K + 1/K > 2. However,

regardless of the value of K =
√

vF−g/π
vF+g/π

, it will always be true that

K + 1/K ≥ 2 (see fig. 3.3), with equality only for K = 1 ⇔ g = 0.
This means that the renormalisation flow will be towards u = 0, i.e. u is
irrelevant under renormalisation.

3.3.2 Second order scaling equations

We will now perform the renormalisation to second order in u. The first
order analysis showed no relevance of the tunnelling parameter u. As
we will see, the second order analysis will yield RG equations also for
new terms proportional to u2, that may make the tunnelling relevant.
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The full calculation in all its details is rather lengthy, but the interested
reader can find all of it in my licentiate thesis, ref. [27].

If we expand the averaged exponential in eq. (3.79), we get

e−Seff[φs] = e−Ss[φs]
〈
e−St[φs,φf ]

〉
f

= e−Ss[φs]e
〈St〉f−

1
2

“
〈S2

t 〉f−〈St〉2f
”

+...
, (3.89)

so in order to obtain the effective action to second order in u, we need
to calculate both 〈St〉f ,〈S2

t 〉f and 〈St〉2f . We start with 〈S2
t 〉f .

〈
S2
t

〉
f

=
4u2

π2

∫
Dφf1 . . .Dθf2e

−Sf [φf1,...,θ2f ]

×
∫

dτdτ ′ sin
[√
π(φ1 + φ2)

]
cos
[√
π(θ1 + θ2)

]
× sin

[√
π(φ′1 + φ′2)

]
cos
[√
π(θ′1 + θ′2)

]
, (3.90)

where φ1 = φ1(τ), φ′1 = φ1(τ ′) and similarly for the other fields. This is
calculated in ref. [27], and the result is

〈
S2
t

〉
f

=
u2

2π2

∫
dτdτ ′

×
(
cos
[√
π(φ+

s + θ+
s )
]
e
−π

2 〈(φ+
f +θ+

f )2〉
f +cos

[√
π(φ+

s − θ+
s )
]
e
−π

2 〈(φ+
f −θ

+
f )2〉

f

+cos
[√
π(φ+

s + θ−s )
]
e
−π

2 〈(φ+
f +θ−f )2〉

f +cos
[√
π(φ+

s − θ−s )
]
e
−π

2 〈(φ+
f −θ

−
f )2〉

f

−cos
[√
π(φ−s + θ+

s )
]
e
−π

2 〈(φ−f +θ+
f )2〉

f−cos
[√
π(φ−s − θ+

s )
]
e
−π

2 〈(φ−f −θ+
f )2〉

f

−cos
[√
π(φ−s + θ−s )

]
e
−π

2 〈(φ−f +θ−f )2〉
f−cos

[√
π(φ−s − θ−s )

]
e
−π

2 〈(φ−f −θ−f )2〉
f
)
,

(3.91)
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where we have defined φ+
s/f ≡ φ1s/f +φ2s/f +φ′1s/f +φ′2s/f , φ

−
s/f ≡ φ1s/f +

φ2s/f − φ′1s/f − φ′2s/f , θ
+
s/f ≡ θ1s/f + θ2s/f + θ′1s/f + θ′2s/f and θ−s/f ≡

θ1s/f + θ2s/f − θ′1s/f − θ′2s/f . Using

〈St〉f =
2u

π

∫
dτ
〈
sin
[√
π(φ1 + φ2)

]
cos
[√
π(θ1 + θ2)

]〉
f
, (3.92)

the result for 〈St〉2f is

〈St〉2f =
u2

2π2

∫
dτdτ ′

×
( [

cos
[√
π(φ−s + θ−s )

]
− cos

[√
π(φ+

s + θ+
s )
]]
e−

π
2 (<a>f+<a′>f)

+
[
cos
[√
π(φ−s + θ+

s )
]
− cos

[√
π(φ+

s + θ−s )
]]
e−

π
2 (<a>f+<b′>f)

+
[
cos
[√
π(φ−s − θ+

s )
]
− cos

[√
π(φ+

s − θ−s )
]]
e−

π
2 (<b>f+<a′>f)

+
[
cos
[√
π(φ−s − θ−s )

]
− cos

[√
π(φ+

s − θ+
s )
]]
e−

π
2 (<b>f+<b′>f)

)
.,

(3.93)

where a ≡ (φ1f +φ2f + θ1f + θ2f ) and b ≡ (φ1f +φ2f − θ1f − θ2f ). Thus,

〈
S2
t

〉
f
− 〈St〉2f =

u2

2π2

∫
dτdτ ′

×
[

cos(φ+
s + θ+

s )
(
−e−

π
2 〈(φ+

f +θ+
f )2〉

f + e
π
2 (〈a〉f+〈a′〉f)

)
+ cos(φ+

s − θ+
s )
(
−e−

π
2 〈(φ+

f −θ
+
f )2〉

f + e
π
2 (〈b〉f+〈b′〉f)

)
+ cos(φ+

s + θ−s )
(
−e−

π
2 〈(φ+

f +θ−f )2〉
f + e

π
2 (〈a〉f+〈b′〉f)

)
+ cos(φ+

s − θ−s )
(
−e−

π
2 〈(φ+

f −θ
−
f )2〉

f + e
π
2 (〈b〉f+〈a′〉f)

)
+ cos(φ−s + θ+

s )
(
−e−

π
2 〈(φ−f +θ+

f )2〉
f + e

π
2 (〈a〉f+〈b′〉f)

)
+ cos(φ−s − θ+

s )
(
−e−

π
2 〈(φ−f −θ+

f )2〉
f + e

π
2 (〈b〉f+〈a′〉f)

)
+ cos(φ−s + θ−s )

(
−e−

π
2 〈(φ−f +θ−f )2〉

f + e
π
2 (〈a〉f+〈a′〉f)

)
+ cos(φ−s − θ−s )

(
−e−

π
2 〈(φ−f −θ−f )2〉

f + e
π
2 (〈b〉f+〈b′〉f)

)]
.

(3.94)
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A heavy use of symmetry considerations lead us to the expression

〈
S2
t

〉
f
− 〈St〉2f →

u2

π2
e−2π(Gθ(0)+Gφ(0))

×
∫

dτ
{

cos
[√
π (2φ1s + 2φ2s)

]
cos
[√
π (2θ1s + 2θ2s)

] (
1− e−2π(Gθ(0)+Gφ(0))

)
+ cos

[√
π (2φ1s + 2φ2s)

] (
1−e−2π(−Gθ(0)+Gφ(0))

)
− cos

[√
π (2θ1s + 2θ2s)

] (
1− e−2π(Gθ(0)−Gφ(0))

)
−
(

1− 1
2

(
∂φ1s

∂τ
+
∂φ2s

∂τ

)2

− 1
2

(
∂θ1s

∂τ
+
∂θ2s

∂τ

)2
)(

1− e−2π(−Gθ(0)−Gφ(0))
)}

=
u2

π2
e−(K+ 1

K ) ln b

×
∫

dτ
{

cos
[√
π (2φ1s + 2φ2s)

]
cos
[√
π (2θ1s + 2θ2s)

] (
1− e(K+ 1

K ) ln b
)

+ cos
[√
π (2φ1s + 2φ2s)

] (
1− e(K− 1

K ) ln b
)

− cos
[√
π (2θ1s + 2θ2s)

] (
1− e(−K+ 1

K ) ln b
)

−
(

1− 1
2

(
∂φ1s

∂τ
+
∂φ2s

∂τ

)2

− 1
2

(
∂θ1s

∂τ
+
∂θ2s

∂τ

)2
)(

1− e−(K+ 1
K ) ln b

)}
(3.95)

and we are finally ready to perform the RG step by rescaling τ → τ ′ =
τ/b, φ′(τ ′) = φs(τ) and θ′(τ ′) = θs(τ), so that the rescaled version be-
comes

〈
S ′2t
〉
f
− 〈S ′t〉2f =

∫
dτ ′
{
V1 cos

[√
π (2φ′1 + 2φ′2)

]
cos
[√
π (2θ′1 + 2θ′2)

]
+ V2

(
1− 1

2

(
∂φ′1
∂τ

+
∂φ′2
∂τ

)2

− 1

2

(
∂θ′1
∂τ

+
∂θ′2
∂τ

)2
)

+ Vθ cos
[√
π (2θ′1 + 2θ′2)

]
+ Vφ cos

[√
π (2φ′1 + 2φ′2)

]
,

(3.96)
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where we have defined

V1 = b
u2

π2

(
e−(K+ 1

K ) ln b − e−2(K+ 1
K ) ln b

)
(3.97)

V2 = b
u2

π2

(
1− e−(K+ 1

K ) ln b
)

(3.98)

Vθ = b
u2

π2

(
e−

2
K

ln b − e−(K+ 1
K ) ln b

)
(3.99)

Vφ = b
u2

π2

(
e−(K+ 1

K ) ln b − e−2K ln b
)
. (3.100)

The term with V1 will be irrelevant compared to the other terms, while
the V2 term will be of higher order than the others. The two interesting
terms are thus the Vθ and Vφ terms. The RG equation for Vθ is

∂Vθ
∂ ln b

=
u

π2

(
(1− 2

K
)e(1− 2

K
) ln b −

(
1−

(
K +

1

K

))
e(1−(K+ 1

K )) ln b

)
.

(3.101)

and the one for Vφ is

∂Vφ
∂ ln b

=
u

π2

((
1−

(
K +

1

K

))
e(1−(K+ 1

K )) ln b − (1− 2K)e(1−2K) ln b

)
.

(3.102)

Since the V ’s and their derivatives consist of two terms each, we have
to investigate when they are positive and when they are negative. Since
we already know that 1−

(
K + 1

K

)
< 0, we have to consider three cases

for each V , namely for Vφ

• 1− 2K > 0

• 1−
(
K + 1

K

)
< 1− 2K < 0

• 1− 2K < 1−
(
K + 1

K

)
< 0

and for Vθ

• 1− 2
K
> 0

• 1−
(
K + 1

K

)
< 1− 2

K
< 0

• 1− 2
K
< 1−

(
K + 1

K

)
< 0.
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Table 3.1: Signs of Vθ and its RG equations

Vθ ∂Vθ/∂ ln b
1− 2

K
> 0 > 0 > 0

1−
(
K + 1

K

)
< 1− 2

K
< 0 < 0 > 0

1− 2
K
< 1−

(
K + 1

K

)
< 0 > 0 < 0

Table 3.2: Signs of Vφ and its RG equations

Vφ ∂Vφ/∂ ln b
1− 2K > 0 < 0 < 0
1−

(
K + 1

K

)
< 1− 2K < 0 < 0 > 0

1− 2K < 1−
(
K + 1

K

)
< 0 > 0 < 0

The results of the investigation are given in tables 3.1 and 3.2. Table
3.2 tells us that Vφ becomes relevant when

1− 2K > 0⇔ K < 1/2, (3.103)

which means that in order for ∂Vθ/∂ ln b > 0, i.e. for Vθ to move away
from the fix-point u = 0, K has to be smaller than 1/2. Table 3.1 tells
us that Vθ becomes relevant when

1− 2

K
> 0⇔ K > 2. (3.104)

We now have a condition for the tunnelling to become relevant, namely
that K < 1/2. This corresponds to quite strong electron-electron inter-
actions, but certainly not unreachable. In Paper I, we estimated K to
be close to 0.7 in the type of HgTe quantum well device probed in the
Würzburg experiments [11], with other estimates ranging from 0.55 to
0.95 [47–49]. To improve upon our estimate of K, in what follows we
attempt a more careful analysis of the experimental setup.

In eq. (3.53), K was defined to be K =
√

2πvF+2g4−g2

2πvF+2g4+g2
. To estimate

the value of this, we need to know the Fermi velocity, taken to be vF =
5.5× 105 m/s [11], and the coupling constants g4 and g2. These coupling
constants stem from the low-energy Coulomb interaction, so we start by
writing
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g4 ∝
V (k = 0)

~
=

1

~

∫ d

κ

dxV (x)ei(k=0)x =
1

~

∫ d

κ

dx
e2

4πεrε0x

=
e2

4π~εrε0
ln

(
d

κ

)
, (3.105)

For clarity, ~ is also included. Here, εr is the relative permittivity of the
doping and insulating layers between the gate and the QW, V (x) is the
Coulomb potential between the electrons, while κ and d are the high- and
low-energy cutoffs, respectively. The high-energy (short-distance) cutoff
κ is taken to be the penetration depth of the helical edge states into
the bulk of the QW [50], while the low-energy (long-distance) cutoff d is
the distance from the electrons in the QW to the nearest metallic gate.
To understand how this defines a long-distance cutoff for the Coulomb
potential, think about an electron that feels the Coulomb force from
another electron. If this other electron is as far away as the metallic
gate, the electron is screened by the mirror image in the gate [51].

Prior to the renormalisation, the g2 coupling describes the same phys-
ical process as the g4 coupling, namely Coulomb interaction between elec-
trons. Comparing eqs. (3.40) and (3.41), we see that g2 is the coupling
of twice as many terms as g4, so the naked (unrenormalised) values of
the coupling constants are related as g2 = 2g4. We can now write

K =

√
2πvF + 2g4 − 2g4

2πvF + 2g4 + 2g4

=

(
1 +

2g4

πvF

)−1/2

=

(
1 + λ ln

(
d

κ

))−1/2

,

(3.106)
where λ = 2e2/(π2εrε0~vF ) [49]. We take the penetration depth to be
κ ≈ 10 nm. In the experiment in ref. [11] the QW was separated from
the top gate by several thin (≈ 10 nm) doping layers with εr ≈ 20 and a
110 nm thick SiO2/Si3N4 superlattice layer with εr ≈ 6. With a weighted
average of εr to approximate the screening from all layers, we end up with
λ ≈ 1.0 and K ≈ 0.55 (the somewhat higher estimate in Paper I is due
to an overestimate of the screening). Let us point out that by increasing
the thickness of the doping and cap layers surrounding the QW and/or
adding additional layers of a material with a smaller permittivity, values
of K down to 0.2 can easily be obtained [49].

3.4 Conductance

In this section, we calculate the conductance of the tunnelling current.
That is, we want to see what response we get from putting an electric
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voltage over the point contact. The first step is to investigate what type
of current is generated.

The right-moving fields are in equilibrium with a reservoir with chem-
ical potential µL and the left-moving fields are in equilibrium with the
other reservoir, with chemical potential µR. Applying a potential V over
the point contact is equivalent to having |µR − µL| = V . We choose to
set µL = V/2 and µR = −V/2. This means that we must add the term

LV = e

∫
dx [µL (jR↑(x) + jR↓(x)) + µR (jL↓(x) + jL↑(x))] (3.107)

to the Lagrangian. The terms jασ denote the currents of electrons of the
specified type. Using the relations jLσ = − 1

2π
∂xφLσ and jRσ = 1

2π
∂xφRσ

and eq. (3.56), the Lagrangian can be further simplified to

LV = −eV
4π

∫
dx (∂xφR↑(x) + ∂xφR↓(x) + ∂xφL↑(x) + ∂xφL↓(x))

= −eV
4π

∫
dx ∂x (φ1(x) + φ2(x)) = − ieV

4πv

∫
dx ∂τ (θ1(x) + θ2(x)) .

(3.108)

It is here important to note that the fields in eq. (3.108) are x-dependent,
i.e. defined to take values not only in x = 0.

It is easily seen that when µL > µR, it will be energetically favourable
for the right-moving electrons to become left-moving, i.e. for the ψR↓-
fields to tunnel from the lower edge to the upper, thus becoming ψL↓-
fields, and for the ψR↑ on the upper edge to tunnel to ψL↑ on the lower
edge. We see that this will transfer no net charge between the edges,
but that it will take spin down from the lower edge to the upper and
spin down from the upper edge to the lower. The electrical voltage will
thus drive a spin current. We will now calculate the conductance for this
current.

We calculate Ic(t), the sum of the magnitudes of the charge currents
of each spin tunnelling between the edges. These of course go in opposite
directions and with opposite spins, so the associated spin current will be

Is(t) =
~
2e
Ic(t). (3.109)

This spin current should in principle be possible to detect experimentally
with a two-terminal measurement, since Ic(t) will be equal to the deple-
tion of the source-to-drain current. Note, however, that the overall spin
axis may not be preserved in a realistic system. For example, an added



3.4 Conductance 51

Rashba-type spin-orbit interaction would produce an effective precession
of the spin axis. Locally, in the point contact, the tunnelling current will
be a spin current, though.

Assuming the voltage to be low, the calculation can be made using
the linear response formalism, as described in [52]. Assuming V > 0,
Ic(t) is the rate of change of the number of electrons in equilibrium with,
for example, the left contact of the battery,

Ic(t) = −e
〈
ṄL(t)

〉
= −ei

∫ t

−∞
dt′
〈[
ṄL(t), Ht(t

′)
]〉
, (3.110)

where NL = a
(
ψ†R↓ψR↓ + ψ†R↑ψR↑

)
is the number operator. It commutes

with the free part of the Hamiltonian, so that

ṄL(t) = i[H +Ht, NL] = i[Ht, NL]. (3.111)

Recalling that

Ht = u
(
ψ†R↑ψL↑ + ψ†L↓ψR↓ + ψ†L↑ψR↑ + ψ†R↓ψL↓

)
, (3.112)

we can calculate the commutator [Ht, NL]. It is a straight-forward cal-
culation involving no tricks, but rather lengthy, so we settle with just
stating the result here:

ṄL = i[H,NL] = i[Ht, NL] = iu
(
ψ†L↑ψR↑ − ψ†R↑ψL↑ + ψ†L↓ψR↓ − ψ†R↓ψL↓

)
.

(3.113)
We also note that [NR, Ht] is obtained from [NL, Ht] by exchanging

all ↑↔↓, which means that [NR, Ht] = −[NL, Ht].
Now, we need the time evolution of the Hamiltonian and the number

operators. First of all, we can write the total Hamiltonian as

Htot = H +Ht = HR +HL +Ht, (3.114)

where HR and HL govern the particles in equilibrium with the right and
left reservoirs respectively. These are independent, the only interaction
is through the tunnelling, which is governed by Ht.

Defining KR = HR − µRNR, KL = HL − µLNL and K = KR + KL,
Ht(t) is obtained according to

Ht(t) = eiHtHte
−iHt = eiKt

(
eit(µLNL+µRNR)Hte

−it(µLNL+µRNR)
)
e−iKt.
(3.115)
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We now define H̃t(t) ≡ eit(µLNL+µRNR)Hte
−it(µLNL+µRNR) and write

H̃t(t) = eit(µLNL+µRNR)Hte
−it(µLNL+µRNR)

≈ (1 + itµLNL + itµRNR)Ht (−1− itµLNL − itµRNR)

≈ Ht + itµL[NL, Ht] + itµR[NR, Ht] = Ht + it(µL − µR)[NL, Ht]

= Ht + iteV [NL, Ht]. (3.116)

Using (3.113) and (3.112), we can write

H̃t(t) = u

[(
ψ†R↑ψL↑ + ψ†R↓ψL↓

)
(1 + iteV )

+
(
ψ†L↑ψR↑ + ψ†L↓ψR↓

)
(1− iteV )

]
≈ u

[
e−iteV

(
ψ†L↑ψR↑ + ψ†L↓ψR↓

)
+ eiteV

(
ψ†R↑ψL↑ + ψ†R↓ψL↓

)]
. (3.117)

The other operator that appears in (3.110), ṄL(t) can be evaluated
in a similar way and turns out to be

˜̇NL(t) = iu
[
e−iteV

(
ψ†L↑ψR↑ + ψ†L↓ψR↓

)
− eiteV

(
ψ†R↑ψL↑ + ψ†R↓ψL↓

)]
.

(3.118)

We see that both H̃t(t) and ˜̇NL(t) consists mainly of products of field
operators. If we define A(t) = (ψ†L↑(t)ψR↑(t) + ψ†L↓(t)ψR↓(t)), where

ψασ(t) ≡ eiKtψασe
−iKt, (3.119)

we can rewrite the commutator in (3.110) as

[ṄL(t), Ht(t
′)] = iu2

[
e−ieV tA(t)− eieV tA†(t), e−ieV t′A(t′) + eieV t

′
A†(t′)

]
= iu2

(
e−ieV (t+t′)[A(t), A(t′)] + e−ieV (t−t′)[A(t), A†(t′)]

− eieV (t−t′)[A†(t), A(t′)]− eieV (t+t′)[A†(t), A†(t′)]
)

= iu2
(
e−ieV (t−t′)[A(t), A†(t′)]− eieV (t−t′)[A†(t), A(t′)]

)
. (3.120)

The last equality is obtained by checking that [A(t), A(t′)] and [A†(t), A†(t′)]
are zero. Now, we can rewrite eq. (3.110) as
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Ic(t) = eu2

∫
dt′Θ(t− t′)

(
e−ieV t

〈
[A(t), A†(t′)]

〉
− eieV t

〈
[A†(t), A(t′)]

〉)
,

(3.121)
where Θ(t) is the Heaviside step function. We choose t′ = 0 and introduce
the retarded Green’s function Gret(t) = −iΘ(t)

〈
[A(t), A†(0)]

〉
. Fourier

transforming this yields

G̃ret(−eV ) =

∫
dte−ieV tGret(t) (3.122)

and eq. (3.121) becomes

Ic(t) = −2eu2Im [G̃ret(−eV )]. (3.123)

After bosonisation, the correlation functions are readily calculated to
be

〈
A(t)A†(0)

〉
=

1

π

(
a0

iv(t+ iδ)

)K+1/K

(3.124)

〈
A†(0)A(t)

〉
=

1

π

(
a0

iv(t− iδ)

)K+1/K

, (3.125)

where a0 is the lattice constant. (A misprint replaced the i-factors in the
denominators with minus signs in eq. (15) of Paper I.)

Plugging these in the commutator and performing the Fourier trans-
form yields the final expression for the current as a function of the voltage
V :

Ic = 2eu2 (a0/v)K+1/K

Γ(K + 1/K)
(eV )K+1/K−1 , (3.126)

where Γ is Euler’s gamma function. This is the zero-temperature result,
and (as seen in fig. 3.3) since (K + 1/K) ≥ 2, with equality for K = 1
(i.e. zero interaction), the Ohmic conductance (I ∝ V ) is enhanced by
the interaction.

To figure out the temperature dependence of the conduction, a con-
formal transformation of eqns. (3.124) and (3.125) was performed, fol-
lowing [53]. This was done in Euclidian (imaginary) time τ = it, taking

vτ → vβ

2π
arctan

(
2πτ

βv

)
, (3.127)

where β = 1/T . The resulting temperature dependent current is
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Figure 3.4: The charge tunnelling current as a function of the applied
voltage for different values of K and T .

Ic = −2eu2(a0/v)2∆K (2πT )2∆K−1

× Im

[
B(∆K + ieV/2πT,∆K − ieV/2πT )]

sin (π(∆K − ieV/2πT ))

cos(π∆K)

]
,

(3.128)

where B is the Euler beta function.
With a0 ≈ 1 nm, vF ≈ 6 × 105 m/s [36, 54] and u = 0.1vF/a0, this

result is plotted in fig. 3.4. Perhaps most importantly, the temperature
dependence of the zero-bias differential conductance can be read off from
eq. (3.128):

G ≡ dIc
dV
|V=0 ∝ TK+1/K−2. (3.129)

Finally, the current/voltage characteristics resulting from putting on
an ac voltage of the type V (t) = V0 +V1 sin Ωt was also calculated, again
following [53]. The constant V in the exponents V t in eq. (3.121) is now
changed to integrals, so that the exponents are now

eieV t → e−ie
R t
t′ dt

′′V (t′′). (3.130)

The result turns out be

Ic,0 = 2eu2(a/v)2∆K

∑
n

an(eV1/Ω)(eV0 + nΩ)2∆K−1, (3.131)

where
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Figure 3.5: The dc component of the current as a function of the voltage
V0 for different values of K and different amplitudes V1 of the ac voltage.

an(eV1/Ω)=
1

(2π)2

∫ 2π

0

∫ 2π

0

dtdt′ein(t′−t)ei
eV1
Ω

(cos t′−cos t). (3.132)

This is plotted in fig. 3.5.
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4
Rashba spin-orbit interaction on

a quantum spin Hall edge

The connection between the spin and momentum of the electrons is per-
haps the most important concept in topological insulators; indeed, the
concept of a helical conductor is entirely based on this. In chapter 2,
we learned that the spin-orbit coupling that splits the atomic p-orbital
levels is crucial for the presence of the QSH effect in HgTe QW:s. A
very large spin-orbit interaction of this type is necessary to achieve the
inverted bandstructure of the material. The Rashba spin-orbit coupling
is another type of spin-orbit interaction, which is present in the QW
systems used in realising the QSH effect. This interaction is due to the
inversion asymmetry of a QW, controllable by the gate voltage and sensi-
tively dependent on the dopant atoms in the various materials used in the
heterostructure, as well as the random bonds at the QW interface [55].
The strength of this interaction fluctuates quite rapidly as we follow the
edge of the QW spatially, as sketched in fig. 4.1 [56].

x

Figure 4.1: The spatially disordered Rashba coupling, αrand(x). The x
variable goes along the edge of the QSH system and the length of the
figure should correspond to roughly half a micron [57].

This chapter will deal with the important task of exploring the sta-
bility of the helical conductor against the disordered Rashba interaction.
We will use a similar method as we did in the tunnelling approach and

57
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model the Rashba coupling as a perturbation to the ideal QSH system,
including interactions. More specifically, the Rashba coupling will be
added as a perturbative Hamiltonian and we will investigate whether its
coupling constant will flow to a strong coupling regime under the RG
scheme or not.

Much of the exposition of this chapter follows ref. [27]. This work was
published as Paper II and is a collaboration with Henrik Johannesson and
George Japaridze [24].

4.1 The Rashba Hamiltonian

In heterostructures, such as quantum wells, the confinement potential,
used to restrict the electrons to two-dimensional motion, and the dif-
ferences of the band edges between the different materials of the het-
erostructure, break the inversion symmetry of the system. As a conse-
quence, a spin-orbit type term, called the Rashba interaction [55], must
be added to the Hamiltonian. In two dimensions, the Rashba term will
be HR = α(kxσy−kyσx), where α, the strength of the Rashba interaction,
depends on several separate features of the QW: the applied gate electric
field, the ion distribution in nearby doping layers [56], and the presence
of random bonds at the two QW interfaces [58]. The gate dependence
means that α is tunable and can be experimentally varied to investi-
gate its effects. Along the one-dimensional edge, we write the Rashba
Hamiltonian as [55]

HR =

∫
dx α(x)Ψ†µ(x)σyµνpxΨν(x), (4.1)

where the µ and ν are Pauli matrix spin indices, in the sense that Ψ1 = Ψ↑
and Ψ2 = Ψ↓, while σy12 = −i, σy21 = i and σy11 = σy22 = 0. Note that
we allow the Rashba coupling in eq. (4.1) to vary with x, to encode
its dependence on the spatially varying distribution of dopant ions and
inhomogeneities. Let us also point out that we will make important
use of the integral in the Rashba Hamiltonian HR, so it will be more
convenient for us to work with the full Hamiltonian here, rather than the
Hamiltonian densities we used in the previous chapter. With px = −i∂x,
we write

HR =

∫
dx α(x)

(
iΨ†↓(−i∂x)Ψ↑ − iΨ†↑(−i∂x)Ψ↓

)
=

∫
dx α(x)

(
Ψ†↓∂xΨ↑ −Ψ†↑∂xΨ↓

)
. (4.2)
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Since the QSH theory is helical, we know that Ψ↑ = ψR↑e
ikF x and

Ψ↓ = ψL↓e
−ikF x. For the purpose of describing the physics at a single

edge (in contrast to the tunnelling problem in the previous chapter where
two edges had to be included in the theory), the right/left indices are of
course superfluous here, so we will omit them in what follows. We can
thus rewrite the Rashba Hamiltonian as

HR =

∫
dx α(x)

{
ψ†↓e

ikF x∂x(ψ↑e
ikF x)− ψ†↑e−ikF x∂x(ψ↓e−ikF x)

}
=

∫
dx α(x)

{
(ikFψ

†
↑ψ↓ − ψ†↑∂xψ↓)e−2ikF x

+ (ikFψ
†
↓ψ↑ + ψ†↓∂xψ↑)e

2ikF x
}
. (4.3)

A Hamiltonian must be Hermitian, i.e. H = H†, or in other words
H = 1/2(H +H†). Using this, we obtain

HR =
1

2
(HR +H†R) =

1

2

∫
dx α(x)

{
(ikFψ

†
↑ψ↓ − ψ†↑∂xψ↓)e−2ikF x

+ (ikFψ
†
↓ψ↑ + ψ†↓∂xψ↑)e

2ikF x + (−ikFψ†↓ψ↑ − (∂xψ
†
↓)ψ↑)e

2ikF x

+ (−ikFψ†↑ψ↓ + (∂xψ
†
↑)ψ↓)e

−2ikF x

=
1

2

∫
dx α(x)

{(
(∂xψ

†
↑)ψ↓ − ψ†↑∂xψ↓

)
e−2ikF x

−
(

(∂xψ
†
↓)ψ↑ − ψ†↓∂xψ↑

)
e2ikF x

}
. (4.4)

4.2 The theory on a lattice

Before continuing, we show that a similar expression can also be obtained
by putting the theory on a lattice and do the calculations from there.
From here on, we change the notation so that the operator ∂x is only
assumed to act on the field right next to it. The Rashba Hamiltonian on
the lattice can be expressed as

HR =
1

2

∑
n

αncn,µσ
y
µνpxcn,ν + H.c.

=
1

2iκ

∑
n

αn
(
c†n,µσ

y
µνcn+1,ν − c†n,µσyµνcn,ν

)
+ H.c. (4.5)
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With cn,1 =
√
a0ψ↑(na0)eikFna0 and cn,2 =

√
a0ψ↓(na0)e−ikFna0 , where a0

is the lattice constant (x = na0), this can be rewritten as

HR =
1

2i

∑
n

αn

{
− i
(
e−ikF a0(2n+1)ψ†↑(na0)ψ↓((n+ 1)a0)

)
+ i
(
eikF a0(2n+1)ψ†↓(na0)ψ↑((n+ 1)a0)

)
+ i
(
e−ikF a02nψ†↑(na0)ψ↓(na0)

)
− i
(
eikF a02nψ†↓(na0)ψ↑(na0)

)}
+ H.c.

=
∑
n

αn
2

{
eikF a0(2n+1)

(
ψ†↓(na0)ψ↑((n+ 1)a0)− ψ†↓((n+ 1)a0)ψ↑(na0)

)
− e−ikF a0(2n+1)

(
ψ†↑(na0)ψ↓((n+ 1)a0)− ψ†↑((n+ 1)a0)ψ↓(na0)

)
+ eikF a02n

(
ψ†↓(na0)ψ↑(na0)− ψ†↓(na0)ψ↑(na0)

)
+ e−ikF a02n

(
ψ†↑(na0)ψ↓(na0)− ψ†↑(na0)ψ↓(na0)

)}
. (4.6)

It is now easy to see that the two last lines, coming from the−c†n,µσyµνcn,ν
term of eq. (4.5), are zero. The reason they are left in the equation is
that they are useful for expressing the Rashba Hamiltonian in the form
of eq. (4.4). In fact, since they are zero, it is perfectly all right to change
the ”2n” in the exponentials to ”2n+ 1”, yielding

HR =
1

2

∑
n

αn

{
eikF a0(2n+1)

(
ψ†↓(na0)

[
ψ↑((n+ 1)a0)− ψ↑(na0)

]
−
[
ψ†↓((n+ 1)a0)− ψ†↓(na0)

]
ψ↑(na0)

)
− e−ikF a0(2n+1)

(
ψ†↑(na0)

[
ψ↓((n+ 1)a0)− ψ↓(na0)

]
−
[
ψ†↑((n+ 1)a0)− ψ†↑(na0)

]
ψ↓(na0)

)}

=
a0

2

∑
n

αn

{
eikF a0(2n+1)

(
ψ†↓(na0)∂xψ↑(na0)− ∂xψ†↓(na0)ψ↑(na0)

)
− e−ikF a0(2n+1)

(
ψ†↑(na0)∂xψ↓(na0)− ∂xψ†↑(na0)ψ↓(na0)

)}
, (4.7)
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where we have also used that ∂xψ(na0) = 1
a0

(ψ((n+ 1)a0)− ψ(na0))
(since x = na0). We then take the limit a0 → 0 and n→∞ and write

HR =
1

2

∫
dx α(x)

{
e2ikF x

(
ψ†↓(x)∂xψ↑(x)− ∂xψ†↓(x)ψ↑(x)

)
− e−2ikF x

(
ψ†↑(x)∂xψ↓(x)− ∂xψ†↑(x)ψ↓(x)

)}
,

(4.8)

which is identical to eq. (4.4), just as we wanted.

4.3 Lagrangian formalism and bosonisation

We will now write the Rashba coupling as

α(x) = 〈α(x)〉+ αrand(x) = 〈α(x)〉+
∑
n

α̂(kn)eiknx, (4.9)

where 〈α(x)〉 is the mean value of the Rashba coupling, and α̂(kn) are
the Fourier modes of the fluctuations around this mean. The mean value
of the Rashba coupling will not affect the low-energy properties of the
theory, since the corresponding rapidly fluctuating terms in the integrand
of HR will average out upon integration [59]. Using the fact that α(x) is
real, so that α̂(k) = α̂∗(−k), we may write

HR = −1

2

∫
dx
∑
n

{
(ψ†↑∂xψ↓ − ∂xψ†↑ψ↓)α̂(kn)e−ix(2kF−kn

− (ψ†↓∂xψ↑ − ∂xψ†↓ψ↑)α̂(k)eix(2kF+kn)
}

= −1

2

∫
dx
∑
n

{
(ψ†↑∂xψ↓ − ∂xψ†↑ψ↓)α̂(−kn)e−ix(2kF+kn)

− (ψ†↓∂xψ↑ − ∂xψ†↓ψ↑)α̂(kn)eix(2kF+kn)
}

= −1

2

∫
dx
∑
n

{
(ψ†↑∂xψ↓ − ∂xψ†↑ψ↓)α̂∗(kn − 2kF )e−iknx

− (ψ†↓∂xψ↑ − ∂xψ†↓ψ↑)α̂(kn − 2kF )eiknx
}
, (4.10)

where in the last equality, we used the transformation kn → kn + 2kF ,
together with
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∑
n

eiknxα̂(kn+2kF ) =
∑
n

e−iknxα̂(−kn+2kF ) =
∑
n

e−iknxα̂∗(kn−2kF ).

(4.11)
Let us now bosonise our Rashba Hamiltonian. We will use the rules

from eq. (3.14) and eq. (3.13), which imply

∂xψL =
ηL↓√

2π
∂xe

2i
√
πφL↓ = ηL↓i

√
2∂xφL↓e

2i
√
πφL↓ (4.12)

∂xψR =
ηR↑√

2π
∂xe
−2i
√
πφR↑ = −ηR↑i

√
2∂xφR↑e

−2i
√
πφR↑ . (4.13)

This gives

HR = − i

2κ
√
π

∫
dx
∑
n

×
{
ηR↑ηL↓(∂xφL↓ − ∂xφR↑)e2i

√
π(φR↑+φL↓)α̂∗(2kF − kn)e−iknx

+ ηL↓ηR↑(∂xφR↑ − ∂xφL↓)e−2i
√
π(φR↑+φL↓)α̂(2kF − kn)eiknx

}
=

1

2κ
√
π

∫
dx
∑
n

(
∂xθe

−i
√

4πφα̂(kn − 2kF )eiknx + H.c.
)
, (4.14)

where φ = φR↑ + φL↓ and θ = φR↑ − φL↓. Here, we used the Clifford
algebra of the Klein factors, which gives (ηR↑ηL↓ = −ηL↓ηR↑) and also
ηRσ = iηLσ. We see that the Hamiltonian remains Hermitian, also after
we have chosen a proper representation of the Klein factors.

As we saw in the previous chapter, the Hamiltonian describing the
electrons on a single edge, including forward and dispersive scattering,
becomes a free Hamiltonian in the bosonic language,

H0 =
v

2

∫
dx
(
(∂xφ

′)2 + (∂xθ
′)2
)
, (4.15)

where we have defined φ′ = 1√
K
φ and θ′ =

√
Kθ. It’s easy to see

that we can use ∂xθ
′ as our conjugate momentum, Π = ∂xθ

′ (so that
∂xθ = Π/

√
K). Thus, the corresponding Lagrangian is obtained by the

Legendre transformation

L0 =

∫
dx (Π ∂tφ

′ −H0) =

∫
dx
(
iΠ ∂τφ

′ − v

2
(∂xφ

′)2 − v

2
Π2
)
, (4.16)



4.3 Lagrangian formalism and bosonisation 63

while the Rashba part of the Lagrangian, LR = −HR can be read off
from eq. (4.14). We define µ(x) ≡∑n α̂(kn − 2kF )eiknx and write:

LR = − 1

2κ
√
π

∫
dx
∑
n

(
∂xθe

−i
√

4πφα̂(kn − 2kF )eiknx + H.c.
)

= − 1

2κ
√
π

∫
dx

1√
K

Π
(
µ(x)e−i

√
4πKφ′ + H.c.

)
. (4.17)

The partition function can now be evaluated by a Gaussian integra-
tion over Π:

Z =

∫
Dφ′DΠ e

R
dτL =

∫
Dφ′DΠ exp

[
− 1

2

∫
dxdτ

(
vΠ2 + v(∂xφ

′)2
)

+

∫
dxdτ

(
iΠ∂τφ

′ − 1

2a
√
Kπ

Π
[
µ(x)e−2i

√
πKφ′ + H.c.

])]

∝
∫
Dφ′ exp

[∫
dxdτ

{
− v

2
(∂xφ

′)2

+
1

2v

(
i∂τφ

′ − 1

2κ
√
Kπ

[
µ(x)e−2i

√
πKφ′ + H.c.

])2
}]

=

∫
Dφ′ exp

[∫
dxdτ

{
− v

2
(∂xφ

′)2

+
1

2v

(
−(∂τφ

′)2 +
1

4κ2Kπ

(
µ(x)e−i

√
4πKφ′ + H.c.

)2
)}]

. (4.18)

In the last equality, the mixed terms from the square are left out, because
they are easily shown to be zero. In fact, they are proportional to∫

dxdτ∂τφe
Aφ =

1

A

∫
dxdτ∂τ

(
eAφ
)

= 0, (4.19)

where the last identity follows from having an integral over a total deriva-
tive.

The last square in eq. (4.18) is:

(
µ(x)e−i

√
4πKφ′ + H.c.

)2

= 2µ∗(x)µ(x) +
(
µ2(x)e−i

√
16πKφ′ + H.c.

)
.

(4.20)
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The mixed terms, 2µ∗(x)µ(x), will only add a constant term to the action,

since the φ’s will vanish in e−i
√

4πKφ′ei
√

4πKφ′ = 1. They will therefore not
affect the RG analysis in any way, so we leave them out. If we introduce
the notation

ξ(x) ≡ 1

4Kvκ
µ2(x) =

1

4Kvκ

∑
n,n′

α̂(kn − 2kF )α̂(kn′ − 2kF )ei(kn+kn′ )x,

(4.21)
the final result for the partition function can be written

Z = Dφ′e− 1
2K

R
dxdτ(v(∂xφ′)2+ 1

v
(∂τφ′)2)

× exp

[∫
dxdτ

1

2κπ

(
ξ(x)e−i

√
16πKφ′ + H.c.

)]
. (4.22)

4.4 Replica renormalisation

The next step for us is to perform the renormalisation group analysis of
the disordered Rashba interaction. Before diving into the calculations,
we need to understand what it means to have a random term present
in the Hamiltonian. A real system will only have one realisation of the
random term, but if the system is large enough, it can be thought of
as being built up by a large number of individual pieces, each with its
own realisation of the random term. Instead of solving the problem for
a specific realisation of the disorder and averaging afterwards, we thus
need to average over the disorder already from the start. We will use
the so-called replica method, described in ref. [60], to do this. In the
following, we change our notation so that φ now denotes the rescaled
field which was previously written φ′ = φ/

√
K.

Generally, the average value of an observable O in a system with a
random potential V is

〈O〉V =

∫
DφO(φ)e−SV [φ]∫
Dφe−SV [φ]

, (4.23)

where SV is the action containing the disordered potential. Note that
this is the average value with respect to a specific realisation of V . We
want to average over all realisations of V . If the disorder comes with the
probability distribution p(V ), this average is written

〈O〉V =

∫
DV p(V ) 〈O〉V∫
DV p(V )

. (4.24)
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In our case we have two terms like this, one the Hermitian conjugate
of the other. Our action is, from eq. (4.22),

SV = S0[φ] +

∫
dxdτ

1

2κπ

(
ξ(x)e−i

√
16πKφ + H.c.

)
. (4.25)

So, we have V = ξ(x) and another term with V †. We need to assume
a normal distribution of the disorder, in order to obtain solvable Gaussian
path integrals. This is an essential part of the replica method and nor-
mally justified by the central limit theorem. In our case of the disordered
Rashba coupling, it should be perfectly natural to assume this, since the
fluctuations of the Rashba coupling are mainly due to the random distri-
bution of dopant atoms and the bonds at the QW interface [61]. There
is of course a possibility that the QW interface somehow has a structure
that will cause a different distribution of the random bonds, but without
investigating this in detail, there is no apparent reason to believe that the
distribution of α(x) should be non-Gaussian. The Gaussian probability
distribution is then

p(ξ(x)) = exp

(
− 1

2Dξ

∫
dxξ∗(x)ξ(x)

)
. (4.26)

Here, Dξ is defined by ξ∗(x)ξ(x′) = Dξδ(x − x′). It will be important
for us to be able to calculate a numerical value for Dξ. For this, we
use the expression Dξ = niV

2
0 , where ni is the composite density of

the dopant ions and interface bonds that produce the randomness in
the Rashba coupling and V0 can be thought of as the amplitude, or
”strength”, of one of these sources for the Rashba coupling [40]. In our
case, we take the amplitude to be proportional to the standard deviation

of ξ, V0 = κ

√
ξ∗(x)ξ(x), and write

Dξ = ni

(
κ

√
ξ∗(x)ξ(x)

)2

= niκ ξ∗(x)ξ(x). (4.27)

Remembering ξ(x) from eq. (4.21), the mean is
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ξ∗(x)ξ(x) =
1

16K2v2κ2

∑
n,n′

α̂∗(kn − 2kF )α̂∗(kn′ − 2kF )e−i(kn+kn′ )x . . .

. . .
∑
m,m′

α̂(km − 2kF )α̂(km′ − 2kF )ei(km+km′ )x

=
1

16K2v2κ2

∑
n,n′

α̂(−kn)α̂(−kn′)e−i(kn+kn′ )e−i4kF x . . .

. . .
∑
m,m′

α̂(km)α̂(km′)ei(kn+kn′ )ei4kF x

=
1

16K2v2κ2
α4

rand(x), (4.28)

which gives

Dξ =
ni

16K2v2κ
α4

rand(x). (4.29)

Now, the difficulty of evaluating eq. (4.23) lies in the denominator
and this is where the replica method comes in. The denominator can be
written

1∫
Dφe−SV [φ]

=

(∫
Dφe−SV [φ]

)n−1

, (4.30)

if n = 0. If we instead let n be an arbitrary integer > 2, this becomes

(∫
Dφe−SV [φ]

)n−1

=

(∫
Dφ2e

−SV [φ2]

)
. . .

(∫
Dφne−SV [φn]

)
, (4.31)

so that the average now can be rewritten without a denominator:

〈O〉V =

(∫
Dφ1O(φ1)e−SV [φ1]

)(∫
Dφ2e

−SV [φ2]

)
. . .

(∫
Dφne−SV [φn]

)
=

∫
Dφ1Dφ2 . . .DφnO(φ1)e−

Pn
a=1 SV (φa). (4.32)

This is equivalent to eq. (4.23) if we continue the integer n to a real
continuous parameter and take n → 0 in the end. Knowing when the
limit n → 0 is valid is a delicate matter, however. Without going into
details about this, it can be shown that the limit is valid as long as the
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disorder is treated perturbatively, and there are actually only a few cases
wen the replica method is known to fail [62].

We can now use Gaussian integration over V = ξ(x) to evaluate eq.
(4.24) and at the same time insert eq. (4.32):

〈O〉V =
1∫

DV p(V )

∫
DV p(V )

∫
Dφ1Dφ2 . . .DφnO(φ1)e−

Pn
a=1 SV (φa)

=
1∫

Dξe−
1

2Dξ

R
dxξ2(x)

∫
Dξe−

1
2Dξ

R
dxξ2(x)

×
∫
Dφ1 . . .DφnO(φ1)e−

Pn
a=1 SV (φa)

=

∫
Dφ1 . . .DφnO(φ1) exp

[
−

n∑
a=1

S0(φa)

+
Dξ

2(2κπ)2

n∑
a=1,b=1

∫
dxdτdτ ′

(
e−i
√

16πKφa(x,τ)ei
√

16πKφb(x,τ
′) + H.c.

)]

=

∫
Dφ1 . . .DφnO(φ1) exp

[
−

n∑
a=1

S0(φa)

+
Dξ

2(2κπ)2

n∑
a=1,b=1

∫
dxdτdτ ′

(
e−i
√

16πK(φa(x,τ)−φb(x,τ ′)) + H.c.
)]

=

∫
Dφ1 . . .DφnO(φ1) exp

[
−

n∑
a=1

S0(φa)

+
Dξ

2(2κπ)2

n∑
a=1,b=1

∫
dxdτdτ ′2 cos

(√
16πK (φa(x, τ)− φb(x, τ ′))

)]
.

(4.33)

We have thus found an effective action of the problem,

Seff =
1

2

∑
a

∫
dxdτ

[
1

v
(∂τφa)

2 + v(∂xφa)
2

]
− Dξ

(2πκ)2

∑
a,b

∫
dxdτdτ ′ cos

[√
16πK (φa(x, τ)− φb(x, τ ′))

]
, (4.34)

where a, b = 1, . . . , n are the replica indices.
Since we ultimately need to take the limit n→ 0, it is not possible to

see directly from eq. (4.34) that this action leads to a localisation of the
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electrons. For a discussion about how the localisation arises from this,
see refs. [63] and [64]. For now, we will have to settle with trusting that
the electrons will localise when the disorder part of eq. (4.34) becomes
dominant.

From here, we employ the RG scheme. In the previous chapter, we
used the scaling parameter b, so that the flow of (x, τ) was (x, τ) →
(x, τ)/b as b grew from 1 and up. In the case at hand, it will be more
convenient to work with l ≡ ln b, so we let (x, τ) flow with l as (x, τ)→
(x, τ)e−l. The scaling equations become:

∂D̃ξ

∂l
= (3− 8K)D̃ξ (4.35)

∂v

∂l
= −2vKD̃ξ (4.36)

∂K

∂l
= −2K2D̃ξ, (4.37)

where we have defined the dimensionless parameter [60]

D̃ξ ≡
2κ

πv2
Dξ. (4.38)

(On page 3 of Paper II, a factor κ is missing in the definition of Dξ,
the quantity which we call D̃ξ here, due to a misprint. Furthermore,
the quantity Dξ in the first equation of that page should be the same
as the Dξ we use here, without the tilde.) We notice that we now have
a renormalisation of both the disorder strength D̃ξ, the renormalised
velocity v and the Luttinger parameterK. The equations show that when
K < 3/8, Dξ will become relevant, and the system will turn into what
is known as an Anderson-type localised state [4]. The value K = 3/8
was identified in refs. [65,66] as the critical value below which correlated
backscattering (a second-order process, involving the scattering of four
particles) in the presence of quenched disorder may cause localisation
of the helical edge modes. We have thus found an exact microscopic
realisation of this type of process.

This does not mean, however, that the edge electrons necessarily
localise. Since the short-length cutoff (e.g. the penetration depth of
the edge states or the lattice spacing) grows, or equivalently, the high-
momentum cutoff gets lowered, we cannot take the RG arbitrarily far.
When the short-length cutoff is of the order of the system size, we have to
stop the renormalisation. Only if the disorder strength becomes large, i.e.
D̃ξ becomes of the order unity before reaching the bounds of the system
will the system localise. When we perform the renormalisation, letting l
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Figure 4.2: The edge localisation length ξloc for different values of the
interaction parameter K0. The dashed line marks the length of a micron-
sized HgTe QW sample.

grow larger, the spatial coordinate x goes like xe−l. We define l∗ to be the
value of l where the system localises, i.e. where D̃ξ ∼ 1, remembering the
possibility that we cannot take l this far without making the short-length
cutoff larger than the system itself. When we have renormalised this far,
the electrons cannot move, and so the localisation length, ξloc(l), defined
as the maximum spatial extension a wavefunction can have without de-
caying, is of the order of the lattice spacing. Since all lengths, including
the localisation length, scale with the RG flow as x → xe−l, we can use
this information to deduce the true, unrenormalised, localisation length
ξloc of the system.

The last sentence of the previous paragraph can be formalised as

ξloce
−l∗ = κ, (4.39)

and hence the true localisation length is ξloc = κel
∗

[60]. It is crucial for
us to know this, because if the localisation length exceeds the length of
our sample, it is impossible for us to renormalise all the way to localisa-
tion, and the effect will never appear. So, to find out whether Anderson
localisation is present in the sample or not, we must inquire about the
relation between ξloc and the length of the sample.

In order to calculate the value of the localisation length, we need
to know a few things about our system. First, we define K0 to be the
naked, unrenormalised value of K, i.e. the value that we start with in the
renormalisation of K. We calculate the localisation length as a function
of K0. An estimation of K0 relevant for the HgTe QW:s was made already
in section 3.2.2 and v can be estimated in a similar way with the aid of
eq. (3.52). However, in order to find starting values for D̃ξ on which to
do RG, we need numbers also for ni and α̂4(k). We take ni ≈ 109/m [36]
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and use that for a QW with zinc-blende lattice structure [56],√
α2

rand(x) ≈ α(x). (4.40)

We can then write α4
rand(x) from eq. (4.29) as

α4
rand(x) = 3

(
α2

rand(x)
)2

= 3

(√
α2

rand(x)

)4

≈ 3
(
α(x)

)4

, (4.41)

where the first equality is a general statement about Gaussian distributed
stochastic variables f , namely 〈f 4〉 = 3 〈f 2〉2 . When estimating the
average 〈α(x)〉, we will take as its value the size of the effective bulk
Rashba coupling as the edge bands meet the Γ6 band in the bulk. We
have to take into account that the bulk value of the Rashba coupling is
k-dependent, because of the specific curvature of the Γ6 band. This value
is estimated to ~ 〈α(x)〉 ≈ 5× 10−11 eVm [67].

With numbers on our parameters, we are now ready to calculate the
localisation length. The result is given in fig. 4.2, where a plot of the
localisation length vs. K0, the naked value of K, is shown. The calcula-
tion was performed by solving the RG equations numerically for different
values of K0 and let the value of Dξ flow until Dξ(l

∗) ∼ 1. The obtained
value of l∗ was then used to calculate ξloc as a function of K0. We see
that the edge of a micron-sized QSH sample localises for K0 . 0.25. In
order to probe this experimentally, we thus need values of K0 somewhat
smaller than what was estimated for the HgTe samples used in the exper-
iments that have been performed so far [11]. However, the screening in
a QW can be controlled by varying the thickness of the insulating layer
between the well and the metallic gate and this will affect the value of
K0 according to eq. (3.106). As mentioned in chapter 3, values of K0

down to 0.2 should be possible to achieve [68].
When ξloc < L, the size of the system, the edge electrons are localised

as long as the temperature doesn’t exceed ≈ ~/(kBξloc), with an expo-
nential decrease of the conductivity for lower temperatures [60]. The
actual experiments are typically carried out at temperatures between 30
mK and 2 K [11], so at these temperatures the edge should remain an
insulator.

Before concluding this section, let us mention that the problem of
a spatially dependent Rashba potential in a helical conductor was re-
cently revisited by Crépin et al. in ref. [69]. In this reference the Rashba
interaction is localized at a single point (”Rashba impurity”). It was
shown in agreement with our result that the generation of an effective
two-particle backscattering term from the Rashba interaction is indeed
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only present if electron-electron interactions are present. In addition to
our result, they found a cross-over for the temperature dependence of
the conductance at K = 1/2, with different temperature dependences
in the K < 1/2 and K > 1/2 regions respectively. Surprisingly, their
results showed that the effect of the Rashba coupling, the generation of
the two-particle backscattering, vanishes not only at K = 1, but also at
K = 1/2.

4.5 Periodic modulation of the Rashba cou-
pling

Let us now consider the possibility to tune the Rashba coupling by hand,
to induce a periodically modulated coupling. The problem was first
raised by Wang in the context of an ordinary one-dimensional conduc-
tor (”nanowire”), suggesting that a sequence of equally spaced nanosized
gates applied on top of the wire can be used to produce a Rashba cou-
pling periodic in space [70] . Since the gates can be controlled at will,
this would result in a switch for turning on and off the electrical current
in the wire. Wang’s proposal was later expanded to include effects from
electron-electron interactions, as well as from the geometry of the device,
but still for an ordinary non-helical conductor [59, 71]. In the following
we explore how the scenario plays out for a helical conductor.

Instead of the disordered α(x) examined so far, we thus consider the
case where we force the Rashba coupling to take the periodic form

α(x) = A cos(Qx). (4.42)

We assume that the density of the electrons, and thereby kF , can be tuned
via a backgate, so that for a given periodic distance 2π/Q of the equally
spaced nanogates we have Q = 2kF , corresponding to a wavelength of
about 5− 10 nm in a HgTe QW [67]. Inserting α(x) = A cos(2kFx) into
eq. (4.22), the action becomes

S[φ] =
1

2

∫
dxdτ

[
1

v
(∂τφ)2 + v (∂xφ)2 − A2

2πQκ2v
cos
(√

16πKφ
)]

.

(4.43)
This is the action of the well-studied ”sine-Gordon” model that we

came across already in eq. (3.25), with the RG solution to be found
in a number of textbooks, including Giamarchi’s [40]. The reader is
recommended to study this, but here we will just state the solution. The
scaling equations are the famous Kosterlitz-Thouless equations,
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∂z‖
∂l

= −z⊥ (4.44)

∂z⊥
∂l

= −z‖z⊥. (4.45)

In our case

z‖ = 4K − 2 (4.46)

z⊥ =
A2

πQκ2v

√
CK3, (4.47)

where

C =
128π2

v2

∫
drr3J0(Λr)e−8K

R Λ
0

dq
q

(1−J0(qr)), (4.48)

where J0 is the 0:th order Bessel function of the first kind and Λ is the
high-energy cutoff, as before.

The solution to the Kosterlitz-Thouless equations shows that the sine-
Gordon term, in our case proportional to the Rashba coupling, becomes
relevant for z‖ < 0, i.e. for K0 < 1/2. For K0 < 1/2, it is thus possible
for a mass gap ∆M to open and the system to become what is known
as a Mott insulator [72]. Put simply, the physics behind Mott insulation
is that for large repulsive electron-electron interaction, compared to the
kinetic energy, the system will try to minimise the repulsion and localise
the electrons on the lattice sites, whereas in an Anderson insulator, the
electrons will localise due to scattering back and forth against random
impurities. For the insulating state to be robust, the mass gap ∆M has
to be larger than the available thermal energy. In order to calculate ∆M ,
we need to know where this ”mass” comes from, given the effective action
in eq. (4.43).

The idea is simply that the cos-term in the action,

− A2

2πQκ2v
cos
(√

16πKφ
)
≡ B cos

(√
16πKφ

)
, (4.49)

will start to govern the behaviour of the system as soon as it becomes as
large as, or larger than the kinetic term. For the system to minimise its
energy, it will then configure itself so that the energy contribution from
this term becomes as small as possible. When B renormalises to −∞
the minimum is obtained for φ = 0 and the cos-term can be expanded
around φ = 0 to give
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B cos
(√

16πKφ
)
≈ B

16πKφ2

2
. (4.50)

In a field theory, a mass term generically has the form ∆2
Mφ

2, so the mass
gap we are looking for is in our case equal to

∆M =
√
|B|8πK =

A

κ

√
4K

Qv
. (4.51)

We now have to do a calculation analogous to the one for the lo-
calisation length. Suppose we renormalise up to the point where A is
of order unity, where the cos-term starts to dominate the Hamiltonian.
Since this mass gap has the dimension of an energy, when we set ~ = 1
it renormalises as the inverse of time, i.e.

∆M(l) = el∆M(l = 0). (4.52)

As in the disordered case, we define l∗ to be the value of l∗ for which
A(l∗) ' 1. The true mass gap of the system, ∆M(l = 0), or simply ∆M ,
is then obtained by just reversing the process, so that

∆M(l = 0) = e−l
∗
∆M(l∗) ' e−l

∗ 1

κ

√
4K

Qv
. (4.53)

Now, for a certain starting value of the Rashba amplitude A and a
certain starting value K0 of the Luttinger parameter, we will obtain a
certain value of l∗. This l∗ defines the value of the renormalisation length
κel

∗
, i.e. the length we start from in order to renormalise all the way down

to the lattice spacing κ. This renormalisation length must of course be
at most of the same size as the size of the sample we are working with.

To carry out the analysis, we start by choosing certain values of A
and the sample length L. These are chosen to be close to the ones used
in the Rashba coupling strength estimates for the disordered case. As
just stated, choosing a value for K0 will now also give a value for l∗. The
l∗ thus obtained is then used to calculate ∆M according to (4.53), and
thus, a function ∆M(K0) is extracted.

Fig. 4.3 shows a plot of ∆M as a function of K0. Three different
values of A have been chosen. The l∗ was calculated as a function of K0

and the corresponding ∆M and κ exp(l∗) were then obtained. Following
the plot lines, l∗ increases with K0, and the points where the renormal-
isation length κel

∗
equals the sample length in the cases of L = 1 µm

and L = 20 µm are indicated with a circle and a square, respectively.
The lines are terminated when the renormalisation lengths reach 20 µm,
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Figure 4.3: The gap ∆M for different Rashba amplitudes ~A and values
of K0. The circles and squares mark the smallest gaps for HgTe QW
samples of length 1µm and 20µm, respectively.

since, as mentioned in section 2.4, at sample sizes larger than 20 µm, the
experimental results by König and coworkers no longer unambigously
support the existence of a quantum spin Hall state [11].

We see that for κel
∗

= 1 µm, the gap size is ∆M ≈ 4.5 meV for
all three amplitudes, corresponding to a temperature of around 50 K.
The thermally activated conductance, i.e. the conductance of electrons
excited above the mass gap by the thermal energy, is given by G =
(2e2/h)e−∆M/kBT . Thus, in order to keep the electrons in a micron-sized
sample well localised, the sample must be cooled down to temperatures
below 10-20 K. As previously stated, the temperatures at which these
experiments are typically carried out vary between 30 mK and 1 K.

The plot in fig. 4.3 also shows the values of the electron-electron
interaction (encoded by K0) necessary for obtaining the localisation. As
expected, these values vary with the size of the Rashba coupling.



5
Disorder in quasi-helical

conductors

In the earlier chapters, we have analysed effects of interactions and dis-
order in helical liquids. The systems discussed have exclusively been
quantum spin Hall edges. Helical conductors appear, however, also in
quantum wires or nanotubes with strong spin-orbit interaction. A large
magnetic field is needed, so time-reversal symmetry is broken in these
conductors. They are thus very different from topological insulator edges
and there is no topological protection of the conducting states. The very
magnetic field needed to lift the right- and left-moving states of unwanted
spin orientation to higher energies will also cause a certain spin overlap
between the counterpropagating electrons. Since these conductors are
not completely helical, we will instead call them quasi-helical. The most
prominent examples are one-dimensional semiconductor wires in the pres-
ence of strong spin-orbit coupling and an added magnetic field [21]. We
will mostly consider InAs nanowires, but GaAs and InSb wires are also
conceivable [73–75]. Another example is carbon nanotubes with strong
spin-orbit coupling combined with external electric fields [76].

This chapter will deal with Anderson localisation in quasi-helical con-
ductors, due to backscattering off disordered impurities. Tuning the mag-
netic field will reveal metal-insulator transitions at two different field
strengths. This work was submitted for publication as Paper III as a
collaboration with Bernd Braunecker and George Japaridze [25].

75



76 Chapter 5 Disorder in quasi-helical conductors

|b, L〉 |b, R〉|a, L〉 |a,R〉
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Figure 5.1: The dispersion relation of the quasihelical conductor.

5.1 Model

Consider a one-dimensional electron system with a quadratic dispersion
relation. Adding a strong, uniform, Rashba spin-orbit interaction of
strength α will shift the dispersion relation for the two different spins
↑ and ↓ by the wave vectors +q0 and −q0 respectively, where q0 = mα/~
and m the effective mass of the electrons. If we also add a magnetic field
Bx perpendicular to the spin axis, a Zeeman gap ∆Z = BxgµB/2 opens
up at k = 0, g being the Landé factor and µB the Bohr magneton. The
mechanism behind this is that Bx will align the spins in its direction,
perpendicular to the spin z axis, and lift the degeneracy at the crossing
between the ↑ and ↓ bands. (As shown below, for larger k, the effect of the
Rashba interaction will dominate over the effect of the magnetic field.)
This divides the system into a lower and upper band, which are labelled
a and b respectively, and the resulting dispersion is shown in figure 5.1.
We choose to tune the chemical potential µ to lie in the middle of the
gap ∆ for reasons to be discussed below.

The left- and right-movers of the low-lying band (a) have spins that
are almost opposite. At large |k|, the spins should not be rotated by
much because of the strong SOI, and if the gap ∆Z is large enough,
the higher-energy states of the b band become unavailable. Considering
figure 5.1, we see that with µ in the middle of the gap, the available states
around the Fermi level will then be left-movers with the spin aligned in
a direction close to the positive spin z axis (↑) (red line) and right-
movers with spin close to ↓ (blue line). Thus, in the low-energy limit,
the system becomes similar to a helical conductor, with the difference
that the spin overlap between right- and left-movers is now non-zero.
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For the b-band states to be unavailable, the gap must be larger than the
available thermal energy kBT . The larger the magnetic field, however,
the larger the spin overlap between the left- and right-movers will be. Our
first task will therefore be to investigate ”how helical” our quasi-helical
conductor can be, by calculating the sizes of the gap ∆ and the spin
overlaps 〈a, L(−2q0)|a,R(2q0)〉 at ±kF = ±2q0, in terms of the applied
magnetic field Bx and the Rashba strength α.

We write the Hamiltonian for the free system with an added uniform
Rashba spin orbit interaction (SOI) as

H0+R =

∫
dxψ†(x)

(
k2

2m
− µ+ ασzk

)
ψ(x), (5.1)

where now ψ = (ψ↑, ψ↓) is a spinor of electron annihilation operators,
k = p/~ = −i∂x is the wavevector, and m is the effective mass. The
three terms in this Hamiltonian are then the kinetic energy, the chemical
potential and the Rashba energy. On this form, it is clear that the role of
the Rashba coupling is the spin-dependent shift of the dispersion. Adding
the uniform magnetic field Bx perpendicular to the spin axis gives the
following term to the Hamiltonian

HB = ∆Z

∫
dxψ†(x)σxψ(x). (5.2)

Defining ξk ≡ k2/(2m)− µ, the total Hamiltonian is

H = H0+R +HB =

∫
dxψ†(x) (ξk1 + ∆Zσx + αkσz)ψ(x) (5.3)

The matrix form of ξk1 + ∆Zσx + αkσz is(
ξk + αk ∆Z

∆Z ξk − αk

)
(5.4)

with the two eigenvalues

E±(k) = ξk ±
√

∆2
Z + α2k2. (5.5)

We now introduce two spinor eigenvectors φ± = (u±v±)T for the two
energy eigenvalues E±, so that the upper band will have the electron
states |b, k〉 = u+ |↑〉+ v+ |↓〉 and the lower band |a, k〉 = u− |↑〉+ v− |↓〉,
allowing us to calculate the spin overlaps between states of given bands
and wavevectors. We obtain the two eigenvalue equations
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(ξk + αk)u± + ∆Zv± = E±u± (5.6)

(ξk − αk)u± + ∆Zv± = E±u±. (5.7)

This, together with the condition |φ±| = 1⇔ u2
±+v2

± = 1, gives the four
eigenfunctions

u±(k) =

√
1

2
± αk

2
√

∆2
Z + α2k2

(5.8)

v±(k) =

√
1

2
∓ αk

2
√

∆2
Z + α2k2

. (5.9)

We can thus define the wavefunction u(k) ≡ u+(k) = v+(−k) = u−(−k) =
−v−(k) and write

|a, k〉 = u(k) |↑〉+ u(−k) |↓〉 (5.10)

|b, k〉 = u(−k) |↑〉 − u(k) |↓〉 . (5.11)

Already at this stage we can investigate the two limits of large Bx field
and large α strength. For Bx � α, we see that u(k) ≈ u(−k) ≈ 1/

√
2,

so that |a, k〉 ≈ 1/
√

2 (|↑〉+ |↓〉) and |b, k〉 ≈ 1/
√

2 (|↑〉 − |↓〉). This is
expected, since a large magnetic field will make the spins aligned in its
direction, in this case perpendicular to our chosen ↑ / ↓ axis. In the
opposite limit, Bx � α, u(k) ≈ 1 and u(−k) ≈ 0, so that |a,R〉 ≈ |↑〉
and |a, L〉 ≈ |↓〉, R and L denoting right- and left-moving states (positive
and negative k), respectively.

To investigate the ”helicalness” of the quantum wire, we now calculate
the spin overlap between the left- and right-movers at the Fermi level in
the a band,

〈a,−2q0|a,+2q0〉
= [〈↑|u∗(−2q0) + 〈↓|u∗(+2q0)] [u(2q0) |↑〉+ u(−2q0) |↓〉]

= 2u(−2q0)u(2q0) = 1− 4α2q2
0

∆2
Z + 4α2q2

0

. (5.12)

The limits of strong and weak Bx behave as expected, Bx � α aligns
the spins in the same direction (x), with a resulting unity overlap, while
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Figure 5.2: The overlap squared as a function of the magnetic field.

Bx � α keeps the spins of the left- and right-movers of the a band
perpendicular, making the spin overlap zero.

To calculate the overlap for arbitrary field strengths, we need to put
numbers on our parameters. We choose InAs nanowires as our test sys-
tem, with α = 4 × 10−11 eVm, g=9, m = 0.040me and vF = 2 × 105

m/s [75,77]. The overlap squared as a function of Bx is plotted in Fig. 5.2.
The values chosen for the wave numbers are k = ±2q0 for the states of
the a band and k = ±0.1q0 for the b band. At a magnetic field of about
1T, the overlap squared is about |〈a, L|a,R〉|2 = 0.02. This field produces
the gap ∆ = 0.26meV, corresponding to a temperature of 3K.

5.2 Disorder

The concept of Anderson localisation caused by disorder was discussed in
chapter 4. There, the spin-nonpreserving Rashba interaction was shown
to cause Anderson-type localisation if disordered. Here, the Rashba in-
teraction is assumed to be uniform, and the mechanism behind the lo-
calisation will instead be ordinary spin-preserving backscattering against
randomly distributed impurities, allowed because of the finite spin over-
lap between left- and right-moving states. We will use a similar method
as in chapter 4, starting with a bosonisation of the theory, and then
finding the localisation length from the RG equations. As usual, we lin-
earise the spectrum and integrate over the degrees of freedom between
the high energy cut-off Λ and some lower lying cut-off Λ/b. Increasing b,
the lower boundary of what gets integrated out will eventually approach
the bottom of the upper band. In the bandgap, the number of available
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states is halved, which means that we need to switch from a theory with
four Fermi points to one with only two. We will thus calculate one set
of RG equations for the full non-helical theory above the gap, and one
for the quasi-helical theory in the gap. Upon reaching the gap, we will
continue the RG flow with a new set of coupling constants applicable for
the quasi-helical theory, calculated from the renormalised values of the
coupling constants of the theory above the gap.

5.2.1 Theory above the gap

We want to write down and bosonise an effective Hamiltonian for each
of the two cases above the gap and in the gap. The theory above the gap
will be represented by a full Luttinger liquid Hamiltonian with spin, plus
all the scattering potentials that we are interested in. Instead of using the
a/b basis, which is the physically more transparent choice, the equations
turn out much simpler if we continue using the ↑ / ↓ basis, defined by the
↑ and ↓ spins before the Bx field is added. Thus, compared to the states
indicated in Fig. 5.1, we instead use |a, L〉 → |↓, L〉, |a,R〉 → |↑, R〉,
|b, L〉 → |↑, L〉 and |b, R〉 → |↓, R〉. It is indeed important to keep in
mind that ”up” (↑) and ”down” (↓) here refers not to the actual spins
of the electrons under the influence of the Bx field, but the directions
of the spins before the field was added. It would be very confusing to
use the word ”spin” for both the unrotated spin of our chosen basis and
the actual spin, rotated by Bx. For this reason, we will use the term
”prespin” for our ↑ / ↓ basis.

The free bosonic Hamiltonian, including electron-electron interac-
tions, but before α and Bx are added, is given by

H0 =
∑
ν=ρ,σ

vν
2

∫
dx

[
1

Kν

(∂xφν(x))2 +Kν (∂xθν(x))2

]
, (5.13)

where φν and θν are defined in eqs. (3.20)-(3.23). We assume to be away
from half-filling and disregard the Umklapp scattering. Now, we need
to take into account both the ”prespin-preserving” and the ”prespin-
flipping” interactions. In contrast, we will not include actual spin-flipping
backscattering against the disordered impurities in our analysis, since
those processes will be much less relevant than any spin-preserving one.
We need, however, to consider scattering between states that have oppo-
site prespins in our ↑ / ↓ basis, since there will be a finite spin overlap
between those states because of the Bx field. As we have seen, the role
of the Rashba interaction and the perpendicular magnetic field is to shift
the dispersion so that it looks like Fig. 5.1. We will assume their effect
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on the interactions to be limited to adding spin-dependence to the differ-
ent scattering processes. As explained in chapter 3, the g-ology coupling
constants from eqs. (3.8)-(3.11) are g1 for backward scattering, g2 for
dispersive scattering, g3 for Umklapp and g4 for forward scattering. The
indices ‖ and ⊥ are used to denote whether the incoming electrons have
equal or opposite prespins. For the electron-electron interactions that
determine the values of K and u, i.e. the g1‖, g2 and g4 scatterings (see
Fig. 3.1), it will not matter between which bands, or within which band,
the scattering takes place. Thus, the Rashba interaction will not enter
into H0. For the g1⊥ interaction, where two electrons of opposite prespin
backscatters while keeping their prespin, we see that backscattering be-
tween states of the same prespin now means scattering between left- and
right-movers of two different bands only. Therefore, we need to take into
account the spin overlap between the a and b states when we put g1⊥
into our equations.

We now turn to the scattering processes between states of different
prespins. Again, we will make sure that the ones we consider will be
spin-preserving in terms of the actual spins. Disregarding processes that
don not conserve the wavenumber k, the prespin-flip process terms in the
Hamiltonian are

H1⊥f =

∫
dxvFg1⊥f

∑
σ=↑,↓

ψ†RσψL,−σψ
†
L,−σψRσ (5.14)

H2⊥f =

∫
dxvFg2⊥fψ

†
R↑ψR↓ψ

†
L↓ψL↑ + H .c. (5.15)

H4⊥f =

∫
dxvFg4⊥f

(
ψ†R↑ψR↓ψ

†
R↓ψR↑ + ψ†L↑ψL↓ψ

†
L↓ψL↑

)
, (5.16)

i.e. intraband backward scattering, interband dispersive scattering and
interband forward scattering, respectively. All of these processes are
equivalent to prespin-preserving processes: The g1⊥ processes can be
absorbed into the expression for g2⊥, the g2⊥f processes into the g1⊥
processes and the g4⊥f into the ordinary g4⊥.

The theory of disorder scattering was briefly explained in 4, but the
case at hand is somewhat more complicated in the sense that we need
to be careful between which bands the scatterings take place. In the
region above the gap, there will be three different ways for electrons
to backscatter off the disordered impurities - within the a band, within
the b band and between the a and b bands. Thus, to the Hamiltonian
described above, we add a disorder Hamiltonian Hdis = Hξaa+Hξab+Hξbb

consisting of three corresponding terms describing backscattering against
the impurities . They are given by
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Hξaa =

∫
dx
(
ξaaψ

†
L↓ψR↑ + ξ∗aaψ

†
R↑ψL↓

)
(5.17)

Hξbb =

∫
dx
(
ξbbψ

†
L↑ψR↓ + ξ∗bbψ

†
R↓ψL↑

)
(5.18)

Hξab =
∑
σ=↑,↓

∫
dx
(
ξabψ

†
RσψLσ + ξ∗abψ

†
LσψRσ

)
, (5.19)

which bosonises into

Hξaa =

∫
dx ξaa

1

2πa0

e−i
√
π(φρ+θσ) + H .c. (5.20)

Hξbb =

∫
dx ξab

1

2πa0

e−i
√
π(φρ−θσ) + H .c. (5.21)

Hξab =

∫
dx ξab

1

πa0

e−i
√
πφρ cos(

√
πφσ) + H .c. (5.22)

5.2.2 Theory in the gap

Before employing the RG scheme on the effective Hamiltonian that de-
scribes the physics above the bandgap, we turn to the description of the
region in the gap. Here, the theory is most easily written down by just
removing the bosonic fields belonging to the b band from eq. (5.13),

H0 =
vH
2

∫
dx

[
1

KH

(∂xϕ(x))2 +KH (∂xθ(x))2

]
, (5.23)

where now ϕ = φR↑+φL↓ and θ = φR↑−φL↓. The result is a quasi-helical
Luttinger liquid, where opposite prespins belong to opposite directions.
Since we have linearised the spectrum around the two Fermi points at k =
±2q0, where the spin overlaps are very small, it is a good approximation
to treat the theory in the gap as a helical liquid. In practice, this means
that we may set some of the g-ology coupling constants to zero. The
values of KH and vH can be expressed in terms of Kν and vν , which is
crucial for our two-step RG scheme since we need to be able to use the
renormalised values of Kν and vν when switching from the spinful LL
above the gap to the helical liquid in the gap. The derivation is found in
appendix A and the resulting expressions are
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KH =

√
Kρ(KρKσvρ + vσ)

Kσ(KρKσvσ + vρ)
(5.24)

vH =
1

2

√
v2
ρ + v2

σ + vρvσ

(
KρKσ +

1

KρKσ

)
. (5.25)

5.2.3 RG equations

We are now ready to renormalise the theory. To set up the formalism, we
will primarily follow ref. [60]. The disorder of the randomly distributed
impurities is expressed by a random potential with Gaussian distribu-
tion. The amplitude for scattering between the branches i, j = a, b is
described by the dimensionless disorder strength D̃ij, which is propor-
tional to the square of the strength of each individual scattering potential,
which in turn is proportional to the square of the overlap between the two
branches, |〈i|j〉|2. Thus, if we denote the disorder strength for scattering
between states with perfect spin overlap by D̃, we have D̃ij = D̃|〈i|j〉|4.
The renormalisation of D̃ij depends in the spinful LL on Kρ, Kσ and g1⊥,
which in turn depend on vρ and vσ, so we need the scaling equations for
those parameters as well. In addition, we need to take into account the
renormalisation of the magnetic gap. The reason is that we switch the-
ories when the bottom of the upper band is reached by renormalisation
and coincides with the lower cutoff Λ/b, so the increase of the gap by RG
will affect our results. There are three competing effects at work. If the
magnetic field is low enough, the amplitude D̃ab for scattering off impu-
rities from one branch to the other will grow large before Λ/b reaches the
gap, causing Anderson localisation. For larger magnetic fields, Λ/b will
reach the gap before D̃ab grows large, and we continue with the renormal-
isation of D̃aa in the gap. For intermediate magnetic field strengths, the
overlap between the right- and left-movers in the quasi-helical liquid is
small, which will make D̃aa ∝ |〈a|a〉|4 small. In turn, this means that the
localisation length for Anderson localisation caused by aa backscattering
off impurities will be large. As long as it is larger than the sample length,
which we will denote L, the quasi-helical conductor will remain metallic.
Finally, when Bx is large enough, the overlap 〈aL|aR〉, and thereby the
disorder strength D̃aa, will be large enough to cause localisation.

There are a couple of problems we need to deal with before continuing
with this two-step RG approach. Since the overlap integrals depend on
k, the problem is no longer scale invariant, in the sense that the coupling
constants will depend on the energy scale we consider, even without
renormalisation. To address this problem, we calculate the overlaps at
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some fixed value of k and stick to them. The scatterings we consider
during the RG are scatterings between one of the Fermi points and other
points at high energies, determined by the Λ/b parameters. In Paper
III it is shown that the overlaps don not vary too much with the energy
scale, and we found that taking the overlaps at halfway to the high-
energy cutoff is a good estimate of the influence of the overlaps on the
theory [25]. The second issue is that it looks as though we might neglect
the fact that we renormalise even over the bottom of the b band when
switching from the full Luttinger liquid theory above the gap to the quasi-
helical theory in the gap. This could have been a problem due to the
curvature of the band bottom, since we linearise the theory in order to
do bosonisation. Normally, the linearisation is a good approximation for
the low-energy physics around the Fermi points, but since it seems that
we need to integrate over a part of the theory where this approximation
is potentially far away from the actual curved band bottom of the b band,
one might fear that the approximation is instead far off. However, also
the gap ∆Z renormalises and grows under RG, which means that we will
reach the bottom of the upper band and switch theories before reaching
the potentially problematic part.

Next, the task will be to derive the RG equations and investigate
the behaviours in the different regions. We will use the replica method
described in chapter 4, and start with writing down the replicated parts
of the action that are due to the three different backscattering processes
we are interested in. The bosonised version of the Hamiltonians are given
in eqs. (5.20)-(5.22). These yield the replicated actions

Sξaa = − Dξaa

4(πa0)2

∑
i,j

∫
dxdτdτ ′e−i

√
π(φiρ(x,τ)−φjρ(x,τ ′)+θiσ(x,τ)−θjσ(x,τ ′))+H.c.,

(5.26)

Sξbb = − Dξbb

4(πa0)2

∑
i,j

∫
dxdτdτ ′e−i

√
π(φiρ(x,τ)−φjρ(x,τ ′)−θiσ(x,τ)+θjσ(x,τ ′)) +H.c.

(5.27)

and
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Sξab = − Dξab

(πa0)2

∑
i,j

∫
dxdτdτ ′e−i

√
π(φiρ(x,τ)−φjρ(x,τ ′))

× cos
(√

πφiσ(x, τ)
)

cos
(√

πφjσ(x, τ ′)
)

+H.c.

= − 2Dξab

(πa0)2

∑
i,j

∫
dxdτdτ ′ cos

(√
π(φiρ(x, τ)− φjρ(x, τ ′))

)
× cos

(√
πφiσ(x, τ)

)
cos
(√

πφjσ(x, τ ′)
)
, (5.28)

where i and j are the replica indices to be summed over. We will not need
the replica indices in what follows, since we will perform the expansion
in Dξab to first order only. In previous chapters, the RG analyses have
been performed directly on the action, but in this case it will be easier
to use the following correlation functions instead:

Rφρ(r1 − r2) =
〈
ei
√
πφρ(r1)e−i

√
πφρ(r2)

〉
(5.29)

Rφσ(r1 − r2) =
〈
ei
√
πφσ(r1)e−i

√
πφσ(r2)

〉
(5.30)

Rθσ(r1 − r2) =
〈
ei
√
πθσ(r1)e−i

√
πθσ(r2)

〉
, (5.31)

where ri = (xi, τi). These correlation functions are to be taken with
respect to the full action S = S0 + Sg⊥ + Sξab+aa+bb + S∆. The definition
of the correlation function is

〈A〉 =
1

Z

∫
Dφ1Dφ2 . . . Ae

−S[φ1,φ2...], (5.32)

where Z is the partition function. The fields integrated over may of course
also include the dual θ fields. If we write S = S0 +Sg1⊥ +Sξab+aa+bb +S∆

and exp(−S) = exp(−S0) exp(−Sg1⊥ − Sξab+aa+bb − S∆), we can Taylor
expand the second exponent to

e−S = e−S0
(
1− Sg1⊥ − Sξab+aa+bb + S2

g1⊥
+ Sξab+aa+bbSg1⊥ + . . .

)
,

(5.33)

where we have neglected the ∆ part of the action, since its RG equations
have already been calculated elsewhere and the crossterms can be shown
to yield nothing new. Since Dξ is already second order in ξ, the S2

ξ terms
are omitted. With this,
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〈A〉 ≈ 1

Z

∫
Dφ1Dφ2 . . . Ae

−S0

×
(
1− Sg1⊥ − Sξab+aa+bb + S2

g1⊥
+ Sξab+aa+bbSg1⊥

)
=
〈
A
(
1− Sg1⊥ − Sξab+aa+bb + S2

g1⊥
+ Sξab+aa+bbSg1⊥

)〉
0
, (5.34)

where the 0 index means that we are taking the correlation function with
respect to S0. We are thus left with a series of correlation functions to
calculate, each much less complicated than the original ones. The actual
calculation are unfortunately a bit too lengthy to fit in this thesis, so
we will here just outline the method and state the results. Once the
correlation functions are calculated, we arrive at new, effective version
of Rφρ , Rφσ and Rφσ from eqs. (5.29)-(5.31). It then only remains to do
the rescaling and extract the RG equations:

∂lKρ = −vρK2
ρ(2D̃ab + D̃aa)/4vσ (5.35)

∂lKσ = −K2
σ(D̃ab + y2)/2 + D̃aa/4 (5.36)

∂ly = (2− 2Kσ)y − D̃ab (5.37)

∂lD̃aa = (3−Kρ −K−1
σ )D̃aa (5.38)

∂lD̃bb = (3−Kρ −K−1
σ )D̃bb (5.39)

∂lD̃ab = (3−Kρ −Kσ − y)D̃ab (5.40)

∂lvρ = −Kρv
2
ρ(2D̃ab + D̃aa)/4vσ (5.41)

∂lvσ = −vσKσD̃ab/2− vσK−3
σ D̃aa/4 (5.42)

∂lδ(l) =
[
2− (Kρ +K−1

σ )/2
]
δ (5.43)

above the gap, where we have defined the dimensionless gap parameter
δ(l) = ∆Z(l)/E(l), where E(l) = ~vF/κ(l), where κ(l) = κel. The RG
equations in the gap are

∂lKa = −K2
aD̃aa/2, (5.44)

∂lD̃aa = (3− 2Ka)D̃aa, (5.45)

∂lva = −vaKaD̃aa/2. (5.46)

5.3 Results

To extract the consequences of the RG equations in eqs. (5.35)-(5.43)
and (5.44)-(5.46), we consider an experimentally accessible system. We
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Figure 5.3: The localisation length of an InAs nanowire with system
length 5µm as a function of Bx for D̃ = 0.01. We find one metal-insulator
transition at Bx ≈ 0.9T and one at Bx ≈ 2T. The figure is from Paper
III.

choose, as before, an InAs nanowire. To carry out the analysis we need
to add some more parameters to the ones given earlier. The length of
the system is taken to be L = 5µm, Kρ = 0.5, Kσ = 1, vρ = vF/Kρ,
vσ = vF/Kσ and y = 0.1|〈a, L|b, R〉|2. Finally, we take the short length
cutoff κ = 15 nm [75,77]

With these parameters, we renormalise the theory above the gap with
eqs. (5.35)-(5.43). If any of the D̃ parameters become of the order unity,
the system is localised and we stop the renormalisation. If the cutoff
Λ/b, which becomes smaller during RG, meets the bandgap, which grows
under RG, we switch to the helical theory in the gap. Here we use RG
equations (5.44)-(5.46) with new values of vH and KH determined from
the renormalised values of vρ, vσ, Kρ and Kσ according to eqs. (5.24)
and (5.25). We continue the renormalisation until either the a band
gets localised due to the D̃aa disorder scattering, or the renormalisation
exceeds the size of the sample.

The RG flow yield the localisation lengths plotted in Fig. 5.3. For low
Bx fields, the localisation length is short due to disorder backscatterings
between the a and b band, the states of which have a large spin overlap at
low fields. At a certain value Bx = B∗x, the magnetic gap is large enough
for the gap to be reached by RG before D̃ab grows large enough to localise
the electrons. For stronger field Bx > B∗∗x , the localisation length is
again small, since the large spin overlap between the counterpropagating
electrons will here make the D̃aa disorder amplitude large. We have thus
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Figure 5.4: A phase diagram depicting the three different phases for
different values of the disorder strength and the magnetic field. The
figure comes from Paper III.

found a region B∗x < Bx < B∗∗x where a quasi-helical conductor phase
can be sustained.

We can reformulate the results as a phase diagram (see Fig. 5.4),
where we show the boundaries between the three different phases as func-
tions of the non-overlap disorder strength and the magnetic field. The
figure reveals that there exists a threshold value below which a sweep
of the magnetic field from low to high will result in two metal-insulator
transitions, first from an insulating state to a quasi-helical liquid state,
and then, at higher fields, back again. Above this threshold, however,
the system will remain an insulator for any value of Bx (for the InAs
nanowire at hand, this threshold value is estimated to D̃ ≈ 0.023).



6
Kondo and Rashba effects on a

quantum spin Hall edge

Chapter 4 discussed the effect of adding a Rashba spin-orbit interaction
at a quantum spin Hall edge. It was shown that in combination with dis-
persive electron-electron interaction, the Rashba interaction may cause
localisation of the edge electrons if it is disordered. Now, we want to ask
ourselves what the effect would be of adding a combination of a uniform
Rashba interaction and a Kondo type impurity on the edge. The work
presented in this chapter was published as Paper IV and is a collaboration
with Erik Eriksson, Girish Sharma and Henrik Johannesson [26].

6.1 Kondo physics

The temperature dependence of the electrical resistivity in an ordinary
metal shows a linear increase with temperature. The main cause of
resistance is that conduction electrons gets scattered by the atoms in
the metal, and the more the atoms vibrate, the more difficult it be-
comes for the electrons to travel through the metal unscattered. As the
temperature is lowered, the linear behaviour eventually crosses over to
a power-law dependence on temperature, with the leading term deter-
mined by what type of scattering process dominates (electron-phonon,
electron-electron etc.). As the temperature is lowered further, the resis-
tivity eventually levels off to a constant due to non-magnetic impurity
scattering (unless the material becomes superconducting). In 1934, how-
ever, it was discovered by de Haas et al. that adding magnetic impurities
to a metal will change the temperature dependence of the resistivity so
that a minimum appears at a certain temperature [78]. The mechanism

89
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behind this increase in resistivity with lowered temperature remained a
mystery until Kondo was able to explain the phenomenon theoretically
in 1964 [79]. Using ordinary perturbation theory, Kondo showed that
spin exchange between the magnetic impurities and the conduction elec-
trons contributes an extra term J ln[kBT/(D−EF )] to the resistivity, J
being the coupling between the impurity spin and the electron spin, D a
high-energy cut-off and EF the Fermi energy. For positive J (antiferro-
magnetic case - energy is minimised when the two spins lie in opposite
directions), J ln[kBT/(D − EF )] diverges as T approaches zero, making
the perturbative result invalid. The temperature where this happens is
known as the Kondo temperature, TK , and it follows that Kondo’s result
is valid only for T > TK . To give an estimate of TK , Kondo assumed the
perturbation theory to break down when

J ln[kBTK/(D − EF )] ≈ 1⇔ TK ≈
(D − EF )

kB
e1/J , (6.1)

where J is chosen dimensionless. The problem of describing the physics
below TK is known as the Kondo problem. It turned out to be a very dif-
ficult quantum many-particle problem which required the development
of novel theoretical tools and concepts for its solution. To mention the
most important: Anderson’s pioneering ”poor-man’s scaling” theory [80],
Wilson’s renormalisation group [43], the exact Bethe Ansatz theories by
Andrei [81] and Wiegmann [82], and the deep and powerful conformal
field theory formulation by Affleck and Ludwig [83]. Moreover, as be-
came clear in retrospect from Wilson’s renormalisation group approach,
the Kondo model in fact defines an asymptotically free theory: TK is a
dynamically generated energy scale below which the electrons interact
strongly with the impurity spin and gets screened away. In contrast, at
temperatures above TK the interaction is weak, and therefore the physics
can be accessed perturbatively.

For the rest of the chapter, we will investigate the effect of the combi-
nation of a Kondo-type magnetic impurity and a uniform Rashba SOI on
the edge of a QSH system. The focus will be both on the Kondo temper-
ature and how the edge conductance is influenced by the impurity, and
especially, how both of these features are affected by the Rashba interac-
tion. The electrical controllability of the Rashba strength in a quantum
well, via a gate voltage, then may provide a tool for experimental control
of Kondo physics in helical conductors.
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6.2 Model

As in chapter 4, the electrons on the edge are modelled by the spinor
Ψ = (ψ↑, ψ↓)

T , where the edge is assumed to be helical, so that ψ↑ and
ψ↓ annihilates electrons with opposite spins and momenta. To add to the
the helical free Hamiltonian, including dispersive and forward scatterings,
we need the Hamiltonians for the Rashba and Kondo interactions, respec-
tively. The Rashba Hamiltonian is given by eq. (4.1), while the Kondo
interaction can be written

HK = Ψ†(0)(Jxσ
xSx + Jyσ

ySy + Jzσ
zSz)Ψ(0), (6.2)

where σi and Si are Pauli matrices in the spin spaces of the conduction
electrons and the impurity spin, respectively. The Jx, Jy and Jz are the
couplings between the two different spins along the three spatial axes.
As it is written now, all three can in principle be different, but for a
magnetic impurity at a 2D quantum well interface, as we shall study
here, one expects Jx = Jy > Jz [84].

Assuming for simplicity a uniform Rashba interaction along the edge,
eq. (4.1) takes the form

HR = −iα
∫

dxΨ†(x)σy∂xΨ(x). (6.3)

If we neglect electron-electron interactions to begin with (they will
be added later on), our total edge Hamiltonian can thus be written

H = −ivF
∫

dxΨ†(x)σz∂xΨ(x)− iα
∫

dxΨ†(x)σy∂xΨ(x)

+ Ψ†(0)(Jxσ
xSx + Jyσ

ySy + Jzσ
zSz)Ψ(0). (6.4)

The spinors can be rotated into Ψ′ = e−iσ
xθ/2Ψ in order to absorb

the entire Rashba term in the kinetic part of the Hamiltonian [85]. We
want the quantisation axis of the impurity spin to be the same as for
the bulk electron spin, so the impurity spin is also rotated into S′ =
e−iS

xθ/2SeiS
xθ/2. The new spin quantisation axis z′ is thus rotated by the

angle θ from the z-axis. This turns H0 +HR +HK into H ′0 +H ′K , with

H ′0 = vα

∫
dxΨ′†(x)(−iσz′∂x)Ψ′(x) (6.5)

H ′K =Ψ′†(0)
(
Jxσ

xSx + J ′yσ
y′Sy

′
+ J ′zσ

z′Sz
′
+ JE(σy

′
Sz
′
+ σz

′
Sy
′
)
)

Ψ′(0),

(6.6)
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with the following definitions:

J ′y = Jy cos2 θ + Jz sin2 θ (6.7)

J ′z = Jz cos2 θ + Jy sin2 θ (6.8)

JE = (Jy − Jz) cos θ sin θ (6.9)

vα =
√
v2
F + α2. (6.10)

The relationship between the Rashba rotated velocity vα and the Rashba
rotation angle θ is then expressed through cos θ = vF/vα and sin θ =
α/vα. As we can see, the Rashba interaction leaves the Jx coupling
intact, while mixing the Jy and Jz couplings. This means that for non-
zero Rashba coupling α, even if we start with the two Kondo couplings
perpendicular to the spin axis equal, Jx = Jy = J⊥, we will end up with
an effective Kondo Hamiltonian with three different couplings Jx, J

′
y and

J ′z. In other words, as expected, spin along the quantisation axes is no
longer conserved. In addition, unless Jy = Jz, a new non-collinear term
JE(σy

′
Sz
′
+ σz

′
Sy
′
) is produced. The role of this term will be discussed

later.
We will now approach the problem by using bosonisation and RG

techniques. Once the RG equations have been derived, we can use them
to find out when the couplings between the impurity spin and the conduc-
tion electrons grow large and start to dominate the theory. The temper-
ature corresponding to the energy scale where this happens is interpreted
as the Kondo temperature discussed above.

6.3 Bosonisation

The next step is to bosonise H ′0 + H ′K , but from now on we drop the
primes and simply write H0 + HK (i.e. the new H0 + HK is equal to
the old H0 + HR + HK). Similarly, we write Ψ instead of Ψ′. We start
by looking at HK in eq. (6.6). The Pauli matrices acting on the spinors
there can be written

Ψ†σxΨ = ψ†↑ψ↓ + ψ†↓ψ↑ (6.11)

Ψ†σyΨ = −iψ†↑ψ↓ + iψ†↓ψ↑ (6.12)

Ψ†σzΨ = ψ†↑ψ↑ − ψ†↓ψ↓. (6.13)

We bosonise HK by using the bosonisation rules from eq. (3.13) and eq.
(3.14) (where now the chiral index can be ignored). We will also need
the bosonisation relation for the density fluctuations ρ↑/↓ from eq. (3.18).
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With thus obtain

Ψ†σxΨ =
1

πa0

cos[2
√
πϕ] (6.14)

Ψ†σyΨ =
1

πa0

sin[2
√
πϕ] (6.15)

Ψ†σzΨ =
i√
π

(∂z + ∂z̄)ϕ =
1

v
√
π
∂tϕ =

i

v
√
π
∂τϕ. (6.16)

The bosonised Kondo Hamiltonian is thus

HK =
A

a0

cos[2
√
πϕ(τ)] +

B

a0

sin[2
√
πϕ(τ)] +

i

v
C∂τϕ(τ), (6.17)

where A = JxS
x/π, B = (J ′yS

y′+JES
z′)/π and C = (J ′zS

z′+JES
y′)/
√
π.

Turning to the kinetic part of the Hamiltonian, H0, things will work
out just like before. We also want to add electron-electron interactions at
this stage. As we know by now, the interactions allowed by time-reversal
symmetry, away from half-filling, are forward and dispersive scattering.
The partition function then becomes

Z =

∫
Dϕ(τ) exp

[
− 1

β

∑
n

|ωn|
K
|ϕ(ωn)|2 −

∫
dτLK [ϕ(τ)]

]
(6.18)

6.4 Effective action

As in section 3.3, we divide our fields into a slow (s) and a fast (f) part,
ϕ(τ) = ϕs(τ) + ϕf (τ), and the effective action can then be written

e−Seff [ϕs] = e−Ss[ϕs]
〈
e−SK [ϕs,ϕf ]

〉
f

= e−Ss[ϕs]e
〈SK〉f−

1
2

“
〈S2

K〉f−〈SK〉2f
”
. (6.19)

We will now bring the effective action in eq. (6.19) on a form suitable
for an RG analysis. Let us start with the first order term in the cumulant
expansion,

〈SK〉f =

∫
dτ

[〈
A

a0

cos[2
√
πϕ(τ)]

〉
+

〈
B

a0

sin[2
√
πϕ(τ)]

〉
+

〈
iC

v
∂τϕ(τ)

〉]
. (6.20)
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We see that the last of these terms will not renormalise to first order,
since 〈∂τϕf (τ)〉 = 0, so that 〈∂τϕ〉 = ∂τϕs. The first term is

∫
dτ

〈
A

a0

cos[2
√
πϕ(τ)]

〉
=

A

2a0

∫
dτ

{
e2i
√
πϕs

×
∫
Dϕf exp

[∫
f

dω

2π

(
2i
√
πe−iωτϕf (ω)− |ω|

K
|ϕf |2

)]
+H.c.

}
=

A

2a0

∫
dτ

{
e2i
√
πϕs exp

[
−
∫
f

dω

2π

πK

|ω|

]
+H.c.

}
= e−

K
2

R
f

dω
|ω|
A

a0

∫
dτ cos

[
2
√
πϕs

]
.

(6.21)

Similarly, the second term in eq. (6.20) is

∫
dτ

〈
B

a0

sin[2
√
πϕ(τ)]

〉
=

B

2ia0

∫
dτ

{
e2i
√
πϕs

×
∫
Dϕf exp

[∫
f

dω

2π

(
2i
√
πe−iωτϕf (ω)− |ω|

K
|ϕf |2

)]
−H.c.

}
=

B

2ia0

∫
dτ

{
e2i
√
πϕs exp

[
−
∫
f

dω

2π

πK

|ω|

]
−H.c.

}
= e−

K
2

R
f

dω
|ω|
B

a0

∫
dτ sin

[
2
√
πϕs

]
.

(6.22)

Next, we calculate the second order terms of the cumulant expansion
in eq. (6.19). We start with
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− 1

2

(〈
S2
K

〉
f
− 〈SK〉2f

)
= −1

2

∫
dτdτ ′

{
A2

a2
0

(〈
cos[2

√
πϕ(τ)] cos[2

√
πϕ(τ ′)]

〉
−
〈
cos[2

√
πϕ(τ)]

〉 〈
cos[2

√
πϕ(τ ′)]

〉)
+
B2

a2
0

(〈
sin[2
√
πϕ(τ)] sin[2

√
πϕ(τ ′)]

〉
−
〈
sin[2
√
πϕ(τ)]

〉 〈
sin[2
√
πϕ(τ ′)]

〉)
− C2

v2
(〈∂τϕ(τ)∂τ ′ϕ(τ ′)〉 − 〈∂τϕ(τ)〉 〈∂τ ′ϕ(τ ′)〉)

+
AB

a2
0

(〈
cos[2

√
πϕ(τ)] sin[2

√
πϕ(τ ′)]

〉
−
〈
cos[2

√
πϕ(τ)]

〉 〈
sin[2
√
πϕ(τ ′)]

〉)
+
iAC

a0v

(〈
cos[2

√
πϕ(τ)]∂τ ′ϕ(τ ′)

〉
−
〈
cos[2

√
πϕ(τ)]

〉
〈∂τ ′ϕ(τ ′)〉

)
+
iBC

a0v

(〈
sin[2
√
πϕ(τ)]∂τ ′ϕ(τ ′)

〉
−
〈
sin[2
√
πϕ(τ)]

〉
〈∂τ ′ϕ(τ ′)〉

)
+
BA

a2
0

. . .+
iCA

a0v
. . .+

iCB

a0v
. . .

}
. (6.23)

We will treat all nine terms in order. The last three terms, proportional to
BA, CA and CB, are the same as the ones proportional to AB, AC and
BC respectively, but with the τ - and τ ′-dependent factors in switched
positions. In eq. (6.6), the different terms were written as Jaσ

bSc, for
some a, b and c, and a product of two of these terms is then a product of
two J coupling constants, two Pauli matrices σ in the electron spin space
and two Pauli matrices S in the impurity spin space. The anticommu-
tation rules for the Pauli matrices are {σa, σb} = δab, which means that
most of the terms proportional to AB will be equal to the ones propor-
tional to BA and so on. This is shown explicitly in Appendix B, where
the derivation of the second-order RG equations are carried out.

The full set of RG equations are
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∂Jx(l)

∂l
= (1−K)Jx(l) +

K

vπ

(
J ′y(l)J

′
z(l)− JE1(l)JE2(l)

)
(6.24)

∂J ′y(l)

∂l
= (1−K)J ′y(l) +

K

vπ
Jx(l)J

′
z(l) (6.25)

∂J ′z(l)

∂l
=
K

vπ
Jx(l)J

′
y(l) (6.26)

∂JE1(l)

∂l
= (1−K)JE1(l)− K

vπ
Jx(l)JE2(l) (6.27)

∂JE2(l)

∂l
= −K

vπ
Jx(l)JE1(l). (6.28)

6.5 The Kondo temperature

To extract the Kondo temperature TK , we need to see at what energy
scale any of the coupling constants becomes large, so that the perturba-
tive approach breaks down. By ”large”, we mean large compared to the
kinetic part of the theory, so we want to compare the size of the coupling
constants J with πv/K. When any J has grown to the size of πv/K,
we check how far the flow parameter l has run and simply read off the
corresponding thermal energy scale kBT = De−l.

6.5.1 Weak interaction limit

In the weak interaction limit, K ≈ 1, and so the RG equations reduce to

∂Jx
∂l

=
K

vπ

(
J ′yJ

′
z − J2

E

)
(6.29)

∂J ′y
∂l

=
K

vπ
JxJ

′
z (6.30)

∂J ′z
∂l

=
K

vπ
JxJ

′
y (6.31)

∂JE
∂l

= −K
vπ
JxJE, (6.32)

where now JE no longer separates into JE1 and JE2 by the flow. With
this set of equations, the Kondo temperature turns out to be

TK ≈ D exp

(
− πv

Jx(0)

arcsinh(ζ)

ζ

)
, (6.33)

where ζ =
√

(J ′z(0)/Jx(0))2 − 1 accounts for the anisotropy between the
Kondo couplings paralell and perpendicular to the spin axis [49].
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6.5.2 Strong interaction limit

In the strong interaction limit, with K � 1, the RG equations decouple
and reduce to

∂Jx
∂l

= (1−K)Jx (6.34)

∂Jy′

∂l
= (1−K)Jy′ (6.35)

∂JE1

∂l
= (1−K)JE1. (6.36)

The solution to each equation is simply J(l) = J(0)e(1−K)l, for J = Jx, J
′
y

and JE1 respectively. If we now insert l = ln(D/T ) into the solution, and
solve the equation J(l) = πv/K, we obtain that

TK ≈ D

(
JK

πv

)1/(1−K)

, (6.37)

and so the proper expression for TK in the small K limit is TK ≈
D(JmaxK/(πv))(1/(1−K)), where Jmax denotes the largest J(0).

6.5.3 General case

The system of scaling equations (B.62) can also be solved numerically for
any value of the interaction parameter K. Doing this will yield a value
of l where one of the coupling constants will grow to the size of πv/K,
which in turn gives the Kondo temperature as TK = De−l/kB. When
Jx = Jy ≥ Jz (which includes the case of an isotropic spin exchange)
one obtains the Kondo temperatures shown in figure 6.1. For a given
K0, TK decreases with increasing θ, an effect that is mostly due to the
increase of v with θ. Turning to the case of an anisotropic Kondo effect
with large Jz, i.e. Jx = Jy < Jz, the result is different, as shown in
figure 6.2. It is now possible for the absolute value of the JE1 coupling
to grow large and dominate the other couplings. Before discussing the
implications of this possibility, let us calculate the conditions for it. By
inspection of eq. (B.62), we see that the stronger the electron-electron
interaction, the more likely it is for JE to grow large in comparison to
the other J :s. Given that all three of the l-dependent couplings in the
strong-interaction limit share the same scaling equation, the one that
grows large first, thereby determining the Kondo temperature, will be
the one with the largest initial, or ”bare”, value. The bare values for the
coupling constants, J(l = 0), depend on the unrotated coupling constants
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Figure 6.1: The Kondo temperature TK as a function of the Rashba angle
θ and the ordinary Luttinger liquid parameter K0. The TK scale is loga-
rithmic and red and blue colour indicates high and low TK , respectively.
Jx = Jy ≥ Jz (here, Jx/a0 = Jz/a0 = 10meV)

Jx = Jy(= J⊥) and Jz and the Rashba angle θ as given in eqs.(6.7)-(6.9).
From this, we see that for |JE1| to be larger than Jx and Jy′ , we need
Jz to be larger than J⊥, making JE1 negative. With Jz > J⊥, we also
have Jy′ > Jx. The two possibilities are then that Jy′ or |JE1| will be
dominating. The condition for |JE1| > Jy′ is

|JE1| > Jy′ ⇔ −JE1 > Jy′ (6.38)

(Jz − J⊥) cos θ sin θ > J⊥ cos2 θ + Jz sin2 θ (6.39)

Jz(cos θ sin θ − sin2 θ) > J⊥(cos θ sin θ + cos2 θ) (6.40)

Jz
cos θ sin θ − sin2 θ

cos θ sin θ + cos2 θ
> J⊥. (6.41)

The function (cos θ sin θ−sin2 θ)/(cos θ sin θ+cos2 θ) reaches its maximum
value of approximately 0.17 at θ = π/8. This means that if we can
produce a material with Jz > 6J⊥, there might be a region in the θ−K0

plane, centered around θ = π/8, where JE1 will dominate the physics,
threatening to wipe out the expected Kondo regime. In Fig. 6.2, the
numeric TK calculation has been carried out with Jz = 10Jx. The area
where JE1 becomes large first is shaded in the figure. This shaded area
will grow with growing Jz/J⊥.

Earlier, we briefly touched upon the physical explanation for the
Kondo temperature, i.e. the temperature below which the perturbation
theory breaks down. We stated that the impurity spin will be screened
by the conduction electrons, and indeed, eq. (6.6) tells us that when any
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Figure 6.2: The Kondo temperature TK as a function of the Rashba angle
θ and the ordinary Luttinger liquid parameter K0. The TK scale is loga-
rithmic and red and blue colour indicates high and low TK , respectively.
Jx = Jy < Jz (here, Jx/a0 = 5 meV and Jz/a0 = 50 meV). In the shaded
area, J̃E1 dominates the perturbative RG flow, hence obstructing singlet
formation.

of J ′x, J
′
y and J ′z grow large, the σiSi terms will make it energetically

favourable for the spins to form singlets. However, the JE1σ
y′Sz

′
term

will not favour spin singlets, which means that in the shaded area of
Fig. 6.2, the Kondo screening will be obstructed and a higher conduc-
tance than with a collinear Kondo coupling can be expected.

6.6 Conductance

For the rest of the chapter, we will treat the correction to the conductance
due to the Kondo impurity. Most of the analysis and calculations, some of
which are quite tricky and demanding, were carried out by one of my co-
authors on Paper IV, my fellow student Erik Eriksson. For completeness,
the basic elements of the calculation, as well as the main results, are
briefly presented here.

In the low-temperature regime, the results of ref. [49] will hold and
the Rashba interaction will not affect the conductance. For K > 1/4,
two-particle backscattering is irrelevant and at T = 0, no correction
δG to the conductance is expected. With increased temperature, while
still in the T � TK regime, contributions to δG from correlated two-
particle backscattering (2PB) and inelastic single-particle scattering will
occur. For strong electron-electron interaction, K < 1/4, the 2PB will
be relevant and cause a crossover from weak to strong coupling at a
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temperature Tbs ≈ Dg
1/(1−4K)
bs [86]. This will make the conductance drop

to zero at T = 0.

For temperatures larger than both the Kondo temperature and Tbs,
the amplitudes for the Kondo interaction, the 2PB and the inelastic
scattering remain weak. We can therefore obtain transport properties
perturbatively. Though the conductance will be affected by both 2PB
and inelastic scattering, these scatterings will in turn be unaffected by the
Rashba interaction. Our interest is therefore solely in the contribution
to δG from the Kondo interaction, which does become affected by the
Rashba interaction.

The current operator is given by

I =
e

2
∂t

(
ψ†↑ψ↑ − ψ†↓ψ↓

)
, (6.42)

or in the Rashba rotated basis,

I =
e

2
∂t

(
Ψ′†(cos θσz

′ − sin θσy
′
)Ψ′
)
. (6.43)

The part of the current operator that is due to the Kondo impurity
can be shown to be

δI =
ie

4πa0

(
Jx + J ′y

)
cos θ

(
ei(2

√
πK−λ)ϕ(0)S+ − e−i(2

√
πK−λ)ϕ(0)S−

)
+

ie

4πa0

(
Jx − J ′y

)
cos θ

(
ei(2

√
πK+λ)ϕ(0)S− − e−i(2

√
πK+λ)ϕ(0)S+

)
− e

4πa0

JE cos θe2i
√
πKϕ(0)Sz +

e

2πa0

√
πK

Jx sin θ : ∂xϑ(0)e−i
√
πλϕ(0)

(6.44)

in its bosonised form. In eq. (6.44), λ = J ′z/(πv
√
K) and the com-

bined Pauli matrices in the impurity spin space are defined as S± =(
Sx ± iSy′

)
. The field conjugate to ϕ is denoted ϑ to distinguish it from

the Rashba angle θ.

Using the Kubo formula will give the Kondo contribution to the con-
ductivity as
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δG =
1

ω

∫ ω

0

dteiωt
〈[
δI†(t), δI(0)

]〉
= −

(e
2

(
Jx + J ′y

)
cos θ

)2

F
(

2
√
K − λ

)(2πT

D

)2(
√
K−λ/2)

2
−2

−
(e

2

(
Jx − J ′y

)
cos θ

)2

F
(

2
√
K + λ

)(2πT

D

)2(
√
K+λ/2)

2
−2

−
(e

2
JE cos θ

)2

F
(

2
√
K
)(2πT

D

)2K−2

−
(

e

π
√
K
Jx sin θ

)2

F̃ (λ),

(6.45)

where

F (x) =
(Γ(x2/4))

2

4πv2Γ(x2/2)
(6.46)

and F̃ is a T -independent function of Jx, λ and K.

As pointed out in ref. [87], the Kubo formula rests on a perturbation
expansion which in our case means that eq. (6.45) is only valid for J2 �
ω. To study the dc limit ω � J2 � T we will use a a semiclassical
rate equation approximation where we assign classical probabilities for
the states. For details, the reader is referred to Paper IV, and we will
here merely state the result for the conductance correction in this limit:

δG = −e
2 cos2 θ

2T

4γ0γ
′
0 + (γ0 + γ′0)

(
γE0 + γ̃E0

)
+ γ̃E0 γ

E
0

γ0 + γ′0 + γ̃E0
, (6.47)

with the rates
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γ0 =
(
Jx + J ′y

)2

(
Γ
[
(
√
K − λ/2)2

])2

16π2a0vΓ
[
2(
√
K − λ/2)2

] (2πT

D

)2(
√
K−λ/2)

2
−1

(6.48)

γ′0 =
(
Jx − J ′y

)2

(
Γ
[
(
√
K + λ/2)2

])2

16π2a0vΓ
[
2(
√
K + λ/2)2

] (2πT

D

)2(
√
K+λ/2)

2
−1

(6.49)

γE0 = J2
E

(Γ [K])2

16π2a0vΓ [2K]

(
2πT

D

)2K−1

(6.50)

γ̃E0 = J2
E

F̃ (λ)

4

(
2πT

D

)λ2/2+1

. (6.51)

Finally, to explore the dependence of the conductance on the Rashba
interaction, we use the same formalism as in the calculation of the tun-
nelling conductance in section 3.4. The result for δI = I−G0V , G0 being
the quantum conductance e2/h, is

δI ≈ −e
+1∑
j=−1

Im

{
B

(
Kj + ieV

2πT
,
Kj − ieV

2πT

)

× Cj
(
T

D

)2Kj−1
sin (πKj − ieV/2T )

cos(πKj)

}
, (6.52)

where we have defined Kj ≡ (
√

2 − jλ/2)2, C±1 ≡ c±(Jx ± J ′y)
2 and

C0 ≡ c0J
2
E, with c±,0 constants depending on K, λ and θ.

With this we want to explore the Rashba dependence of δI, with
experimentally relevant numbers for our parameters. We choose to con-
sider an Mn2+ ion close to the edge of a HgTe QW [88]. Our calculation
is based on a spin-1/2 impurity and it can be shown that the Mn2+,
though having spin S = 5/2, will at the quantum well interface have
its higher spin components frozen out, leaving behind a spin-1/2 dou-
blet [89]. The reader is referred to Paper IV for the estimates of the
values of the Kondo couplings Jx, Jy and Jz and the Rashba strength α.
We put a0 ≈ 0.5 nm [90], vF ≈ 5.0 × 105 m/s [11] and D ≈ 300 meV
knigexp. The temperature dependence of the Kondo couplings can be
estimated by performing an RG analysis of the coupling constants in eq.
(6.52), renormalising until l = ln(D/T ) reaches the chosen temperature
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(here, T = 30 mK is chosen). The resulting δI − V characteristic is
plotted in Fig. 6.3.
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7
Conclusions

In this thesis we have discussed aspects of some of the most novel and
interesting developments in one-dimensional quantum physics. Helical
conductors provide an excellent arena for the study of physics at the
mesoscopic scale driven by relativistic spin-orbit interactions. In particu-
lar, we have had the opportunity to investigate some interesting aspects of
effects from electron-electron interactions and disordered impurity scat-
terings in these spin-filtered one-dimensional conductors. Intriguing as
they may be by themselves, theoretical investigations of new physics are
predictions about the outcomes of experimental research, and in all of
the cases studied in this thesis we have also made suggestions for exper-
imental tests of our results.

We have shown that electron-electron interactions play a very im-
portant role in the physics of a one-dimensional helical conductor. For
example, the tunnelling of edge electrons through a point-contact created
by a gate voltage was shown to depend heavily on the strength of the
dispersive scattering of the electrons in the system. Similarly, the abil-
ity for a disordered Rashba interaction to localise the edge states, and
thereby destroying the quantum spin Hall state, was also found to depend
on the dispersive scattering, in addition to the strength of the Rashba
fluctuations themselves. In the case of a periodically modulated Rashba
interaction along the edge, we showed that a localisation can occur al-
ready at moderate electron-electron interactions. This suggests that a
gate-controlled modulated Rashba interaction may be used in a future
device to switch the edge current on and off. The difference in interac-
tion strength at which the two types of localisation occur opens up the
intriguing possibility to study the transition between a Mott insulating
phase, caused by the periodic Rashba modulation and the Anderson-
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localised phase due to the interplay between a strong electron-electron
interaction and a disordered Rashba interaction.

In our study of a magnetic impurity at a quantum spin Hall edge,
we have also shown that in the case of combined Rashba and Kondo
interactions, the Kondo temperature has a strong dependence on the
magnitude of the Rashba interaction, electrically controllable by a gate
voltage. The ability to control the Kondo effect experimentally may
turn out to be an important tool in the further understanding of these
systems. We also found a non-collinear interaction between the edge
electrons and the impurity spin, which for certain configurations of the
anisotropy of the Kondo couplings and the strengths of the electron-
electron interactions and the Rashba coupling may cause a blocking of
the Kondo effect. Finally, in the study of Anderson localisation in quasi-
helical conductors, we were able to predict two metal-insulator transitions
at different strengths of a magnetic field applied parallel to the conductor.
This surprising result means that even a conductor which is localised at
low magnetic fields can undergo a transition into a quasi-helical state at
some finite magnetic field strength. The intermediate quasi-helical state
was shown to be present even at quite strong disorder, an important
finding for future manufacturing of quantum wires to be used as quasi-
helical conductors.

The dispersive interaction between electrons plays a main role in all
of the situations considered. This sets the quantum spin Hall insulators
apart from ordinary quantum Hall systems, where by time-reversal sym-
metry breaking the dispersive scattering channel is killed off. Our results
vividly show the importance of including a careful analysis of the disper-
sive electron interaction in the analysis of this new class of materials.

The subject of topological insulators is still new, and is developing
rapidly. Many challenges lie ahead, perhaps especially in the area of
interaction and disorder effects, the very subjects of this thesis. There
are also many new materials that await a more thorough theoretical
treatment, as well as a need for theoretical predictions for possible new
topological insulators. Other fascinating areas that have are now begin-
ning to draw attention are those involving heterostructures and interfaces
between different kinds of topological materials.materials. Here much of
the the inspiration draws from prospects to find zero-mode Majorana
fermions when a helical conductor is in proximity to a superconductor.
For a review of this, see ref. [91].

Experimentally, there are many challenges, in creating samples of
different materials that can be experimentally tested for various features
of topological insulators, in coming up with methods of measuring these,
but also in inventing effective methods for manufacturing good samples
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so that the reproducibility of experiments can be improved. There is still
a long way to go before dissipationless edge currents can be exploited in
small and energy-cheap devices.

The idea of using magnetic fields to produce quasi-helical conduc-
tors in quantum wires and carbon nanotubes is also something that may
become increasingly important. Although there is no topological pro-
tection of the quasi-helical states, these conductors could still be used
for spin-filtered transport [21]. More intriguingly, they could also offer
the possibility for Cooper pair splitting [92], and, if in contact with a
superconductor, they may be used to realise Majorana bound states at
their ends [91,93,94], just as predicted for the quantum spin Hall edges,
but experimentally much more easily available.

To conclude, helical conductors are physically interesting and poten-
tially useful systems, where many things remain to be explored. The
study of interaction and disorder in these conductors, the central topic
of this thesis, is important for furthering our understanding of spin-orbit
driven physics and to pave the way for the possible use of this type of
conductors in future device technology.
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A
Transformation between

theories

In this appendix, the derivation of the transformation between the renor-
malised velocities and Luttinger liquid parameters of the theories above
and in the gap are derived. We will go through the differences between
the two theories, starting with the different g-ology coupling constants
g1, g2 and g4.

• For g1, we will have both g1⊥ and g1‖ in the spinful LL. As is shown
in ref. [40], one can permute the operators to put g1‖ equal to −g2‖,
so that we can take it into account by changing g2‖ to g2‖−g1‖ in the
dispersion part of the Hamiltonian. In the helical LL, there is no
backscattering allowed, and it is also not possible to have dispersive
scattering of two electrons with the same spin. Thus, in the helical
case, g1‖ = g2‖ = 0. When it comes to g1⊥, the corresponding
interaction is represented by a sine-Gordon term, present only in
the spinful LL.

• For g2, we just stated that g2‖ will be combined with g1‖ in the
spinful LL, and put to zero in the helical LL. However, g2⊥ is non-
zero in both theories.

• For g4, we have both g4⊥ and g4‖ in the spinful LL, but only g4‖ in
the helical LL. Electrons moving in the same direction have equal
spins, so g4⊥ = 0 in the helical LL.

As explained before, when constructing the bosonised Hamiltonian,
the main idea is to absorb the ”g-ology” interactions in the K and u
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parameters, with the exception of g1⊥, thereby constructing a free bosonic
theory from an interacting fermionic one. For this purpose, it is useful to
define charge and spin versions of the coupling constants for dispersive
and forward scattering:

gρ = g1‖ − g2‖ − g2⊥ (A.1)

gσ = g1‖ − g2‖ + g2⊥ (A.2)

g4ρ = g4‖ + g4⊥ (A.3)

g4σ = g4‖ − g4⊥. (A.4)

In the helical LL, gρ = −gσ and g4ρ = g4σ, since only g2⊥ and g4‖ are
non-zero. We can connect the two theories by expressing this fact as

g2⊥ =
gσ − gρ

2
(A.5)

g4‖ =
g4ρ + g4σ

2
. (A.6)

Next, we write down the definitions of K and u that allows us to use a
free bosonic theory in the presence of forward and dispersive scatterings
(plus spin parallel backward scattering):

Kρ =

√
1 + y4ρ/2 + yρ/2

1 + y4ρ/2− yρ/2
(A.7)

Kσ =

√
1 + y4σ/2 + yσ/2

1 + y4σ/2− yσ/2
(A.8)

vρ = vF

√
(1 + y4ρ/2)2 − (yρ/2)2 (A.9)

vσ = vF
√

(1 + y4σ/2)2 − (yσ/2)2, (A.10)

where we have defined y ≡ g/(πvF ). The corresponding parameters in
the helical theory are

KH =

√
1 + y4⊥/2 + yρ/2

1 + y4ρ/2− yρ/2
=

√
1 + y4ρ+y4σ

4
− yσ−yρ

4

1 + y4ρ+y4σ

4
+ yσ−yρ

4

(A.11)

vH = vF

√
(1 + y4‖/2)2 − (y2⊥/2)2 = vF

√(
1 +

y4ρ + y4σ

4

)2

−
(
yσ − yρ

4

)2

,

(A.12)
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where (A.5) and (A.6) was used. In order to writeKH and vH as functions
of Kρ,σ and vρ,σ, we first need to write down the y:s in terms of Kρ,σ and
vρ,σ. The proper expressions are found to be

yρ =
±(vρ −K2

ρvρ)

KρvF
(A.13)

yσ =
±(vσ −K2

σvσ)

KσvF
(A.14)

vρ =
±(vρ +K2

ρvρ)− 2KρvF

KρvF
(A.15)

vσ =
±(vσ +K2

σvσ)− 2KσvF
KσvF

. (A.16)

What remains is just to write

KH =

√
4 + y4ρ + y4σ − yσ + yρ
4 + y4ρ + y4σ + yσ − yρ

=

[(
4+

1

KρvF

(
±(vρ +K2

ρvρ)− 2KρvF
)
+

1

KσvF

(
±(vσ +K2

σvσ)− 2KσvF
)

− ±(vσ −K2
σvσ)

KσvF
+
±(vρ −K2

ρvρ)

KρvF

)
/(

4+
1

KρvF

(
±(vρ +K2

ρvρ)− 2KρvF
)
+

1

KσvF

(
±(vσ +K2

σvσ)− 2KσvF
)

+
±(vσ −K2

σvσ)

KσvF
− ±(vρ −K2

ρvρ)

KρvF

)]1/2

=

√
Kρ(KρKσvρ + vσ)

Kσ(KρKσvσ + vρ)
, (A.17)

where the last equality is obtained by noting that we must choose all ±
postive in order for KH to make physical sense. Similarly for vH ,
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vH = vF

√(
1 +

y4ρ + y4σ

4

)2

−
(
yσ − yρ

4

)2

=
vF
2

√
(KρKσvρ + vσ)(vρ +KρKσvσ)

KρKσv2
F

=
1

2

√
u2
ρ + u2

σ + vρvσ

(
KρKσ +

1

KρKσ

)
. (A.18)



B
Derivation of the second order

RG equations for the Kondo
couplings

This Appendix is devoted to the calculation of the second order RG
equations for the Kondo couplings in chapter 6. Our starting point is the
second-order cumulant expansion

− 1

2
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S2
K

〉
f
− 〈SK〉2f

)
= −1

2
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dτdτ ′
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√
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√
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√
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√
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〉 〈
sin[2
√
πϕ(τ ′)]

〉)
− C2

v2
(〈∂τϕ(τ)∂τ ′ϕ(τ ′)〉 − 〈∂τϕ(τ)〉 〈∂τ ′ϕ(τ ′)〉)

+
AB

a2
0

(〈
cos[2

√
πϕ(τ)] sin[2

√
πϕ(τ ′)]

〉
−
〈
cos[2

√
πϕ(τ)]

〉 〈
sin[2
√
πϕ(τ ′)]

〉)
+
iAC

a0v

(〈
cos[2

√
πϕ(τ)]∂τ ′ϕ(τ ′)

〉
−
〈
cos[2

√
πϕ(τ)]

〉
〈∂τ ′ϕ(τ ′)〉

)
+
iBC

a0v

(〈
sin[2
√
πϕ(τ)]∂τ ′ϕ(τ ′)

〉
−
〈
sin[2
√
πϕ(τ)]

〉
〈∂τ ′ϕ(τ ′)〉

)
+
BA

a2
0

. . .+
iCA

a0v
. . .+

iCB

a0v
. . .

}
(B.1)
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of eq. (6.19).

B.1 The cumulant expansion

We start with the term proportional to A2 and work our way through all
nine terms.

B.1.1 First term (A2)

The term proportional to A2 is

− 1

2

∫
dτdτ ′

A2

a2
0

( 〈
cos[2

√
πϕ(τ)] cos[2

√
πϕ(τ ′)]

〉
−
〈
cos[2

√
πϕ(τ)]

〉 〈
cos[2

√
πϕ(τ ′)]

〉 )
= −1

2

∫
dτdτ ′

A2

4a2
0

[(
e2i
√
π(ϕs(τ)+ϕs(τ ′))

〈
e2i
√
π(ϕf (τ)+ϕf (τ ′))

〉
+ e2i

√
π(ϕs(τ)−ϕs(τ ′))

〈
e2i
√
π(ϕf (τ)−ϕf (τ ′))

〉
+H.c.

)
−
(
e2i
√
π(ϕs(τ)+ϕs(τ ′))

〈
e2i
√
πϕf (τ)

〉〈
e2i
√
πϕf (τ ′)

〉
+ e2i

√
π(ϕs(τ)−ϕs(τ ′))

〈
e2i
√
πϕf (τ)

〉〈
e−2i

√
πϕf (τ ′)

〉
+H.c.

)
= −1

2

∫
dτdτ ′

A2

4a2
0

[

× e2i
√
π(ϕs(τ)+ϕs(τ ′))

(
e
−2π

D
(ϕf (τ)+ϕf (τ ′))

2
E
− e−2π(〈ϕ2

f (τ)〉+〈ϕ2
f (τ ′)〉)

)
+e2i

√
π(ϕs(τ)−ϕs(τ ′))

(
e
−2π

D
(ϕf (τ)−ϕf (τ ′))

2
E
− e−2π(〈ϕ2

f (τ)〉+〈ϕ2
f (τ ′)〉)

)
+H.c.

]

= −1

2

∫
dτdτ ′

A2

2a2
0

[
× cos

[
2
√
π (ϕs(τ) + ϕs(τ

′))
]
e−4π〈ϕ2

f (τ)〉 (e−4π〈ϕf (τ)ϕf (τ ′)〉 − 1
)

+ cos
[
2
√
π (ϕs(τ)− ϕs(τ ′))

]
e−4π〈ϕ2

f (τ)〉 (e+4π〈ϕf (τ)ϕf (τ ′)〉 − 1
)]

. (B.2)

The correlation functions to be calculated are
〈
ϕ2
f (τ)

〉
and 〈ϕf (τ)ϕf (τ

′)〉.
Let us begin with the second one:
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〈ϕf (τ)ϕ(τ ′)〉 =

∫
Dϕf exp

[
−
∫
f

dω

2π

|ω|
K
|ϕf |2

]
ϕf (τ)ϕ(τ ′)

=

∫
Dϕf exp

[
−
∫
f

dω

2π

|ω|
K
|ϕf |2

] ∫
f

dω

2π
e−iωτϕ(ω)

∫
f

dω′

2π
e−iω

′τ ′ϕ(ω′)

=

∫
f

dωdω′

(2π)2
e−i(ωτ+ω′τ ′) exp

[
−
∫
f

dω

2π

|ω|
K
|ϕf |2

]
ϕ(ω)ϕ(ω′)

∝
∫
f

dωdω′

2π
e−i(ωτ+ω′τ ′) K

2|ω|δ(ω + ω′) =
K

2

∫
Λ/b<|ω|<Λ

dω

2π
e−iω(τ−τ ′)|ω|−1

=
K

2π

∫ Λ

Λ/b

dω

ω
e−iω(τ−τ ′). (B.3)

The correlation
〈
ϕ2
f (τ)

〉
is obtained from this by setting τ = τ ′:

〈
ϕ2
f (τ)

〉
=
K

2π

∫ Λ

Λ/b

dω

ω
=
K

2π
ln b. (B.4)

Keeping τ 6= τ ′, the result is approximately, for large τ−τ ′, a generalized
Bessel function of the 0:th order:

K

2π

∫ Λ

Λ/b

dω

ω
e−iω(τ−τ ′) ≈ K

2π
K0

(
Λ(τ − τ ′)

b

)
, (B.5)

The Bessel function, with K0(1) = 0.5, falls off exponentially for suffi-
ciently large τ − τ ′. Now, in eq. (B.2) both cosine terms are proportional
to (

e±4π〈ϕf (τ)ϕf (τ ′)〉 − 1
)
, (B.6)

which will rapidly approach 1 − 1 = 0 as Λ(τ − τ ′)/b grows. A good
approximation for eq. (B.2) is thus obtained by limiting τ − τ ′ by an
upper cutoff b/Λ, and letting τ → τ ′ in the correlation function:

〈ϕf (τ)ϕf (τ
′)〉 ≈

〈
ϕ2
f (τ)

〉
=
K

2π
ln b. (B.7)

We also introduce the coordinates s = τ − τ ′ and T = (τ + τ ′)/2. Then

ϕs(τ) + ϕs(τ
′) = ϕs(T + s/2) + ϕs(T − s/2) ≈ 2ϕs(T ), (B.8)

for small s. Also,
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ϕs(τ)− ϕs(τ ′) = ϕs(T + s/2)− ϕs(T − s/2) ≈ s∂Tϕs(T ). (B.9)

With this, the cosines can be approximated by

cos
[
2
√
π (ϕs(τ) + ϕs(τ

′))
]
≈ cos

[
4
√
π (ϕs(T ))

]
(B.10)

and

cos
[
2
√
π (ϕs(τ)− ϕs(τ ′))

]
≈ 1. (B.11)

The first second order term of the cumulant expansion is thus ap-
proximately

− 1

2

∫
dτdτ ′

A2

a2
0

( 〈
cos[2

√
πϕ(τ)] cos[2

√
πϕ(τ ′)]

〉
−
〈
cos[2

√
πϕ(τ)]

〉 〈
cos[2

√
πϕ(τ ′)]

〉 )
≈ −1

2

∫ b/Λ

0

ds

∫ β

0

dT
A2

2a2
0

[
cos
[
4
√
πϕs(T )

] (
e−8πK ln b

2π − e−4πK ln b
2π

)
+
(

1− e−4πK ln b
2π

)]
= −1

2

b

Λ

A2

2a2
0

∫
dT cos

[
4
√
πϕs(T )

]((1

b

)4K

−
(

1

b

)2K
)

+ const.,

(B.12)

where const. denotes field-independent terms. The cos [4
√
πϕs(T )] term

turns out to be RG-irrelevant, and it follows that the full A2 term is
irrelevant.

B.1.2 Second term (B2)

The term proportional to B2 is
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− 1

2

∫
dτdτ ′

B2

a2
0

( 〈
sin[2
√
πϕ(τ)] sin[2

√
πϕ(τ ′)]

〉
−
〈
sin[2
√
πϕ(τ)]

〉 〈
sin[2
√
πϕ(τ ′)]

〉 )
= −1

2

∫
dτdτ ′

B2

−4a2
0

[(
e2i
√
π(ϕs(τ)+ϕs(τ ′))

〈
e2i
√
π(ϕf (τ)+ϕf (τ ′))

〉
− e2i

√
π(ϕs(τ)−ϕs(τ ′))

〈
e2i
√
π(ϕf (τ)−ϕf (τ ′))

〉
+H.c.

)
−
(
e2i
√
π(ϕs(τ)+ϕs(τ ′))

〈
e2i
√
πϕf (τ)

〉〈
e2i
√
πϕf (τ ′)

〉
− e2i

√
π(ϕs(τ)−ϕs(τ ′))

〈
e2i
√
πϕf (τ)

〉〈
e−2i

√
πϕf (τ ′)

〉
+H.c.

)
=

1

2

∫
dτdτ ′

B2

4a2
0

[

× e2i
√
π(ϕs(τ)+ϕs(τ ′))

(
e
−2π

D
(ϕf (τ)+ϕf (τ ′))

2
E
− e−2π(〈ϕ2

f (τ)〉+〈ϕ2
f (τ ′)〉)

)
−e2i

√
π(ϕs(τ)−ϕs(τ ′))

(
e
−2π

D
(ϕf (τ)−ϕf (τ ′))

2
E
− e−2π(〈ϕ2

f (τ)〉+〈ϕ2
f (τ ′)〉)

)
+H.c.

]

=
1

2

∫
dτdτ ′

B2

2a2
0

[
× cos

[
2
√
π (ϕs(τ) + ϕs(τ

′))
]
e−4π〈ϕ2

f (τ)〉 (e−4π〈ϕf (τ)ϕf (τ ′)〉 − 1
)

− cos
[
2
√
π (ϕs(τ)− ϕs(τ ′))

]
e−4π〈ϕ2

f (τ)〉 (e+4π〈ϕf (τ)ϕf (τ ′)〉 − 1
)]

.

(B.13)

By comparison with the A2 term we see that this term is also irrelevant.

B.1.3 Third term (C2)

The term proportional to C2 vanishes, since

1

2

∫
dτdτ ′

C2

v2
(〈∂τϕ(τ)∂τ ′ϕ(τ ′)〉 − 〈∂τϕ(τ)〉 〈∂τ ′ϕ(τ ′)〉)

=
1

2

∫
dτdτ ′

C2

v2
(∂τϕs(τ)∂τ ′ϕs(τ

′)− ∂τϕs(τ)∂τ ′ϕs(τ
′)) = 0. (B.14)
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B.1.4 Fourth term (AB)

The term proportional to AB is

− 1

2

∫
dτdτ ′

AB

a2
0

( 〈
cos[2

√
πϕ(τ)] sin[2

√
πϕ(τ ′)]

〉
−
〈
cos[2

√
πϕ(τ)]

〉 〈
sin[2
√
πϕ(τ ′)]

〉 )
= −

∫
dτdτ ′

AB

8ia2
0

[(
e2i
√
π(ϕs(τ)+ϕs(τ ′))

〈
e2i
√
π(ϕf (τ)+ϕf (τ ′))

〉
− e2i

√
π(ϕs(τ)−ϕs(τ ′))

〈
e2i
√
π(ϕf (τ)−ϕf (τ ′))

〉
−H.c.

)
−
(
e2i
√
π(ϕs(τ)+ϕs(τ ′))

〈
e2i
√
πϕf (τ)

〉〈
e2i
√
πϕf (τ ′)

〉
− e2i

√
π(ϕs(τ)−ϕs(τ ′))

〈
e2i
√
πϕf (τ)

〉〈
e−2i

√
πϕf (τ ′)

〉
−H.c.

)
= −

∫
dτdτ ′

AB

8ia2
0

[

× e2i
√
π(ϕs(τ)+ϕs(τ ′))

(
e
−2π

D
(ϕf (τ)+ϕf (τ ′))

2
E
− e−2π(〈ϕ2

f (τ)〉+〈ϕ2
f (τ ′)〉)

)
−e2i

√
π(ϕs(τ)−ϕs(τ ′))

(
e
−2π

D
(ϕf (τ)−ϕf (τ ′))

2
E
− e−2π(〈ϕ2

f (τ)〉+〈ϕ2
f (τ ′)〉)

)
−H.c.

]

= −
∫

dτdτ ′
AB

4a2
0

[
× sin

[
2
√
π (ϕs(τ) + ϕs(τ

′))
]
e−4π〈ϕ2

f (τ)〉 (e−4π〈ϕf (τ)ϕf (τ ′)〉 − 1
)

− sin
[
2
√
π (ϕs(τ)− ϕs(τ ′))

]
e−4π〈ϕ2

f (τ)〉 (e+4π〈ϕf (τ)ϕf (τ ′)〉 − 1
)]

.

(B.15)

By comparison with the A2 term, we see that the small-s approximation,
where we let τ → τ ′ is good here too. The sines can thus be approximated
as

sin
[
2
√
π (ϕs(τ) + ϕs(τ

′))
]
≈ sin

[
4
√
π (ϕs(T ))

]
(B.16)

and

sin
[
2
√
π (ϕs(τ)− ϕs(τ ′))

]
≈ 2
√
πs∂Tϕs(T ). (B.17)
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The fourth second-order term of the cumulant expansion is thus approx-
imately given by

− 1

2

∫
dτdτ ′

AB

a2
0

( 〈
cos[2

√
πϕ(τ)] sin[2

√
πϕ(τ ′)]

〉
−
〈
cos[2

√
πϕ(τ)]

〉 〈
sin[2
√
πϕ(τ ′)]

〉 )
≈ −

∫ b/Λ

0

ds

∫ β

0

dT
AB

4a2
0

[
sin
[
4
√
πϕs(T )

] (
e−8πK ln b

2π − e−4πK ln b
2π

)
− 2
√
πs∂Tϕs(T )

(
1− e−4πK ln b

2π

)]
= −AB

4a2
0

∫
dT

[
b

Λ
sin
[
4
√
πϕs(T )

]((1

b

)4K

−
(

1

b

)2K
)

− 2
√
π
b2

2Λ2
∂Tϕs(T )

(
1−

(
1

b

)2K
)]

. (B.18)

The sin [4
√
πϕs(T )] term can be shown to be RG-irrelevant, (just as

the cos-term in eq. (B.12)), so the relevant contribution to the cumulant
expansion is

AB
√
π

4v2

∫
dT∂Tϕs(T )

((
1

b

)−2

−
(

1

b

)2K−2
)
, (B.19)

where the relation Λ = v/a0 between the high frequency and the small
distance cutoffs have been used.

Before moving to the fifth term, let us examine the term proportional
to BA. First of all, AB = JxJ

′
yS

xSy
′
/π+JxJES

xSz
′
/π, which means that

BA = −AB since the S matrices anticommute. However, the relevant
part of eq. (B.15) is

∫
dτdτ ′

AB

8ia2
0

e2i
√
π(ϕs(τ)−ϕs(τ ′))e−4π〈ϕ2

f (τ)〉 (e4π〈ϕf (τ)ϕf (τ ′)〉 − 1
)
− H .c.

=

∫
dτdτ ′

AB

4a2
0

sin
[
2
√
π (ϕs(τ)− ϕs(τ ′))

]
e−4π〈ϕ2

f (τ)〉

×
(
e4π〈ϕf (τ)ϕf (τ ′)〉 − 1

)
, (B.20)

whereas the corresponding term in the BA term is instead
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∫
dτdτ ′

BA

8ia2
0

e2i
√
π(ϕs(τ ′)−ϕs(τ))e−4π〈ϕ2

f (τ)〉 (e4π〈ϕf (τ ′)ϕf (τ)〉 − 1
)
− H .c.

= −
∫

dτdτ ′
AB

4a2
0

sin
[
2
√
π (ϕs(τ

′)− ϕs(τ))
]
e−4π〈ϕ2

f (τ)〉

×
(
e4π〈ϕf (τ ′)ϕf (τ)〉 − 1

)
. (B.21)

From eq. (B.9), we see that φs(τ
′) − φs(τ) ≈ −s∂Tϕs(T ) and so, the

equivalence to eq. (B.17) for the BA term is

sin
[
2
√
π (ϕs(τ

′)− ϕs(τ))
]
≈ −2

√
πs∂Tϕs(T ). (B.22)

Thus, the relative minus sign between eq. (B.17) and eq. (B.22) eliminates
the one between AB and BA, and the two terms have been shown to be
equal.

B.1.5 Fifth term (AC)

The term proportional to AC is

−1

2

∫
dτdτ ′

iAC

a0v

(〈
cos[2

√
πϕ(τ)]∂τ ′ϕ(τ ′)

〉
−
〈
cos[2

√
πϕ(τ)]

〉
〈∂τ ′ϕ(τ ′)〉

)
= −

∫
dτdτ ′

iAC

2a0v

{〈
cos[2

√
πϕ(τ)]

〉
∂τ ′ϕs(τ

′)−
〈
cos[2

√
πϕ(τ)]

〉
∂τ ′ϕs(τ

′)

+
〈
cos[2

√
πϕ(τ)]∂τ ′ϕf (τ

′)
〉
−
〈
cos[2

√
πϕ(τ)]

〉
〈∂τ ′ϕf (τ ′)〉

}
= −

∫
dτdτ ′

iAC

2a0v

〈
cos[2

√
πϕ(τ)]∂τ ′ϕf (τ

′)
〉
, (B.23)

since 〈∂τϕf (τ)〉 = 0. The correlation function can then be rewritten as
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〈
cos[2

√
πϕf (τ)]∂τ ′ϕ(τ ′)

〉
= lim

ε→0

1

2iε
√
π
∂τ ′
〈
e2iε
√
πϕf (τ ′) cos[2

√
πϕ(τ)]

〉
= lim

ε→0

1

4iε
√
π

{
e2i
√
πϕs(τ)∂τ ′

〈
e2iε
√
πϕf (τ ′)e2i

√
πϕf (τ)

〉
+ e−2i

√
πϕs(τ)∂τ ′

〈
e2iε
√
πϕf (τ ′)e−2i

√
πϕf (τ)

〉}
= lim

ε→0

1

4iε
√
π

{
e2i
√
πϕs(τ)∂τ ′e

−2π
D
(εϕf (τ ′)+ϕf (τ))

2
E

+ e−2i
√
πϕs(τ)∂τ ′e

−2π
D
(εϕf (τ ′)−ϕf (τ))

2
E}

= lim
ε→0

1

4iε
√
π

{
(−4πε)∂τ ′ 〈ϕf (τ ′)ϕf (τ)〉 e2i

√
πϕs(τ)e−2π(〈ϕ2

f (τ)〉+2ε〈ϕf (τ ′)ϕf (τ)〉)

+ (4πε)∂τ ′ 〈ϕf (τ ′)ϕf (τ)〉 e−2i
√
πϕs(τ)e−2π(〈ϕ2

f (τ)〉−2ε〈ϕf (τ ′)ϕf (τ)〉)
}

= −2
√
π sin[2

√
πϕs(τ)]∂τ ′ 〈ϕf (τ ′)ϕf (τ)〉 e−2π〈ϕ2

f (τ)〉. (B.24)

Next, we calculate the derivative of the correlation function in the last
line of eq. (B.24). We make the same variable substitution as before, from
τ and τ ′ to s = τ−τ ′ and T = (τ+τ ′)/2. Then G(τ ′−τ) = 〈ϕf (τ ′)ϕf (τ)〉
is a function of s and the derivative is

∂

∂τ ′
=

∂

∂s

∂s

∂τ ′
= − ∂

∂s
. (B.25)

We can then calculate the integral over the derivative as

∫ β

0

ds∂sG(s) = G(s = β)−G(s = 0) = −K
2π

ln b, (B.26)

since G(β)→ 0 as β →∞.

Using this together with the approximation for the sine, the fifth
second-order term of the cumulant expansion is
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−
∫

dτdτ ′
iAC

2a0v

(〈
cos[2

√
πϕ(τ)]∂τ ′ϕ(τ ′)

〉
−
〈
cos[2

√
πϕ(τ)]

〉
〈∂τ ′ϕ(τ ′)〉

)
≈ −

∫
dsdT

iAC
√
π

a0v
sin[2
√
πϕs(T )]∂sG(s)e−2πG(0)

=

∫
dT

iAC
√
π

a0v
sin[2
√
πϕs(T )]

K

2π
ln be−K ln b

=

∫
dT

iAC

2a0v
√
π

sin[2
√
πϕs(T )](K ln b)e−K ln b

≈
∫

dT
iAC

2a0v
√
π

sin[2
√
πϕs(T )]

(
eK ln b − 1

)
e−K ln b

=

∫
dT

iAC

2a0v
√
π

sin[2
√
πϕs(T )]

(
1−

(
1

b

)K)
. (B.27)

Turning to the term proportional to CA instead, the derivative of the
Green’s function in eq. (B.24) is changed into

∂τ 〈ϕ(τ)ϕ(τ ′)〉 = ∂s 〈ϕ(τ)ϕ(τ ′)〉 , (B.28)

changing the minus sign to a plus sign in eq. (B.26), thereby compensat-
ing for the minus sign when going from AC to CA = −AC.

B.1.6 Sixth term (BC)

Finally, the term proportional to BC is

−1

2

∫
dτdτ ′

iBC

a0v

(〈
sin[2
√
πϕ(τ)]∂τ ′ϕ(τ ′)

〉
−
〈
sin[2
√
πϕ(τ)]

〉
〈∂τ ′ϕ(τ ′)〉

)
= −

∫
dτdτ ′

iBC

2a0v

〈
sin[2
√
πϕ(τ)]∂τ ′ϕf (τ

′)
〉
. (B.29)

The same calculation as for the AC term, with the cosine replaced
by a sine, gives us

〈
sin[2
√
πϕ(τ)]∂τ ′ϕf (τ

′)
〉

= 2
√
π cos[2

√
πϕs(τ)]∂τ ′ 〈ϕf (τ ′)ϕf (τ)〉 e−2π〈ϕ2

f (τ)〉. (B.30)

We can thus approximate the last second-order term of the cumulant
expansion with
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−
∫

dτdτ ′
iBC

2a0v

(〈
sin[2
√
πϕ(τ)]∂τ ′ϕ(τ ′)

〉
−
〈
sin[2
√
πϕ(τ)]

〉
〈∂τ ′ϕ(τ ′)〉

)
≈ −

∫
dT

iBC

2a0v
√
π

cos[2
√
πϕs(T )]

(
1−

(
1

b

)K)
. (B.31)

The CB term is equal to most of the BC terms by the same arguments
as for the CA term. However, since

BC =
1

π3/2

(
J ′yJ

′
zS

y′Sz
′
+ J ′yJE2(Sy

′
)2 + JE1J

′
z(S

z′)2 + JE1JE2S
z′Sy

′
)
,

(B.32)
there are two terms that don’t get a minus sign when replacing BC with
CB. When adding the term proportional to CB to eq. (B.31), the terms
with (Sy

′
)2 and (Sz

′
)2 cancel out, while the ones proportional to Sy

′
Sz
′

and Sz
′
Sy
′

stay.

B.2 Rescaling

The important parts of the cumulant expansion in eq. (6.19) were in
Appendix B found to be

〈SK〉f =

∫
dτ

(
1

b

)K (
A

a0

cos[2
√
πϕs(τ)] +

B

a0

sin[2
√
πϕs(τ)]

)
(B.33)

and

− 1

2

(〈
S2
K

〉
f
− 〈SK〉2f

)
≈
∫

dτ
AB
√
π

2v2
∂τϕs(τ)

((
1

b

)−2

−
(

1

b

)2K−2
)

−
∫

dτ
iBC

a0v
√
π

cos[2
√
πϕs(τ)]

(
1−

(
1

b

)K)

+

∫
dτ

iAC

a0v
√
π

sin[2
√
πϕs(τ)]

(
1−

(
1

b

)K)
. (B.34)

We now perform the rescaling. When we rescale the high frequency
cut-off Λ to Λ′ = Λ/b, we must at the same time rescale the frequency
parameter ω to ω′ = ωb and therefore also the imaginary time param-
eter τ to τ ′ = τ/b. We choose the rescaled fields to be φ′(τ ′) = φs(τ)
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(and hence φ′(ω′) = φ(ω)/b). It is important now to note that a0, the
penetration depth of the edge states, is the short distance cutoff, so that
Λ = v/a0. This means that the rescaling of Λ is automatically a rescaling
of a0. The rescaled cumulant expansion is thus:

〈SK〉f =

∫
bdτ ′

(
1

b

)K (
A

a′0
cos[2

√
πϕ′(τ ′)] +

B

a′0
sin[2
√
πϕ′(τ ′)]

)
=

∫
dτ ′
(

1

b

)K−1(
A

a′0
cos[2

√
πKφ′(τ ′)] +

B

a′0
sin[2
√
πKφ′(τ ′)]

)
(B.35)

and

−1

2

(〈
S2
K

〉
f
− 〈SK〉2f

)
≈
∫
bdτ ′

AB
√
π

2v2

1

b
∂τ ′ϕ

′(τ ′)

((
1

b

)−2

−
(

1

b

)2K−2
)

−
∫
bdτ ′

iBC

a′0v
√
π

cos[2
√
πϕ′(τ ′)]

(
1−

(
1

b

)K)

+

∫
bdτ ′

iAC

a′0v
√
π

sin[2
√
πϕ′(τ ′)]

(
1−

(
1

b

)K)

=

∫
dτ ′

AB
√
π

2v2
∂τ ′ϕ

′(τ ′)

((
1

b

)−2

−
(

1

b

)2K−2
)

−
∫

dτ ′
iBC

a′0v
√
π

cos[2
√
πϕ′(τ ′)]

((
1

b

)−1

−
(

1

b

)K−1
)

+

∫
dτ ′

iAC

a′0v
√
π

sin[2
√
πϕ′(τ ′)]

((
1

b

)−1

−
(

1

b

)K−1
)
. (B.36)

We need to write our rescaled cumulant expansion in terms of the
coupling constants, rather than the combined expressions A, B and C.
The coupling constant JE actually multiplies two different operators,
Sz
′
sin[2
√
πϕ(τ)] and Sy

′
∂τϕ(τ). We can already see that these oper-

ators renormalise differently, so we need to explicitly divide the parts
containing JE into two parts,

JE
a0π

Sz
′
sin[2
√
πϕ(τ)] +

iJE
v
√
π
Sy
′
∂τϕ(τ)

=
JE1

a0π
Sz
′
sin[2
√
πϕ(τ)] +

iJE2

v
√
π
Sy
′
∂τϕ(τ), (B.37)
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with JE1 = JE2 = JE before the rescaling. We then have:

A =
1

π
JxS

x (B.38)

B =
1

π
(J ′yS

y′ + JE1S
z′) (B.39)

C =
1√
π

(J ′zS
z′ + JE2S

y′), (B.40)

so that

AB−BA =
2

π2

(
JxJ

′
yS

xSy
′
+ JxJE1S

xSz
′
)

=
2i

π2

(
JxJ

′
yS

z′ − JxJE1S
y′
) (B.41)

AC−CA =
2

π3/2

(
JxJ

′
zS

xSz
′
+ JxJE2S

xSy
′
)

=
2i

π3/2

(
JxJE2S

z′ − JxJ ′zSy
′
) (B.42)

BC−CB =
2

π3/2

(
J ′yJ

′
zS

y′Sz
′
+ JE1JE2S

z′Sy
′
)

=
2i

π3/2

(
J ′yJ

′
z − JE1JE2

)
Sx.

(B.43)

Now we can rewrite the rescaled effective action in terms of the original
coupling constants. Using the cumulant expansion, we collect the results
from eqs. (B.38)-(B.43) and put them into eqs. (B.33) and (B.36). We
then have that

〈SK〉f =

∫
dτ ′f1(b,K)

(
1

a′0π
JxS

x cos[2
√
πϕ′(τ ′)]

+
1

a′0π
(J ′yS

y′ + JE1S
z′) sin[2

√
πϕ′(τ ′)]

)
(B.44)

and
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− 1

2
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〉
f
− 〈SK〉2f
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√
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2v2
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.

=

∫
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z′ − JxJE1S
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πϕ′(τ ′)]f3(b,K)

− 1

a′0vπ
2

(
−JxJ ′zSy
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1

a′0π
sin[2
√
πϕ′(τ ′)]

+ f2(b,K)
1

2

(
JxJ

′
yS

z′ − JxJE1S
y′
) i

v
√
π
∂τ ′ϕ
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}
, (B.45)

where

f1(b,K) =

(
1

b

)K−1

(B.46)

f2(b,K) =

(
1

b

)−2

−
(

1

b

)2K−2

(B.47)

f3(b,K) =

(
1

b

)−1

−
(

1

b

)K−1

. (B.48)

Next, we write Λ/b = Λ + δΛ, so that

1

b
=
δΛ + Λ

Λ
= 1 +

δΛ

Λ
. (B.49)

The different factors containing 1/b can thus be rewritten as
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f1 =

(
1

b

)K−1

=

(
1 +

δΛ

Λ

)K−1

≈ 1 + (K − 1)
δΛ

Λ
(B.50)

f2 =

(
1

b

)−2

−
(

1

b

)2K−2

=

(
1 +

δΛ

Λ

)−2

−
(

1 +
δΛ

Λ

)2K−2

≈ −2
δΛ

Λ
− (2K − 2)

δΛ

Λ
= −2K

δΛ

Λ

(B.51)

f3 =

(
1

b

)−1

−
(

1

b

)K−1

=

(
1 +

δΛ

Λ

)−1

−
(

1 +
δΛ

Λ

)K−1

≈ (−1)
δΛ

Λ
− (K − 1)

δΛ

Λ
= −KδΛ

Λ
.

(B.52)

Comparing the original action with the cumulant expansion, we are
now ready to write down the rescaled coupling constants and derive their
scaling equations. We see that the rescaled effective action of eqs. (B.44)
and (B.45) is identical to the one belonging to the original Hamiltonian in
eq. (6.17), apart from the new cutoff and the rescaled coupling constants.
As Λ → Λ′, the coupling constants Ji(Λ) → J̃i = Ji(Λ

′) (with Ji =
Jx, J

′
y, J

′
z, JE1 and JE2). The coupling constants are read off by comparing

the original action with the effective rescaled action.
Starting with Jx, we see that the rescaled effective action of eqs.

(B.44) and (B.45) is identical to the
the factor f1 in eq. (B.50) is the difference between the rescaled ef-

fective action of eq. (B.44) and the original action that can be read off
from eq. (6.17). The coupling constant

J̃x = Jx(Λ
′) =

(
1 + (K − 1)

δΛ

Λ

)
Jx(Λ)− K

vπ

δΛ

Λ

(
J ′yJ
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z − JE1JE2

)
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Jx(Λ)− K

vπ

δΛ

Λ
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)
⇔ ∂Jx
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δJx
δΛ

= (1−K)Jx(Λ) +
K

vπ

(
J ′yJ

′
z − JE1JE2

)
. (B.53)

The same procedure for J ′y yields

J̃ ′y = J ′y(Λ
′) =

(
1 + (K − 1)

δΛ

Λ

)
J ′y(Λ)− K

vπ

δΛ

Λ
JxJ

′
z

⇔ δJ ′y = J ′y(Λ
′)− J ′y(Λ) = (K − 1)

δΛ

Λ
J ′y(Λ)− K

vπ

δΛ

Λ
JxJ

′
z

⇔ ∂J ′y
∂l

= −Λ
δJ ′y
δΛ

= (1−K)J ′y(Λ) +
K

vπ
JxJ

′
z. (B.54)
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The easiest way to extract the scaling equations for J ′z is to write

J̃ ′z = J ′z(Λ
′) =

(
e2 ln b − e(2−2K) ln b

) K
vπ

1

2K
JxJ

′
y

≈ (2K ln b)
K

vπ

1

2K
JxJ

′
y

⇔ ∂J ′z
∂l

=
∂J ′z
∂ ln b

=
K

vπ
JxJ

′
y. (B.55)

Finally, we want to extract the scaling equations for JE, i.e. JE1 and JE2.

J̃E1 = JE1(Λ′) =

(
1 + (K − 1)

δΛ

Λ

)
JE1(Λ) +

K

vπ

δΛ

Λ
JxJE2

⇔ ∂JE1

∂l
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= (1−K)JE1(Λ)− K

vπ
JxJE2 (B.56)

and

J̃E2 = JE2(Λ′) = −
(
e2 ln b − e(2−2K) ln b

) K
vπ

1

2K
JxJE1

≈ −2K ln b
K

vπ

1

2K
JxJ

′
y

⇔ ∂JE2

∂l
=
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∂ ln b
= −K

vπ
JxJE1. (B.57)

In summary, the scaling equations are:

∂Jx(l)

∂l
= (1−K)Jx(l) +

K

vπ

(
J ′y(l)J

′
z(l)− JE1(l)JE2(l)

)
(B.58)

∂J ′y(l)

∂l
= (1−K)J ′y(l) +

K

vπ
Jx(l)J

′
z(l) (B.59)

∂J ′z(l)

∂l
=
K

vπ
Jx(l)J

′
y(l) (B.60)

∂JE1(l)

∂l
= (1−K)JE1(l)− K

vπ
Jx(l)JE2(l) (B.61)

∂JE2(l)

∂l
= −K

vπ
Jx(l)JE1(l). (B.62)
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