
The Sphere

Sizes of Spheres

The area of a unit sphere is given by 4π and its volume by 4π/3 (Think of it as
a pyramid, with the apex in the center and the base the surface of the sphere,
and the height the radius.). If we have a sphere of radius R those should be
scaled by R2 and R3 respectively.

If we circumscribe a sphere with a cylinder, tangent along the equator (say,
any great circle will do) and with a height equal to the diameter, its area will be
that of the sphere itself. In fact if the radius is 1 the circular circumference of
the cylinder is 2π and with the height h = 2 we are done, as areas are scaled by
the square of the dimensions. This fact was discovered by Archimedes, who thus
computed the area of the sphere, a highly nontrivial task before the invention
of calculus.

In fact even more is true, if you project any point of the sphere to the cylinder
preserving the height, this map will be area preserving.

In fact the map will be given by (θ, ψ) → (θ, sin(ψ))
where θ gives longitude and ψ gives latitude. This
map will scale as 1/ cos(ψ) horizontally (because all
latitudes will be mapped to lines of the same length),

while by d sin(ψ)
dψ

= cos(ψ) vertically. Those two scal-
ings cancel out when it comes to area.

Here we have a map of the world using this Archimedean projection.

In particular we can compute the circumference and area of a circle of radius
r on a unit sphere. Clearly the circumference is that of a regular circle of radius
sin(r) thus 2π sin(r) while the area will be given by 2π(1− cos(r). If r is small

we can use the approximations r and 1− r2

2 respectively and obtain the regular
formulas 2πr and πr2.

In fact the errors are given by 2π r
3

6 and π r
4

12 respectively.
We can use this archimedean property to compute the
fraction of the total visual sphere a circle of radius r
(radians) constitutes. In fact the fraction will be given
by 1−cos r

2 ∼ r2/4.
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Examples Earth The radius of the earth is given by 6400 km thus its surface
will be 500 million square kilometers. (We have R = 28×52, hence R2 = 216×54,
furthermore 4π ∼ 12.5 and 212 = 4096 hence 4π212 × 104 ∼ 5× 108). The three
big Oceans, the Pacific, the Atlantic and the Indian make up 350 million km2,
and the Eurasian continent 55 million km2.

If we have a circle of radius 64 km on the Earth, this will correspond to
r = 0.01 above, its approximate circumference will be around 400 km and its
area approximately 12000 km2. However on the spherical surface area, those
will be somewhat shorter than had the Earth been flat. In fact the errors will
be given by 2π10−6/6× 6400 km, approximately 6.4× 10−3 km, i.e. about six
meters for the circumference. For the area we will have 2π10−8/12×64002 km2,
or about 2× 10−1 km2, i.e. two hundred thousand square meters (20 hectars).

To get a feeling for the size of the Earth, one may compute how far it would be
to the nearest neighbor of a population of P individuals, evenly distributed along
it. For a sphere with radius R this distance d will be given by the approximate
formula

d = C
R√
P

where C is a constant 3.8.. while for a circle we will have to divide by 4

r 
r 

It is not so clear what is meant by a regular dis-
tribution, it ties in with so called sphere-packing.
In the plane however the densest way of pack-
ing circles is known, namely by the hexagonal lat-
tice. This means that we want to pack as many
points together keeping the smallest distance as
big as possible. Consider a tiling of the plane with
hexagons, and assume that the normal to a side
has length r then the distance will be d = 2r and

each hexagon will have area 6 r2
√

3

If we have P hexagons, their total area A will satisfy A = 6 r2
√

3
P Now you

cannot tile a sphere with hexagons, but approximately so, if P is large.

So set A the area of a sphere with radius R and solve for r and set d = 2r.

We get C = 2
√

π√
2
√

3
= 3.8092..

With a population of say 7.2 billions the formula will give about 300 meters
(280 to be more exact). Conversely knowing A and d we can find the population
P = 2A√

3d2

The volume of the Earth is given by 4
3πR

3 or 1
3 × A × R where A is the

surface area which we have already computed. This gives roughly 1012 km3.
At a density of almost 5g/cm3 or 5 × 1015g/km3 we are talking about a total
weight of 5× 1024 kg.

If we would spread the population of the world inside it, each individual
would be given some 125 km3 the volume of a cube of side 5km, hence there
would be a distance of 5 km to the nearest neighbour (hardly visible by the
naked eye).
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Ganymede The radius of Ganymede is about 2634.1 ± 0.3km, this means
0.413 Earth radi. Consequently the surface area is given by 87.0 million km2

corresponding to 0.171 of that of the Earths. This boils down to about two
thirds of the land area of the Earth

Large Spheres Jupiter is far from being a sphere but is a pronounced
ellipsoid, the same for the Sun. For those surface areas are hard to compute,
involving so called elliptic functions, but volume are easy. Nevertheless we will
approximate them with spheres. In the case of Jupiter we are talking by a
radius of 11 earth radii, hence its surface area is about 120 times that of the
Earth, while the Sun is ten times as large as Jupiter and we are talking about a
surface area which is 12000 times that of the Earth. As to volumes we will have
factors of 1300 and 1300000 times that of the Earth, but the masses will not be
proportional as the densities are lower. The mass of the Sun is about 300’000
times that of the Earth, i.e. 1.5× 1030 kg.

But even the Sun is dwarfed by the imagined Dyson Sphere, the sphere with
the radius of one A.U. i.e. 24000 earth radii. Its area will then be half a billion
times that of the Earth. If it would be fashioned out of the Earth, i.e. being a
shell with the same volume as that of the Earth, how thick would it be? This
means that we have to divide a third of the Earth radius 64 × 105 meters by
5×108 getting about 4×10−3m i.e about half a centimeter, talking about a soap-
bubble. If a soap bubble would be about 1Å(10−8 cm), about one atom thick,
its radius would be about 3 km! A delicate structure indeed. The apparent size
of the Earth seen from the Sun compared to that of the Dyson sphere making up
the entire visual field would be only a billionth, as the surface of a hemisphere is
twice that of what the great circle defining it, enclosing it. This we will return
to. To get an even more dramatic number to be used later, consider the human
pupil, at a radius of at most 5 mm, it makes up for about 10−9 earth radii, and
we are now talking about a fraction of 10−27. The radius of the Dyson sphere is
approximately 200 times that of the Sun (which is roughly the geometric mean
between the Earth and the Dyson) thus it will be a about ten million times as
voluminous. If it would be filled with air, one thousandth of the density of the
sun, the mass of it would be about ten thousand sun masses and may quickly
degenerate into a Black Hole. We will have occasion to return to the Dyson
sphere, where we will have the choice of living in the inside or the outside.

Furthermore densities will scale linearly with R so if the human population
would be spread over Jupiter, the distance would be 3 km, while 30 km for
the Sun and 6000 km for the Dyson sphere, where each individual would have
a continent size to themselves. Inside the Dyson sphere there would be no
gravity (removing the Sun) and would the human population be evenly spread
out inside it there would be 120000 km to the nearest neighbor corresponding
to the diameter of Jupiter.
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The Horizon

The most tangible way we can see that the Earth is not flat is by the finite
distance to the horizon. This distance depends on our altitude, i.e. height h
above the Earth, and neglecting mountains that can hide it, say on a quiet
ocean, when the horizon is unobstructed, we can easily compute it as a function
of h.

 Horizon

θ

θ

Let us work for simplicity on a unit sphere. The
distance to the horizon will be given by the angular
distance θ . Centering the visual sphere at the eye
of the observer, there will be a great circle parallel
to the tangent of the Earth. Had the Earth been flat
then it would have coincided with the horizon, which
in that case would have divided the visual sphere in
two equal parts, an upper part corresponding to the
sky, a lower part corresponding to the ground (earth,
ocean, whatever). As it is the horizon lies slightly
below that great circle, and is in fact a small circle.
If it lies an angle θ below, its radius is cos(θ) (in the
visual sphere). This angle is incidentally the same
as the angular distance to the horizon. Thus it is
clear that when h increases the angle θ will increase
approaching the limit π/2.

Thus the further away we are from the Earth, a larger and larger part will
become visible, as the distance to the horizon will increase, in the limit half the
Earth will become visible. On the other hand from the point of the observer
the horizon will occupy a smaller and smaller part of the visual field and will in
the end approach a point. Thus when look at a globe or a picture of the Earth
from space, its circular circumference will be the horizon, in particular it will
visibly curved being a small circle on the visual sphere. An interesting question
is how far above a sphere you need to be to experience the horizon as curved,
of course this being a subjective matter to draw the line between straight and
curved, and to which we will return.

Distance to the horizon:

We easily get the following formula from Pythagoras

(1 + h) sin(θ) =
√

(1 + h)2 − 1

If h is large we can write

sin(θ) =

√

1− 1

(1 + h)2
∼ 1− 1

2h2

this should be compared to sin(π/2 − t) = cos(t) = 1 − t2/2 + . . .. Thus the
discrepancy from π/2 is given by 1/h for large h. This ties in with the following
elementary fact below proved by similar triangles,
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R 

1/R

On the other hand if h is small we get

sin(θ) ∼
√
2h

and hence θ ∼
√
2h. If we want to keep h fixed but scale

with the radius R (in meters) we will have to replace h with
h/R and multiply with R and hence get the formula

√
2Rh

(This could also have been derived directly from Pythagoras
by considering

√

(R+ h)2 −R2 ∼
√
2Rh ignoring as above

h2). Thus with given height the distance to the horizon grows
like the square root of the radius, and with given radius the
distance grows by the square root of h (as long as h is small
compared to R).

The area encircled by the horizon (for small h) would be
given by 2πh and hence a fraction h/2 of the total area. Once
again if we scale by R, keeping h constant, we would get
2π(h/R)R2 = 2πRh thus would grow linearly both with re-
spect to R and h as longs as h/R remains small.

Examples If h = 2 meters and R = 6.4×106 meters, the radius of the Earth,
we need to take the square root of 2 × 2 × 26 × 105 yielding approximately
24 × 102

√
10 ∼ 5 × 103 m. Hence it is five kilometers to the horizon (provided

of course that the Earth is fairly ’flat’, say on an expanse of water). We can
also compute the angle θ by taking the square root of 4/R = 2−4×10−5 getting
around 3/4×10−3 = 7.5×10−4.Recall that one degree corresponds to 2π/360 ∼
1/60 ∼ 1.6×10−2 and hence one minute to around 2.5×10−4 thus corresponding
to about 5/3 km. A more careful calculation would yield 1.8 km, which is in
fact the definition of the Nautical mile. (Another direct calculation would have
been to divide the circumference of the earth (40000km) with 360× 60 getting
1.851 . . . km). The velocity of 1 nautical mile per hour is referred to as 1 knot.

We observe that at this distance, the horizon will lie 3 minutes of arc below
the idealized one. If that would be marked on the sky, we would barely notice
the separation.

Furthermore the area we would survey would be a fraction 2−610−5 ∼
1.6 × 10−7 of the total area of the Earth (roughly corresponding to 80 km2

in accordance with what we would get for a circle of radius 5 km). Multiply-
ing with the population of the Earth we can compute how many people would
be visible within the horizon, would they all be evenly spread out. About a
thousand people.

We can now scale things. Assume that we are on a mountain 7200 meters
tall. How far would we see? We scaled with a factor 3600 and its square root
is 60 so we obtain a distance of 300 km. If we would be flying in a commercial
plane between Stockholm and Gothenburg we would be able to see both of the
cities simultaneously above the horizon. The first Cosmonauts, such as Gagarin
were orbiting at a height of 300 km, we are now talking about a radius of 2000
km seeing about 2-3% of the Earth’s surface area.
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Fixing the height, the fraction the visible surface area would be of the total
would vary inversely with the radius. Hence on Jupiter only a hundred people
would be visible (at a fixed height of two meters), on the Sun hardly a dozen,
while on the Dyson sphere (on the outside) only one in twenty horizontally
bounded circles would contain a human, and it would indeed be far to the
horizon, in fact 750 kilometers.

Curvature of the horizon:

Curvature measures the way a curve deviates from being a straight line. An
object which is not under the influences of any forces travels in a straight line
with uniform velocity. Any change of direction necessitates an intervening force.
To that we will return later.

There are a variety of equivalent definitions of curvature.
1) Let Θ(p) denote the direction of the tangent at point p and let the cur-

vature be the change of direction per length. In other words if the curve C(s)

is parametrized by arc length look at dΘ(C(s)]
ds

.

t
t’

To motivate this definition look at the circle of radius r parametrized by
r cos t, r sin t) its tangent at a point t has the direction given by the derivative
(−r sin t, r cos t), and going from t to t′ the angle changes by t′ − t along an arc
of length r(t′ − t), in this case the change of angle is proportional to the length
of the arc with proportionality constant 1/r which will be its curvature.

2) Let p, q, r be three points that approach P . Those three points determine
a circle , and let C be the limiting circle. It is the circle which best approximates
the curve, and is referred to as the osculating circle. The inverse of its radius
is called the curvature. (Note that we also have in addition to the measure of
curvature also a point, namely the center of the osculating circle.)

3) Let p, q approach P and let N−p,Nq be the corresponding normals to the
curve at P and consider the limiting intersection point O , and let the curvature
be the inverse of the distance OP

Clearly 2) and 3) are intimately related, O will clearly be the center of the
osculating circle.

While the tangent is a first order approximation of a curve, curvature con-
cerns second order. Thus the second order Taylor expansion should give us a
clue to curvature.

In particular consider the parabola y = ax2 which has the x-axis y = 0 as
a tangent at the origin. What is its curvature? Consider the family of circles
x2 + (y − r)2 = r2
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They are all tangent to to the x-axis (y = 0) and
if we solve locally for y in the vicinity we get y =√
r2 − x2 − r = r(

√

1− (x
r
)2 − 1) whose first terms

in the Taylor expansion is y = r( x
2

2r2 + . . .) or y =
1
2rx

2+. . .. Thus comparing with the parabola above
we should put 1

2r = a or the curvature 1
r

being
2a. Thus the smaller a i.e, the closer to a line,
the smaller the curvature. We can also compute
the (unit) tangent directions of the parabola. The
derivative at x is given by 2ax hence with the ap-
propriate normalization given by scaling with K =

1√
1+4a2x2

we can take the scalar product of the

two vectors (1,−2ax), (1, 2ax) normalized by K2 getting
√
1−4a2x2

√
1+4a2x2

= cos(θ)

where θ is the change of direction. Now as 1
1+t = 1 − t + t2 + . . . (an infinite

geometric seres) we can write 1−t
1+t = 1− 2t+ . . . and applying to t = 4a2x2 we

obtain cos(θ) = 1 − 8a2x2 + . . . as cos(θ) = 1 − 1
2θ

2 + . . . we can conclude by
comparison that θ = 4ax approximately while the length of the curve from −x
to x is approximately 2x thus getting a curvature of 2a as expected.

We can also work out the normals to the parabola at the points (t, at2) as
t→ 0. The slopes of the normals will be given by − 1

2at and hence the equations
(y−at2) = − 1

2at (x− t) setting x = 0 we get the point y = at2+ 1
2a on the y-axis

(the intersection of the normals, with the normal at x = 0. As t → 0 this will
approach 1

2a as expected.
Now we are in position to investigate the curvatures of various horizons, i.e.

of various small circles (latitudes).

P

Q

For that purpose we consider a small circle at lati-
tude θ (the length of the great arc PQ) and then a
great circle tangent to it at P . This is obtained by
choosing the plane spanned by the tangent to the
small circle at P and the center of the sphere, given
rise to the tangent great circle at P . We now need
to measure the deviation of the small circle from the
great. The greater, the more curved it will appear.
For that purpose we draw a couple of triangles. Note
that PR is perpendicular to PS the tangent, that
the angle t (PRS) is supposed to be small, and we
are interested in the deviation given by TOT ′ and
its dependence on t. Note that T, T ′ lie on a great
circle.
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O

R

P S
T

T’

t

R

O

Sψθ

ρ
ζ

The length a of RS satisfies a cos t = cos θ hence
a = cos θ sec t (recall that in Anglo-Saxon literature
we have the definition sec t = 1

cos t = 1 + 1
2 t

2 + . . .).
Furthermore the angle ψ satisfies a tanψ = sin θ
thus we get tanψ = tan θ cos t. We are interested
in the angle σ. We note that σ + ζ + ψ = π/2 fur-
thermore that ζ + θ = π/2 thus σ(t) = θ − ψ(t).
Recall that

tan(θ − ψ) =
tan(θ)− tan(ψ)

1 + tan(θ) tan(ψ)

from which we get

tan(σ(t)) =
tan(θ)( 12 t

2 + . . .)

(1 + tan2(θ))(1− tan2(θ)
1+tan2(θ)

1
2 t

2) + . . .

which can be simplified to

σ(t) =
tan(θ)

2(1 + tan2(θ))
t2 + . . .

If θ is small this simplifies further to σ(t) = θ
2 t

2+ . . . (which could have been
observed directly above setting ψ ∼ tanψ, θ ∼ tan θ and hence ψ = θ(1− 1

2 t
2 +

. . .)

The observant reader may observe that if θ approach π/2 then tan(θ) → ∞

and then the coefficient would go to zero, rather than ∞ as you expect the

curvature of a small circle to be large. The problem is that the parameter

t is too small when the circle is small, and should be scaled appropriately,

then everything will work out as it should. The technical details are saved

for later.
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Gravity

Objects on Earth fall to the ground. They do so with a velocity that grows
linearly with time. The rate of proportionality is given by g which in round
figures is 10m/s2, more exactly 9.81m/s2, which varies with location. g is highest
at the poles and lowest at the Equator, partly because the poles are closer to
the center of the Earth, and partly because of the rotation of the Earth there
is a slight centripedal force to some extent counterbalancing the gravitational
force. To this we will return in the next section.

The velocity attained after falling freely, ignoring air-resistance, after time t
is given by gt. In particular it means that after one second you have attained
10m/s, after two 20m/s and so on. The distance s travelled after t seconds will
be given by 1

2gt
2, thus after having fallen for four seconds

you will have covered a distance of 80m. Conversely given s we
can solve for t and get t =

√

2s/g. Thus if you jump from the

Eiffeltower, say 300 meters, it will take you
√
60 ∼ 8 seconds be-

fore you hit the ground, long enough for you to regret the impulse.
The final velocity v on impact will be gt. As 2sg = (gt)2 = v2 we
can compute that by v =

√
2gs. In the case of the Eiffeltower we

are talking about almost 80m/s, or almost 300km/h. Not to be
recommended.

Conversely if you throw something upwards with initial velocity v, it will
not stay constant but will slow down with time according to v − gt. When
that velocity is zero, i.e. when t = v/g the object will momentarily come
to a standstill and thus reach its maximal height. During the time t it has

travelled S = vt − 1
2gt

2 and plugging in t = v/g we get H = 1
2
v2

g
. We factor

S = t(v − 1
2gt) nd we see that S = 0 also when t = 2v/g i.e. the double time.

This is when it reaches the ground. Had we dropped an object from age H
it would have reached the ground in v/g and would have had a final velocity
of v. It would have travelled half of the path of the object that was thrown
upwards. An object a height h is said to have a potential energy P of mgH and
if traveling with a velocity of v a kinetic energy K of 1

2mv
2. If we add those two

mgS = mgvt− 1
2g

2t2 and 1
2 (v−gt)2 we get a constant 1

2mv
2 independent of time.

This can be expresses that the total energy E is constant, that potential energy
is converted into kinetic energy when somethings is dropped and conversely
kinetic energy can be converted to potential energy when ascending. This is a
very general principle for all of mechanics. In particular it allows us to treat
arbitrary movement not only linear. Note also that due to Pythagoras if we
have a velocity that is decomposed into two orthogonal component, the kinetic
energy is the sum of the kinetic energies of the components. This points to a
deeper significance of Pythagoras.
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In particular we can think of projectile fired, with a hor-
izontal velocity of vx and a vertical velocity of vy. We
will have vx constant and vy(t) given by vy − gt. At
time t = vy/g it has reached its maximal height, and at
t = 2vy/g it has hit ground, and hence travelled horizon-
tally a distance (2vxvy)g. Note that if v2x + v2y = 1 the
maximal extension will occur when vx = vy i.e. that the
projectile is fired at 45 degrees. If the initial speed is |v|
(the length of the velocity vector v = (vx, vy) then the
maximal distance will be given by |v|2/g

Example On Ganymede the gravitation is only about a seventh (0.146) of
that of the Earth. That means that you can jump and throw seven times as far
on Ganymede as you do on Earth. If you can jump from two meters on Earth
without hurting yourself you can jump from fourteen meters on Ganymede. You
would hit at the same velocity but it would take you seven times as long to reach
it. Jumping from the Eiffel tower on Ganymede would almost 20 seconds and
you would hit the ground at over 100 km/h. The scaling factor now becomes√
7 ∼ 8

3 .

Circular Motions

If you shoot a cannon ball from a mountain it will eventually fall to the ground.
The faster the ball is, the longer it will take. Could it be that there is a velocity
such that it will keep falling to the ground but never reach it, because the ground
itself ’falls away’ due to the Earth being a sphere, not an indefinitely extended
flat region.

First look at cannon balls being fired horizontally
from a vertical cliff of height H. The trajectory
will be a parabola and it can be described by x =
vt, y = H − 1

2gt
2. The ball will hit the ground when

t =
√

2H
g

and the ball has then travelled a distance

x = v
√

2H
g
.

Example If H = 2000m then
√

2H
g

= 20s (the time it would take to reach

the ground after jumping neglecting air-resistance). A cannon ball that travels
at 1000m/s would thus reach 20km. If H = 10000m and a commercial jet
traveling at 300m/s and then losing power and falling freely would crash after
45 seconds having covered 13.5 km (gliding in the air would increase the distance
and postpone the crash and prolong the agony).

We can eliminate t and write it as y = H − 1
2
g
v2
x2 and compare with the

local equation of a circle x2+(y−R)2 = R2 at the local tangent y = R at (0, R)

given by R − 1
2
x2

R
(which we derived in our discussion on curvature). Setting

the coefficients equal we get v =
√
gR which seems to be a critical velocity,
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because then the path of the cannon ball and the surface of the Earth will keep
in step, i.e. agree up to second order, and have the same curvature. If it is less
you will expect the ball to eventually fall on Earth, if it is more, it will follow
a more flattened path. In both cases we will speak about ellipses and return to
the matter in greater detail later.

The critical velocity can easily be computed, we get v =
√
10× 64× 105m/s =

8000m/s. This is the velocity most artificial satellites travel at close to the sur-
face of the Earth. A complete revolution around the Earth will take 40000/8 =
5000 seconds, just about an hour an a half.

We can return to the first example and compute the velocity needed to reach
the horizon. The distance to the horizon is

√
2Rh as we have derived before.

The time needed will be
√

2h
g

as computed initially, and this corresponds to a

velocity of

v =

√
2Rh

√

2h
g

=
√

gR

independent of h and equal to the critical velocity above.
The explanation is provided by the picture to the left.
When the ball has travelled the required distance, it has
indeed dropped the amount of h, but at the same time,
the Earth has dropped the same amount, and we are
back to the initial position, save that we have advanced.
By induction we can continue and end up orbiting the
planet indefinitely.

Newton discovering the inverse square law

The story of Newton ’discovering’ gravitation by having a apple fall on his
head is clearly apocryphal. A more reasonable guess is that Newton wondered
why he Moon does not fall down as does the apple. The Moon has always
occupied a position between the celestial world and the terrestrial, it clearly
looks like a big stone. One explanation is as above, and the point is to make it
more quantitative. Newton knew the distance to the Moon in terms of Earth
radii, that had been known since antiquity and Ptolemy supplied a very good
value. More doubtful is whether he knew the actual size of the Earth in terms
of conventional measures, out of which the gravitational constant g had been
computed, that is essential, without it there is no means of comparing, as in the
time of Newton there were no artificial satellites orbiting close to the surface
of the Earth, in particular the velocities of such were not known. Had they
been known, or the time of revolution, one would have been able to figure out
R knowing g. So let us assume that he did know.

The distance to the Moon is 60× 6400 = 384000km and thus the circumfer-
ence of its orbit is 2400000km. It makes a complete orbit in a sideral period of
27 days 7hrs and and 43 minutes. Convert that to seconds and we get 2.36×106.
Divide by the distance and we get about 1km. During that second the Moon
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has fallen 1
2×384000 = 1.3 × 10−6km = 1.3mm while on Earth it would have

fallen about 5meters which is about 3600 times as far. Now obviously Newton
did not chose an exact value for the exponent based on the empirical evidence,
but chose the simplest solution, this is a time-honored method of exact science,
without which no progress would ever have been made. It is a perennial mystery
to philosophers that the laws of nature are so simple and hence accessible to the
aesthetic sense of the human mind.

Once we have the inverse square law, we can discover some more beautiful
facts. For one thing, if g = k

R2 where k is a constant of proportionality assumed
proportional to the mass of the central body. Given the orbital velocity v =
√
gR =

√
k
√

1
R

we compute the orbital time of a circular movement to be

T =
2πR

v
=

2π√
k
R

3

2

and thus

T 2 =
4π2

k
R3

which is Kepler’s third law verified for circular movements. Conversely assuming
Kepler’s law, we can derive the inverse square as we have

T =
2πR√
gR

=
2π

√
R√
g

form which we conclude

g = (
2π

√
R

T
)2 =

4π2R

T 2

and hence if T 2 = R3 we are done.
This might be a more likely way for Newton deriving the inverse square law.

Artificial satellites

The first satellites put into orbit in the 50’s and early 60’s flew very close
to the surface of the Earth. Gagarin in 1961 skirted the upper atmosphere at
heights between 169 and 327 km to be exact completing one orbit in 89 minutes.
Those thus travelled at a speed of 8km/s, to be compared with the speed of the
rotating equator of 450 m/s. One can then ask at what distance would we have
a geosynchronus satellite, whose velocity would keep in step with the rotation
of the Earth. Many such satellites have been launched. We are now in position
to solve it, we simply need to find an R (in terms of Earth radii) such that

450R =
8000√
R

(The left hand side gives the velocity of the satellite at a distance R having
a 24h rotational period, the right hand side, its velocity due to Kepler’s law.)
This is easily solved giving R = 6.68(∼ 43000 km).
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The Galilean satellites

The Four Galilean satellites follow almost circular orbits. We list the orbital
characteristics

Name Orbital radius R Orbital periodT T 2/R3

Io 421,700 1.77 42.0
Europa 671,034 3.55 41.7
Ganymede 1,070,412 7.15 41.7
Callisto 1,882,709 16.69 41.7

Comparing the T 2/R3 = 13181.6 for the Earth’s Moon illustrates that
Jupiter is 315.8 times heavier than the Earth.

An alternate approach

A circular movement of constant velocity may be represented byR(t) = (R cosωt,R sinωt)
where the period T is determined by ωT = 2π. We findR′(t) = ω(−R sinωt,R cosωt)
and R′′(t) = −ω2(R cosωt,R sinωt) thus the velocity vector is always perpen-
dicular to the position vector, and the acceleration vector points in the opposite
direction of the latter. Letting v and a be the absolute values of the velocity

and the acceleration we get v = ωR, a = ω2R and hence a = v2

R
. If the inverse

square is valid, then v2

R
= k 1

R
and hence v =

√

1
R

and we will get T 2 = R3. If

on the other hand v2

R
= kR as in the harmonic oscillator below, we get v = kR

and the ω is constant independent of R.
Example. When an object travels away from you, its spectrum is redshifted,

the amount proportional to the fraction of the light velocity, conversely if it is
approaching you it shifts towards the blue. This is part of the Doppler effect.
Assume that we have a binary system of stars, one of them orbiting circularly
in the same plane as our sight. This can be checked by noticing the variation
of velocity relative us. By optical observation we can determine the maximal
separation between the stars, i.e. the apparent size of the radius, and the orbital
time. From the spectral analysis we can determine the speed of orbiting, and
thus the length of the orbit. From knowing the apparent size of the orbit we can
determine the distance to it, and hence the absolute magnitudes of the stars.
Furthermore by determining the relation between T 2 and R3 we can determine
the mass of the major star. By its color we can determine its temperature
and from its luminosity its size, knowing its mass we can compute its density.
So quite a lot of information to be teased out from a few ocular observations.
One can also handle more complicated movements than circular ones in the
same plane of sight, but it is more technical, the simple example illustrates the
principal points.
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Escape velocities

To lift an object (of mass m) from distance R1 to R2 in a gravitational field
k
R2 the energy needed is m

∫ R2

R1

k
r2
dr = k

R1 − k
R2 . We can let R2 → ∞ and

the energy will still be finite given by m k
R1 . If all that energy is converted

to kinetic energy, we obtain the velocity an object falling from infinity obtains
when reaching R1(R). This is referred to as the escape velocity, because an
object given that velocity will escape to infinity. If we solve for v we get

√
2gR

which should be compared to the figure of
√
gR for a circular orbit.

Examples The escape velocity for the Earth at its surface is
√
2×8000m/s =

11200m/s, while that for the Sun at the orbit of the Earth is
√
2× 30000m/s =

42000m/s. If we scale with R then g is scaled by R−2 and thus the whole

expression with R− 1

2 . The escape velocity of the Sun at its surface should
hence be

√
14 higher, i.e. 600000m/s this is 1/500 of the velocity of light. If the

escape velocity is equal to the velocity of light, nothing can escape, and we have
a Black hole. The distance at which the escape velocity is that critical value is
the so called Schwarzschild boundary, outside it, escape is still possible, inside
it impossible. In order for the Sun to be a Black hole with its boundary at
its present surface, it need to be 5002 = 250000 times heavier. Would the Sun
contract to a radius 1/250000 of its present, it would become a Black hole. This
would be a sphere with a radius about 3 km. Its density would be 1.6 × 1016

times its present one. One cubic millimeter would weigh 16 million tons. For
the Earth to become a Black hole it would have to contract to 2 × 10−8 of its
present size, increasing its density with a factor 1025 and its size to little more
than 2.5dm across.

The Harmonic Oscillator

There is another very important but also simpler power law that governs mo-
tion in physics, namely the one in which the attractive force is proportional to
the distance. In one dimension we are talking about the harmonic oscillator.
Examples are Hooks law when the restoring force of a spring is proportional
to its extension, or the pendulum (see below). In one dimension the motion is
described by a function x(t) which satisfies the ordinary differential equation
x′′ = −k2x where k is (non-zero) constant. The general solution is given by
x(t) = A cos kt + B sin kt with A,B arbitrary constants. Thus the motion will
be periodic, oscillatory around a center. The period T of the motion will satisfy
kT = 2π and be independent of the initial conditions, which is an important
fact that ensures the accuracies of pendulum clocks. If the initial condition is
given by rest at time t = 0 at position L we get the conditions x(0) = L and
x′(0) = 0 which translates into x(t) = L cos(t). The potential energy is given

by k x
2

2 and the kinetic by (x′)2

2 (omitting the common factor of the mass m by
normalizing it into 1). By setting E to be the sum, i.e. the total energy, we find
that E′ = kxx′ + x′x′′ = x′(x+ kx′′) = 0 thus E is constant. Conversely as in
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the case of the pendulum if you can write down a constant energy of that form,
the motion adheres to that of a harmonic oscillator.

Given a pendulum of length L whose position is given by the angle θ(t)
from its equilibrium.

θ

Its potential energy is given by gL(1 − cos θ) and its kinetic by
(Lθ′)2

2
. For small θ we can replace 1− cos θ by θ2

2
obtaining

E =
g

L

θ2

2
+

θ2

2

differentiating the constant we get the differential equation of
the oscillator with k =

√

g
L
. The period of the oscillator can

be determined with great accuracy (letting in oscillate for a long
time, and counting the number of oscillations), and thus k. If L
can be accurately measured (by say being very long), we can get
a rather precise value of g, superior to any direct measurement.

Note that by choosing suitable ψ such that sin(ψ) = A√
A2+B2

and cos(ψ) =
B√

A2+B2
we can write A cos kt + B sin kt as

√
A2 +B2 sin(kt + ψ), where the

constant factor is the amplitude.
If we go to two dimensions, there will be no extra technical problems. The

ordinary equation splits up into two independent ones, namely x′′ = −k2x and
y′′ = −k2y and which can be solved individually, giving (A sin(kt+ψ), B sin(kt+
φ)) which is the motion of an ellipse. By using a change of co-ordinates we can
bring it under standard form (A cos kt,B sin kt) of an elipse whose axi coincide

with the co-ordinate axi, and whose equation is given by x2

A2 +
y2

B2 = 1. Thus the
motions of objects under such a law would be ellipses with a common center,
and all having the same periodicity.

There will be no point of extending the discussion to arbitrary dimensions,
even if it formally works wit no problems, as motion will always take place in
the plane spanned by the center of force and an initial velocity vector.

Astronomical applications

Consider a homogenous mass distribution in a sphere, say that of a gas or a
globular cluster of stars. As noted in the previous section, the gravitational
attraction at a point is only exerted by the shells in which the point is not
included. Thus it will be given byGρR3/R2 = ρGR, whereG is the gravitational
constant, and ρ the density. Hence the stars in such a cluster will move in ellipses
centered at the center of the sphere. The times of revolution will be the same,
thus stars at the edge will move much faster than those in the center. We can
also compute the total potential energy of such a gas or cluster. Namely it is
given by

∫ R

0

ρG
r2

2
(mr2)dr
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where m is the constant of proportionality between the mass of a shell and r2

which essentially gives its area, we need not concern us with it, except to note

that
∫ R

0
mr2dr = 1

3mR
3 = M the mass of the total ball. Integrating the first

we get 1
10ρGmR

5 which can be simplified to 3
10ρMGR2.

Example Applying it to the sun we get with M = 1.5 × 1030kg,G = 6.7 ×
10−11Nm2/kg2 while R = 7× 108m and ρ103kg/m3 getting 7× 1039J .

Magnitudes and Luminosity

The scale

The Greeks classified the stars into different classes, or magnitudes. One speaks
informally of stars of the first, second and up to sixth magnitude, the latter
barely visible to the naked human eye. This arithmetic scale corresponds to an
actual geometric one. This is common for sense impressions, and known as the
Weber law. Multiplying the sensation by a factor is sensed as adding a step.
This makes sense as there is no natural unit, or what comes to the same thing
no natural zero. When two sensations are compared all what you can do is to
express one in terms of the other. One of them can be said to be the norm, then
it has value zero, the other may said to have value one. Then you can compare
any third to them and assign a number, a logarithm in fact. If sensation A is
zero and sensation B is one (note B need not be stronger than A it is just a
convention. Now if C is to B as B is to A then naturally C will be given the
value 2, on he other hand if C is to A as A is to B it has the natural value
−1. Increasing the magnitude with one step, means decreasing the luminosity
with a certain factor. It has now been normalized such that increasing the
magnitude with five steps means dividing with a hundred. Thus each step on
the magnitude ladder means a factor of 100.4 (the fifth root of a hundred). As
noted magnitude 6 is about the limit the human eye can detect at night, but
in full daylight the limit is -4, thus stars have to be 10’000 times brighter to be
seen, and no stars qualify, apart from the Sun and the Moon, only Venus can
under favorable circumstances be seen in daylight.

It can be handy to give a table

magnitude 0 1 2 3 4 5
luminosity 1 2.5 6.25 16 40 100

It could also be instructive to give a table of luminosities

Sun -27 Jupiter -2.9 Vega 0
Full Moon -13 Mars -2.9 Antares 1
Supernova1 -7.5 Mercury -2.6 Polaris 2

Venus -5 Sirius -1.5 Uranus 5
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Inverse Square

The intrinsic Luminosity of an object is the amount
of light it emits per time unit. One can think of
it as a mass of particles (photons) being sent off in
all directions, and imagine an onion of concentric
shells through which they pass. The further away
from the source, the larger the shell, and hence less
luminosity (photons) per unit area. Thus the lumi-
nosity of an object decreases by distance. This can
be made precise, as the picture to the left indicates.
The areas scale as squares with the distance, thus
luminosity varies inversely with the square of the
distance.

In particular we see that if the distance is multiplied by 4 the magnitude in-
creases by three steps (from the table above).

It can be interesting to give a table of the magnitude of the Sun seen from
different planets in the Solar system and in its vicinity. Distances are given
in astronomical units, and in parenthesis distances in lightyears, one light year
being about 60’000 A.U.

Mercury 0.4 -29.0 Jupiter 5.2 -23.4 Pluto -19.0 0
Venus 0.7 -27.8 Saturn 9.5 -22.1 Oort Cloud 50000(1) -3.5
Earth 1 -27 Uranus 19.2 -20.6 Sirius 4.5105(8.6) 1.3
Mars 1.5 -26.1 Neptune 30.1 -19.7 Polaris 2.5107(434) 10

Note that at the very out-skirts of the Solar System, the Sun is still the
brightest star, while at the Pole Star the Sun would be very faint. Much fainter
than the Polaris is seen from us. The Sun is in fact a rather unremarkable star,
there are many stars significantly brighter, and larger, size and brightness being
intimately related. Then during brief moments, a star can be turned into a nova,
or even a supernova. SN 1006 mentioned above, shone at -7.5 at a distance of
7200 light years. At one light year the brightness of the Sun is −3.5, at one
light year the magnitude of that supernova would have been −26.5 almost as
bright as the Sun. At that distance it would have been lethal.

The diameter of the pupil is at its widest just short of a centimeter, at bright
light it could be less than half. With a large telescope, such as the classical Hale
with its 5 meter mirror, one million as much light can be collected, this makes
for fifteen more magnitudes. In addition the photographic plate, as well as the
more modern digital devices, also allows accumulative effects, which the human
retina is incapable of.
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The Luminosity of the Sun

The Sun produces during each second an amount of energy of 3.8 × 1026J
(J standing for Joule, also known as a Newton meter, the energy needed to lift
one kilo of mass one meter in the gravitational field at the surface of the Earth).
This corresponds to a power of 3.8× 1026W . Most of that energy is converted
into light. There are about 3× 107 seconds to a year, so during a year the total
energy production of the Sun during a year is about 1034J , and for simplicity
assuming that the energy production has been constant during the history of
the Earth spanning 5× 109 years, we are talking about 5× 1043J .

An average human consumes about three thousand calories during a day, or
more accurately kilo- calories. One calorie is the amount of energy needed to
increase the temperature of one gram of water one degree. Most of that energy
is needed as a hot-blooded mammal to maintain a steady body temperature
of 37o. Thus the need for food grows not with volume (or weight both being
roughly proportional) but with surface area, so the larger the mammal the less
food is needed per weight to maintain life.

A fairly good approximation for the needed calorie intake is to measure

how quickly the temperature of a milk-container filled with water at the

temperature of the human body decreases with time in room-temperature,

taking into account the surface area of the container, as well as its water

contents, and doing the appropriate scaling. As volume and hence weight

grows with the cube of the linear dimensions (assuming rough similarities),

while surface area, proportional to heat loss grows like the square, the

actual energy needs grows like M2/3 while its fraction of its body weight

as M−1/3. A mouse at one promille of the weight of a human, needs to

eat one percent of what the human does, and that fraction of its body

weight is about ten times that of the human, and approximates its own

body-weight. This in fact gives a lower bound how small a mammal can

be, smaller mammals, i.e. fetuses, are immersed inside the female and

thus its metabolic process integrated into a bigger one. The eggs of other

hot-blooded animals, such as the birds, need to be constantly incubated.

An elephant on the other hand having a weight about a hundred times of a

human, need to eat 25 times as much, but the mass of the food being only

a fifth of the fraction of its weight compared to humans, neglecting the

fact that its vegetarian food is not as nutritious. Cold-blooded animals do

not have the same energy needs making their lives simpler in this regard.

1 kcal = 4.18 × 103J . Thus during the day a human produces about 107J
from its food intake, as there are 24 × 60 × 60 = 86400 seconds during a day
this corresponds to a metabolic rate of 120W which is of course puny compared
to the Sun. It could be instructive to compare the masses between a human
and the Sun. For the first we we have an order of magnitude of 102 kg while
for the Sun we have computed it to 1.5 × 1030 kg above. This makes for a
quotient of 1.5 × 1028 to be compared to 3 × 1024 when it comes to energy.
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This means that the human body produces 5000 times as much energy, kilo
by kilo. Thus impressive as the energy production of the Sun is, its metabolic
rate is significantly lower than that of a human. The real mystery is how it
is able to maintain the rate for such a long time. The burning of coal gives
2.4×107J (of heat) per kg. Thus the output of the Sun per second is equivalent
to burning 1.2 × 1019 kilos of coal. If the Sun would consist entirely of coal to
be burnt (assuming a steady supply of oxygen) it would, given its mass, be able
to shine at that rate for 3 × 1011 seconds (Dividing the mass of the sun, with
the corresponding mass of coal). Which means 104 years, a very short interval
compared to geological times. Another possible way of producing energy would
be consider gravitational contraction. Assuming that the Sun is homogenous,
we have computed its potential energy as 7× 1039J from this we conclude that
if we contract the sun with h meters 1031(2h)J will be released. At the present
output a contraction of 2×10−5m/s should be enough, or 6×102 meter a year.
But this could not go on for more than a million years, which is also too short
for geological times. Calculations such as those performed by the authority of a
Lord Kelvin at the end of the 19th century, gave a rather strict upper bound on
the age of the Sun, and hence the duration of life on Earth, too short really to
allow Darwinian evolution. Darwin was considering to abandon his theory for
that very reason. At the end of the century radioactivity was discovered, and
the rest is history as the saying goes. Radioactivity and its various consequences
have dominated the physics of the 20th century. In particular we now have an
understanding on how the metabolism of stars work and why they can produce
such tremendous amounts of energy, in particular putting to shame the notorious
statement by Comte at the beginning of the 19th century, that mankind would
never know the chemical composition of stars, and in particular what makes
them shine. The short answer is of course encoded in E = mc2, that matter
can be converted into energy at a tremendous rate of conversion.

If we assume that all the energy of the sun is converted to (yellow) visible
light (which is of course a drastic simplification) we can, by finding out the
energy of a single photon, easily compute how many photons are produced a
second. The energy E of a photon is given by E = hc

λ
where c = 3×108m/s is the

velocity of light, h = 6.6× 10−34Js the Planck constant and λ the wavelength.
Thus the shorter the wave-length the higher the energy. For yellow light we are
talking about 5 × 10−11m thus a single photon will have energy 4 × 10−15J ,
doing the requisite division we end up with 1041 photons a second. Now only
a tiny fraction 10−27 of those reach the Human eye, yet in absolute numbers a
staggering 1014. This corresponds to magnitude −27. If we add 35 magnitudes
it reduces to one a second, which corresponds to a star of magnitude 8. Thus
at magnitude 6 the limit of human perception, we are only talking about half
a dozen photons a second. This testifies to the sensitivity of human vision. We
can also use this to relate magnitudes to lamps.

19



Reflected Light, Phases and Albedos

Many bodies, such as the Moon and the planets do not shine on their own,
only by reflected light. How to compute their borrowed luminosities?

Imagine the Dyson sphere again, and assume that it is completely reflective
like a perfect mirror. All the light of the Sun will be reflected back. Remove
it and leave only the Earth, and there will just be a billionth of the light left.
Now this correspond to 4.5 × 5 magnitudes, thus −4.5. Now two things have
to be considered. First this underestimates it, as wee see only half of the light
that the sun emits, thus we should compensate by a factor of two. Secondly, the
Earth is not a perfect mirror, it does not reflect all the light, only a percentage
of it, given by its Albedo. In the case of the Earth this is given by an average
of 0.3, meaning that 30% of the sunlight is reflected. Thus we should multiply
by a factor of 0.6 which corresponds to −1/2 magnitudes, hence the Earth seen
from the Sun would exhibit −4. Seen from Venus at a distance of merely 0.3
A.U., i.e. when in opposition, we should multiply by a factor of 1/0.32 ∼ 10
corresponding to about −2.5 magnitudes, so the Earth would appear as −6.5
at the maximal. What about the Moon? First its radius is only a fourth of
that of the Earth, so we need the factor 1/42, furthermore the Moon is much
darker than the Earth, having a very low albedo, in fact more like dark asphalt
or about 0.05, thus only a sixth of that of the Earth, thus we should multiply
by 1/6. In total about 1/100 corresponds to 5 magnitudes, hence the Moon
would appear with magnitude 1 and from Venus −1.5 as bright as Sirius. At
that distance the separation of the Moon from the Earth would amount to half
a degree for an observer on Venus, which is of course the separation of a lunar
disc, so the twin planet system of the Earth-Moon would be quite spectacular
seen from Venus.

Example Jupiter and its satellites Let us compute 1) The magnitude
of Jupiter at its maximum seen from each of its major satellites and 2) the
magnitude of each of those satellites as seen from Jupiter and present it at a
table. The first step is to compare their magnitudes as seen from the Sun with
those of the Earth, and then to use the inverse square to compute them from
a much closer distance. For the first step we need to know the radii r in terms
of the Earth radius, as well as their albedos a in terms of that of the Earth,
and finally we need to know the distances in terms of Astronomical units. Then
we get the modification in magnitudes by taking 2.5 ×10 log(r2 × a)/d4). This
information is given in the table below

Name Jupiter Io Europe Ganymede Callisto
Distance A.U. 5.2 2.8× 10−3 4.5× 10−3 7.1× 10−3 12.6× 10−3

Size E.r 11 0.28 0.24 0.41 0.38
Albedo 0.52 0.63 0.67 0.43 0.22

We give here a list of the magnitudes of Jupiter and its main satellites as
seen from the Sun.
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Jupiter Io Europe Ganymede Callisto
-2.6 5.1 5.4 4.7 5.6

and here we give the promised table
Io Europe Ganymede Callisto
-19.0 -18.0 -16.9 -15.7
-11.2 -10.0 -9.6 -7.5
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