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a  b  s  t  r  a  c  t

This  paper  will  demonstrate  how  signals  from  analog  sensors  can  be  directly  interfaced  to any  digital
embedded  system  even  though  they may  not  be equipped  with  an  on-chip  ADC  (Analog-to-Digital  Con-
verter),  comparator  or OP  amp  (Operational  Amplifier).  With  only  two resistors  and  one capacitor,  we will
present  a solution  that allows  analog  voltages  to  be  measured  directly  using  only  a  few  digital  I/O-pins.
The  digital  target  system  requirements  are  minimized  and  limited  to only  two  digital  I/O-pins  (with  tri-
state capability).  No  ADC,  comparators,  timers  or  capture  modules  are  necessary.  The  extremely  modest
hardware requirements  make  it a  suitable  solution  also  for CPLDs/FPGAs  (Complex  Programmable  Logic
devices/Field  Programmable  Gate  Arrays).  Since  this  solution  will  allow  even  the  simplest  embedded
system  to be  interfaced  to analog  voltage  sensors,  it has  the  potential  of reducing  design  costs  consider-
ably.  The  proposed  design  is for  DC  or  low-frequency  signals  and  compared  to other  similar  solution,  this
design  needs  no embedded  analog  blocks  at all.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The techniques of interfacing analog sensors directly to digital
embedded systems without the use of embedded ADCs or complex
signal conditioning electronics was developed in the mid-1990s.
These techniques may  be divided into two categories. One class of
interfaces focused on passive sensors (i.e. resistive, capacitive and
bridge sensors). Pioneering work was presented by Cox (1997) [1],
Richey (1997) [2],  Baker (1999) [3] and Bierl (1996) [4].

The other class is focused on sensors with analog voltage out-
puts and Peter et al. [5] showed in 1998 that these sensors could
be interfaced without using the embedded SAR ADC (Successive
Approximation Register) of a typical microcontroller. If only the
controller has an embedded comparator, a �� ADC (Sigma Delta)
can be implemented with only a few passive components. This
has later been confirmed and demonstrated by several, both in
microcontrollers [6–8] and in FPGAs (with embedded or external
comparators) [9,10].

Fig. 1 illustrates the basic idea of the first class of “non-ADC”
interfaces for passive resistive sensors [1].

The analog-to-digital conversion is a multi-step process: in step
one, the capacitor is charged via I/O-pin 3. I/O-pin 3 is configured
as output and set high, while the other pins are set to inputs (High-
Z). In the next step, I/O-pin 3 is configured as input (High-Z) while
I/O-pin 2 is configured as output and set low; the capacitor will dis-
charge through RS (=the sensor) until it reaches VIL (input logic low

E-mail address: lars.bengtsson@physics.gu.se

threshold) of I/O-pin 3 and a firmware variable is incremented dur-
ing the discharging in order to measure the discharging time. This
produces an integer NS, proportional to the sensor’s resistance. The
procedure is repeated for the calibration resistor RC, producing an
integer NC, proportional to RC. From this data, the sensor resistance
can be estimated independently of the capacitor value C [1]:

R̂S = TS

TC
RC = NS

NC
RC (1)

Corresponding techniques have been developed for capacitive
sensors [2,11–14], differential capacitive sensors [15] and resistive
bridge sensors [16–18].

The implementation of �� ADCs in digital embedded systems
are based on the circuit in Fig. 2.

In Fig. 2, the capacitor C represents the integrator in a tradi-
tional �� ADC [5,19].  When the digital I/O pin is set high, the
capacitor is charged and when reset, the capacitor is discharged.
This is controlled in firmware by polling the comparator’s output.
If the comparator’s output is high the I/O-pin is reset and if it is
low the I/O-pin is set [21]. If the input voltage x(t) is high, more 0s
are required to discharge the capacitor and if the input voltage is
low fewer 0 s are required to discharge it. The result is a control
loop where the comparator’s positive input is regulated to VDD/2
by varying the density of 1 s and 0 s on the digital I/O-pin. Since the
comparator’s output is inverted compared to the digital I/O-pin,
the density of 1 s in the bitstream from the comparator’s output is
proportional to the input analog voltage x(t). This bitstream is then
decimated in firmware in order to output an n-bit integer.

Hence the embedded system circuit in Fig. 2 is capable of han-
dling analog voltages without having an embedded ADC  and it has

0924-4247/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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Fig. 1. The one-point calibration technique.

all of the advantages of any �� ADC; it reduces the quantization
noise by oversampling and noise shaping [19,20]. However, it has dis-
advantages too. It is slow (limited bandwidth) and most of all, it only
works for embedded systems with integrated comparators, which
indicates that it requires a relatively advanced (expensive) micro-
controller and excludes inherently digital systems such as CPLDs
and FPGAs.

The solution presented in this work, uses only two  I/O-pins like
the �� ADC in Fig. 2, but has the advantage of not requiring a
comparator; the technique can be implemented also in FPGAs.

The rest of this paper is organized as follows: Section 2 describes
the hardware and firmware solutions, Section 3 analyses the hard-
ware and firmware in detail and we derive design rule expressions
as well as a complete theoretical description of the system. At the
end of Section 3 we will demonstrate how well experimental data
agrees with theoretical predictions. Section 4 describes the equip-
ment and measurement methods that were used to perform this
work and a detailed schematic of the hardware. Section 5 analyses
the design from an uncertainty point of view and we demonstrate
how the uncertainty of all the system parameters propagate into an
uncertainty in the analog voltage that is measured. Finally, Section
6 draws some important conclusions about the design.

2. Direct analog-to-digital interface

2.1. Hardware

Fig. 3 illustrates the suggested solution.
In Fig. 3, Ain represents the analog voltage generated by the sen-

sor. This circuit also requires that the embedded system’s I/O-ports
have tri-state capability. The capacitor is first charged to Ain by con-
figuring the I/O-pins as High-Z inputs. Depending on the voltage
level of Ain, I/O-pin 2 will reach the input logic high threshold (VIH)
or not. If C is charged to a level higher than VIH, then the capacitor
is discharged through R1 to VIL (=the input logic low threshold) by
configuring I/O-pin 1 as digital out, logic low and the discharging
time is proportional to Ain. If the charging of C does not reach the VIH

level on I/O-pin 2, we instead measure the time it takes to charge

x(t) + 
− 

R1

R2

Decimator
in firmwa re

The switch is
firmware controll ed

Bitstream

Embedd ed
cont rolle r

Digital out pi n

C VDD/2

VDD

Decimated intege r
output sample

Fig. 2. Implementing a �� ADC in an embedded controller.

I/O pi n 1

I/O pi n 2

C

R2R1
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Fig. 3. Analog-to-digital converter.
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Fig. 4. Case 1: Ain ≥ VIH .

it all the way up to the VIH level (i.e. from Ain to VIH) by configuring
I/O-pin 1 as digital out, logic high. In the latter case, the charge time
is proportional to VIH − Ain.

This provides all the hardware necessary for an n-bit ADC  with a
range of 0–VDD and a (theoretically) arbitrary resolution; the reso-
lution is determined by the number of bits of the counting variable
in firmware, the counter’s speed and the R1C time constant in Fig. 3.

2.2. Firmware

When the capacitor has been charged to Ain, we  have one of
two possible situations; either the voltage potential on I/O-pin 2 is
greater than (or equal to) VIH (input high level threshold) or it is
not. In software we have a counting variable which is initiated to
a start value N0 and if Ain ≥ VIH, this variable is incremented until
C is discharged to VIL. If, on the other hand, Ain < VIH, the count-
ing variable is decremented from N0 until C is charged to VIH. The
charging/discharging is implemented by reconfiguring I/O-pin 1 to
output and setting it high or low.

These two  possible situations are illustrated in Figs. 4 and 5.
Fig. 6 illustrates the firmware in flowchart form. After a short

initialization, there is an infinite loop that performs the measure-
ment. The counter variable is initiated and then I/O-pins 1 and 2
are configured to High-Z so that the capacitor can be charged to
Ain. The charging time is constant (=5R2C). After the charging time
has expired, the firmware decides whether or not the capacitor was
charged to VIH or not; this will decide whether I/O-pin 1 is set high
or low when configured as an output pin. If set high, the counter
variable is decremented until I/O-pin 2 reaches VIH, if set low, the
counter variable is incremented until I/O-pin 2 reaches the VIL level.
Finally, the data is transferred to a host Windows computer via an
asynchronous serial link in the “ADC out” box. We  will comment
this in more detail in Section 3.

Counter dec remented
Ain

VIH

t ∼VIH−Ain

[V] Counter

Counter start value, N0

ADC out = N < N0

Fig. 5. Case 2: Ain < VIH .
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Fig. 6. Firmware flowchart.
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Fig. 7. System model during first stage.

3. System analysis

3.1. Hardware

During the first stage, when the capacitor is charged, both I/O-
pins are configured as inputs represented by resistors Rin1 and Rin2
to ground. Also, according to Thevenin’s theorem we can represent
the signal source as an ideal signal source and a series resistance
Rout. Fig. 7 illustrates the system model during this stage.

If we first assumes Rin1 = Rin2 = ∞ and Rout = 0, the model reduces
to the circuit in Fig. 8.

Uc(t) increases exponentially and is charged to 99.3% of Ain
in a time equal to 5R2C. In our design, Rout = 50 � (nominal) and
R2 = 10.023 k� (measured), so excluding Rout from our model intro-

R2

C AinUC(t)

Fig. 8. Reduced system model.

C

R2R1

Ain

1ROL

Rin2 2
Rout

Fig. 9. System model during discharging.

duces a 0.5% error in the charging time constant. Also, Rin1 and Rin2
were measured to 1.012 M� (as described in [23]). This will cause
a small leakage current through the I/O-pins of the order of a few
micro amps (depending on Ain). However, even if we include non-
ideal values of Rout, Rin1 and Rin2, the capacitor will still be charged
to >99% of Ain in a time 5R2C.

Depending on whether C is charged to VIH or not, the capacitor
will be either discharged or charged during phase 2. Assume first
that C was charged to a voltage ≥VIH. I/O-pin 1 will be reconfigured
to an output port and set low which will discharge the capacitor.
Fig. 9 illustrates the system model during the discharging.

ROL is the I/O-pin’s output resistance when set low. If we first
assume ROL and Rout = 0 and Rin2 = ∞,  the system model is reduced
to Fig. 10.

The capacitor will be discharged until UC(t) reaches the input
logic low threshold VIL of I/O-pin 2. From Fig. 10 we  can see that
the sinking current i1 equals i2 + i3:

i2 + i3 = i1 (2)

Ain − Uc(t)
R2

− C
d

dt
Uc(t) = Uc(t)

R1
(3)

d

dt
Uc(t) + 1

C

(
1
R1

+ 1
R2

)
· Uc(t) = Ain

CR2
(4)

This is a first order differential equation with the following solu-
tion:

Uc(t) = R1

R1 + R2
Ain + U0 · e−(1/c)((1/R1)+(1/R2))·t (5)

Since UC(0) = Ain, we can easily find U0:

Ain = R1

R1 + R2
Ain + U0 ⇒ U0 = R2

R1 + R2
Ain (6)

Uc(t) = Ain

R1 + R2
(R1 + R2 · e−(1/C)((1/R1)+(1/R2))·t) (7)

UC(t) will reach the input logic low threshold of I/O-pin 2 (=VIL)
after time td:

td = − 1
(1/C)((1/R1) + (1/R2))

· ln
{

1
R2

(
VIL(R1 + R2)

Ain
− R1

)}
(8)

We need expression (8) to predict the range of expected dis-
charging times in order to be able to design the firmware properly.
We get the maximum td by inserting Ain = VDD. The firmware
counter will produce a value Nd proportional to td. We will analyze

C

R2R1

Ain

i1 i2

i3

Uc(t)

1

2

Fig. 10. A simplified system model at discharging.
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Ain
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Rin2 2
Rout
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Fig. 11. System model during phase 2 when Ain < VIH .

the relationship between td and Nd later in the firmware section.
Having measured td, we can find Ain:

Ain = VIL · (R1 + R2) · (R1 + R2 · e−(1/C)((1/R1)+(1/R2))·td )−1 (9)

It is important that resistors R1 and R2 are dimensioned so
that I/O-pin 2 can reach a potential less than VIL. That means that
UC(t = ∞)  in (7) should be less than VIL, and this must hold for any
Ain in the range VIH–VDD. The worst case is Ain = VDD:

VDD

R1 + R2
(R1 + 0) ≤ VIL ⇒ R1

R1 + R2
≤ VIL

VDD
(10)

(10) is our first design rule that we need to keep in mind when
designing the hardware. If we compare Figs. 9 and 10,  we can
see some consequences of our idealized model. We  already know
that Rout in our example is about 0.5% of R2 and R2 should really
be replaced with R2 + Rout in expressions (6)–(10).  Neglecting Rout

means we have a 0.5% error in R2 in expressions (6)–(10). If we
include ROL, the discharging time will increase. However, if we  also
include Rin2, there will be a leakage current through I/O-pin 2, which
will decrease the discharging time. The effects of ROL and Rin2 will
partly cancel. If we include ROL and Rin2, the discharging resistor is
not just R1; it will be (R1 + ROL) in parallel with Rin2. ROL was  mea-
sured to 21.79 �.  In our design we used R1 = 2191 � (measured) and
including ROL = 21.79 � and Rin2 = 1.012 M�,  changes the discharg-
ing resistance value from R1 = 2191 � to (R1 + ROL)/Rin2 = 2208 �.
This is an error of 0.8% and to get an idea of how this transfers
into an error in the discharging time, we treat this error as an
uncertainty in R1, i.e. R1 = 2191 + dR,  where dR = 2208 − 2191 = 17 �.
We get the corresponding uncertainty in the discharging time by
differentiating expression (8):

td = f (R1) ⇒ dtd = f ′(R1)dR1 (11)

We differentiated expression (8) by using the web-
based symbolic computational engine from WolframAlpha
(www.wolframalpha.com) and by inserting measured parameter
values from our design example, we found that an 0.8% error in the
discharging resistance transfers into a 1.3% error in the maximum
discharging time td,max.

If the capacitor C is not charged to a voltage ≥VIH, during phase
one, I/O-pin 1 will be configured as a digital output pin and set high,
see Fig. 11.

Again, we simplify the model by assuming that ROH and Rout = 0
and Rin2 = ∞.  That gives us the model in Fig. 12.

The capacitor will now be charged until UC(t) reaches the input
logic high threshold VIH of I/O-pin 2. From Fig. 12 we  can see that
the sourcing current i1 equals i2 + i3:

i2 + i3 = i1 (12)

1

2
C

R2R1

Ain

i1 i2

i3

Uc(t)

VDD

Fig. 12. A simplified system model when charging.

Uc(t) − Ain

R2
− C · d

dt
Uc(t) = VDD − Uc(t)

R1
(13)

d

dt
Uc(t) − 1

C

(
1
R1

+ 1
R2

)
· Uc(t) = 1

C

(
VDD

R1
+ Ain

R2

)
(14)

This is a first order differential equation with the following solu-
tion:

Uc(t) = (VDD/R1) + (Ain/R2)
(1/R1) + (1/R2)

+  U0 · e−(1/C)((1/R1)+(1/R2))·t

= VDDR2 + AinR1

R1 + R2
+ U0 · e−(1/C)((1/R1)+(1/R2))·t (15)

Since UC(0) = Ain, we can easily find U0:

Ain = VDDR2 + AinR1

R1 + R2
+ U0 ⇒ U0 = R2

R1 + R2
(Ain − VDD) (16)

Ain ⇒ Uc(t) = R2

R1 + R2
VDD + R1

R1 + R2
Ain + R2

R1 + R2
(Ain − VDD)

·e−(1/C)((1/R1)+(1/R2))·t = (17)

Ain = R2

R1 + R2
VDD(1 − e−(1/C)((1/R1)+(1/R2))·t) + Ain

R1 + R2
(R1

+ R2 · e−(1/C)((1/R1)+(1/R2))·t) (18)

UC(t) will reach the input logic high threshold of I/O-pin 2 (=VIH)
after some time tc:

tc = − 1
(1/C)((1/R1) + (1/R2))

· ln

{
VIH − (R2/(R1 + R2))VDD − (R1/(R1+R2))Ain

(R2/(R1 + R2))(Ain − VDD)

}
=

(19)

tc = − 1
(1/C)((1/R1) + (1/R2))

· ln
{

VIH(R1 + R2) − R2VDD − R1Ain

R2(Ain − VDD)

}
(20)

We get the maximum tc by setting Ain = 0. Having measured tc,
we can find Ain by setting UC(t) = VIH and solving for Ain in (18):

Ain =
(

VIH − R2

R1 + R2
VDD(1 − e−(1/C)((1/R1)+(1/R2))·tc )

)
· (R1 + R2)

·(R1 + R2 · e−(1/C)((1/R1)+(1/R2))·tc )−1 (21)

It is important that resistors R1 and R2 are dimensioned so that
the final value of UC(t) is ≥VIH. The worst case is when Ain = 0. Insert-
ing Ain = 0, t = ∞ and UC(t) ≥ VIH into (18) gives us

R2

R1 + R2
VDD ≥ VIH ⇒ R2

R1 + R2
≥ VIH

VDD
(22)

Compare this expression with expression (10). (22) is our second
design rule.

If we  compare Figs. 11 and 12 we  can get an idea of the con-
sequences of our simplified model. ROH was  measured to 57.15 �.
As opposed to the discharging case, including ROH and Rin2 will not
cancel each other. Including ROH increases the charging time and if
we assume that Rin2 < ∞,  then some current is leaked through I/O-
pin 2 and that also increases the charging time. However, if we also
include Rout, the current i2 (through R2) decreases and that means
that i3 increases which will decrease the charging time (since more
current is directed to capacitor C). Rout will compensate (partly) for
ROH and Rin2. In order to quantify this contribution, we  could treat it
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principally in the same way as we treated the same problem in the
discharging case, i.e. treating ROH as an uncertainty in R1, differen-
tiating expression (20) with respect to R1 and then use (11) to find
dtc. We  have not performed these calculations for this case for the
following reasons: (1) the calculations follow the same principle as
previously demonstrated (but are somewhat more complicated),
(2) ROH and Rout are almost equal (57.15 and 50 �,  respectively).
That means that the decrease in i1 due to ROH is to the most part
compensated by a decrease in i2 due to Rout and the total influence
on i3 will be very small. (3) The leakage current through Rin is pro-
portional to UC(t) which in this case is ≤Ain. In this case we  are at
the “low end” of Ain, [0.  . .VIH], and therefore the leakage current is
less than 1.2 �A (and in the sub-micro amp  range for most cases).
In total, our simplified model is more accurate in the charging case
than in the discharging case.

Let’s also take a closer look at design Eqs. (10) and (22). Both
actually set at condition for the ratio R2/R1. (10) can be rewritten
as

R2

R1
≥ VDD

VIL
− 1 (23)

and we can write (22) as

R2

R1
≥ VIH

VDD − VIH
− 1 (24)

Only one of these conditions needs to be considered and is deter-
mined by the sum of VIL and VIH: If VIL + VIH < VDD, then only design
rule (10) = (23) needs to be considered, since

VDD

VIL
− 1︸  ︷︷  ︸

↑
(23)

= VDD − VIL

VIL
>

VIH

VIL
>

VIH

VDD − VIH︸  ︷︷  ︸
↑

(24)

(25)

On the other hand, if VIL + VIH > VDD, then only design rule
(22) = (24) needs to be considered, since

VIH

VDD − VIH︸  ︷︷  ︸
↑

(24)

>
VDD − VIL

VDD − VIH
>

VDD − VIL

VIL
= VDD

VIL
− 1︸  ︷︷  ︸

↑
(23)

(26)

Hence, the VIL + VIH sum should be determined first because this
determines which one of the design rules (10) or (22) we  need to
consider.

3.2. Firmware

The firmware was written in C-code, according to the flowchart
in Fig. 6. The critical parts are the incrementing and decrement-
ing of the counter variable. If we aim for 12 bits resolution, the
counter variable range is 0–4095. We  should divide this interval
properly between the incrementing and decrementing situations
in Figs. 4 and 5. In other words, we need to find N0. To find N0,
we first find the maximum values of td and tc in expressions (8)
and (20). The following (measured) parameter values were used
throughout the calculations below:
C = 2.18 �F, R1 = 2191 �,  R2 = 10,023 �,  VIL = 1.2730 V, VIH = 1.2812 V, VDD = 5.0280 V

In order to find the maximum discharging time in (8),  we set
Ain = VDD. That produces

td,max = 9.44 ms  (27)

In order to find the maximum charging time tc, we  set Ain = 0 in
(20):

tc,max = 1.46 ms  (28)

Is
I/O-pi n 2 High

?

Yes

No

Increment
counter

while (IO_pin 2) {
counter+ +;
Delay(Dd);

}

Fig. 13. Incrementing counter.

It follows that the starting value of N0 should be

1.46
1.46 + 9.44

· 212 = 548 (29)

The microcontroller was a PIC18F458 from Microchip [22],
clocked with an external crystal with nominal frequency
F0 = 20.0000 MHz. In this architecture, the internal instruction exe-
cution rate is F0/4 and hence the instruction cycle period (ic) is
4/F0. If we first look at the part of the program that increments the
counter variable (during discharging), see Fig. 13,  the execution
time of this loop must equal td,max (when Ain = VDD).

The counter++; is executed in 1 ic (instruction cycle) only. The
loop overhead produced by the used C-compiler (HI-TECH’s PICC-
18) consumed 8 ics. If the delay consumes Dd ics, the entire loop
takes 9 + Dd ics to execute. When Ain = VDD, this loop should be exe-
cuted 212 − N0 times in a time corresponding exactly to td,max:

(212 − N0) · (9 + Dd) · 4
F0

= td,max (30)

td,max ⇒ Dd = F0 · td,max

4 · (212 − N0)
− 9 (31)

We may  consider this to be another design rule; F0, td,max
and N0 must be chosen so that Dd ≥ 0 (preferably =0 to speed
up the sampling rate). If Dd is a small number, it can be imple-
mented as a number of “no operation” (nop) assembler instructions
(asm(“nop”)). With td,max = 9.44 ms,  N0 = 548 and F0 = 20 MHz, we
get Dd = 4.

The part of the program that decrements the counter vari-
able (during charging), see Fig. 14,  is treated correspondingly; the
counter variable should be decremented exactly N0 times during
tc,max (when Ain = 0).

N0 · (9 + Dc) · 4
F0

= tc,max (32)

tc,max ⇒ Dc = F0 · tc,max

4 · N0
− 9 (33)

Is
I/O-pi n 2 Hig h

?

Yes

No

Decrement
count er

while (not_I O_pin2) {
counter --;
Delay(Dc);

}

Fig. 14. Decrementing counter.
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Fig. 15. The In–Out characteristics of the Analog-Direct circuit in Fig. 3.

This is yet another design rule; F0, tc,max and N0 must be com-
bined so that Dc ≥ 0 (preferably = 0). With tc,max = 1.46 ms,  N0 = 548
and F0 = 20 MHz, we get Dc = 4.

The last box in the firmware flowchart in Fig. 6, “ADC
out = counter”, could mean that we simply output the n-bit result
in binary format on n LEDs (Light Emitting Diodes). However, in
this application data was transferred to a host Windows computer
via an asynchronous serial link at a baud rate of 9600. This rou-
tine consumed 28,774 ics. The time consumed by the main loop
in Fig. 6 depends on Ain, i.e. how long it takes to charge/discharge
the capacitor. The worst case, when Ain = VDD, will determine the
system’s sample rate. In the worst case, the counter has to be incre-
mented from N0 to 212 − 1 = 4095, i.e. executing the loop in Fig. 13
takes exactly td,max. The rest of the firmware in the main loop in
Fig. 6, including initializing the counter, configuring the I/O-pins,
loop overhead, etc., takes 774 ics. In total, the worst case takes

TS = (28, 774 + 774)ics + td,max (34)

to execute. If td,max = 9.44 ms  and the ic period =
4/(20 MHz) = 200 ns, then TS = 15.3 ms.  This corresponds to the
minimal sampling interval, indicating a maximum sampling rate
of 65 S/s. This should be compared to the sampling time of 17.5 ms
achieved by the �� ADC implementation suggested by Peter et al.
[5]. This should also be compared to the system’s input bandwidth.
Notice in Fig. 3 that during the sampling phase (when the capacitor
is charged by Ain), I/O-pin 1 and 2 are High-Z  inputs which means
that R2 and C will serve as a first order low-pass filter. This works
greatly to our advantage since it will cancel random noise in Ain
and serve as an anti-aliasing filter. That also gives us another
design rule. The bandwidth of this anti-aliasing filter should be
less than 1/2 TS:

1
2�R2C

≤ 1
2TS

⇒ R2C ≥ TS

�
(35)

We have R2 = 10,023 � and C = 2.18 �F:

10023 · 2.18 · 10−6 = 0.022 >
15.3  · 10−3

�
= 0.0048 (36)

Finally, we also need to relate the counter variable value N to
the charging/discharging times in expressions (8) and (20). Since
we got both Dd and Dc = 4, both loops in Figs. 13 and 14 takes
9 + 4 = 13 ics to execute and if each ic = 4/F0 = 200 ns, each counter
increment/decrement corresponds to tloop = 13 × 200 ns = 2.6 �s
(measured to 2.6017 �s, see Section 4). When Ain ≥ VIH, the counter
is incremented from N0 and if Ain < VIH, the counter is decremented
from N0. Hence, we assign a time to each Ain according to the fol-
lowing expressions:

tc = (N0 − Nc) · tloop if Ain < VIH (37)

td = (Nd − N0) · tloop if Ain ≥ VIH (38)

where tc and td are the expressions (20) and (8),  respectively, and
Nc and Nd represents the firmware counter variable value N dur-
ing charging and discharging, respectively. This relates the counter
value to the analog input voltage Ain:

Nc = N0 − tc

tloop
= N0 + 1

(tloop/C)((1/R1) + (1/R2))

· ln
{

VIH(R1 + R2) − R2VDD − R1Ain

R2(Ain − VDD)

}
if Ain < VIH (39)

Nd = td

tloop
+ N0 = N0 − 1

(tloop/C)((1/R1) + (1/R2))

· ln
{

1
R2

(
VIL(R1 + R2)

Ain
− R1

)}
if Ain ≥ VIH (40)

In Fig. 15 we have plotted N versus Ain according to the theo-
retical predictions in (39) and (40). In Fig. 15 we  have also plotted
experimentally registered calibration data and from Fig. 15 it is
clear that the experimental data confirms the theoretical predic-
tions in (39) and (40).

4. Methods and materials

Resistors and capacitor values (R1, R2, C) for our design example
presented in Fig. 15,  were measured with a HP4261A LCR meter. VDD

was measured with a digital desktop multi meter Agilent 34401A,
to 5.0280 V. In order to register calibration data, a digital function
generator (Agilent 33220A) was  used as a signal source for Ain. This
function generator can be configured for DC output and the advan-
tage of using this function generator to simulate Ain instead of a
general purpose DC power supply is that the output impedance is
well-known (and “low”, 50 � nominal).

The microcontroller used was a PIC18F458 from Microchip [22]
and the parameters Rin, ROL, ROH, VIH and ViIL, were measured
as described below (most of these methods were suggested by
Reverter et al. [23]).

Fig. 16 illustrates how Rin and ROL were measured.
An Agilent 34401 DMM  (digital multi meter) was  used to mea-

sure UX. Rp was adjusted until UX = VDD/2 at which Rp = Rin (or ROL,
respectively). Then Rp was  measured with the HP4261A LCR meter.
Using this method, we got Rin1 = Rin2 = 1.012 M�, and ROL = 21.79 �.
(Normally, the input impedance of the 34401A DMM  is 10 M� but
in order to measure Rin we reconfigured the input impedance to
“>10 G�” so that it would not interfere with the Rin-measurement.)

ROH was  measured in a similar way  as illustrated in Fig. 17.
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Rin/ROL Rp

VDD

Ux

Fig. 16. Measuring Rin/ROL .

ROH Rp
VOH = VDD

Ux

Fig. 17. Measuring ROH .

First we verified that VOH was equal to VDD by measuring
the “open output” voltage of the I/O-pin when set high with no
external load applied. Then we connected the potentiometer and
adjusted Rp again until UX = VDD/2 at which Rp = ROH. This produced
ROH = 57.15 �.

The input logic high and low thresholds of I/O-pin 2 (VIH and VIL)
were measured as illustrated in Fig. 18.

A  small test firmware was written that configured I/O-pin 1 as
input and I/O-pin 2 as output and then just executed a single line of
code in an infinite loop: I/O pin2 = I/O pin1;. UX was  measured with
the Agilent 34401A DMM.  By slowly increasing the potential on
I/O-pin 1 (by adjusting the potentiometer) until the LED was turned
on, VIH could be determined (=1.2812 V). Reversing this process, i.e.
slowly decreasing the potential UX from VDD until the LED is turned
off, produced VIL = 1.2730 V.

Fig. 19 illustrates the hardware details of the proposed direct
analog-to-microcontroller interface.

The FTDI-chip in Fig. 19 is a TTL-to-USB converter [24] that was
used to convert the TTL digital output from the microcontroller’s
asynchronous serial interface to USB-formatted data in order to
transfer data to the host Windows computer via an USB-interface.
A simple terminal program was used to receive and store all data.
Data was later analyzed in MATLAB.

Finally, tloop was measured by first measuring the ic period
(instruction cycle period). A small test program toggled an I/O-pin
on each ic and by measuring the positive width of this signal we
found that ic = 200.131 ns with a standard deviation of 0.073 ns.
This was measured by using the embedded measurement tools
of a Tektronix digital oscilloscope, TDS5032B. This indicates that
tloop = 2.6017 �s with a standard deviation of 0.95 ns. The number
of instruction cycles actually executed in each loop was verified in
the simulator MPSIM in Microchip’s integrated development envi-
ronment (MPLAB [25]).

I/O-pin 1

VDDUx

I/O-pin 2

Test firmwa re:

I/O_pin2  = I/O _pin1;

Fig. 18. Measuring VIH and VIL .
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Fig. 19. Hardware details.

5. Uncertainty analysis

Expressions (21) and (9) relate the charging and discharging
times, respectively, to the input analog voltage and expressions
(37) and (38) relate the charging/discharging times to the firmware
counter variable N. Inserting (37) into (21) and (38) into (9), we get
two estimators for the unknown input analog voltage Ain:

AinL = (VIH(R1 + R2) − R2 · VDD(1 − e−(1/C)((1/R1)+(1/R2))·(N0−N)·tloop ))

·(R1 + R2 · e−(1/C)((1/R1)+(1/R2))·(N0−N)·tloop )−1 if Ain < VIH (41)

AinH = VIL · (R1 + R2) · (R1 + R2 · e−(1/C)((1/R1)+(1/R2))·(N−N0)·tloop )−1

if Ain ≥ VIH (42)

where we  use AinL and AinH to distinguish between the two expres-
sions for Ain depending on whether Ain is greater than VIH or not.
From these estimators we can see that

AinL = f (VIH, R1, R2, VDD, C, N, tloop) (43)

AinH = f (VIL, R1, R2, C, N, tloop) (44)

(N0 is not included since it is a firmware constant with zero uncer-
tainty). In order to find the uncertainty in our estimation of Ain
we need to know how uncertainties in any of the variables deter-
mining Ain, propagate into uncertainties in Ain. When doing that
analysis, we will assume all variables to be independent (or at least
uncorrelated). This is indeed true, with the exception of VIH and
VDD in expression (43); VIH most likely depends on VDD, but we
deliberately disregard that fact in the following calculations, for the
following reasons: (1) the correlations coefficient between VIH and
VDD is not known and (2) it would make calculations overwhelm-
ing. We  are aware of the shortcomings of this approximation and
we will keep it in mind when we analyze the results. We  will illus-
trate by two  examples how the uncertainty in Ain is calculated; the
first example is for Ain ≥ VIH (and we use expression (42)) and the
other example is for Ain < VIH (and we use expression (41)).

Assume that Xi is a stochastic variable with standard uncertainty
u(xi), and that another stochastic variable Y depends on Xi:

Y = f (X1, X2, X3, . . .)  (45)

We define the sensitivity coefficient as [26,27]:

ci = ∂f

∂Xi

∣∣∣∣
Xi=

�
Xi

(46)
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Table  1
Uncertainty budget, N ≥ N0.

Parameter Estimated/measured value Standard uncertainty u(xi) Sensitivity coefficient |ci| ci·u(xi)

VIL 1.2730 V 0.0289 mV  1.57 4.54 × 10−5 V
R1 2911 � 0.289 � 4.08 × 10−4 A 1.18 × 10−4 V
R2 10,023 � 0.289 � 5.38 × 10−6 A 1.56 × 10−6 V
C  2.18 �f 2.89 nF 3.85 × 105 V F−1 1.11 × 10−3 V
N  1428.45 0.73 9.53 × 10−4 V 6.96 × 10−4 V
tloop 2.6017 �s 0.95 ns 3.22 × 105 V s−1 3.06 × 10−4 V
Ain 1.998993 V – – 1.35 × 10−3 V

Table 2
Uncertainty budget, N < N0.

Parameter Estimated/measured value Standard uncertainty u(xi) Sensitivity coefficient |ci| ci·u(xi)

VIH 1.2812 V 0.0289 mV  1.15 3.32 × 10−5 V
R1 2911 � 0.289 � 7.84 × 10−5 A 2.27 × 10−5 V
R2 10,023 � 0.289 � 1.63 × 10−5 A 4.72 × 10−6 V
VDD 5.0280 V 0.0289 mV  1.34 × 10−1 3.89 × 10−6 V
C  2.18 �f 2.89 nF 2.18 × 105 V F−1 6.30 × 10−4 V
N  286.59 0.91 1.81 × 10−3 V 4.52 × 10−4 V
tloop 2.6017 �s 0.95 ns 1.81 × 105 V s−1 1.72 × 10−4 V
Ain 0.71776 V – – 7.95 × 10−4 V

If all variables Xi are uncorrelated, then the uncertainty in Y is

u(y) =
√∑

all i

(ci · u(xi))
2 (47)

So, in order to find the uncertainty of Ain we must find out how
the uncertainty u(xi) of each variable propagates into an uncer-
tainty ci·u(xi) in Ain and then take the square root of the square
sum of all these uncertainties as in (47). First we must find the
uncertainties of all parameters in expressions (41) and (42). The
parameters that were measured with a digital instrument are
treated as uniformly distributed stochastic variables with distri-
bution limits equal to ±0.5 of the “weight” of the least significant
digit. Hence, the width of the distribution function corresponds to
the “weight” of the least significant digit and the standard devia-
tion of a uniform distribution with a width of 2ı is ı/

√
3 [26,27].

That is how we found the uncertainties of all digitally measured
parameters in (41)–(42) which included all parameters except N
and tloop. N is the firmware variable and was estimated as the arith-
metic average of 20 samples. The standard deviation of this data
was estimated as follows:

�̂N =
√

1
n − 1

∑
i

(Ni − N̄)
2

(48)

(where n = 20 is the number of samples) and the standard deviation
of the estimated arithmetic average N̄ is

�̂N̄ = �̂N√
n

(49)

tloop was found in a similar way by recording the loop time (as
described in Section 4) 10 times.

All these uncertainties are presented in the uncertainty budget
in Table 1 [26,27] for a case where Ain ≥ VIH. In order to find the sen-
sitivity coefficients in (46), we need to differentiate Ain with respect
to each one of the parameters in (42). We  used the WolframAlpha
computational engine to do that. The results are presented in the
uncertainty budget in Table 1.

The uncertainty budget in Table 1 represents a measurement
of some unknown analog input voltage Ain ≥ VIH which produced
N̂ = N̄ = 1428.45. Since N > N0, we use expression (42) to estimate
Ain. From Table 1 we can see that this produces Âin = 1.99899 V
with a standard uncertainty of 0.00135 V. From Table 1 we can
also see that in order to improve the precision, we should first

of all try to get a more precise value of the C parameter (as
expected since it is the parameter value determined with the poor-
est precision). The measurement uncertainty should be compared
to the inherent quantization uncertainty of a 12-bit ADC which
is (5 V)/4096 = 0.00122 V; the 1 − � uncertainty corresponds to 1.1
LSB.

Table 2 illustrates an example of an uncertainty analysis for the
case where Ain < VIH and expression (41) is used. In this case the
analog input voltage was estimated to 0.71776 ± 0.00080 V (where
the uncertainty interval corresponds to one standard uncertainty;
approximately 0.66 LSB). From Table 2 we can also see that our
assumption about VIH and VDD being uncorrelated is of no major
importance since the contributions of VIH and VDD are small com-
pared to other contributions. In a correct analysis, we should also
include the covariance between VIH and VDD, but that will not make
any noticeable difference in the end result (as long the precision of
the other parameters aren’t improved first).

The uncertainty budgets in Tables 1 and 2 are examples of how to
calculate the measurement uncertainty for all measured values in
Fig. 15 and the maximum observed uncertainty corresponds to 1.15
LSBs. This occurs for the case when N > N0 and maximum stochastic
fluctuations in N.

6. Conclusions

This work has presented a simple “direct” interface technique
for analog (DC) voltage signals to a microcontroller. The solution
requires only two  digital I/O-pins, two resistors and a capacitor.
A design example has been analyzed in detail; it has a maximum
sampling rate of 65 S/s and a typical precision that corresponds to
(or outperforms) the quantization uncertainty of a 12-bit ADC. The
solution is a mixture of the “Direct Sensor-to-Controller” technique
for resistive and capacitive sensors suggested in [1–4,11–18] and
the �� ADC implementations suggested in [5–10]. This solution
does not need any internal or external building blocks at all (as the
�� ADC implementation does). The disadvantage of the proposed
circuit solution is of course its limited bandwidth.

Compared to the �� ADC solution, this solution does not have
the noise shaping properties of a �� ADC [19], but is on the other
hand implementable in the simplest possible digital system since
only two I/O-ports are required; the �� ADC solution requires
an integrated comparator. The fact that no comparator is required
indicates that also inherently digital systems like CPLDs and FPGAs



Author's personal copy

L. Bengtsson / Sensors and Actuators A 179 (2012) 105– 113 113

can take advantage of this solution. The fact that I/O-pins must have
tri-state capability is not a problem; CPLDs/FPGAs programmed in
VHDL can have tri-state I/O-pins if they are defined as “inouts” in
the entity and declared as std logic types (‘Z’ = HighZ).

This work has also presented a thorough theoretical analysis
of the proposed system and demonstrated that experimental data
agrees very well with theoretical predictions. We  have also demon-
strated how uncertainties in input parameters propagate to an
uncertainty in the output parameter.

As predicted by expressions (41) and (42) the relationship
between the analog input signal and the measured integer N is not
linear. However, this is not a major problem and is easily handled by
implementing a LUT (Look-Up Table) in firmware; when applied to
non-linear sensors like thermo couples, LUTs must be implemented
anyway.
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