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II. THE SCHRODINGER EQUATION

The time-dependent Schrédinger equation

Starting from de Broglie's relations
E=hv=ho (IL.1)
p=hiA=Hk
we assume that we can represent a particle generally by the means of a wave
packet or wave function

W(xr)= [dke ™ (k) (IL.2)

—c0

If the particle is free, i.e., not affected by any external field, its momentum p is
constant. The particle is then represented by a single plane wave

W(x,t) = Ae' (IL.3)
where A is an arbitrary constant. For a free particle the energy is given by
2 242
E=2 or no="k (IL4)
2m 2m

with de Broglie's relations. This is a relation between k and ®, which must be
satisfied by the wave function. For the wave function (I1.3) we have

g;‘l—’(x, t)=-iwW¥(x,t)
gx-\y(x,t) — W (x.1)

2

() = K W(xt)

axz
This leads to the relation between the derivatives
. 0 R 9°
1hb—t‘l’(x,t) = ——?-Jx—z‘l’(x, t) (II5)

This is the Schrédinger equation (S.E.) for a free particle. The general solution is
given by the wave function (I.2).

For a particle moving in a potential field V(x,t) we have mstead of (IL.4)
2 232

E="—+V(x,t) or ho= . +V(x,1) (IL6)
2m m

This leads us to write down the wave equation

2 2
., 0 R d ,
1h; Y(x,t) = {‘E? + V(x,t)} ¥(x, 1) | (IL.7)

which is the Schrddinger equation for a particle in a potential field V(x,t).
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Separation of the variables

If the potential V(x,t) is independent of time, we can solve the time depen-
dent Schrodinger equation by separation of the variables. We then assume that
the solution is of the form

F(x.0) =y ()F()
Inserting into the S.E. (IL.7) leads to

2 2
iy = I ) VD sy ywie)
Dividing by y(x)F(t) gives
gL dF(t) _ 1 1 dy(x)
F(t) dt ¥(x)2m dx*
The left-hand side is here independent of x and the right-hand side independent
of t. Hence, both sides must be equal to a constant (E), leading to two equations

+V(x)

., dF(t)

in = = EF(z) (IL.8a)
2 2

[—j—mg;;wu)}w(m Ey(x) (IL8b)

Both these equations are eigenvalue equations, and they have, in general,
solutions only for specific values of the eigenvalue E. The last equation is the
time-independent Schrodinger equation. The first equation (I1.8a) can be solved
generally

F(t)= Ce—iEt/h
which means that the solution of the time-dependent S.E. corresponding to a
solution y,(x) with the eigenvalue E,, of the time-independent S.E. is of the form

¥ (x, )=y, (x) e 5" (IL.9) -

Since the S.E. is linear, a linear superposition of solutions is also a solution.

A general solution of the time-dependent S.E. (IL.7) with a time-independent
potential can the be written

Y(x,0)=Y,C, P, (x,1) (I.10)

where C,, are constants. If the potential is time dependent, we can express the
solution in a similar way with time-dependent constants C,,(t).

Interpretation of the wave function

The wave function ‘¥(x,?) is interpreted as the probability amplitude, which
means that the probability of finding the particle in the interval (x,x+dx) at the
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time ¢ is proportional to |‘I’(x,t)|2dx . If the function is normalized
[[¥(x0) dx =1 (IL11)

then |¥(x, t)]zdx is equal to that probability.

In general, the probability distribution depends on time. If ¥(x,¢) is of the
form (I1.9), then I‘I’(x,t)2 is time independent. Then the state is said to be
stationary. This implies that the solutions of the time-independent S.E.
represent the stationary states.

Expectation values
The expectation value of the coordinate x is obtained by integrating x over
the coordinate space with || as the weight factor
(x)= [[¥f xdx= ['¥'x¥dx (IL12)
Similarly for ar_{;r power o_fwx or an arbitrary function of x
<x”> = ]:‘P*x"‘de ; (f(x))= T‘I’*f(x)‘l—’dx

In principle, these expectation values may depend on time. In a stationary state all
expectation values are time independent.

In order to obtain an expression for the expectation value of the momentum,
we consider the fourier transform of the wave function. For simplicity we
consider the time-independent wave function.

1 % ik
l//(x)=ﬁ_£dke a(k)

I
a(k) = Ton [dxe ™ y(x)
We introduce
o) = 2 alt) = - Jase* y(
which gives
w9 =3 o o(p) = 7 Jave™ olp)

Then |¢(P)|2 represents the distribution in the momentum space, i.e., 2dp

¢(p)

represents the probability to find the particle in the momentum region (p,p+dp).
This can be shown as follows.

[dplo(p)f = | dp9’(p) = Jdre ™ w(x)= [dxy’ (x)w(x)
1 El Tn ]

The expectation value of the momentum p can now be obtained
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< * =< 1 s i *
(p)= [dp9"(p)po(p)= | dp—p- [dxe™ y"(x) p9(p)
- 1dp%ldw*(x)(-ih %)eiw“" o(p) = Iodxy/*(x)(—ih %) w(x)
Thus, it is found the operator —ih—;; represents the (x component of the)

momentum p also for a general wave function (not just a plane wave).

III. THE OPERATOR FORAMLISM

Basic definitions and assumptions

Quantum mechanics is based on the following basic assumptions:
1. Each state of a physical system can be represented by a wave function.
2. Each (measurable) physical quantity is represented by a (hermitian) operator.
3. The eigenvalues of the operator are the possible results of an accurate
measurement of the corresponding quantity.

State — Wave function
(Measurable) quantity = — (Hermitian) operator
Measurement — Eigenvalue

Two operators A and B are said to be equal if Ay =By for all functions v
in the space considered. (Hermitian operators are defined below.)

Two operators A and B are said to commute if A B =B A.
The commutator of two operators A and B is defined
[Aé]:[xé-é,«i (IL.1)

We have found above the operators representing the position (x) and the
momentum (p). Assuming that the same relations hold between operators as
between the corresponding quantities (not always possible), we get the operator
representing the kinetic energy

2 n A2 2 2
E, =P 4,,, - E; = Zp—m = —Zh—m% (IIL.2)
Similarly, the operator representing the total energy in a potential field V(x)
becomes
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2 WP
H=P/ +V(x) > A= V() (IL3)

The function H is called the Hamilton function in classical mechanics, and the

corresponding operator H is called the Hamilton operator.

Extension to three dimensions
The operator corresponding to the three-dimensional momentum p becomes

A d d d
= > s - = % ," > D =_.h T s T s T =_‘hV III.4
p=(p.p,-p.) = B=(pohyP.) 1(3x8y8z) i (ITL4)
where V is he gradient operator
d d d
V=| —,—,—, 1.5
%5%) )
Similarly, the Hamilton operator becomes
2
=2y Ly (IIL6)
2m

This leads to the three-dimensional time-independent Schrodinger equation
2
(—h—Vz + V(r)) y=Ey (I11.7)
2m

The Hamilton operator H (IIL6) represents the total energy of the system, and
the Schrédinger equation (III.7) is the corresponding eigenvalue equation.
According to the basic assumptions above, these eigenvalues represent the
possible energy values of the system that can be obtained in a measurement of the
energy.

Hermitian operators

1. The hermitian adjoint A" of an operator A is defined by

fviAw,av=[(A'y,) v,dv (IIL8)
for all pos_sible Vv, and 1;;

The hermitian adjoint of the product of two operators A and B is the product of
their hermitian adjoint operators in reverse order

(AB) = BA" (IILY)
which follows from the definition of hermitian adjoint operators (IIL.8) by first
moving A and then B to the left.

The operator A is said to be hermitian if A" = A.
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From (IIL9) it follows that the commutator between two hermitian operators
is not hermitian. The hermitian adjoint of the commutator is found, using (I11.9)
to be

4. z‘a]T =48] (IIL.10)
and the commutator is therefor said to be antihermitian. It is then easy to show
that i[fl,é] is hermitian.

2. A hermitian operator has real eigenvalues and real expectation values.
Proof: The eigenvalue equation Ay = ay leads to

If A is hermitian, this is equal to

_T(AT l//)*l//dv = a*_Tw* v dv

and hence a*=a and the eigenvalue a is real. The expectation value of a

hermitian operator A is

<A> =[y'Aydv= j(ﬁy/)* vdv= (jy/* ﬁwdv)* = <A>*
which means that it is real.

3. Eigenfunctions of a hermitian operator corresponding to different eigenvalues
are orthogonal.

Proof: Assume Ay, =a, y, and Ay, =a v, where A is hermitian and A,,#0,,.
Then

w,hv,dv=a,[v,w,av=[(Ay,) v,dv=a,[v,y,dv
Since it is assumed that a,,#4,,, it follows that [y, v, dv=0, which means that
the functions are orthogonal.
4. The eigenfunctions ¥, of a hermitian operator form a complete set, which
implies that any function in the space considered can be expanded in terms of
these functions

Ay,=a,y and v=3Cy,

5. A measurement of the quantity A in a state y =3 C,y,, which is not an

2, provided that y

eigenstate of A, will yield the result a,, with the probability
is normalized

e[ =1

Cl!
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The uncertainty principle

The uncertainty AA of the quantity A is given by
2 _ [ 32 AN _/(a_/a\)
aa’ =(8)-(4) =((A-()])
To prove the uncertainty relation between two quantities represented by the

hermitian operators A and B we define two new operators C and D by
subtracting the expectation values for a specific wave function v,

E=A-(A)
b=B-(B).
Now consider
I(A)= jdx(é‘yf + ilﬁw)*(él// + iﬂ.ﬁy/)
which has to be greater than or equal to zero for all values of A since the integrand
is an absolute value squared. Since A and B are hermitian operators also € and

D will be hermitian. Thus we can expand
1(4)= [ax(Cy) (Cy)+ [ dx(Dy) (Dy) +
ijad{(Cy) (Bw)- (Dy) (¢v)}=
[y (& + 2D+ A6, Dy =
= A* + PAB + A({[4, Bl)=0

The minimum with respect to the A is found by setting the derivative equal to
zero

22 AB® + +<i[A, §]> =0.

With the expression for Ay i from this equation we get

I(/lmin) — AA% 4+ <i[/i’ §]>2 <i[A\’ §]>2 >0

4AB*  2AB°
which gives
1/7r~ an2
2Ap2 s /4
AAB* 2 ({[A.B]) .
This is the uncertainty relation. As shown in (II.10) i[/i,l}] is hermitian and the
expectation value is thus real.

The uncertainty principle implies that if two operators do not commute, the
corresponding quantities cannot be measured simultaneously with unlimited




Chalmers tekniska hogskola/
Goteborgs universitet 01-08-23
Fysiska institutionen 8

Prof. L.Lindgren/Doc. S.Salomonson

accuracy. If the operators commute, the quantities can be measured
simultaneously. The quantities are then said to be compatible.

Example. The commutator of the operators % and p is

A | A d
s =_h a_a
[x p] 1 I:x :I

The commutator is an operator, and in order to evaluate it we let it operate on
an arbitrary function

[x,i]l// = (x—él - ix)l// = x&_y/_ - —i(xl;/) =-y
o d  ox o ok
(It should be noted that the operator %x operates on everything appearing to the
right.) Since y is an arbitrary function, we get the operator identity
[%.]=in
The uncertainty principle then yields
AxAp 2Ty

In an eigenstate of an operator A with the eigenvalue a the measurement of
the corresponding quantity yields with certainty the value 4, which can be seen as
follows.

Ay =ay and (AA) =<;42>—</~1>2
gives

</~12> =[y Aydv=a [y ydv=a’
and

</~l> = IW*Awdv = a_[l//* ydv=a
which leads to (AA4)=0.

Constants of the motion

The physical quantity A is represented quantum-mecanically by the operator

A\

and the time derivative % by the operator'fi—A . We then require that
t

d dA d/\
—(A)= — * dA
dt< ) <dt> I‘P(l',t) —dt WY(r,t) dv

where
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d d * 4
—(A)=—|¥(r,1) A¥(r,))d
A=W A¥ () dv

With the time-dependent Schrédinger equation

ih%ELQ:ﬁ‘P(r,t)
this gives
——(A) J&‘P(r 22 A¥(r,t)dv +[¥(r,1) Aay( 1 gy +[W(r,0) %A\P(r,t)dv

:%{ j(A¥a, t)) AP(r,0) dv— [¥(r,n)" AH¥(r,1) dv} +[ P, %A\P(r, 1) dv

i P . 0A
- %j ¥(r,1) [A,H] W(r,1) dv + [W(r,1) 5 EEndy

We then find that the time derivative of the quantity A is represented by the
operator

A _a i

A _A_irz g

dt ot h

The first term on the right-hand side is non-zero only if the operator A depends
explicitly on time. If this is not the case and if A commutes with H , then the

operator representing the time derivative vanishes. This implies that E<A>

vanishes for all states, satisfying the time-dependent Schrédinger equation - not
only for stationary states (for which all expectation values are time independent) -
and A is then said to be a constant of the motion.

A physical quantity is a constant of the motion, if the corresponding operator
does not depend explicitly on time and commutes with the hamiltonian of the
system.

The virial theorem

For stationary states all expectation values are time independent. Thus

d
dt<rp ——I‘P(I‘ 1) [r p,H] ¥(r,t)dv =

if ¥(r,?) represents a stationary state. (Since the operator r-p is time independent,
there is no addidtional term.) The hamiltonian for an electron in a potential field
V(r) is

~2
A=L +v@) with p=-inv
2m
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The relations
[r-,p”| = {r-p.B]+[r-p.p]-p
rp,p|=-7[rV,V]= 1V = inp
glve
[rD.p*] =2inp’
and together with
[rD, V(r)] = =it (r-V) V(r) = —iRr-grad V(r)

we then get
~2

[r.A]=in {2 ;’m

—r-grad V(r)}
Thus,

A2 2

4 )= 1o B L. NOY
= (rp)=[¥(r,1) {2 e grad V(r)} ¥(r,t) dv <2 T grad V(r)>

This vanishes, if W(r,t) represents a stationary state, in which case

p’
2 < E> =(r-grad V(r)>

p’ S

Introducing the kinetic energy T = o and the corresponding operator 7T =-—, we
m m

N

can write this relation

2(T)=(r-grad V(r))
which is the virial theorem.
For a spherically symmetric potential that is proportional to a power of
r,V(r)=Kr", we have (r-grad V(r))=n(V). Particularly for the harmonic oscillator
with n=2 we have equal expectation values for the kinetic and the potential
energy. For the hydrogen atom with n=-1 get 2(T)=—(V).

The harmonic oscillator

We consider a particle in a one-dimensional potential of the form
V(x)=1kx* = ima’x* o =.Jk/m (A.1)
which gives the hamiltonian

a2
a=2 +imw’x’ (A.2)
2m
We now make the substitution

mo A 1 . hod d
_me po L og_ gk d_d A3
Q 7] o mha)p ! mo dx 1dQ ( )

which gives
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H= %ha)(ﬁz + QZ) (A.4)
From the commutation relation [p,x]=-i# it follows that
[P.0]=-i (A.5)
The Schrodinger equation Hy=Ey now becomes
d2
oL 10° -2 (@) -0 (26)

where E =1hoe is the energy eigenvalue.
We then introduce the new operators

&=%(Q+iﬁ)=%(Q+£]; &*=—J%(Q—iﬁ)=—}2—(Q—-§£Q—) (A7)
which satisfy the commutation rule

[4.6"]|=aa"-a"a=1 (A.8)
With these operators the hamiltonian (A.4) can be expressed

H=1nw(ad" +a'a) (A.9)
Using the commutation rule (A.8), this becomes

H=ho(a'a+{)=ho(N+1) (A.10)
where

N=a'a (A.11)

will be called the number operator.
We shall now find the eigenvalues and eigenfunctions of the hamiltonian
(A.10) and start by the eigenvalue equation of the number operator (A.11)
No,=d'ap,=¢,0, (A12)
Obviously, these eigenfunctions are also eigenfunctions of the hamiltonian (A.10)
with the eigenvalue

E=ho(e, +3) (A.13)
Using the commutation rule (A.12), we then have

Nag,=d'aae,=(ad"-1)ag,=a(a'a-1),=(g,-1)aep, (A.14a)

Na'e, =d'ad'p, =a'(a'a+1)e, = (g, +1)a'o, (A.14b)

This shows that the functions d¢, and a'g, are new eigenfunctions of N with the
eigenvalues (g, 1) and (g, +1), respectively. The new eigenfunctions are not
normalized, which can be seen by evaluating the norm

[(a9,) ap,dv=[g,d'ap,dv=c¢, (A.15a)
j(&*(pn)*&f(pn dv=[g,ad'p,dv=g¢,+1 (A.15b)
It follows from the relations (A.14) that knowing one eigenfunction of N or

H, it is possible to generate a sequence of eigenfunctions with successively lower
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and higher eigenvalues. However, there must exist a lowest eigenvalue of H,
corresponding to the ground state of the system. This means that the down-going
sequence must terminate at some point. This will happen if and only if one of
the wave functions vanishes, which is the case if g,.is zero for some value of n.
This means that the possible eigenvalues of the number operator (A.11,12) is

& =0,1,23,.. (A.16)
This gives the eigenvalues (A.13) of the hamiltonian (A.10)

E=ho(n+1) n=0,123... (A.17)
The normalized eigenfunctions of N or H are given by the recursion
formula
Pr1 }JZIT_I&T(Pn (A.18)
or
0, ==(a") ¢, (A.19)

It is easy to show that the function y(Q)=e"2"? is a solution of the
Schrédinger equation (A.6) corresponding to €=1 or E =3hw. Hence, this function

is (apart from normalization) identical to the function ¢,

@, = %"? (A.20a)
The following eigenfunctions are obtained by successively applying (A.18)
A d )| o -0’
o, =d'p, = %(Q‘?JE) =206 (A.20b)
n d g -0
0, =%a7(/’1 =(Q—;1§)Qe e = (2Q2 _1) e (A.20c)

etc.




