Controllable Spin Entanglement Production in a Quantum Spin Hall Ring

Anders Ström (TU Braunschweig) Henrik Johannesson (University of Gothenburg) Patrik Recher (TU Braunschweig)

UNIVERSITY OF GOTHENBURG

Vetenskapsrådet

Electron quantum optics...

... conversion of *linear optics* into the solid state!

Linear optics:

noninteracting photons subject to "linear optical elements"

mirrors

Linear optics:

noninteracting photons subject to "linear optical elements"

bilinear Hamiltonian (in photon creation and annihilation operators), conserves photon number

Linear optics:

noninteracting photons subject to "linear optical elements"

bilinear Hamiltonian (in photon creation and annihilation operators), conserves photon number

Boost in 2001: "Linear optics quantum computing" Knill, Laflamme & Milburn, Nature (2001)

Linear optics:

noninteracting photons subject to "linear optical elements"

Analogue in the solid state: Integer quantum Hall system $V_{\rm tip}$ photons -> ballistic edge electrons optical wave guide beam splitter -> quantum point contact Aquantum Hall edge 2 4

But... crucial differences:

Electrons carry charge and *interact*!

But... crucial differences:

Electrons carry charge and *interact*!

Statistics: photons bunch, electrons antibunch,...

"Is there an electronic analogue to *linear optics quantum computing*?"

Quantum computing using linear optics (LOQC) Knill, Laflamme & Milburn, Nature (2001)

$$|\text{single-photon qubit}\rangle = \alpha | \beta^{\uparrow} \rangle + \beta | \langle \beta^{\downarrow} \rangle$$

quantum operations using "linear optical elements" and projective measurements

Quantum computing using linear optics (LOQC) Knill, Laflamme & Milburn, Nature (2001)

$$|\text{single-photon qubit}\rangle = \alpha | \beta^{\uparrow} \rangle + \beta | \langle \beta^{\downarrow} \rangle$$

quantum operations using "linear optical elements" and projective measurements

quantum gates

in computational basis

$$| \mathcal{A} \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad | \mathcal{A} \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

universal set of **QUANTUM GATES**

$$R_{[\pi/4]} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix} \qquad H = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

universal set of quantum gates

$$R_{[\pi/4]} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix} \qquad H = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

 $|\operatorname{control qubit}\rangle = | \stackrel{<}{\searrow} \rangle \\ |\operatorname{target qubit}\rangle = | \stackrel{<}{\swarrow} \rangle \stackrel{>}{\longrightarrow} | \stackrel{<}{\nearrow} \rangle \rangle$

universal set of **QUANTUM GATES**

$$R_{[\pi/4]} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix} \qquad H = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$|\operatorname{control qubit}\rangle = | \mathcal{A} \rangle$$

$$|\operatorname{target qubit}\rangle = | \mathcal{A} \rangle \longrightarrow | \mathcal{A} \rangle$$

But photons do bunch! "Probabilistic" 2-qubit gates are possible!

Knill, Laflamme & Milburn, Nature (2001) Koashi, Yamamoto & Imoto, PRA (2001)

Probabilistic CNOT gate

Pittman *et al.*, PRA (2001) [design] Gasparoni *et al.*, PRL (2004) [experiment]

Probabilistic CNOT gate

Probabilistic CNOT gate

Probabilistic CNOT gate

Spontaneous parametric down conversion: rate of Bell pairs $\approx 10^5 s^{-1}$ Steinlechner *et al.*, Opt. Exp. (2012) [experiment]

Probabilistic CNOT gate

Silicon wave guide pair production: rate of Bell pairs $\approx 10^3 s^{-1}$ Matsuda et *al.*, Opt. Exp. (2014) [experiment]

DiVincenzo's criteria for quantum computation DiVincenzo, Fortschr. Phys. (2000) Low efficiency of "on-demand" photon sources

DiVincenzo's criteria for quantum computation DiVincenzo, Fortschr. Phys. (2000)

What about using electrons instead of photons?

Highly efficient ~ 1 THz single-electron sources are readily available! Bocquillon *et al.*, Science (2013)

Spin-entanglement from 2-particle interferometry! Bose & Home, PRL (2002)

Terhal & DiVincenzo, PRA (2002)

What about using electrons instead of photons?

Exponential speed-up of quantum over classical algorithms cannot be reached with single-electron Hamiltonians assisted by spin measurements.

What about using electrons instead of photons?

Exponential speed-up of quantum over classical algorithms cannot be reached with single-electron Hamiltonians assisted by spin measurements.

Ternal & Divincenzo, Provi-Ternal & Divincenzo, Proof: The probability of the outcome of any set of local spin measurements $\sim \sqrt{\text{determinant}}$ Thus, computable in polynomial time!

Getting around the *No-go theorem* of Terhal & DiVincenzo: Add charge measurements! Beenakker *et al.*, PRL (2004)

Proof: The charge operator $Q_i = n_{i\uparrow} + n_{i\downarrow}$ is the sum of two local spin projection operators —> the probability that *M* sites are, say, singly occupied consists of 2^M determinants —> *not* computable in polynomial time!

Getting around the *No-go theorem* of Terhal & DiVincenzo: Add charge measurements! Beenakker *et al.*, PRL (2004)

Proof: The charge operator $Q_i = n_{i\uparrow} + n_{i\downarrow}$ is the sum of two local spin projection operators —> the probability that *M* sites are, say, singly occupied consists of 2^M determinants —> not computable in polynomial time!

Electron quantum optics OK for quantum computation!

Getting around the *No-go theorem* of Terhal & DiVincenzo: Add charge measurements! Beenakker *et al.*, PRL (2004)

Proof: The charge operator $Q_i = n_{i\uparrow} + n_{i\downarrow}$ is the sum of two local spin projection operators —> the probability that *M* sites are, say, singly occupied consists of 2^M determinants —> *not* computable in polynomial time!

Electron quantum optics OK for quantum computation!

in principle

Implementations?

Implementations?

IQHE edge states?

Implementations?

Implementations?

Quantum wires?

Implementations?

fragile electron transport ...

Quantum spin Hall edge states

from M. König et al., Science 318, 766 (2007)

Quantum spin Hall physics: some basics

"Proof-of-concept": Kane & Mele, two papers in PRL (2005) Bernevig & Zhang, PRL (2006) Prediction: Bernevig, Hughes & Zhang, Science (2006) Experiment: König *et al.,* Science (2007)

Quantum spin Hall physics: some basics

"Proof-of-concept": Kane & Mele, two papers in PRL (2005) Bernevig & Zhang, PRL (2006) Prediction: Bernevig, Hughes & Zhang, Science (2006) Experiment: König *et al.,* Science (2007)

Strong atomic spin-orbit interactions topologically nontrivial band structure insulating bulk, conducting edge
"Proof-of-concept": Kane & Mele, two papers in PRL (2005) Bernevig & Zhang, PRL (2006) Prediction: Bernevig, Hughes & Zhang, Science (2006) Experiment: König *et al.,* Science (2007)

Strong atomic spin-orbit interactions

topologically nontrivial band structure insulating bulk, conducting edge states

To develop some intuition, consider a Gedanken experiment... Bernevig & Zhang, PRL (2006)

To develop some intuition, consider a Gedanken experiment...

uniformly charged cylinder with electric field E = E(x, y, 0)spin-orbit interaction time-reversal $(E \times k) \cdot \sigma = E\sigma^z (k_y x - k_x y)$

To develop some intuition, consider a Gedanken experiment...

spin-orbit interaction $(\boldsymbol{E} \times \boldsymbol{k}) \cdot \boldsymbol{\sigma} = E\sigma^z (k_y x - k_x y)$

To develop some intuition, consider a Gedanken experiment...

spin-orbit interaction $(\boldsymbol{E} \times \boldsymbol{k}) \cdot \boldsymbol{\sigma} = E \sigma^z (k_y x - k_x y)$

To develop some intuition, consider a Gedanken experiment...

spin-orbit interaction $(\boldsymbol{E} \times \boldsymbol{k}) \cdot \boldsymbol{\sigma} = E\sigma^{z}(k_{y}x - k_{x}y)$

To develop some intuition, consider a Gedanken experiment...

spin-orbit interaction $(\boldsymbol{E} \times \boldsymbol{k}) \cdot \boldsymbol{\sigma} = E \sigma^z (k_y x - k_x y)$

compare with an integer quantum Hall system

Lorentz force $\boldsymbol{A} \cdot \boldsymbol{k} \sim eB(k_y x - k_x y)$

Quantum spin Hall (QSH) insulator

Two copies of a quantum Hall system, bulk insulator with helical edge states

Quantum spin Hall (QSH) insulator

Two copies of a quantum Hall system, bulk insulator with helical edge states

perturb with a time-reversal invariant spin-nonconserving interaction

Quantum spin Hall (QSH) insulator

Two copies of a quantum Hall system, bulk insulator with helical edge states

2D topological insulator

Experimental observation by König et al., Science, 2007

Experimental observation by König et al., Science, 2007

ballistic edge electrons carrying pseudospin!

ballistic edge electrons carrying pseudospin!

$$\begin{aligned} |+\rangle &= \Psi_1 | E_1 + \rangle + \Psi_2 | H_1 + \rangle \\ |-\rangle &= \hat{T} |+\rangle = -\Psi_1^* | E_1 - \rangle - \Psi_2^* | H_1 - \rangle \\ |E_1 \pm \rangle &= \alpha |\Gamma_6, \pm \frac{1}{2} \rangle + \beta |\Gamma_8, \pm \frac{1}{2} \rangle \\ |H_1 \pm \rangle &= \alpha |\Gamma_8, \pm \frac{3}{2} \rangle \end{aligned}$$

"BHZ" model for HgTe quantum wells Bernevig, Hughes & Zhang, Science (2006)

$$\langle + | \mathbf{S} | + \rangle = \frac{\beta}{\sqrt{3}} (\Psi_2^* \Psi_1 + \Psi_1^* \Psi_2) \hat{X} + \frac{i\beta}{\sqrt{3}} (-\Psi_2^* \Psi_1 + \Psi_1^* \Psi_2) \hat{Y} + (|\Psi_2|^2 [1+|\alpha|^2] + \frac{|\Psi_1\beta|^2}{3}) \hat{Z} \langle - |\mathbf{S}| - \rangle = -\langle + |\mathbf{S}| + \rangle$$

choose spin quantization axis along $\langle + \mid \boldsymbol{S} \mid + \rangle$

spin-filtered helical edge states for constant $\Psi_{1,2}$

OK in a small energy range!

Add a superconductor and a magnetic field

Majorana fermions! Fu & Kane, PRL (2008)

Topological quantum computing? Das Sarma, Freedman & Nayak, NJP (2015) [review]

Add a superconductor and a magnetic field

Majorana fermions! Fu & Kane, PRL (2008)

Topological quantum computing? Das Sarma, Freedman & Nayak, NJP (2015) [review]

Add a superconductor and a magnetic field

Majorana fermions! Fu & Kane, PRL (2008) Electron quantum optics computing?

Topological quantum computing? Das Sarma, Freedman & Nayak, NJP (2015) [review] Basic resource: spin entanglement

Basic resource: spin entanglement Solid-state proposals:

SN junctions: Recher, Sukhorukov & Loss, PRB (2001) Lesovik, Martin & Blatter, EJP (2001) Bena et al., PRL (2002) Schönberger et al., Nature (2009) [experiment] Hartmann et al., PRL (2010) [experiment] Wei & Chandrasekhar, Nat. Phys. (2010) [experiment]

3-terminal quantum dot device: Oliver, Yamaguchi & Yamamoto, PRL (2002)

Quantum-wire interferometry: Signal & Zülicke, APL (2005)

Kondo scattering: Costa & Bose, PRL (2001) Sodano, Bayat & Bose, PRB (2010)

Majorana entangler: Sodano & Bose NJP (2011)

QSH edge interferometry: Inhofer & Bercioux, PRB (2013) Sato, Trif & Tserkovnyak, PRB (2014)

Basic resource: spin entanglement Solid-state proposals:

SN junctions: Recher, Sukhorukov & Loss, PRB (2001) Lesovik, Martin & Blatter, EJP (2001) Bena et al., PRL (2002) Schönberger et al., Nature (2009) [experiment] Hartmann et al., PRL (2010) [experiment] Wei & Chandrasekhar, Nat. Phys. (2010) [experiment]

3-terminal quantum dot device: Oliver, Yamaguchi & Yamamoto, PRL (2002)

Quantum-wire interferometry: Signal & Zülicke, APL (2005)

Kondo scattering: Costa & Bose, PRL (2001) Sodano, Bayat & Bose, PRB (2010)

Majorana entangler: Sodano & Bose NJP (2011)

QSH edge interferometry: Inhofer & Bercioux, PRB (2013) Sato, Trif & Tserkovnyak, PRB (2014)

"Optimally controlled" QSH edge interferometry: our work, PRB (2015)

"On-demand" electronic spin entangler A. Ström, H. J. & P. Recher, PRB **91**, 245406 (2015)

"On-demand" electronic spin entangler A. Ström, H. J. & P. Recher, PRB **91**, 245406 (2015)

Experiments on rings in HgTe quantum wells: König *et al.*, PRL (2005)

Rashba gate-controlled tunneling amplitudes

Krueckl & Richter, PRL (2011) Sternativo & Dolcini, PRB (2014) [theory]

 p_a

97%

$$|\Psi_{\rm in}
angle \xrightarrow{S} |\Psi_{\rm out}
angle$$

$$\begin{split} & \begin{pmatrix} S \\ |\Psi_{\mathrm{in}} \rangle \xrightarrow{S} |\Psi_{\mathrm{out}} \rangle \\ & \begin{pmatrix} b_{1\uparrow} \\ b_{1\downarrow} \\ b_{2\uparrow} \\ b_{2\downarrow} \\ b_{S\uparrow} \\ b_{S\downarrow} \end{pmatrix} = S \begin{pmatrix} a_{1\downarrow} \\ a_{1\uparrow} \\ a_{2\downarrow} \\ a_{2\uparrow} \\ a_{S\downarrow} \\ a_{S\uparrow} \end{pmatrix} \end{split}$$

$$\begin{split} |\Psi_{\mathrm{in}}\rangle & \xrightarrow{S} |\Psi_{\mathrm{out}}\rangle \\ \begin{pmatrix} b_{1\uparrow} \\ b_{1\downarrow} \\ b_{2\uparrow} \\ b_{2\downarrow} \\ b_{S\downarrow} \\ b_{S\downarrow} \end{pmatrix} & = S \begin{pmatrix} a_{1\downarrow} \\ a_{1\uparrow} \\ a_{2\downarrow} \\ a_{2\uparrow} \\ a_{S\downarrow} \\ a_{S\uparrow} \\ a_{S\uparrow} \end{pmatrix} \text{low T: assume no leakage from detectors} \end{split}$$

$$\begin{split} |\Psi_{\rm in}\rangle & \xrightarrow{\tilde{S}} |\Psi_{\rm out}\rangle \\ \begin{pmatrix} b_{1\uparrow} \\ b_{1\downarrow} \\ b_{2\uparrow} \\ b_{2\downarrow} \\ b_{S\uparrow} \\ b_{S\downarrow} \end{pmatrix} &= \tilde{S} \begin{pmatrix} a_{S\uparrow} \\ a_{S\downarrow} \end{pmatrix} \end{split}$$

$$\tilde{S}$$

 $|\Psi_{\rm in}
angle \longrightarrow |\Psi_{\rm out}
angle$

$$\begin{split} |\Psi_{\rm in}\rangle &= a_{S\uparrow}^{\dagger} a_{S\downarrow}^{\dagger} |0\rangle \\ &\xrightarrow{\tilde{S}} |\Psi_{\rm out}\rangle \end{split}$$

$$\begin{split} |\Psi_{\rm in}\rangle &= a^{\dagger}_{S\uparrow} a^{\dagger}_{S\downarrow} |0\rangle \\ &\stackrel{\tilde{S}}{\longrightarrow} |\Psi_{\rm out}\rangle \end{split}$$

"postselection":

 $\rightarrow |\Psi'_{\rm out}\rangle$

keep only terms in $|\Psi_{out}\rangle$ where one electron gets detected in D_1 and the other in D_2

$$\Psi_{\rm in}\rangle = a_{S\uparrow}^{\dagger} a_{S\downarrow}^{\dagger} |0\rangle$$
$$\xrightarrow{\tilde{S}} |\Psi_{\rm out}\rangle$$

"postselection":

keep only terms in $|\Psi_{out}\rangle$ where one electron gets detected in D_1 and the other in D_2

$$\Rightarrow |\Psi_{\text{out}}\rangle$$

$$= N\left(f_b\left(|p_a|^2 + |t_a|^2\right)e^{-iK(l_{\uparrow\uparrow} + l_6)}|\uparrow\uparrow\rangle + f_a^*\left(|p_b|^2 + |t_b|^2\right)e^{-iK(l_{\downarrow\downarrow} + l_6)}|\downarrow\downarrow\rangle + \left[p_a t_b^* e^{-iK l_{\uparrow\downarrow}} + f_a^* f_b p_b t_a^* e^{-iK(l_{\uparrow\downarrow} + 2l_6)}\right]|\uparrow\downarrow\rangle + \left[p_b^* t_a e^{-iK l_{\downarrow\uparrow}} + f_a^* f_b p_a^* t_b e^{-iK(l_{\downarrow\uparrow} + 2l_6)}\right]|\uparrow\downarrow\rangle + \left[p_b^* t_a e^{-iK l_{\downarrow\uparrow}} + f_a^* f_b p_a^* t_b e^{-iK(l_{\downarrow\uparrow} + 2l_6)}\right]|\downarrow\uparrow\rangle \right)$$

$$\begin{split} |\Psi_{\rm in}\rangle &= a^{\dagger}_{S\uparrow}a^{\dagger}_{S\downarrow}|0\rangle \\ &\xrightarrow{\tilde{S}} |\Psi_{\rm out}\rangle \end{split}$$

 $\longrightarrow \left| \Psi_{\mathrm{out}}^{\prime} \right\rangle$

By tuning gate voltages, $|\Psi'_{out}\rangle$ can be chosen as *any* of the four maximally entangled Bell states $|\Psi_1^{\pm}\rangle = (|\uparrow\downarrow\rangle\pm|\downarrow\uparrow\rangle)/\sqrt{2}$

 $|\Psi_2^{\pm}\rangle = (|\uparrow\uparrow\rangle\pm|\downarrow\downarrow\rangle)/\sqrt{2}$

$$= N\left(f_b\left(|p_a|^2 + |t_a|^2\right)e^{-iK(l_{\uparrow\uparrow\uparrow} + l_6)}|\uparrow\uparrow\rangle\right)$$
$$+ f_a^*\left(|p_b|^2 + |t_b|^2\right)e^{-iK(l_{\downarrow\downarrow} + l_6)}|\downarrow\downarrow\rangle$$
$$+ \left[p_a t_b^* e^{-iKl_{\uparrow\downarrow}} + f_a^* f_b p_b t_a^* e^{-iK(l_{\uparrow\downarrow} + 2l_6)}\right]|\uparrow\downarrow\rangle$$
$$+ \left[p_b^* t_a e^{-iKl_{\downarrow\uparrow}} + f_a^* f_b p_a^* t_b e^{-iK(l_{\downarrow\uparrow} + 2l_6)}\right]|\downarrow\uparrow\rangle$$
$$|\sigma\sigma'\rangle = b_{1\sigma}^{\dagger} b_{2\sigma'}^{\dagger}|0\rangle$$

Efficiency?

Choose $|p_a| = |p_b| = |t_a| = |t_b|$ by fine tuning the local gates at the junctions

Efficiency?

Choose $|p_a| = |p_b| = |t_a| = |t_b|$ by fine tuning the local gates at the junctions

Efficiency?

Choose $|p_a| = |p_b| = |t_a| = |t_b|$ by fine tuning the local gates at the junctions

by a back gate

Efficiency?

Choose $|p_a| = |p_b| = |t_a| = |t_b|$ by fine tuning the local gates at the junctions

... more efficient entanglement production than in linear optics!

Other cool stuff one can do...

"Solid-state" Bell test:

$$B = E(\theta_1, \phi_1, \theta_2, \phi_2) - E(\theta'_1, \phi'_1, \theta_2, \phi_2) - E(\theta_1, \phi_1, \theta'_2, \phi'_2) - E(\theta'_1, \phi'_1, \theta'_2, \phi'_2)$$

 $-2 \leq B \leq 2$ (CHSH inequality)

$$B_{max} = 2\sqrt{1+C^2}$$

Other cool stuff one can do...

"Solid-state" Bell test:

$$B = E(\theta_1, \phi_1, \theta_2, \phi_2) - E(\theta'_1, \phi'_1, \theta_2, \phi_2) - E(\theta_1, \phi_1, \theta'_2, \phi'_2) - E(\theta'_1, \phi'_1, \theta'_2, \phi'_2)$$

 $-2 \leq B \leq 2$ (CHSH inequality)

But what about...

- materials and design?
- effects from interaction and disorder?

• materials and design?

Bad news: The best experimental realization of a 2D topological insulator – the HgTe/CdTe quantum well – is extremely tricky to handle!

Other candidate 2D topological insulators:

"Stanene" (single atomic layer of tin) Xu et al., PRL (2013)

InAs/GaSb quantum wells Suzuki et al., PRB (2013)

Silicene C.-C. Liu et al., PRL (2011)

5 nm GaSb

30 nm Al_{a 7}Ga_{0.3}Sb

Be & doping

10⁷ (a)

10

[⊕]10°

10 nm

• materials and design?

Alternative realizations of 1D helical electrons in high demand!

• materials and design?

Alternative realizations of 1D helical electrons in high demand!

A novel proposal: Mariana Malard's talk today 4:40 pm • e-e interaction effects?

• e-e interaction effects?

Scattering channels for 1D helical electrons

• e-e interaction effects?

Scattering channels for 1D helical electrons

backscattering

dispersive

• e-e interaction effects?

Scattering channels for 1D helical electrons

no umklapp away from half-filled band

dispersive

• e-e interaction effects?

Scattering channels for 1D helical electrons

no umklapp away from half-filled band

due to time-reversal invariance

 $k+q, \sigma$ g_d $k', -\sigma \quad k' - q, -\sigma$

 $K = \sqrt{\frac{\pi v_F + g_f - g_d}{\pi v_F + g_f + g_d}}$

"Luttinger liquid parameter"

dispersive

• e-e interaction effects?

Estimates of *K* for the Würzburg experiments on HgTe/CdTe quantum wells

 $0.55 \le K \le 0.98$

Hou et al., PRL (2009)

Lezmy et al., PRB (2012)

Hou et al., PRL (2009)

• e-e interaction effects?

Estimates of *K* for the Würzburg experiments on HgTe/CdTe quantum wells

Lezmy *et al.,* PRB (2012)

 $0.55 \le K \le 0.98$

• e-e interaction effects?

Estimates of *K* for the Würzburg experiments on HgTe/CdTe quantum wells

More work needed to assess the viability of electron quantum optics for QSH edge states!

Thanks to my collaborators

Phys. Rev. B 91, 245406 (2015)

...and thank you!