
Non-Fermi liquids

A. J. SCHOFIELD

Our present understanding of how the interactions between electrons aŒect the metallic state

has, for forty years, rested on the foundat ions of Landau’ s Fermi-liquid theory. It provides

the basis for understanding metals in terms of weakly interacting electron (-like) particles.

Recent years have seen the discovery of metals which appear to fall outside this

frameworkÐ perhaps most notably in the normal state of the high temperature cuprate

superconductors. While the theory for understanding the cuprate metals remains

controversial, there are a number of clear examples where we do believe we understand

the new underlying theoretical concepts. In this article I illustrate four such routes towards

forming a non-Fermi liquid metal and illustrate, where possible, how these have been realized

in a number of materials. The proximity to a quantu m phase transition and reduced eŒective

dimensionality can both play important roles.

1. Introduction

Condensed matter physics is a subject continually inspired

by the fabrication of new materials. With each new

generation of materials synthesized comes a new set of

challenges for the condensed matter physics community to

understand and exploit. To the observer this may seem

surprising since the basic interactions governing the motion

of the electrons and atomic nuclei in a solid have long been

known. While this is true, with each new compound we see

these basic forces at work in a diŒerent local environment

and the result is rarely a trivial extrapolation of the physics

we knew before. Instead, with each level of complexity we

see new types of phenomena arisingÐ every bit as funda-

mental as the bare interactions with which we began (see

Anderson 1972). Examples of such radically new behaviour

include the appearance of fractionally charged objects in

the fractional quantum Hall eŒect, the observation of

super-massive electrons in so-called heavy fermion materi-

als and the possibility of the electron decaying into new

types of particle in certain one-dimensional materials. One

of the current areas of excitement in the ® eld has been

motivated by the discovery of certain metallic compounds

which seem to fall outside of the framework of our current

theory of metals.

It is hard to imagine describing the physics of metals

without beginning with the electron yet, remarkably, over

the past decade there is a growing ® eld of condensed matter

physics devoted to understanding metals where the electron

seems to be precisely the wrong place to start. Of course we

are well aware that the basic ingredients of solids are atoms

with their valence and core electrons and nuclei but, as often

happens in condensed matter, in bringing such atoms

together what emerges can be very diŒerent from the

constituent parts, with the possibility of completely new

types of `particles’ . (Two more familiar examples of new

particles appearing in condensed matter systems are

phononsÐ quantized lattice vibrationsÐ and magnonsÐ

waves of spin in a magnet.) Yet for the understanding of

the metallic state the electron has remained the unrivaled

basis since Drude’s initial work at the beginning of this

century (Drude 1900). The success of the single electron

picture of metals rests on Landau’ s seminal work in the 1950s

developing Fermi-liquid theory (Landau 1956, 1957, 1958).

Yet as this century closes we are seeing the discovery of

materials, including the cuprate superconductors and other

oxides, which seem to lie outside this framework. In this

review I will attempt to give a ¯ avour of our attempts to

understand such `non-Fermi liquid’ metals. Many of the

theoretical ideas have been developed using rather complex

mathematical machinery which I make no apology for

omitting in favour of a more descriptive approach. There are

however a number of results which can be obtained relatively

simply using Fermi’s golden rule (together with Maxwell’ s

equations) and I have included these for readers who would

like to see where some of the properties are coming from.

The outline of this review is as follows. I begin with a

description of Fermi-liquid theory itself. This theory tells us

why one gets a very good description of a metal by treating
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it as a gas of Fermi particles (i.e. that obey Pauli’ s exclusion

principle) where the interactions are weak and relatively

unimportant. The reason is that the particles one is really

describing are not the original electrons but electron-like

quasiparticles that emerge from the interacting gas of

electrons. Despite its recent failures which motivate the

subject of non-Fermi liquids, it is a remarkably successful

theory at describing many metals including some, like

UPt3 , where the interactions between the original electrons

are very important. However, it is seen to fail in other

materials and these are not just exceptions to a general rule

but are some of the most interesting materials known. As

an example I discuss its failure in the metallic state of the

high temperature superconductors.

I then present four examples which, from a theoretical

perspective, generate non-Fermi liquid metals. These all

show physical properties which can not be understood in

terms of weakly interacting electron-like objects:

· Metals close to a quantum critical point. When a phase

transition happens at temperatures close to absolute

zero, the quasiparticles scatter so strongly that they

cease to behave in the way that Fermi-liquid theory

would predict.

· Metals in one dimensionÐ the Luttinger liquid. In one-

dimensional metals, electrons are unstable and decay

into two separate particles (spinons and holons) that

carry the electron’s spin and charge respectively.

· Two-channel Kondo models. When two independent

electrons can scatter from a magnetic impurity it

leaves behind `half an electron’ .

· Disordered Kondo models. Here the scattering from

disordered magnetic impurities is too strong to allow

the Fermi quasiparticles to form.

While some of these ideas have been used to try and

understand the high temperature superconductors, I will

show that in many cases one can see the physics illustrated

by these examples in other materials. I believe that we are

just seeing the tip of an iceberg of new types of metal which

will require a rather diŒerent starting point from the simple

electron picture to understand their physical properties.

2. Fermi-liquid theory: the electron quasiparticle

The need for a Fermi-liquid theory dates from the ® rst

applications of quantum mechanics to the metallic state.

There were two key problems. Classically each electron

should contribute 3kB/2 to the speci® c heat capacity of a

metal Ð far more than is actually seen experimentally. In

addition, as soon as it was realized that the electron had a

magnetic moment, there was the puzzle of the magnetic

susceptibility which did not show the expected Curie

temperature dependence for free moments: x ~ 1/T.

These puzzles were unravelled at a stroke when Pauli

(Pauli 1927 , Sommerfeld 1928) (apparently reluctantly Ð see

Hermann et al. 1979) adopted Fermi statistics for the

electron and in particular enforced the exclusion principle

which now carries his name: no two electrons can occupy

the same quantum state. In the absence of interactions one

® nds the lowest energy state of a gas of free electrons by

minimizing the kinetic energy subject to Pauli’ s constraint.

The resulting ground state consists of a ® lled Fermi sea of

occupied states in momentum space with a sharp demarca-

tion at the Fermi energy e F and momentum pF = ±hkF (the

Fermi surface) between these states and the higher energy

unoccupied states above. The low energy excited states are

obtained simply by promoting electrons from just below the

Fermi surface to just above it (see ® gure 1). They are

uniquely labelled by the momentum and spin quantum

numbers of the now empty state below the Fermi energy (a

hole) and the newly ® lled state above it. These are known as

particle± hole excitations.

This resolves these early puzzles since only a small fraction

of the total number of electrons can take part in the processes

contributing to the speci® c heat and magnetic susceptibility.

The majority lie so far below the Fermi surface that they are

energetically unable to ® nd the unoccupied quantum state

required to magnetize them or carry excess heat. Only the

electrons within kBT of the Fermi surface can contribute kB

to the speci® c heat so the speci® c heat grows linearly with

temperature and is small. Only electrons within l BB of the

Fermi surface can magnetize with a moment ~ l B leading to

a temperature independent (Pauli) susceptibility. Both

quantities are proportional to the density of electron states

at the Fermi surface.

These new temperature dependencies exactly matched the

experiments both on metals and then later on the fermionic

isotope of heliumÐ
3
He (see, for example, Wheatley 1970).

But this in turn raised questions. Why should a theory based

on a non-interacting picture work so well in these systems

where interactions are undoubtably important? Once

interactions are present the problem of ® nding the low

energy states of the electrons becomes much harder. In

addition to the kinetic term which favours a low momen-

tum, the energy now contains a potential term which

depends on the relative position of all of the electrons. The

energy scales of the kinetic energy and Coulomb interaction

are comparable at metallic electron densities and, if that

were not enough, Heisenberg’ s uncertainty principle pre-

vents the simultaneous de® nition of the momentum and the

position. How can one proceed and still hope to retain the

physics of the non-interacting electron gas which experi-

ment demands?

The answer provided by Landau rests on the concept of

`adiabatic continuity’ (Anderson 1981): labels associated

with eigenstates are more robust against perturbations than

the eigenstates themselves. Consider as an example the
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problem of a particle in a box with impenetrable walls

illustrated in ® gure 2. In elementary quantum mechanics

one learns that the eigenstates of this problem consist of

standing sine waves with nodes at the well walls. The

eigenstates of the system can be labelled by the number of

additional nodes in the wavefunction with the energy

increasing with the number of nodes. Now switch on an

additional weak quadratic potential. The new eigenstates of

the problem are no longer simple sine waves but involve a

mixing of all the eigenstates of the original unperturbed

problem. However the number of nodes still remains a good

way of labelling the eigenstates of the more complicated

problem. This is the essence of adiabatic continuity.

Landau applied this idea to the interacting gas of

electrons. He imagined turning on the interactions between

electrons slowly, and observing how the eigenstates of the

system evolved. He postulated that there would be a one-

to-one mapping of the low energy eigenstates of the

interacting electrons with the those of the non-interacting

Fermi gas. He supposed that the good quantum numbers

associated with the excitations of the non-interacting

system would remain good even after the interactions were

fully applied. Just as Pauli’ s exclusion principle determined

the allowed labels without the interactions through the

presence of a Fermi surface, this feature would remain even

with the interactions. We therefore retain the picture of

Fermi particles and holes excitations carrying the same

quantum numbers as their electron counterparts in the free

Fermi gas. These labels are not to be associated with

electrons but to `quasiparticles’ to remind us that the

wavefunctions and energies are diŒerent from the corre-

sponding electron in the non-interacting problem. It is the

concept of the fermion quasiparticle that lies at the heart of

Fermi-liquid theory. It accounts for the measured tempera-

ture dependences of the speci® c heat and Pauli suscept-

ibility since these properties only require the presence of a

well de® ned Fermi surface, and are not sensitive to whether

it is electrons or quasiparticles that form it.

Retaining the labels of the non-interacting state means

that the con® gurational entropy is unchanged in the

interacting metal. (This also means that the quasiparticle

distribution function is unchanged from the free particle

result (see ® gure 3 (a)).) Each quasiparticle contributes

additively to the total entropy of the system. This is not

true for the energy. In an interacting system we must take

into account that, unlike the free Fermi gas, the energy of

individual excitations will not generally add to yield the total

Figure 1. The ground state of the free Fermi gas in momentum

space. All the states below the Fermi surface are ® lled with both

a spin-up and a spin-down electron. A particle± hole excitation is

made by promoting an electron from a state below the Fermi

surface to an empty one above it.

Figure 2. Adiabatic continuity is illustrated in a non-interact-

ing problem by turning on a quadratic potential to a particle

con® ned in box. While the energy levels and the details of the

eigenstate wavefunctions evolve subtly, the good quantum

numbers of the initial problem (the number of nodes, N , in the

wavefunction) are still the appropriate description when the

perturbation has been applied.

Figure 3. The probability that a state of a given energy is

occupied at T= 0 : (a) For electrons in a non-interacting system,

or Landau quasiparticles in a Fermi liquid; (b) For electrons in

an interacting Fermi liquid. Note the discontinuity at the Fermi

energy ²F remains, though reduced in size. The `jump’, z, is often

considered as the order parameter of the Fermi liquid.
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system energy. In Landau’ s theory, he accounted for the

modi® ed energy through two terms. First, when a quasi-

particle moves there will now be a back-¯ ow in the ® lled

Fermi sea as the quasiparticle `pushes’ the ground state out

of the way. This modi® es the inertial mass of the

quasiparticle m ® m*. (Note that this is in addition to the

eŒect of the crystal latticeÐ which produces a band mass

which can be included in the free electron pictureÐ and also

the change induced by interactions with phonons.) Second, a

quasiparticle’ s energy also depends on the distribution of

other quasiparticles which Landau included via his `f

function’ . The total energy of the interacting system is now

expanded as a functional of the quasiparticle distribution

d nk r :

E 5
k, r

pF

m *
( ±hk 2 pF) d n k r 1

1
2

kk ¢ , r r ¢

f k r ,k ¢ r ¢ d n k r d n k ¢ r ¢ , (1)

for an isotropic system. Using this one can then compute the

equilibrium properties such as the speci® c heat and Pauli

susceptibility we considered in the non-interacting problem

above. One ® nds

cv 5
1
3

m *pF

±h3 k2
B T (2)

v 5
m *pF

p 2 ±h

1
1 1 F a

0
¹

2
B . (3)

These are similar to the free Fermi gas results except for the

modi® ed mass and the F a
0 term in x which is related to the

Landau f function and is known as a Landau parameter.

Landau’s theory also predicts new behaviour as the

interaction between quasiparticles allows for collective

modes of the system to develop. An example of these modes

are the `zero sound’ oscillations of the Fermi surface whose

restoring force is provided by the f function.

Before proceeding further we should check, as Landau

did, that this procedure is internally consistent. Quasipar-

ticles and holes are only approximate eigenstates of the

system. In writing equation (1) we have neglected the

possibility that measuring the energy with the Hamiltonian

could change the quasiparticle distribution ( d nk , r ) itself.

(That is to say that there remain matrix elements in the

Hamiltonian which, when acting on a quasiparticle state,

`scatter’ it into another state.) Recall that acting the

Hamiltonian on a true eigenstate leaves the wave function

unchanged up to a multiplicative constant (the eigenvalue).

We can estimate the lifetime of these approximate

eigenstates by considering the decay rate of a quasiparticle

with energy e above the Fermi surface at absolute zero. We

can use Fermi’ s golden rule

1
s ²

5
2p
±h

f

|Vif |2 d (² 2 ²F) , (4)

where the sum is over the possible ® nal states f. We will

assume, for the time being, that the scattering matrix

elements |V if| are constant and we will just enforce energy

conservation and, crucially, the Pauli principle for quasi-

particles. At absolute zero the only scattering allowed by

the Pauli principle lowers the energy of the original

quasiparticle by an amount x by making an electron ± hole

pair in the ® lled Fermi sea. This process is illustrated in

® gure 4. The condition that the quasiparticle must scatter

into an unoccupied state requires x < e . In addition only

occupied states within x of the Fermi surface can absorb

this energy by making a particle state above the Fermi

surface. Thus our sum over ® nal states becomes

1
s ²

~ 2p
±h

|V |2
²

0
gF d x

x

0
gF d² ¢

¥

2 ¥
d (² 2 x 2 ²¢ 1 ²¢ ¢ )gF d² ¢ ¢ ,

(5)

~ p
±h

|V |2g3
F²

2 , (6)

where gF is the density of states at the Fermi surface. Thus,

close to the Fermi surface where ² is small, the quasiparticle

is always well de® ned in the sense that its decay rate (²
2
) is

much smaller than its excitation energy (²). Far from the

Fermi surface (i.e. large ²) adiabatic continuity will break

down since the quasiparticle will decay before the interac-

tion can be completely turned on. At temperatures above

absolute zero the ambient temperature sets a minimum

energy scale so for quasiparticles near the Fermi surface the

scattering rate goes like T
2

(Abrahams 1954). Landau’ s

picture of the interacting electron gas was therefore thought

always to be valid provided one is concerned with small

energy excitations and at low enough temperatures. This

decay rate of quasiparticles is important in determining the

transport properties of a Fermi liquid and results, for

example, in a T
2

low temperature resistivity.

So far we have just discussed the properties of the Fermi

liquid in terms of the quasiparticle. What of the electrons

themselves? Adiabatic continuity tells us that in the

quasiparticle wavefunction, there must remain a fraction

of the original non-interacting excited state wavefunction

| w qp (k r ) ñ 5 z 1 /2| u el(k r ) ñ 1 particle 2 hole excitations etc .

(7)
Figure 4. The scattering process for a quasiparticle with energy

e above the Fermi surface involves the creation of a particle± hole

excitation.
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That fraction, z, is known as the quasiparticle weight and,

in a sense, plays the role of the order parameter of the zero

temperature Fermi liquid state. A simple consequence of

the step in the quasiparticle distribution at T= 0 is that, if

one could analyse the electron distribution function, it too

would show a discontinuous jump of size z at the Fermi

momentum (see ® gure 3). A theoretical tool for following

the fate of the original electrons in the interacting Fermi

liquid is called the spectral function A( x ,k) (see, for

example, Mahan 1990). It measures the probability that

an electron with momentum k can be found with energy x .

In the non-interacting system single electrons are eigen-

states of the system so the spectral function is a delta

function d ( x Ð ²k). In the interacting system a given electron

may take part in many eigenstates of the system and so the

spectral function is spread out in energy. Nevertheless for

momenta near kF there is probability z that the electron

may be found in the quasiparticle eigenstate with momen-

tum k. So at T= 0 the electron spectral function in a Fermi

liquid has a sharp peak at the new quasiparticle energy with

width proportional to (k Ð kF )
2
, re¯ ecting the ® nite lifetime,

and an integrated weight under the peak of z (see ® gure 5).

Let us pause now to summarize the main features of

Fermi-liquid theory. The success of the non-interacting

picture of electrons is understood in terms of the existence

of Fermi quasiparticles as approximate low energy

eigenstates of the interacting system. We ® nd that:

· Equilibrium properties have the free electron form

but with modi® ed parameters.

· The low energy eigenstates are fermion quasiparticles

with a scattering rate 1/ s ~ max (²
2
, T

2
).

· z is the `order parameter’ of the Fermi liquid: the

overlap of an electron and quasiparticle at the Fermi

surface.

· New collective modes can also appear.

How well does this theory perform when tested against

experiment?

Thus far it looks as though a new free parameter has

been introduced for each experiment. To test the theory

we should demonstrate that experiments over-determine

these free parameters. This is most straightforwardly

done in 3He which is isotropic. There it turns out that

four experimental quantities (speci® c heat, compressibil-

ity, susceptibility and zero sound velocity) specify three

of the Landau parameters and there is good internal

agreement (see Wheatley 1970). In the metallic state the

presence of a crystal lattice makes this test harder since

the reduced symmetry allows many more Landau

parameters. However, remarkably, recent experiments

have con® rmed the picture in one of the most strongly

interacting metals known: UPt3 . The key feature of this

material is the presence of uranium f electrons which are

tightly bound to the atomic nucleus and are surrounded

by a sea of conduction electrons. At high temperatures

the f electrons behave as free magnetic moments with the

classical Curie susceptibility (Frings et al. 1983). As the

temperature is lowered the free spins start to become

bound to conduction electrons to make up extremely

heavy Landau quasiparticles (see ® gure 6). (The Kondo

model (see Box 1) provides our theoretical picture for

how this occursÐ although in UPt3 we of course have a

dense periodic arrangement of magnetic ions rather than

a single impurity.) The resulting Fermi liquid indeed

recovers the free electron forms for the equilibrium

Figure 5. The spectral function: the probability that an electron

with momentum k may be found with a given energy. (a) In a

non-interacting system, electrons are eigenstates and so the

probability is a delta function centred on the electron energy,

²(k). (b) In the Fermi liquid this probability is now spread out but

retains a peak at the new quasiparticle energy. This peak

sharpens as k ® kF.

Figure 6. The inverse spin susceptibility of UPt3 (after Frings

et al. (1983)). At high temperatures we see the 1/T behaviour

associated with free magnetic moments. This large moment

becomes bound to the conduction electrons at low temperatures

to form a heavy electron Fermi liquid.
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properties. The coe� cient of the T -linear term in the

speci® c heat (the intercept of the graph in ® gure 7 after

Stewart et al. (1984)) , though, is 450 mJ mol
Ð 1

K
Ð 2

Ð

two orders of magnitude larger than that of a free

electron gas. The eŒective mass of the quasiparticles has

been vastly enhanced. This is adiabatic continuity pushed

to the limits. To `close’ the theory one would like an

independent check on the quasiparticle mass. This can be

done from high magnetic ® eld and low temperature

measurements of the `de Haas van Alphen eŒect’ . At

su� ciently high magnetic ® elds, quasiparticles can be

driven around their Fermi surface by the Lorentz force.

The quantization of these orbits leads to oscillations of

the magnetization as a function of applied ® eld: a kind of

spectroscopy of the Fermi surface. Using this (Taillefer

and Lonzarich 1988, Julian and McMullan 1998) one can

map out the shape of the quasiparticle Fermi surface

and, from the temperature dependence, deduce the

Box 1. The Kondo Model

The Kondo model gives us a paradigm for understanding

how a Fermi liquid arises in a number of the heavy-

fermion metals. At its simplest, it describes the behaviour

of a single spin-one-half (S 5 1 /2) magnetic ion in an

otherwise non-interacting sea of electrons. The model is

essentially zero dimensional since all the action occurs

around the location of the ion. Typically this magnetic ion

prefers to align its magnetic moment anti-parallel to that

of any nearby electron (i.e. antiferromagnetically). Passing

electrons scatter from the impurity and both can exchange

their spin directions in the process. Kondo (1964) showed

that, in contrast to most forms of scattering in a metal

which normally reduce as the temperature is lowered, this

spin-¯ ip scattering grows logarithmically with decreasing

temperature. Higher order perturbation treatments (Abri-

kosov 1965) predicted that the scattering would diverge at

a ® nite `Kondo’ temperature (T K)Ð an impossibility since

the most scattering a single impurity can do is the unitarity

limit when it behaves as an impenetrable sphere.

Understanding what really happens for T < T K

required ideas of scaling (Anderson and Yuval 1971) and

the renormalization group (Wilson 1975). It revealed that

the proper way to think of Kondo’ s logarithm was to view

the strength of the antiferromagnetic interaction between

the ion and the electrons as eŒectively growing with

decreasing temperature. At ® rst this just enhances the

scattering but, as the temperature is lowered further, the

coupling becomes so strong the that magnetic ion prefers

to bind tightly to a single electron and form an inert singlet

state. The susceptibility associated with the impurity

shows free-spin Curie behaviour at high temperatures

but, as the singlet forms, the susceptibility saturates. The

impurity speci® c heat peaks near T K but then falls linearly

to zero as the entropy associated with the impurity spin

[kB ln (2S 1 1) ] becomes quenched in forming the S 5 0
singlet. The scattering at T 5 0 saturates at the unitarity

limit and falls as T 2 for very small temperatures. The

striking emergence of the Fermi liquid forms for these low

temperature properties is due to the low energy excited

states having a one-to-one correspondence with a weakly

interacting Fermi gas (Nozieres 1974). The Kondo

temperature sets the eŒective Fermi energy of this local

Fermi liquid.

The physics of the Kondo model exactly parallels

asymptotic freedom and quark con® nement in QCD. At

high energies we see free spins (analogous to asymptoti-

cally free quarks with colour) but, as the energy is lowered,

the spins become bound into singlets (analogous to the

baryon colour singlets more familiar to us at terrestrial

energies). The observation of Kondo type behaviour in

UP t3 and other heavy-fermion systems has been coined

`asymptotic freedom in a cryostat’ (Coleman 1993) .

Figure B1. At high temperatures the Kondo impurity scatters

conduction electrons but as the temperature is lowered the

eŒective interaction between impurity and conduction electrons

grows. Eventually a singlet bound-state is formed which acts as

an inert potential scatterer.

Figure B2. Impurity contributions to the (a) speci® c heat, (b)

susceptibility and (c) resistivity in the Kondo model as a

function of temperature. For T %T K these quantities recover

the Fermi liquid forms as the impurity binds to the conduction

electrons.
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quasiparticle eŒective mass. These masses and Fermi

surfaces are shown in ® gure 7. Two key observations

emerge even in this most interacting of environments:

(1) The volume of the Fermi surface includes the f

electrons.

(2) The measured quasiparticle mass accounts for the

enhanced speci® c heat.

Both these observations con® rm the success of Fermi-liquid

theory.

3. The mystery of the cuprate superconductors

If Fermi-liquid theory gives such a good account of the

metallic state, why look for alternatives? The reason is the

discovery of metals where the fermion quasiparticle does

not seem to re¯ ect the character of the measured low energy

eigenstates. In this sense, the electron (or electron-like

quasiparticle) may no longer be the appropriate way to

think of the low-lying excitations. The prime example is the

metallic state of the copper oxide superconductors and so it

seems ® tting to motivate the search for alternative theories

of metals by summarizing the puzzles presented by these

materials.

The superconducting cuprates encompass almost thirty

distinct crystalline structures (Shaked et al. 1994) and

contain upwards of three diŒerent elements. They are

united by the common feature of a layer structure of

CuO2 planes. In their pristine state these compounds are

typically not metalsÐ they are insulators with antiferro-

magnetic order. (The magnetic moment on the copper

site alternates in direction as you move from one site to

its neighbour.) This in itself is a signature that the

strength of the interaction between electrons is important

since simple electron counting in the absence of interac-

tions would suggest that these materials should have a

half ® lled band and hence metallic properties (see Box 2).

In order to make these materials metallic (and super-

conducting at low temperatures) one removes some

electrons from each copper-oxide layer by doping with

another element which typically resides between the

copper oxide planes. The antiferromagnetism then

disappears and the material becomes a metallic con-

ductor.

The metallic behaviour that arises is characterized by

signi® cant anisotropy. The electrical resistance perpendi-

cular to the CuO2 plane direction can be up to one

thousand times greater than that for currents carried in

the planes (Ito et al. 1991 , Hussey 1998). Many people

have stressed the importance of the eŒectively two-

dimensional nature of the metallic cuprates and this is in

part what has prompted the search for unusual metals in

low dimensions. As I have already hinted, the metallic

state itself is unusual. Space precludes a detailed analysis

of all of the anomalous properties so I will concentrate

on just a few observations.

The ® rst noticed peculiarity is the extraordinary linear

temperature dependence of the resistivity (Gurvitch and

Fiory 1987) at dopings which maximize the super-

conducting transition temperature (illustrated in ® gure

8). Optical measurements con® rm that this is due to a

scattering rate which is proportional to temperature

(Forro et al. 1990). While this is clearly diŒerent from

the T
2

scattering that Landau’ s theory might predict, we

should remember that the usual quasiparticle scattering

only becomes apparent at very low temperatures which,

in this case, is obscured from view by the transition into

Figure 7. The consistency of the Fermi liquid description has

been demonstrated in UPt3 . The ® ve Fermi surface sheets (from

Julian and McMullan 1998) and eŒective mass of the

quasiparticles have been mapped out by de Haas van Alphen

measurements (Taillefer and Lonzarich 1988). They con® rm that

the 5f
3

electrons are absorbed into the Fermi liquid and that the

quasiparticle masses are consistent with the mass enhancements

measured in speci® c heat (after Stewart et al. (1984)). The

percentages re¯ ect the contribution from quasiparticles on each

sheet to the total speci® c heat.
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the superconducting state. Electron ± phonon scattering

usually gives a linear resistivity from moderate tempera-

tures upwards (which is why we often use the resistance

of a platinum wire as thermometer). However in the case

of the cuprates it seems that this scattering is purely

electronic in origin since microwave measurements show

the scattering rate plummeting on entering the super-

conducting state (Bonn et al. 1993). So the measured

resistivity presents us with two puzzles: what causes the

linear T scattering and how to explain the absence of the

phonon scattering?

We have discussed the scattering of electric currents

but one can also measure the scattering of currents

generated in a Hall eŒect experiment. Typically both

electric currents and Hall currents should measure the

same scattering rate. In ® gure 9 we see that the scattering

rate from Hall currents rises quadratically with the

temperature in absolute contradiction to the resistivity

experiments (Chien et al. 1991). How can a single

quasiparticle have two relaxation rates?

Furthermore there is the puzzle of how many charge

carriers there are in these metals. Some experiments, like

penetration depth in the superconducting state (Uemura et

al. 1991), suggest a number proportional to the (small)

number of holes made by doping the insulating state. Yet

other experiments such as angle-resolved photo-emission

see a Fermi surface containing the large total number of

conduction electrons in the system (Campuzano et al.

1990).

The proposed solutions to these questions remain highly

controversial and have led to some very exciting and far

reaching ideas which, even if they do not ultimately ® nd

ful® llment in the physics of the cuprates, will certainly

resurface in the physics of other compounds. What makes

the subject exciting and at the same time di� cult is the

absence so far of any solvable model describing how

interactions give rise to the metallic state of the cuprates.

The simplest model we have is the so-called tJ model (see

Box 2) for which no solution exists outside one dimension

(see later).

Box 2. The tJ model

In the tJ model we imagine a highly simpli® ed view of a

CuO2 plane. It starts from a picture of the parent

insulating compounds with a square lattice of single

atomic orbitals each with exactly one electron. The system

is said to be half-® lled since the Pauli principle would allow

a maximum of two electrons in an orbital. Normally at

half-® lling we would expect a metallic state since any

electron can move through the system to carry current by

hopping onto a neighbouring site. Now we imagine

turning on the inter-electron repulsion so that it becomes

energetically unfavourable for more than a single electron

to occupy a given atomic site. Now the half-® lled case is an

insulator because any electron moving to a neighbouring

site already ® nds an electron there and pays the price of the

repulsive interaction. There is an energy gap to make a

current carrying state and we have a `Mott insulator’ . This

explains the insulating nature of the parent cuprates. In

fact no electron really likes to be ® xed on a single siteÐ it is

like being held in a small box and its kinetic energy is high.

This can be lowered if the electron made `virtual’

tunnelling hops onto the neighbouring occupied sites and

back. This the electron can only do if the neighbouring site

has the opposite spin (the Pauli principle remains

absolute). So we see that the interactions also favour the

antiferromagnetic arrangement of spins seen in the parent

compounds.

The tJ model describes what happens on doping. We

now remove some electrons so that there are empty sites in

the lattice.

The system becomes a metal since electrons near empty

sites can move without restraint (and lower their kinetic

energy by an amount t. The neighbouring electrons would

still like to remain antiferromagnetically aligned with

strength J and at no time must any site contain more than

one electron. The presence of this constraint means that

there is no small parameter in the theory with which one

can perform perturbation theory. This is the basic physics

of the tJ model and, because the moving electrons disorder

the magnetism, we see that the t and the J represent

competing interactions. While there are many fascinating

proposals for understanding the physics of this model,

there are few de® nitive results.

Figure B3. The tJ model describes the competition between hole

motion and antiferromagnetism in a doped Mott insulator.
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One might be surprised that I have underplayed the

relatively large values of the superconducting transition

temperature for which the high temperature supercon-

ductors received that epithet. This is not because the

superconductivity is not important or unusual. (These are

the ® rst materials where the superconducting order

parameter has been established to have a symmetry

diŒerent from the usual s wave form (see Annett et al.

1996)) . It is because the understanding of superconduc-

tivity usually requires an understanding of the metallic

state from which it forms. We should note that our

understanding of conventional superconductivity relies on

a Fermi-liquid starting point. The pairing instability is a

consequence of the sharp discontinuity in occupation at

the Fermi surface which the fermion quasiparticle picture

provides (Bardeen et al. 1957). The cuprates are not

alone in exhibiting superconductivity from an unusual

metallic state. There is another uranium alloy, UBe13 ,

which shows superconductivity (Ott et al. 1983 , Bucher et

al. 1973) but with little evidence of a well formed metallic

Fermi-liquid state. It is clear that the properties of new

superconductors and their unusual metallic states are

intimately linked.

If the task is to ® nd new descriptions of the metallic

state, where should we begin? There have been many

speculative suggestions, but in this article I want to focus

on examples of non-Fermi liquids which we believe we

do understand at least from a theoretical view point. In

fact all four of the examples I will discuss have been

applied (loosely in some cases) to account for the physics

of the cuprates or uranium alloys. These examples show

a great richness in behaviour although they may appear

at ® rst sight to be rather arti ® cial `toy’ models. This is a

consequence of our lack of the mathematical tools with

which to treat problems where the interaction between

electrons is strong and the tools that we do have are

often only applicable to systems in reduced dimensions.

However, the ingenuity of material scientists means that

these toy systems can often be realized in nature by the

clever tailoring of materials. Whereas in the past the

theoretical physicist’ s job has often involved ® nding the

simple model that best describes the physics of a complex

material, now we have the exciting possibility of the

material scientist developing materials to demonstrate the

theorist’ s model.

Since we are here concerned with the failure of Fermi-

liquid theory, it is as well to mention one clear example

where adiabatic continuity breaks down. Once level

crossings occur in the spectrum then it is no longer

possible to follow the labels through from the non-

interacting case. Typically this happens when there is a

phase transition in the system such as the formation of a

superconducting state when electron bound states are

favoured. In this review we will be primarily interested in

how the Fermi liquid can fail within the normal metallic

state so we will not be considering such phase transitions.

Figure 8. The resistivity of La1 .85Sr0 .15CuO4 is linear in the

temperature (after Takagi et al. (1992)) and indicates a

scattering rate for electrical currents proportional to tempera-

ture.

Figure 9. The inverse Hall angle in La1 .85Sr0 .15CuO4 in (after

Harris et al. (1995)). This measures the scattering rate for Hall

currents and shows it to be proportional to T
2
. This is in marked

contrast to the scattering of electric currents which is propor-

tional to T. The puzzle is how can a single quasiparticle have two

distinct scattering rates?

Non-Fermi liquids 103



However, our ® rst example of a non-Fermi liquid will be

one where the approach to a phase transition can disrupt

the Fermi-liquid state by destroying the Landau quasi-

particle.

4. Metals near a quantu m critical point: destroying the

Landau quasiparticle

In our discussion of Landau’s approach we showed that a

quasiparticle close to the Fermi surface was a long lived

eigenstate by determining the decay rate. In doing this we

assumed that the matrix elements for scattering were

independent of the momentum and energy transfered.

The Pauli principle con® nes all scattering particles to the

vicinity of the Fermi surface so there is little scope for large

transfers of energy in scattering. In the limit of small energy

transfer our assumption is often valid. However, when a

system approaches a second order phase transition we

know that ¯ uctuations of the order parameter slow down

and occur over increasingly long wavelengths. A moving

quasiparticle can then easily generate a large disturbance in

the medium which can, in turn, aŒect other quasiparticles

in the vicinity dramatically enhancing the scattering cross-

section. This eŒect is limited by the ordering temperature

which locks the ¯ uctuations into a long range ordered state.

Below this temperature again our initial assumptions

remain valid and the Landau quasiparticle is saved.

Recently much work (both theoretical and, as we will see,

experimental) has explored phase transitions occurring at

T= 0 K (Hertz 1976 , Moriya 1985, Millis 1993). While the

types of phase transition will be familiar (for example from

a paramagnetic to a magnetic state) they are unusual in that

Nernst’ s theorem tells us that the entropy should always be

zero at zero temperature. A zero temperature phase

transition must therefore be a transition between two

ordered states. For our purposes the most important

feature will be that the quasiparticle scattering cross-section

can now grow without limit ultimately destroying the

consistency of Landau’s Fermi liquid picture.

A zero temperature phase transition occurs at a

quantum critical pointÐ so called because quantum me-

chanics determines the ¯ uctuations of the order parameter.

It turns out that some of the physical properties near a

temperature phase transition can be determined simply by

using Fermi’s golden rule, together with the appropriate

matrix elements. The matrix element encapsulates the

scattering mechanism (in this case the long range ¯ uctua-

tions of the order parameter which is trying to develop at

the phase transition). In fact I use the example of the

magnetic interaction between moving charges because the

matrix elements can be computed from Maxwell’ s equa-

tions. (It turns out that the matrix elements are the same as

those near a zero temperature transition to a ferromagnetic

state.) The following section is meant for those readers who

would like to see where some of the non-Fermi liquid

properties come from. However, it may be omitted if you

just want to know the ® nal results.

4.1. Properties near a quantum critical point

To see in some detail how Landau’ s original argument is

spoiled near a quantum critical point we must revisit our

Fermi golden rule expression for the decay rate. I will now

do a change of variable and express the same quantity as

equation (6) in terms of the momentum and energy

transfered in any scattering process. The result (valid in

dimension d) is

1
s ²

5
2p
±h

²

0
gF x d x

2kF

x / ±hvF

qd 2 1 dq

(2p /L )
d

|D (q, x ) |2

( ±hvFq)
2 . (8)

The integral over x is simply the number of possible hole

excitations that can be created. The appearance of x in the

lower limit of the momentum integral, q, appears because a

minimum momentum must be transfered to give a change

in energy of x . The integration over the direction of the

momentum has already been performed and gives the

factor of ( ±hvFq)
2

in the denominator re¯ ecting the increased

time available for small de¯ ections. Finally D (q, x ) is the

matrix element for the scattering process. If this is

independent of q and x then the q integral is not sensitive

to the value of the lower limit and is independent of x . The

subsequent integration over x recovers the usual s ²
Ð 1 ~ gF²

2

result we had before.

Already at this point we can see that something

interesting happens in one dimension (d= 1). The singular

nature of the q integral, even when the matrix element

D(q, x ) is constant, leads to a decay proportional to ² to

this order. This is a signal of the breakdown in adiabatic

continuity since there is no limit when the quasiparticle

energy is well de® ned: there are no one-dimensional Fermi

liquids! We will discuss the nature of metals that do arise in

d= 1 later. In higher dimensions we need to make D (q, x )

more singular at low q in order to destabilize the Fermi

liquid by this route.

Singular interactions are a consequence of long range

force laws (large distances correspond to small wavenum-

bers in reciprocal space). The usual Coulomb force itself

adds to the Hamiltonian a term:

q e (r) q e ( r ¢ )
4p ²0|r 2 r ¢ |

2 ® D c(q) 5
q e (q) q e ( 2 q)

4p ²0q2 , (9)

where q e is the density of electronic charge. This has exactly

the sort of singularity at small q one might expect to

destabilize the Fermi liquid. In fact the Fermi liquid

remains stable because the collective behaviour of the other

electrons screens the long range Coulomb repulsion. Any

local build up of charge causes the nearby electrons to

move away revealing more of the background lattice of
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positive ions. This neutralizes the charge build up beyond

the Debye± HuÈ ckel screening length n ~ (²0/2 p e
2

gF)
1/2

(Debye and HuÈ ckel 1923). Thus our once long-ranged

interaction is actually a short distance Yukawa-type

potential and is perfectly innocuous as far as the

quasiparticle is concerned. The screened Coulomb interac-

tion no longer diverges as q ® 0:

q e (r) q e (r ¢ )
4p ²0|r 2 r ¢ |

e 2 |r 2 r ¢ | / n 2 ® D sc(q) 5
q e (q) q e ( 2 q)

4p ²0(q2 1 n 2 2)
. (10)

(Strictly one needs to consider the frequency dependence of

the electron’ s response (i.e. dynamical screening) to

determine the in¯ uence of the Coulomb interaction on

the Fermi liquid (Silin 1957 , Pines and Nozõ Â eres 1966). )

It turns out, however, that the Amperean interaction

between moving charges (more familiar to us as the force

between two current carrying wires) is much more

dangerous to the Fermi liquid (Holstein et al. 1973 , Reizer

1989, 1991). These forces turn out to be much weaker than

the Coulomb law and their danger is only apparent at

extremely low energies and hence at inaccessibly low

temperatures. However an almost identical form of matrix

element arises near a ferromagnetic quantum critical point

and this is experimentally realizable. Since deriving the

matrix element at the quantum critical point is beyond the

scope of this article, I will use the Amperean interaction as

my example of a singular interaction. In this case seeing

why the force law is singular is a straightforward

application of Maxwell’ s equations.

The interaction between moving charges is due to the

local magnetization which they set up. In the case of the

Coulomb interaction the potential energy term in the

Hamiltonian is just u (r) q e(r)e: the charge density times the

electrostatic potential. The term we need for the Amperean

force law is the product of the local current density and the

vector potential: A(r).j(r). For the Coulomb case we know

that a local charge produces a 1/r potential. To ® nd the

vector potential from a local current density, j, we consider

the ® elds generated by its magnetization m in the presence

of the currents from other electrons in the metal J. Using

Maxwell’ s equations

Ñ 3 E 5 2
­ B

­ t
, Ñ 3 B 5 ¹0J 1 ¹0²0

­ E

­ t
1 ¹0 Ñ 3 m ,

(11)

and the de® nition of the conductivity in the metal J= r E,

we can ® nd the magnetic ® eld B and hence the vector

potential B= = ´ A. It is usual to Fourier transform the

result to obtain the appropriate interaction term

D Amp(q, x ) 5 A(j) . J 5
¹0jq, x . j 2 q, 2 x

q2 1 i x r ¹0 2 x 2 /c2 . (12)

(The x
2
/c

2
term does not play an important role here and

so we will drop it from now on.) By comparing the equation

for this interaction with that of the screened Coulomb

interaction (equation (10)) we see that the appropriate

`screening length’ for the current± current interaction is the

skin depth

n ~ 1 /( i x r ¹0)
1 /2

. (13)

Unlike the Coulomb case considered previously, this

screening length diverges at low x (i.e. low energies) and

so fails to usefully suppress the growing scattering matrix

element at low energies. For the Amperean interaction, the

quasiparticle scattering cross-section grows without the

limit and this destroys the Fermi liquid. Since this type of

interaction is always present in a metal, why is Fermi-liquid

theory a good description of any metal? The answer lies in

the overall scale of the interaction. Comparing the ratio of

the Coulomb and Amperean interactions we see that (for

currents carried by quasiparticles near the Fermi surface

moving with velocity vF )

D Amp

D sc
~ 4p ²0¹0

j 2
e

q 2
e

~ 4p
vF

c

2
. (14)

Thus the current± current interaction is 10
6

times weaker

than the Coulomb interaction which is why its eŒects are

only likely to be visible at micro Kelvin temperatures.

We can see what behaviour might be produced, though,

by computing the quasiparticle lifetime from equation (8)

with D j ± j as found above. In a clean metal with no

impurities the conductivity is limited, not by the mean-free-

path, but by the wavevector: r ~ 1/q. The skin depth enters

the so-called anomalous regime and behaves like ( x /q)
Ð 1 /2

and this is the case we will consider. Doing the integral of

equation (8) may look tricky but the singular nature makes

everything simple. We are only trying to extract the energy

dependence of the decay rate so we will neglect the

prefactors. We note that as q decreases then DA m p grows

as 1/q
2

until q becomes smaller than the inverse skin depth

when DA m p saturates. This happens when q
2 ~ x /q (i.e.

when q ~ x
1/3). Since x

1 /3 is always greater than the lower

limit of the integral ( x ) as x ® 0 we can use it as the lower

limit. We can then ® nd the energy dependence of the

scattering rate by considering

1
s ²

~
²

0
x d x

x 1/3

qd 2 1 dq

q2

1
q2

2

, (15)

~ ² ~ T , for d 5 3 at temperature T . (16)

There is now no regime where the Landau quasiparticle is

su� ciently long-lived to count as an approximate eigen-

state. In the language of adiabatic continuity, switching on

the interaction adiabatically takes longer than the lifetime

of the eigenstate itself and so one can never continue from

the non-interacting state to the interacting one. When the

scattering rate goes linearly to zero with the energy as in

this case, we have a `marginal Fermi liquid’ (Varma et al.

1989).
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Surprisingly, despite the absence of quasiparticles, we

can still use this calculation to determine some properties

of this non-Fermi liquid metal: the temperature depen-

dence of the resistivities and heat capacity. The decay

rate (which is related to the resistivity) and the eŒective

mass (which gives the heat capacity) are inextricably

linked in this example. This is because the scattering of

quasiparticles can not help but produce some back-¯ ow

which contributes to the eŒective mass and the quasi-

particle energy. The decay rate may be viewed as an

imaginary component of the energy in the time evolution

of the wavefunction ~ exp( Ð i²t/ ±h ) . When the decay rate

is non-analytic as ²® 0 then one can obtain the real part

from the imaginary part through the Kramers ± Kronig

relation. The essence of this is that if the quasiparticle

scattering rate is T
a

(with a some fractional power), the

heat capacity also has a T
a

dependence. In the case we

have just considered a = 1. This is non-analytic at the

origin since, as a decay rate is always positive, it should

really be s 2 1
² ~ |²|. In that case the heat capacity becomes

T ln T. So we have a logarithmic correction to the usual

linear in T speci® c heat capacity.

The other quantity which we can compute is the

resistivity. One might be tempted to conclude that, since

the scattering rate is linear in temperature, then the

resistivity should also be proportional to temperature.

However this fails to account for the eŒectiveness of the

scattering at destroying electrical current. Small q scatter-

ing may destroy the quasiparticle but it is not eŒective at

removing momentum from the net ¯ ow of current. For

that to happen large angle scattering must occur. The

transport lifetime takes this into account and is obtained

from the same expression as equation (8) with an

additional factor of (1 Ð cos h ) ~ q
2
/k2

F where h is the

scattering angle. Doing this above gives a resistivity of

T
5 /3 Ð a stronger temperature dependence than the usual T

2

in a Fermi liquid. The other quantity we have discussed,

the Pauli susceptibility, can not be obtained from our

Fermi golden rule expression and requires more analysis to

obtain.

4.2. Examples of quantum critical points

Summarizing these results, we have shown how the

interactions between currents will ultimately destroy the

Fermi-liquid state in any metal at very low temperatures.

The new behaviour that we expect to see includes

· a marginal quasiparticle scattering rate: s 2 1
² ~ ² ~ T ,

· CV ~ T ln T ,

· v ~ ln T (not proved here),

· q (T ) ~ T 5/3.

It is a curious paradox that, while Landau’ s arguments

would suggest that the Fermi-liquid description is valid in

the low temperature limit, interactions like this actually

provide a low temperature bound on its stability. The

Kohn± Luttinger instability (Kohn and Luttinger 1965) to a

superconducting state similarly acts in a general way to

prevent one ever obtaining a T= 0 Fermi liquid. In most

metals these eŒects are unobservable, but there are a

growing number of cases where new types of singular

interactions can lead to a non-Fermi liquid state which is

observed. I have already indicated that metals near a

quantum critical point provide us with such examples and

so too do electrons in a half-® lled Landau level and I will

now discuss what can be seen in experiment.

When a metal is on the verge of a ferromagnetic

instability then one ® nds that the eŒective interactions

between quasiparticles have exactly the same form as they

do in the Amperean case we have just considered. One

example of this is in the compound MnSi (P¯ eiderer et al.

1997) . It becomes an almost ferromagnetic helical magnet

at 30 K but under pressure this Curie temperature is

lowered, until at 14 800 atmospheres the magnetism has

been completely `squeezed’ out of the system. It has not yet

been possible to measure the heat capacity under such

extreme conditions but resistivity measurements can be

done. In ® gure 10 we see how the resistivity diverges at low

temperatures when compared to the expected Fermi-liquid

form until the phase transition to the ferromagnet occurs.

When this phase transition is pushed to absolute zero we

have a true quantum critical point and this divergence

proceeds without limit. The resistivity takes on a T1.6 6 0.1

dependence similar to the new T
5 /3 form we proved earlier.

Similar behaviour has also been seen in high pressure

experiments on ZrZn2 Ð another ferromagnet with a low

Curie temperature (Grosche et al. 1995).

Figure 10. MnSi: a low-temperature long-wavelength helical

magnet. (a) The phase diagram showing that the quantum

critical point occurs at 14.8 kbar. (b) As the quantum critical

point as approached, the resistivity takes on a T 0.6 6 0.1

temperature dependence showing that the quasiparticles are

more strongly scattered than in a normal Fermi liquid (after

P¯ eiderer et al. (1997)).
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There are a number of other known non-Fermi liquids

which arise from singular interactions. A very similar form

of interaction occurs when a two-dimensional electron gas

is subjected to high magnetic ® elds, but it comes from quite

a diŒerent source. This perhaps is the most unusual Fermi

liquid we know, although again the singular interactions

imply that it is not truly a Fermi liquid at the lowest

temperatures.

At high magnetic ® elds we see the fractional quantum

Hall eŒect (Tsui et al. 1982). Electrons in a magnetic ® eld

and con® ned to two dimensions develop a discrete

quantized energy spectrum where each level can hold a

macroscopic number of particlesÐ a number which de-

pends on the strength of the magnetic ® eld. When the

lowest energy level is partially ® lled by a fraction with an

odd denominator (like 1/3 full), the ground state shows

unusual stability. The Hall eŒect develops a plateau and

becomes independent of a ® eld for a small range of nearby

® elds as the electron ¯ uid is reluctant to move away from

this stable point. The excitations of this insulating state

carry fractions of the electronic charge (Laughlin 1983) and

are a fascinating area of active research which I will not

detail here as I am concentrating on metallic states. The

ground state can be thought of as being formed from

bound states of electrons with quanta of ¯ ux (Jain 1989,

1992) making `composite fermions’ . Whatever magnetic

® eld is left unbound after the composite fermions form, is

the eŒective ® eld experienced by the composite fermions.

They then undergo a conventional integer quantum Hall

eŒect. Between the quantum Hall plateaux the electron gas

passes through a metallic phase. When the lowest energy

level is exactly half ® lled the composite fermions try to form

a metallic state where there is no eŒective ® eld remaining.

We then have a Fermi liquid of composite fermions

(Halperin et al. 1993). The residual interactions in this

metal can also have a singular form and so aŒect its

properties. These come from an interaction between

currents and charge density which is left over from

approximations of binding magnetic ¯ ux to the underlying

electrons. This type of interaction (coupling a vector to a

scalar) is not usually allowed in a metal but occurs here in

the presence of a magnetic ® eld. It is the absence of a long

range interaction (which would otherwise suppress the

¯ uctuations of density) that can cause the eŒective coupling

to be singular. Nevertheless one sees strong evidence for a

well formed Fermi liquid in the experiments (Willett 1997).

Perhaps the most puzzling of the systems with a singular

interaction are antiferromagnetic quantum critical points.

There exist a growing family of metals with very low NeÂ el

temperatures below which antiferromagnetic order devel-

ops. An example is CePd2Si2 where the NeÂ el temperature

can be squeezed to zero in pressures of 28 000 atmospheres

(see ® gure 11). Similar arguments to those presented above

can be used to compute the expected temperature

dependence of the resistivity: it turns out to be T
3 /2

.

However, unlike the ferromagnetic case, the power law that

is observed is T
1.2

(Grosche et al. 1996) (see ® gure 12). Why

this should be is presently not understood but is potentially

a question of fundamental importance. The cuprate super-

conductors are also systems close to antiferromagnetism as

we have seen, and it has been argued that these two

puzzling phenomenon are linked. Tantalizingly, this system

and others close to antiferromagnetism (Mathur et al. 1998)

also show superconductivity at the quantum critical point

lending weight to a connection between this type of

Figure 11. CePd2 Si2 : a low temperature antiferromagnet.

Under pressure the antiferromagnetism can be suppressed to

zero temperature giving a quantum critical point. Not only do we

see non-Fermi liquid behaviour here but also there is a

superconducting transition (after Julian et al. (1996) and Mathur

et al. (1998)).

Figure 12. The resistivity of CePd2Si2 at the critical pressure

(28 kbar). The observed temperature dependence, T
1 .2

, is seen

over two decades of temperature. It has not yet been explained.

(Data after Grosche et al. (1996).)
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quantum critical point and the cuprates. However the

superconducting transition is at 0.4 K which leaves this

scenario needing to explain why Tc is so high in the

cuprates.

In our discussion thus far we have used only the

resistivity as the signature of non-Fermi liquid physics.

Primarily, this is because all of the above materials require

pressures so high to reach the critical point that thermo-

dynamic measurements (e.g. speci® c heat or Pauli suscept-

ibility) are rather di� cult. This can be overcome by using

doping rather than pressure to tune the metal to a quantum

critical point. One such example is CeCu6 ± xAux (see von

LoÈ hneysen 1996a , b) which is paramagnetic with x= 0 but

on adding a small mount (x= 0.1) of gold, the metal

develops antiferromagnetism (see ® gure 13). Here one can

look at all the familiar indicators of Fermi-liquid behaviour

and show how they deviate near the critical point. The

speci® c heat shows a T ln T relation (see ® gure 14), the

resistivity is linear in temperature and the Pauli suscept-

ibility diverges as Ð ln T at low temperatures. The danger

with doping as a tuning mechanism is that the metals are

now oŒstoichiometry and, as such, one must wonder about

the role of disorder near the critical point. This is

theoretically an open problem. Nevertheless, the experi-

mental situation is clear: we have a well tried route to the

non-Fermi liquid at a quantum critical point.

If all that was known about non-Fermi liquids was how

the quasiparticle could be destroyed by singular interac-

tions, we would seem to have found only the exception to

prove the general rule. However in one dimension we see a

radical new type of metallic behaviour where completely

new types of particle emerge to replace Landau’ s Fermi

quasiparticle.

5. Luttinger liquid: the Bose quasiparticle

We have already seen that our general scattering rate

argument would predict an absence of Fermi liquids in one

dimension even with a constant matrix element. Consider-

ing higher order terms only makes matters worse. All is not

lost however, for a new type of adiabatic continuity has

been proposed by Haldane (1981 ) which gives us the

possibility of quantifying the new metallic state that

emerges in its place: the Luttinger liquid. Discussing one

dimension may seem rather esoteric when we live in a three-

dimensional world. In fact many systems, from the `blue

bronze’ molybdenum alloys to some organic Bechgaard

salts have properties which are highly anisotropic. Electron

motion is essentially con® ned to one dimension by the very

low probability of the electron hopping in the two

remaining directions. It is in this type of system that we

have the possibility of seeing a Luttinger liquid state

develop.

Figure 13. The CeCu6 ± xAux system shows an antiferromag-

netic quantum critical point driven by gold doping. Using doping

to tune to the critical point opens up the possibility of doing more

measurements on the new metallic state. It comes at the price,

though, of increasing the sample disorder which can complicate

the theoretical understanding of the non-Fermi liquid state (after

Pietrus et al. (1995)).

Figure 14. The speci® c heat of CeCu5 .9 Au0 .1 at the quantum

critical point. The heat capacity shows a T ln T form indicating

that the thermodynamics of the non-Fermi liquid are totally

changed by the proximity to the critical point. (Data after von

LÈ ohneysen et al. (1996a, b).)
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Figure 15. One dimension has the special feature that all

particle± hole excitations with a given momentum q have the

same energy. (a) In high dimensions one can make (i) a high

energy excitation or (ii) a low energy one depending on the

whether q is normal or transverse to the local Fermi surface. (b)

In d= 1 there is only one direction in the problem and so ® xing

d q determines the energy change d E. This leads to density waves

being the proper description of physics in one dimension.

Figure 17. A simple picture of spin± charge separation in one

dimension. Consider the 1d tJ model when an electron is removed

from the antiferromagnetic Mott insulating state by a photon in

a photo-emission experiment (a). This leaves behind a disruption

in both the spin and charge order. (b) As electrons move into the

vacant site, the locations of the spin and charge disorder

separate. They have become distinct particles Ð a spinon and a

holon.

Figure 16. The spectral function of a one dimensional Luttinger

liquid. Notice how, in contrast to the Fermi liquid ( ® gure 5),

there are now two singular features corresponding to the spinon

and holon and they generally disperse with diŒerent velocities, v r

and v q (after Voit (1993) and Dias (1996)).
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If the essence of the Fermi liquid was the Landau

quasiparticle, then the essence of the Luttinger liquid is

spin ± charge separation and the appearance of spinon and

holon quasiparticles. Their existence relies on a very special

property of one-dimensional systems: near the Fermi

surface all particle± hole excitations at ® xed momentum

have the same kinetic energy. This is illustrated in ® gure 15

where we see that in two (and higher dimensions) the energy

depends both on the magnitude of q and on its direction

relative to the local Fermi surface. In one dimension there is

only one direction and so ® xing q determines the energy

completely. This is important because adding together all

the possible particle± hole excitations with a speci® c excita-

tion momentum q gives the wavefunction for a density

wave: a compression and rarefraction of electron density

with a wavelength 2 p / |q | . The special property of one

dimension means that here a density wave has a well-de® ned

kinetic energy. Now the potential energy is also usually

determined by the density of particles with a given

wavelength (see for example the Coulomb interaction of

equation (10)) and so the density wave also has a well

de ® ned potential energy. This is enough to tell us that

density waves form the new eigenstates of the one-

dimensional metal. More generally the potential energy

can depend on both the density of spin and the density of

charge, so spin density waves may have a diŒerent energy

from charge density waves. Thus the good quantum

numbers of the system are those of spin and charge density.

So we can completely by-pass the problem of how the

electrons behave by working only with the densities.

This leads to the remarkable phenomenon of spin±

charge separation. The electron carries with it both spin (its

magnetic moment) and its electrical charge. In one

dimension these can, and generally do, become two

separate entities which move independently as they form

the spin and charge density eigenstates. The electron

dissolves into its spin part (a spinon) and its charge part

(a holon). It is clearly not a Fermi liquid any more because

the good quantum numbers look nothing like the old

fermion quasiparticle labels. If we ask where the original

electron has gone by determining the spectral function, we

no longer see the single sharp quasiparticle peak of the

Fermi liquid. Instead we see two sharp features character-

izing the spin and charge parts of the electron moving with

diŒering velocities (see ® gure 16).

One can make a very simple picture of how this happens

by considering a single electron in a Mott insulating state.

This is illustrated in ® gure 17 where we consider the physics

of the tJ model (Box 2) but now in one dimension. Starting

with the insulating state we have an antiferromagnetic

arrangement of spins. Now we remove an electron which of

course removes both a spin and leaves behind a charged

state. As the hole now moves we note that the place where

the disruption in the spin arrangement and the position of

the hole have now moved apart. The spin and charge of the

original electron have separated and formed independent

entities.

This type of picture has, for many years, seemed no

more than a naõ È ve picture of a phenomenon whose

proper description requires the powerful mathematical

machinery of bosonization. (This is the technique which

formally expresses the problem in terms of spin and

charge densities.) However, very recently exactly the

experiment described above has been done on the

antiferromagnetic chain compound SrCuO 2 (Kim et al.

1996) . A single electron is removed from the chain by a

photo-emission process whereby an incident photon kicks

out an electron. The probability for doing so depends on

the underlying dynamics of the spin and charge degrees

of freedom we excite. Since this starts as an insulating

system the dynamics of the hole are the dynamics of an

almost empty band. The allowed momentum of the

spinon are restricted by the magnetic order. The

spectrum that is seen is shown in ® gure 18 (d). For some

momenta of the photo-electron, only the holon is allowed

to carry the momentum away and one sees a well de® ned

dispersing peak following the dispersion of the holon.

For other momenta, both the spinon and the holon can

be excited and so the momentum is distributed between

them. Instead of a sharp(ish) quasiparticle peak in the

spectrum one sees for these momenta a broader spectrum

distributed between the band energies of the spinon and

the holon (see ® gure 18).

The observant reader will perhaps have noticed that the

special property upon which all of this relies is a

consequence of the linearity of the energy spectrum near a

single Fermi point. In reality scattering from near one Fermi

surface point to the other side (® gure 19 (a)) or dispersion

curvature as one moves away from the Fermi points (® gure

19 (b)) means that the momentum of the particle± hole

excitation no longer uniquely determines the energy. The

Luttinger model is a simpli® ed version of the metallic states

that does not contain these troublesome processes (Luttin-

ger 1963). Haldane’ s Luttinger liquid hypothesis parallels

adiabatic continuity in the interacting Fermi liquid but now

using the one branch Luttinger model as the starting point.

Much as adding interactions to the non-interacting Fermi

gas leads to renormalization of (Landau) parameters to

form the Landau Fermi-liquid state, in one dimension the

additional processes which spoil the special properties of the

Luttinger model just lead to a renormalization of the

parameters in the model. In fact Haldane showed there were

just four free parameters which characterize the low energy

properties of one-dimensional metallic states. These proper-

ties not only set the values of the spinon and holon velocities

but also the so-called anomalous exponents which control,

among other properties, the nature of the singularities seen

in the electron spectral function.
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Identifying unambiguously a Luttinger liquid is made

harder by the fact that the thermodynamic probes of

speci® c heat and Pauli susceptibility retain their old Fermi

liquid forms even in a Luttinger liquid. Using the resistivity

to identify a Luttinger liquid is complicated by the issue of

how impurities control the scattering (in one dimension a

single impurity limits the current by blocking the current

path). In addition one-dimensional systems are typically

rather unstable to long range ordered spin- and charge-

density wave formation which can completely destroy the

metallic state. It seems that the most unambiguous probe

should be the photo-emission experiment of the type

performed above which potentially could measure the

spectral function of ® gure 16 (see Gweon et al. 1996, Voit

1998) . Nevertheless, from a theoretical perspective this non-

Fermi liquid state in 1D is convincingly established and has

been found relevant for experiments ranging from the

TMTSF Bechgaard salts (Bourbonnais et al. 1984 , Wzietek

et al. 1993, Dardel et al. 1993 , Zwick et al. 1997) to

quantum wires (Tarucha et al. 1995 , Yacoby et al. 1996) to

edge state tunnelling in the fractional quantum Hall eŒect

(Milliken et al. 1996 , Chang et al. 1996).

Phil Anderson has suggested that the Luttinger liquid

may not only be con® ned to the realm of one dimension but

Figure 18. Photo-emission experiments can actually reproduce

the physics of the simple picture of ® gure 17Ð here in SrCuO2 .

(a) The removal of a single electron creates a holon in an

otherwise empty band. (b) The magnetic order restricts the

allowed momentum of the spinon: the thick line shows the

forbidden regions. (c) For certain momenta of emitted photo-

electron there is just a single way in which the momentum can be

distributed between the spinon and holon but in other parts of the

zone there is no such restriction. (d) In the measurements we see

rather broad features where the momentum and energy is

distributed between a number of possible spinon and holons

states. In other parts of the zone a single dispersing peak is seen

(after Kim (1996) and Shen (1997)).

Figure 19. (a) Scattering from one Fermi point to the other or

(b) large energy excitations (and also Umklapp scattering), spoil

the special property of 1d illustrated in ® gure 15. The Luttinger

liquid hypothesis argues that the density wave eigenstates are

still adiabatically continuous with the true low energy eigenstates

even in the presence of these processes.

Figure 20. In the two-channel Kondo problem, a single

magnetic impurity interacts with two orthogonal electron

wavefunctions. The magnetic ion can no longer make the usual

non-magnetic singlet state at low temperatures because the

symmetry of the problem makes favouring one electron over the

other impossible. A magnetic state can still undergo further

Kondo scattering. The resulting ground state bears no resem-

blance to a non-interacting gas of electrons and is a local non-

Fermi liquid.
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may be the appropriate starting point for understanding the

two-dimensional metallic state of the cuprates (see Ander-

son 1997). Part of the supporting experimental evidence

which he appeals to is the two separate scattering rates

measured in the decay of electrical and Hall currents. These

he attributes to the decay of holons and spinons respec-

tively. While this proposal remains controversial, the idea of

spin ± charge separation in more than one dimension is a very

active research area at present.

6. Two-channel Kondo model: novel quasiparticles

Thus far we have had Fermi quasiparticles (in the Fermi

liquid), Bose quasiparticles (in the Luttinger liquid) and no

quasiparticles at all near a quantum critical point. That

might be expected to exhaust the possibilities! In fact in low

dimensional systems there can exist excitations which fall

outside these classes. I have already mentioned the

possibility of particles carrying fractional charge in the

fractional quantum Hall eŒect. The excitations of these

systems in two dimensions have quantum statistics that can

lie in between fermions and bosons. Under particle

exchange these particles acquire a more general phase

factor (exp(i h )) in contrast to the usual 6 1 for bosons/
fermions and are known as `anyons’ Ð for `any statistics’

(Leinaas and Myrheim 1977)!

Interactions then can lead to completely new types of

state appearing at low energies. Rather than use anyons as

an example, I will discuss the appearance of a new type of

excitation in a metal in the `two-channel Kondo’ problem.

The strange particle in this problem is essentially `half of a

spin-half’ degree of freedom. Kondo models have for many

years been a favourite of condensed matter theorists and

the single channel Kondo model is described in Box 1.

If the physics of the single-channel Kondo model is that

of a local Fermi liquid, then the two-channel case is the

physics of the local non-Fermi liquid. In the two-channel

case, one imagines a single spin one-half impurity which

interacts antiferromagnetically with two conduction seas of

electrons (hence the two channels) which do not otherwise

interact (Nozõ Á eres and Blandin 1980). The conduction

electrons are totally oblivious of the other sea of electrons

and do not even experience a Pauli exclusion principle from

them. Only the impurity sees that there are two channels.

Experimentally this is hard to realize as described above,

but there are claims that tunnelling experiments through

certain two level systems can be modelled in a very similar

way (Ralph et al. 1994).

The extra complication of two conduction channels does

little to aŒect the physics at high temperatures. For weak

coupling one has a free spin one-half object which scatters

both channels of electrons and results in the same

logarithmically growing scattering as the temperature is

lowered. However, as the coupling constant grows, the

impurity spin has a problem. It would like to form a singlet

but the symmetry of the problem forbids it from favouring

any one of the channels for making that singlet. The other

possibility is to make a linear superposition of a singlet with

each channel, but this leaves the unbound spin of the

spectator channel carrying a two-fold spin degeneracy. It

turns out that this then would behave like a new spin-half

impurity which in turn wants to undergo another Kondo

eŒect (see ® gure 20). There is no simple solution to the

impurity spin’ s dilemma. Solving the problem requires the

application of conformal ® eld theory techniques (A‚ eck

and Ludwig 1991) and the `Bethe Ansatz’ (Andrei and

Destri 1984 , Tsvelik and Wiegmann 1985) Ð a class of wave

functions which solve a number of interacting low

dimensional problems. The mathematical complexity of

these solutions forbids detailed discussion of them here.

There do exist a number of `simpli® ed’ treatments (Emery

and Kivelson 1992, Sengupta and Georges 1994 , Coleman

et al. 1995) which reformulate the two-channel Kondo

model (see Scho® eld 1997) and make the physical proper-

ties obtainable from perturbation theory. What emerges

can be seen from the calculated temperature dependence of

the impurity spin’ s entropy. In the single-channel Kondo

model this falls smoothly from 1n 2 re¯ ecting the two

degrees of freedom of the free spin, to 0 at very low

temperatures. In the two-channel case the entropy also falls

from ln 2. However it saturates at 1
2 ln 2 at low temperatures

as if a 2
1/2

degree of freedom is left. It transpires that this

object can be represented rather simply as the real part of

the normally complex electronÐ a so-called Majorana

fermion named after Majorana’ s purely real representation

of the Dirac equation (Majorana 1937). It remains free at

low temperatures and disrupts the local Fermi liquid one

had in the single-channel case.

New power laws emerge for the impurity spin contribu-

tion to the low temperature properties: heat capacity

~ T ln T, Pauli susceptibility ~ ln T and the resistivity

has a T
1 /2

correction. While it is hard to make a

straightforward application of this model to a physical

system, there have been a number of proposals suggesting

that this physics can be realized in certain uranium alloys

(Cox 1987) as well as in the various tunnelling problems

mentioned before. In fact strange power laws are seen in a

number of uranium alloys (see, for example, Maple et al.

1996) , but the two-channel Kondo interpretation remains

controversial. Nevertheless it provides us theoretically with

the intriguing possibility that the physics of non-Fermi

liquids may lead to completely new kinds of low energy

particle controlling the behaviour of exotic metals.

7. The disordered Kondo scenario

In our survey of non-Fermi liquids I have deliberately tried

to choose examples which are stoichiometricÐ that is where
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a pure crystal exhibits an unusual metallic state. The reason

for doing this has been to isolate the role of disorder which

further complicates our picture of non-Fermi liquid alloyed

materials. Although there exist many powerful techniques

for dealing with disorder in condensed matter physics, they

unfortunately are not easily extended to include the eŒect of

interactions. Having said that, there are in fact many more

examples of non-Fermi liquid metals which one might claim

to be disordered. Almost all of the cuprates are made by

partially substituting one atom for another in the process of

doping the Mott insulating state. (The reason that we

believe that these are in fact clean materials is because the

copper oxide planesÐ where the action is taking placeÐ are

left unscathed by the doping except for a change in carrier

density.) There exist also a growing number of diluted alloys

of uranium and cerium which also exhibit non-Fermi liquid

behaviour. Some have been interpreted in terms of the two-

channel Kondo scenario mentioned above. There is,

however, at least one other possibility, namely that the

non-Fermi liquid behaviour is coming from single-channel

Kondo impurities but the disorder creates a distribution of

Kondo temperatures (Bernal et al. 1995, Miranda et al.

1997) . One such example is UCu5 ± xPdx (Bernal et al. 1995)

where one imagines the magnetic uranium ions sitting in a

random environment of a Cu/Pd alloy.

I have argued that one such impurity favours a Fermi

liquid (see Box 1) so why is it that a distribution of such

impurities can lead to anything diŒerent? The answer lies in

the fact that even relatively weak disorder yields a fraction

of the impurity spins with extremely low Kondo tempera-

tures and these magnetic moments remain unquenched and

strongly scatter the conduction electrons even at low

temperatures. This is a consequence of the exponential

dependence of the Kondo temperature on the local

properties of the impurity spin:

T K 5 D exp ( 2 )̧ , (17)

where D is the bandwidth of the conduction electrons and k
is a measure of the local density of conduction electronic

states at the magnetic site and of the coupling between the

moment and the conduction electrons.

We can perform a crude calculation of the non-Fermi

liquid properties by assuming that the Kondo temperatures

in the alloy are uniformly distributed between 0 and an

arbitrary scale, T0 . By using approximate forms for the

speci® c heat, the resistivity and the susceptibility of a single

Kondo impurity, we can then simply average over the

distribution of Kondo temperatures to obtain the bulk

response. Our approximate forms will be

C imp ~ kB

T KT

T 2 1 T 2
K

, (18)

v imp ~ ¹2
B

T 1 T K

, (19)

q imp ~ 0 , T > T K,

q o , T £ T K.
(20)

These have been chosen to capture the essence of the results

for the Kondo model shown graphically in ® gure B2 while

obeying certain important constraints (such as the total

impurity entropy
¥

0 C im p/T dT being independent of Tk.)

Using a uniform distribution of Kondo temperatures

(P(TK )dTK = 1/T 0) we can straightforwardly calculate the

expected properties by averaging over the impurity

distribution (e.g. C(T ) ~ N imp /TO
To

0 C imp dTK ). One

® nds that

C (T ) ~ N imp kB

T

2T o

ln 1 1
T

2
o

T 2 , (21)

v (T ) ~ N imp

¹2
B

T o

ln 1 1 T o /T( ) , (22)

q (T ) ~ q o 1 2 T /T o( ) , for T < T o . (23)

We see at once that the speci® c heat and the susceptibility

immediately adopt non-Fermi liquid forms at low tem-

peratures with C/T ~ x ~ Ð 1n T instead of T independent.

The rising resistivity as the temperature is lowered suggests

disorder in the system as well as a low energy scattering

mechanism. Of course these results depend to some extent

on the distribution of Kondo temperatures but, provided

this distribution tends to a ® nite number (not zero) at low

temperatures, the low temperature forms are robust. In fact

this type of behaviour has been seen in many alloyed

materials (see Miranda et al. (1996 ) for a table).

To be sure that disorder is driving the non-Fermi liquid

physics we would like some independent signature of it.

This can come from nuclear magnetic resonance (NMR)

and muon spin rotation ( l SR) studies (MacLauglin et al.

1996). These measurements probe very precisely the local

environment at particular atomic sites. What is found is

that in UCu5 Ð x Pd x the copper atoms appear to sit in a

variety of local environments strongly suggesting the

presence of disorder. These authors are even able to extract

the distribution of Kondo temperatures and show that it

does satisfy the requirement of being ® nite at low

temperatures, and is consistent with the measured heat

capacity and susceptibilities. While this interpretation is not

universally accepted in this particular material (see, for

example, Aronson et al. 1996) it does serve as the simplest

example for a new route to non-Fermi liquid physics when

interactions and disorder combine.

8. Conclusions

The discovery of the cuprate superconductors has

sparked a widespread interest in materials which do not
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seem to lie within the traditional Fermi-liquid framework

which we have relied on for understanding the eŒect of

interactions in metals. What is emerging from this is a

striking richness in the types of metallic behaviour that

can appear. We see metals where the electron dissolves

into its magnetic and electric components and systems

when no quasiparticle excitation is left. We also see the

possibility of unusual states appearing which have no

simple analogue outside interacting systems.

In this article I have attempted to give a ¯ avour of

some of the ideas which are currently being explored

both to understand the cuprates but, often more

fruitfully, in understanding equally fascinating problems

in other metallic compounds. It may well be that the

solution to the mystery of the cuprate metals also lies in

some of the physics discussed here. However my

suspicion is that nature is playing stranger tricks and

that there is a new theory of interacting metals just as

profound as Landau’ s picture of the metallic state that

will apply to these compounds.
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